Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-bcm-iproc.c
blobd091a12596ad2c66367d59f6a412fa3b3fdaba7c
1 /*
2 * Copyright (C) 2014 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation version 2.
8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9 * kind, whether express or implied; without even the implied warranty
10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
24 #define IDM_CTRL_DIRECT_OFFSET 0x00
25 #define CFG_OFFSET 0x00
26 #define CFG_RESET_SHIFT 31
27 #define CFG_EN_SHIFT 30
28 #define CFG_SLAVE_ADDR_0_SHIFT 28
29 #define CFG_M_RETRY_CNT_SHIFT 16
30 #define CFG_M_RETRY_CNT_MASK 0x0f
32 #define TIM_CFG_OFFSET 0x04
33 #define TIM_CFG_MODE_400_SHIFT 31
34 #define TIM_RAND_SLAVE_STRETCH_SHIFT 24
35 #define TIM_RAND_SLAVE_STRETCH_MASK 0x7f
36 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT 16
37 #define TIM_PERIODIC_SLAVE_STRETCH_MASK 0x7f
39 #define S_CFG_SMBUS_ADDR_OFFSET 0x08
40 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT 31
41 #define S_CFG_NIC_SMB_ADDR3_SHIFT 24
42 #define S_CFG_NIC_SMB_ADDR3_MASK 0x7f
43 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT 23
44 #define S_CFG_NIC_SMB_ADDR2_SHIFT 16
45 #define S_CFG_NIC_SMB_ADDR2_MASK 0x7f
46 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT 15
47 #define S_CFG_NIC_SMB_ADDR1_SHIFT 8
48 #define S_CFG_NIC_SMB_ADDR1_MASK 0x7f
49 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT 7
50 #define S_CFG_NIC_SMB_ADDR0_SHIFT 0
51 #define S_CFG_NIC_SMB_ADDR0_MASK 0x7f
53 #define M_FIFO_CTRL_OFFSET 0x0c
54 #define M_FIFO_RX_FLUSH_SHIFT 31
55 #define M_FIFO_TX_FLUSH_SHIFT 30
56 #define M_FIFO_RX_CNT_SHIFT 16
57 #define M_FIFO_RX_CNT_MASK 0x7f
58 #define M_FIFO_RX_THLD_SHIFT 8
59 #define M_FIFO_RX_THLD_MASK 0x3f
61 #define S_FIFO_CTRL_OFFSET 0x10
62 #define S_FIFO_RX_FLUSH_SHIFT 31
63 #define S_FIFO_TX_FLUSH_SHIFT 30
64 #define S_FIFO_RX_CNT_SHIFT 16
65 #define S_FIFO_RX_CNT_MASK 0x7f
66 #define S_FIFO_RX_THLD_SHIFT 8
67 #define S_FIFO_RX_THLD_MASK 0x3f
69 #define M_CMD_OFFSET 0x30
70 #define M_CMD_START_BUSY_SHIFT 31
71 #define M_CMD_STATUS_SHIFT 25
72 #define M_CMD_STATUS_MASK 0x07
73 #define M_CMD_STATUS_SUCCESS 0x0
74 #define M_CMD_STATUS_LOST_ARB 0x1
75 #define M_CMD_STATUS_NACK_ADDR 0x2
76 #define M_CMD_STATUS_NACK_DATA 0x3
77 #define M_CMD_STATUS_TIMEOUT 0x4
78 #define M_CMD_STATUS_FIFO_UNDERRUN 0x5
79 #define M_CMD_STATUS_RX_FIFO_FULL 0x6
80 #define M_CMD_PROTOCOL_SHIFT 9
81 #define M_CMD_PROTOCOL_MASK 0xf
82 #define M_CMD_PROTOCOL_BLK_WR 0x7
83 #define M_CMD_PROTOCOL_BLK_RD 0x8
84 #define M_CMD_PROTOCOL_PROCESS 0xa
85 #define M_CMD_PEC_SHIFT 8
86 #define M_CMD_RD_CNT_SHIFT 0
87 #define M_CMD_RD_CNT_MASK 0xff
89 #define S_CMD_OFFSET 0x34
90 #define S_CMD_START_BUSY_SHIFT 31
91 #define S_CMD_STATUS_SHIFT 23
92 #define S_CMD_STATUS_MASK 0x07
93 #define S_CMD_STATUS_SUCCESS 0x0
94 #define S_CMD_STATUS_TIMEOUT 0x5
96 #define IE_OFFSET 0x38
97 #define IE_M_RX_FIFO_FULL_SHIFT 31
98 #define IE_M_RX_THLD_SHIFT 30
99 #define IE_M_START_BUSY_SHIFT 28
100 #define IE_M_TX_UNDERRUN_SHIFT 27
101 #define IE_S_RX_FIFO_FULL_SHIFT 26
102 #define IE_S_RX_THLD_SHIFT 25
103 #define IE_S_RX_EVENT_SHIFT 24
104 #define IE_S_START_BUSY_SHIFT 23
105 #define IE_S_TX_UNDERRUN_SHIFT 22
106 #define IE_S_RD_EVENT_SHIFT 21
108 #define IS_OFFSET 0x3c
109 #define IS_M_RX_FIFO_FULL_SHIFT 31
110 #define IS_M_RX_THLD_SHIFT 30
111 #define IS_M_START_BUSY_SHIFT 28
112 #define IS_M_TX_UNDERRUN_SHIFT 27
113 #define IS_S_RX_FIFO_FULL_SHIFT 26
114 #define IS_S_RX_THLD_SHIFT 25
115 #define IS_S_RX_EVENT_SHIFT 24
116 #define IS_S_START_BUSY_SHIFT 23
117 #define IS_S_TX_UNDERRUN_SHIFT 22
118 #define IS_S_RD_EVENT_SHIFT 21
120 #define M_TX_OFFSET 0x40
121 #define M_TX_WR_STATUS_SHIFT 31
122 #define M_TX_DATA_SHIFT 0
123 #define M_TX_DATA_MASK 0xff
125 #define M_RX_OFFSET 0x44
126 #define M_RX_STATUS_SHIFT 30
127 #define M_RX_STATUS_MASK 0x03
128 #define M_RX_PEC_ERR_SHIFT 29
129 #define M_RX_DATA_SHIFT 0
130 #define M_RX_DATA_MASK 0xff
132 #define S_TX_OFFSET 0x48
133 #define S_TX_WR_STATUS_SHIFT 31
134 #define S_TX_DATA_SHIFT 0
135 #define S_TX_DATA_MASK 0xff
137 #define S_RX_OFFSET 0x4c
138 #define S_RX_STATUS_SHIFT 30
139 #define S_RX_STATUS_MASK 0x03
140 #define S_RX_PEC_ERR_SHIFT 29
141 #define S_RX_DATA_SHIFT 0
142 #define S_RX_DATA_MASK 0xff
144 #define I2C_TIMEOUT_MSEC 50000
145 #define M_TX_RX_FIFO_SIZE 64
146 #define M_RX_FIFO_MAX_THLD_VALUE (M_TX_RX_FIFO_SIZE - 1)
148 #define M_RX_MAX_READ_LEN 255
149 #define M_RX_FIFO_THLD_VALUE 50
151 #define IE_M_ALL_INTERRUPT_SHIFT 27
152 #define IE_M_ALL_INTERRUPT_MASK 0x1e
154 #define SLAVE_READ_WRITE_BIT_MASK 0x1
155 #define SLAVE_READ_WRITE_BIT_SHIFT 0x1
156 #define SLAVE_MAX_SIZE_TRANSACTION 64
157 #define SLAVE_CLOCK_STRETCH_TIME 25
159 #define IE_S_ALL_INTERRUPT_SHIFT 21
160 #define IE_S_ALL_INTERRUPT_MASK 0x3f
162 enum i2c_slave_read_status {
163 I2C_SLAVE_RX_FIFO_EMPTY = 0,
164 I2C_SLAVE_RX_START,
165 I2C_SLAVE_RX_DATA,
166 I2C_SLAVE_RX_END,
169 enum bus_speed_index {
170 I2C_SPD_100K = 0,
171 I2C_SPD_400K,
174 enum bcm_iproc_i2c_type {
175 IPROC_I2C,
176 IPROC_I2C_NIC
179 struct bcm_iproc_i2c_dev {
180 struct device *device;
181 enum bcm_iproc_i2c_type type;
182 int irq;
184 void __iomem *base;
185 void __iomem *idm_base;
187 u32 ape_addr_mask;
189 /* lock for indirect access through IDM */
190 spinlock_t idm_lock;
192 struct i2c_adapter adapter;
193 unsigned int bus_speed;
195 struct completion done;
196 int xfer_is_done;
198 struct i2c_msg *msg;
200 struct i2c_client *slave;
202 /* bytes that have been transferred */
203 unsigned int tx_bytes;
204 /* bytes that have been read */
205 unsigned int rx_bytes;
206 unsigned int thld_bytes;
210 * Can be expanded in the future if more interrupt status bits are utilized
212 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
213 | BIT(IS_M_RX_THLD_SHIFT))
215 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
216 | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
217 | BIT(IS_S_TX_UNDERRUN_SHIFT))
219 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
220 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
221 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
222 bool enable);
224 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
225 u32 offset)
227 u32 val;
229 if (iproc_i2c->idm_base) {
230 spin_lock(&iproc_i2c->idm_lock);
231 writel(iproc_i2c->ape_addr_mask,
232 iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
233 val = readl(iproc_i2c->base + offset);
234 spin_unlock(&iproc_i2c->idm_lock);
235 } else {
236 val = readl(iproc_i2c->base + offset);
239 return val;
242 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
243 u32 offset, u32 val)
245 if (iproc_i2c->idm_base) {
246 spin_lock(&iproc_i2c->idm_lock);
247 writel(iproc_i2c->ape_addr_mask,
248 iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
249 writel(val, iproc_i2c->base + offset);
250 spin_unlock(&iproc_i2c->idm_lock);
251 } else {
252 writel(val, iproc_i2c->base + offset);
256 static void bcm_iproc_i2c_slave_init(
257 struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
259 u32 val;
261 if (need_reset) {
262 /* put controller in reset */
263 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
264 val |= BIT(CFG_RESET_SHIFT);
265 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
267 /* wait 100 usec per spec */
268 udelay(100);
270 /* bring controller out of reset */
271 val &= ~(BIT(CFG_RESET_SHIFT));
272 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
275 /* flush TX/RX FIFOs */
276 val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
277 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
279 /* Maximum slave stretch time */
280 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
281 val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
282 val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
283 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
285 /* Configure the slave address */
286 val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
287 val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
288 val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
289 val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
290 iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
292 /* clear all pending slave interrupts */
293 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
295 /* Enable interrupt register to indicate a valid byte in receive fifo */
296 val = BIT(IE_S_RX_EVENT_SHIFT);
297 /* Enable interrupt register for the Slave BUSY command */
298 val |= BIT(IE_S_START_BUSY_SHIFT);
299 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
302 static void bcm_iproc_i2c_check_slave_status(
303 struct bcm_iproc_i2c_dev *iproc_i2c)
305 u32 val;
307 val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
308 /* status is valid only when START_BUSY is cleared after it was set */
309 if (val & BIT(S_CMD_START_BUSY_SHIFT))
310 return;
312 val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
313 if (val == S_CMD_STATUS_TIMEOUT) {
314 dev_err(iproc_i2c->device, "slave random stretch time timeout\n");
316 /* re-initialize i2c for recovery */
317 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
318 bcm_iproc_i2c_slave_init(iproc_i2c, true);
319 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
323 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
324 u32 status)
326 u32 val;
327 u8 value, rx_status;
329 /* Slave RX byte receive */
330 if (status & BIT(IS_S_RX_EVENT_SHIFT)) {
331 val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
332 rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
333 if (rx_status == I2C_SLAVE_RX_START) {
334 /* Start of SMBUS for Master write */
335 i2c_slave_event(iproc_i2c->slave,
336 I2C_SLAVE_WRITE_REQUESTED, &value);
338 val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
339 value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
340 i2c_slave_event(iproc_i2c->slave,
341 I2C_SLAVE_WRITE_RECEIVED, &value);
342 } else if (status & BIT(IS_S_RD_EVENT_SHIFT)) {
343 /* Start of SMBUS for Master Read */
344 i2c_slave_event(iproc_i2c->slave,
345 I2C_SLAVE_READ_REQUESTED, &value);
346 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
348 val = BIT(S_CMD_START_BUSY_SHIFT);
349 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
352 * Enable interrupt for TX FIFO becomes empty and
353 * less than PKT_LENGTH bytes were output on the SMBUS
355 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
356 val |= BIT(IE_S_TX_UNDERRUN_SHIFT);
357 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
358 } else {
359 /* Master write other than start */
360 value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
361 i2c_slave_event(iproc_i2c->slave,
362 I2C_SLAVE_WRITE_RECEIVED, &value);
363 if (rx_status == I2C_SLAVE_RX_END)
364 i2c_slave_event(iproc_i2c->slave,
365 I2C_SLAVE_STOP, &value);
367 } else if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
368 /* Master read other than start */
369 i2c_slave_event(iproc_i2c->slave,
370 I2C_SLAVE_READ_PROCESSED, &value);
372 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
373 val = BIT(S_CMD_START_BUSY_SHIFT);
374 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
377 /* Stop */
378 if (status & BIT(IS_S_START_BUSY_SHIFT)) {
379 i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
381 * Enable interrupt for TX FIFO becomes empty and
382 * less than PKT_LENGTH bytes were output on the SMBUS
384 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
385 val &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
386 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
389 /* clear interrupt status */
390 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
392 bcm_iproc_i2c_check_slave_status(iproc_i2c);
393 return true;
396 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
398 struct i2c_msg *msg = iproc_i2c->msg;
399 uint32_t val;
401 /* Read valid data from RX FIFO */
402 while (iproc_i2c->rx_bytes < msg->len) {
403 val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
405 /* rx fifo empty */
406 if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
407 break;
409 msg->buf[iproc_i2c->rx_bytes] =
410 (val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
411 iproc_i2c->rx_bytes++;
415 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
417 struct i2c_msg *msg = iproc_i2c->msg;
418 unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
419 unsigned int i;
420 u32 val;
422 /* can only fill up to the FIFO size */
423 tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
424 for (i = 0; i < tx_bytes; i++) {
425 /* start from where we left over */
426 unsigned int idx = iproc_i2c->tx_bytes + i;
428 val = msg->buf[idx];
430 /* mark the last byte */
431 if (idx == msg->len - 1) {
432 val |= BIT(M_TX_WR_STATUS_SHIFT);
434 if (iproc_i2c->irq) {
435 u32 tmp;
438 * Since this is the last byte, we should now
439 * disable TX FIFO underrun interrupt
441 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
442 tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
443 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
444 tmp);
448 /* load data into TX FIFO */
449 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
452 /* update number of transferred bytes */
453 iproc_i2c->tx_bytes += tx_bytes;
456 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
458 struct i2c_msg *msg = iproc_i2c->msg;
459 u32 bytes_left, val;
461 bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
462 bytes_left = msg->len - iproc_i2c->rx_bytes;
463 if (bytes_left == 0) {
464 if (iproc_i2c->irq) {
465 /* finished reading all data, disable rx thld event */
466 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
467 val &= ~BIT(IS_M_RX_THLD_SHIFT);
468 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
470 } else if (bytes_left < iproc_i2c->thld_bytes) {
471 /* set bytes left as threshold */
472 val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
473 val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
474 val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
475 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
476 iproc_i2c->thld_bytes = bytes_left;
479 * bytes_left >= iproc_i2c->thld_bytes,
480 * hence no need to change the THRESHOLD SET.
481 * It will remain as iproc_i2c->thld_bytes itself
485 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
486 u32 status)
488 /* TX FIFO is empty and we have more data to send */
489 if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
490 bcm_iproc_i2c_send(iproc_i2c);
492 /* RX FIFO threshold is reached and data needs to be read out */
493 if (status & BIT(IS_M_RX_THLD_SHIFT))
494 bcm_iproc_i2c_read(iproc_i2c);
496 /* transfer is done */
497 if (status & BIT(IS_M_START_BUSY_SHIFT)) {
498 iproc_i2c->xfer_is_done = 1;
499 if (iproc_i2c->irq)
500 complete(&iproc_i2c->done);
504 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
506 struct bcm_iproc_i2c_dev *iproc_i2c = data;
507 u32 status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
508 bool ret;
509 u32 sl_status = status & ISR_MASK_SLAVE;
511 if (sl_status) {
512 ret = bcm_iproc_i2c_slave_isr(iproc_i2c, sl_status);
513 if (ret)
514 return IRQ_HANDLED;
515 else
516 return IRQ_NONE;
519 status &= ISR_MASK;
520 if (!status)
521 return IRQ_NONE;
523 /* process all master based events */
524 bcm_iproc_i2c_process_m_event(iproc_i2c, status);
525 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
527 return IRQ_HANDLED;
530 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
532 u32 val;
534 /* put controller in reset */
535 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
536 val |= BIT(CFG_RESET_SHIFT);
537 val &= ~(BIT(CFG_EN_SHIFT));
538 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
540 /* wait 100 usec per spec */
541 udelay(100);
543 /* bring controller out of reset */
544 val &= ~(BIT(CFG_RESET_SHIFT));
545 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
547 /* flush TX/RX FIFOs and set RX FIFO threshold to zero */
548 val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
549 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
550 /* disable all interrupts */
551 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
552 val &= ~(IE_M_ALL_INTERRUPT_MASK <<
553 IE_M_ALL_INTERRUPT_SHIFT);
554 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
556 /* clear all pending interrupts */
557 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
559 return 0;
562 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
563 bool enable)
565 u32 val;
567 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
568 if (enable)
569 val |= BIT(CFG_EN_SHIFT);
570 else
571 val &= ~BIT(CFG_EN_SHIFT);
572 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
575 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
576 struct i2c_msg *msg)
578 u32 val;
580 val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
581 val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
583 switch (val) {
584 case M_CMD_STATUS_SUCCESS:
585 return 0;
587 case M_CMD_STATUS_LOST_ARB:
588 dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
589 return -EAGAIN;
591 case M_CMD_STATUS_NACK_ADDR:
592 dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
593 return -ENXIO;
595 case M_CMD_STATUS_NACK_DATA:
596 dev_dbg(iproc_i2c->device, "NAK data\n");
597 return -ENXIO;
599 case M_CMD_STATUS_TIMEOUT:
600 dev_dbg(iproc_i2c->device, "bus timeout\n");
601 return -ETIMEDOUT;
603 case M_CMD_STATUS_FIFO_UNDERRUN:
604 dev_dbg(iproc_i2c->device, "FIFO under-run\n");
605 return -ENXIO;
607 case M_CMD_STATUS_RX_FIFO_FULL:
608 dev_dbg(iproc_i2c->device, "RX FIFO full\n");
609 return -ETIMEDOUT;
611 default:
612 dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
614 /* re-initialize i2c for recovery */
615 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
616 bcm_iproc_i2c_init(iproc_i2c);
617 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
619 return -EIO;
623 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
624 struct i2c_msg *msg,
625 u32 cmd)
627 unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
628 u32 val, status;
629 int ret;
631 iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
633 if (iproc_i2c->irq) {
634 time_left = wait_for_completion_timeout(&iproc_i2c->done,
635 time_left);
636 /* disable all interrupts */
637 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
638 /* read it back to flush the write */
639 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
640 /* make sure the interrupt handler isn't running */
641 synchronize_irq(iproc_i2c->irq);
643 } else { /* polling mode */
644 unsigned long timeout = jiffies + time_left;
646 do {
647 status = iproc_i2c_rd_reg(iproc_i2c,
648 IS_OFFSET) & ISR_MASK;
649 bcm_iproc_i2c_process_m_event(iproc_i2c, status);
650 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
652 if (time_after(jiffies, timeout)) {
653 time_left = 0;
654 break;
657 cpu_relax();
658 cond_resched();
659 } while (!iproc_i2c->xfer_is_done);
662 if (!time_left && !iproc_i2c->xfer_is_done) {
663 dev_err(iproc_i2c->device, "transaction timed out\n");
665 /* flush both TX/RX FIFOs */
666 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
667 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
668 return -ETIMEDOUT;
671 ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
672 if (ret) {
673 /* flush both TX/RX FIFOs */
674 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
675 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
676 return ret;
679 return 0;
683 * If 'process_call' is true, then this is a multi-msg transfer that requires
684 * a repeated start between the messages.
685 * More specifically, it must be a write (reg) followed by a read (data).
686 * The i2c quirks are set to enforce this rule.
688 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
689 struct i2c_msg *msgs, bool process_call)
691 int i;
692 u8 addr;
693 u32 val, tmp, val_intr_en;
694 unsigned int tx_bytes;
695 struct i2c_msg *msg = &msgs[0];
697 /* check if bus is busy */
698 if (!!(iproc_i2c_rd_reg(iproc_i2c,
699 M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
700 dev_warn(iproc_i2c->device, "bus is busy\n");
701 return -EBUSY;
704 iproc_i2c->msg = msg;
706 /* format and load slave address into the TX FIFO */
707 addr = i2c_8bit_addr_from_msg(msg);
708 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
711 * For a write transaction, load data into the TX FIFO. Only allow
712 * loading up to TX FIFO size - 1 bytes of data since the first byte
713 * has been used up by the slave address
715 tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
716 if (!(msg->flags & I2C_M_RD)) {
717 for (i = 0; i < tx_bytes; i++) {
718 val = msg->buf[i];
720 /* mark the last byte */
721 if (!process_call && (i == msg->len - 1))
722 val |= 1 << M_TX_WR_STATUS_SHIFT;
724 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
726 iproc_i2c->tx_bytes = tx_bytes;
729 /* Process the read message if this is process call */
730 if (process_call) {
731 msg++;
732 iproc_i2c->msg = msg; /* point to second msg */
735 * The last byte to be sent out should be a slave
736 * address with read operation
738 addr = i2c_8bit_addr_from_msg(msg);
739 /* mark it the last byte out */
740 val = addr | (1 << M_TX_WR_STATUS_SHIFT);
741 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
744 /* mark as incomplete before starting the transaction */
745 if (iproc_i2c->irq)
746 reinit_completion(&iproc_i2c->done);
748 iproc_i2c->xfer_is_done = 0;
751 * Enable the "start busy" interrupt, which will be triggered after the
752 * transaction is done, i.e., the internal start_busy bit, transitions
753 * from 1 to 0.
755 val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
758 * If TX data size is larger than the TX FIFO, need to enable TX
759 * underrun interrupt, which will be triggerred when the TX FIFO is
760 * empty. When that happens we can then pump more data into the FIFO
762 if (!process_call && !(msg->flags & I2C_M_RD) &&
763 msg->len > iproc_i2c->tx_bytes)
764 val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
767 * Now we can activate the transfer. For a read operation, specify the
768 * number of bytes to read
770 val = BIT(M_CMD_START_BUSY_SHIFT);
771 if (msg->flags & I2C_M_RD) {
772 u32 protocol;
774 iproc_i2c->rx_bytes = 0;
775 if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
776 iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
777 else
778 iproc_i2c->thld_bytes = msg->len;
780 /* set threshold value */
781 tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
782 tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
783 tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
784 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
786 /* enable the RX threshold interrupt */
787 val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
789 protocol = process_call ?
790 M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
792 val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
793 (msg->len << M_CMD_RD_CNT_SHIFT);
794 } else {
795 val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
798 if (iproc_i2c->irq)
799 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
801 return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
804 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
805 struct i2c_msg msgs[], int num)
807 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
808 bool process_call = false;
809 int ret;
811 if (num == 2) {
812 /* Repeated start, use process call */
813 process_call = true;
814 if (msgs[1].flags & I2C_M_NOSTART) {
815 dev_err(iproc_i2c->device, "Invalid repeated start\n");
816 return -EOPNOTSUPP;
820 ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
821 if (ret) {
822 dev_dbg(iproc_i2c->device, "xfer failed\n");
823 return ret;
826 return num;
829 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
831 u32 val;
833 /* We do not support the SMBUS Quick command */
834 val = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
836 if (adap->algo->reg_slave)
837 val |= I2C_FUNC_SLAVE;
839 return val;
842 static struct i2c_algorithm bcm_iproc_algo = {
843 .master_xfer = bcm_iproc_i2c_xfer,
844 .functionality = bcm_iproc_i2c_functionality,
845 .reg_slave = bcm_iproc_i2c_reg_slave,
846 .unreg_slave = bcm_iproc_i2c_unreg_slave,
849 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
850 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
851 .max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
852 .max_read_len = M_RX_MAX_READ_LEN,
855 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
857 unsigned int bus_speed;
858 u32 val;
859 int ret = of_property_read_u32(iproc_i2c->device->of_node,
860 "clock-frequency", &bus_speed);
861 if (ret < 0) {
862 dev_info(iproc_i2c->device,
863 "unable to interpret clock-frequency DT property\n");
864 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
867 if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
868 dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
869 bus_speed);
870 dev_err(iproc_i2c->device,
871 "valid speeds are 100khz and 400khz\n");
872 return -EINVAL;
873 } else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
874 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
875 } else {
876 bus_speed = I2C_MAX_FAST_MODE_FREQ;
879 iproc_i2c->bus_speed = bus_speed;
880 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
881 val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
882 val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
883 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
885 dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
887 return 0;
890 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
892 int irq, ret = 0;
893 struct bcm_iproc_i2c_dev *iproc_i2c;
894 struct i2c_adapter *adap;
895 struct resource *res;
897 iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
898 GFP_KERNEL);
899 if (!iproc_i2c)
900 return -ENOMEM;
902 platform_set_drvdata(pdev, iproc_i2c);
903 iproc_i2c->device = &pdev->dev;
904 iproc_i2c->type =
905 (enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
906 init_completion(&iproc_i2c->done);
908 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
909 iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
910 if (IS_ERR(iproc_i2c->base))
911 return PTR_ERR(iproc_i2c->base);
913 if (iproc_i2c->type == IPROC_I2C_NIC) {
914 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
915 iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
916 res);
917 if (IS_ERR(iproc_i2c->idm_base))
918 return PTR_ERR(iproc_i2c->idm_base);
920 ret = of_property_read_u32(iproc_i2c->device->of_node,
921 "brcm,ape-hsls-addr-mask",
922 &iproc_i2c->ape_addr_mask);
923 if (ret < 0) {
924 dev_err(iproc_i2c->device,
925 "'brcm,ape-hsls-addr-mask' missing\n");
926 return -EINVAL;
929 spin_lock_init(&iproc_i2c->idm_lock);
931 /* no slave support */
932 bcm_iproc_algo.reg_slave = NULL;
933 bcm_iproc_algo.unreg_slave = NULL;
936 ret = bcm_iproc_i2c_init(iproc_i2c);
937 if (ret)
938 return ret;
940 ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
941 if (ret)
942 return ret;
944 irq = platform_get_irq(pdev, 0);
945 if (irq > 0) {
946 ret = devm_request_irq(iproc_i2c->device, irq,
947 bcm_iproc_i2c_isr, 0, pdev->name,
948 iproc_i2c);
949 if (ret < 0) {
950 dev_err(iproc_i2c->device,
951 "unable to request irq %i\n", irq);
952 return ret;
955 iproc_i2c->irq = irq;
956 } else {
957 dev_warn(iproc_i2c->device,
958 "no irq resource, falling back to poll mode\n");
961 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
963 adap = &iproc_i2c->adapter;
964 i2c_set_adapdata(adap, iproc_i2c);
965 snprintf(adap->name, sizeof(adap->name),
966 "Broadcom iProc (%s)",
967 of_node_full_name(iproc_i2c->device->of_node));
968 adap->algo = &bcm_iproc_algo;
969 adap->quirks = &bcm_iproc_i2c_quirks;
970 adap->dev.parent = &pdev->dev;
971 adap->dev.of_node = pdev->dev.of_node;
973 return i2c_add_adapter(adap);
976 static int bcm_iproc_i2c_remove(struct platform_device *pdev)
978 struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
980 if (iproc_i2c->irq) {
982 * Make sure there's no pending interrupt when we remove the
983 * adapter
985 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
986 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
987 synchronize_irq(iproc_i2c->irq);
990 i2c_del_adapter(&iproc_i2c->adapter);
991 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
993 return 0;
996 #ifdef CONFIG_PM_SLEEP
998 static int bcm_iproc_i2c_suspend(struct device *dev)
1000 struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1002 if (iproc_i2c->irq) {
1004 * Make sure there's no pending interrupt when we go into
1005 * suspend
1007 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1008 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1009 synchronize_irq(iproc_i2c->irq);
1012 /* now disable the controller */
1013 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1015 return 0;
1018 static int bcm_iproc_i2c_resume(struct device *dev)
1020 struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1021 int ret;
1022 u32 val;
1025 * Power domain could have been shut off completely in system deep
1026 * sleep, so re-initialize the block here
1028 ret = bcm_iproc_i2c_init(iproc_i2c);
1029 if (ret)
1030 return ret;
1032 /* configure to the desired bus speed */
1033 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1034 val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1035 val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1036 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1038 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1040 return 0;
1043 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1044 .suspend_late = &bcm_iproc_i2c_suspend,
1045 .resume_early = &bcm_iproc_i2c_resume
1048 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1049 #else
1050 #define BCM_IPROC_I2C_PM_OPS NULL
1051 #endif /* CONFIG_PM_SLEEP */
1054 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1056 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1058 if (iproc_i2c->slave)
1059 return -EBUSY;
1061 if (slave->flags & I2C_CLIENT_TEN)
1062 return -EAFNOSUPPORT;
1064 iproc_i2c->slave = slave;
1065 bcm_iproc_i2c_slave_init(iproc_i2c, false);
1066 return 0;
1069 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1071 u32 tmp;
1072 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1074 if (!iproc_i2c->slave)
1075 return -EINVAL;
1077 iproc_i2c->slave = NULL;
1079 /* disable all slave interrupts */
1080 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1081 tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1082 IE_S_ALL_INTERRUPT_SHIFT);
1083 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1085 /* Erase the slave address programmed */
1086 tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1087 tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1088 iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1090 return 0;
1093 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1095 .compatible = "brcm,iproc-i2c",
1096 .data = (int *)IPROC_I2C,
1097 }, {
1098 .compatible = "brcm,iproc-nic-i2c",
1099 .data = (int *)IPROC_I2C_NIC,
1101 { /* sentinel */ }
1103 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1105 static struct platform_driver bcm_iproc_i2c_driver = {
1106 .driver = {
1107 .name = "bcm-iproc-i2c",
1108 .of_match_table = bcm_iproc_i2c_of_match,
1109 .pm = BCM_IPROC_I2C_PM_OPS,
1111 .probe = bcm_iproc_i2c_probe,
1112 .remove = bcm_iproc_i2c_remove,
1114 module_platform_driver(bcm_iproc_i2c_driver);
1116 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1117 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1118 MODULE_LICENSE("GPL v2");