Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / drivers / iommu / ipmmu-vmsa.c
blob310cf09feea370b99a814bb5f015796c53bd8fd7
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IOMMU API for Renesas VMSA-compatible IPMMU
4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 */
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...) NULL
34 #define arm_iommu_attach_device(...) -ENODEV
35 #define arm_iommu_release_mapping(...) do {} while (0)
36 #define arm_iommu_detach_device(...) do {} while (0)
37 #endif
39 #define IPMMU_CTX_MAX 8U
40 #define IPMMU_CTX_INVALID -1
42 #define IPMMU_UTLB_MAX 48U
44 struct ipmmu_features {
45 bool use_ns_alias_offset;
46 bool has_cache_leaf_nodes;
47 unsigned int number_of_contexts;
48 unsigned int num_utlbs;
49 bool setup_imbuscr;
50 bool twobit_imttbcr_sl0;
51 bool reserved_context;
52 bool cache_snoop;
53 unsigned int ctx_offset_base;
54 unsigned int ctx_offset_stride;
55 unsigned int utlb_offset_base;
58 struct ipmmu_vmsa_device {
59 struct device *dev;
60 void __iomem *base;
61 struct iommu_device iommu;
62 struct ipmmu_vmsa_device *root;
63 const struct ipmmu_features *features;
64 unsigned int num_ctx;
65 spinlock_t lock; /* Protects ctx and domains[] */
66 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
67 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
68 s8 utlb_ctx[IPMMU_UTLB_MAX];
70 struct iommu_group *group;
71 struct dma_iommu_mapping *mapping;
74 struct ipmmu_vmsa_domain {
75 struct ipmmu_vmsa_device *mmu;
76 struct iommu_domain io_domain;
78 struct io_pgtable_cfg cfg;
79 struct io_pgtable_ops *iop;
81 unsigned int context_id;
82 struct mutex mutex; /* Protects mappings */
85 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
87 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
90 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
92 return dev_iommu_priv_get(dev);
95 #define TLB_LOOP_TIMEOUT 100 /* 100us */
97 /* -----------------------------------------------------------------------------
98 * Registers Definition
101 #define IM_NS_ALIAS_OFFSET 0x800
103 /* MMU "context" registers */
104 #define IMCTR 0x0000 /* R-Car Gen2/3 */
105 #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */
106 #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
107 #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
109 #define IMTTBCR 0x0008 /* R-Car Gen2/3 */
110 #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */
111 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */
112 #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */
113 #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */
114 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */
115 #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */
117 #define IMBUSCR 0x000c /* R-Car Gen2 only */
118 #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */
119 #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */
121 #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */
122 #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */
124 #define IMSTR 0x0020 /* R-Car Gen2/3 */
125 #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */
126 #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */
127 #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */
128 #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */
130 #define IMMAIR0 0x0028 /* R-Car Gen2/3 */
132 #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
133 #define IMEUAR 0x0034 /* R-Car Gen3 only */
135 /* uTLB registers */
136 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
137 #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */
138 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */
139 #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */
140 #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
141 #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
143 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
144 #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */
145 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */
147 /* -----------------------------------------------------------------------------
148 * Root device handling
151 static struct platform_driver ipmmu_driver;
153 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
155 return mmu->root == mmu;
158 static int __ipmmu_check_device(struct device *dev, void *data)
160 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
161 struct ipmmu_vmsa_device **rootp = data;
163 if (ipmmu_is_root(mmu))
164 *rootp = mmu;
166 return 0;
169 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
171 struct ipmmu_vmsa_device *root = NULL;
173 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
174 __ipmmu_check_device) == 0 ? root : NULL;
177 /* -----------------------------------------------------------------------------
178 * Read/Write Access
181 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
183 return ioread32(mmu->base + offset);
186 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
187 u32 data)
189 iowrite32(data, mmu->base + offset);
192 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
193 unsigned int context_id, unsigned int reg)
195 return mmu->features->ctx_offset_base +
196 context_id * mmu->features->ctx_offset_stride + reg;
199 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
200 unsigned int context_id, unsigned int reg)
202 return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
205 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
206 unsigned int context_id, unsigned int reg, u32 data)
208 ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
211 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
212 unsigned int reg)
214 return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
217 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
218 unsigned int reg, u32 data)
220 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
223 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
224 unsigned int reg, u32 data)
226 if (domain->mmu != domain->mmu->root)
227 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
229 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
232 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
234 return mmu->features->utlb_offset_base + reg;
237 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
238 unsigned int utlb, u32 data)
240 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
243 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
244 unsigned int utlb, u32 data)
246 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
249 /* -----------------------------------------------------------------------------
250 * TLB and microTLB Management
253 /* Wait for any pending TLB invalidations to complete */
254 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
256 unsigned int count = 0;
258 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
259 cpu_relax();
260 if (++count == TLB_LOOP_TIMEOUT) {
261 dev_err_ratelimited(domain->mmu->dev,
262 "TLB sync timed out -- MMU may be deadlocked\n");
263 return;
265 udelay(1);
269 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
271 u32 reg;
273 reg = ipmmu_ctx_read_root(domain, IMCTR);
274 reg |= IMCTR_FLUSH;
275 ipmmu_ctx_write_all(domain, IMCTR, reg);
277 ipmmu_tlb_sync(domain);
281 * Enable MMU translation for the microTLB.
283 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
284 unsigned int utlb)
286 struct ipmmu_vmsa_device *mmu = domain->mmu;
289 * TODO: Reference-count the microTLB as several bus masters can be
290 * connected to the same microTLB.
293 /* TODO: What should we set the ASID to ? */
294 ipmmu_imuasid_write(mmu, utlb, 0);
295 /* TODO: Do we need to flush the microTLB ? */
296 ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
297 IMUCTR_FLUSH | IMUCTR_MMUEN);
298 mmu->utlb_ctx[utlb] = domain->context_id;
302 * Disable MMU translation for the microTLB.
304 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
305 unsigned int utlb)
307 struct ipmmu_vmsa_device *mmu = domain->mmu;
309 ipmmu_imuctr_write(mmu, utlb, 0);
310 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
313 static void ipmmu_tlb_flush_all(void *cookie)
315 struct ipmmu_vmsa_domain *domain = cookie;
317 ipmmu_tlb_invalidate(domain);
320 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
321 size_t granule, void *cookie)
323 ipmmu_tlb_flush_all(cookie);
326 static const struct iommu_flush_ops ipmmu_flush_ops = {
327 .tlb_flush_all = ipmmu_tlb_flush_all,
328 .tlb_flush_walk = ipmmu_tlb_flush,
329 .tlb_flush_leaf = ipmmu_tlb_flush,
332 /* -----------------------------------------------------------------------------
333 * Domain/Context Management
336 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
337 struct ipmmu_vmsa_domain *domain)
339 unsigned long flags;
340 int ret;
342 spin_lock_irqsave(&mmu->lock, flags);
344 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
345 if (ret != mmu->num_ctx) {
346 mmu->domains[ret] = domain;
347 set_bit(ret, mmu->ctx);
348 } else
349 ret = -EBUSY;
351 spin_unlock_irqrestore(&mmu->lock, flags);
353 return ret;
356 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
357 unsigned int context_id)
359 unsigned long flags;
361 spin_lock_irqsave(&mmu->lock, flags);
363 clear_bit(context_id, mmu->ctx);
364 mmu->domains[context_id] = NULL;
366 spin_unlock_irqrestore(&mmu->lock, flags);
369 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
371 u64 ttbr;
372 u32 tmp;
374 /* TTBR0 */
375 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
376 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
377 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
380 * TTBCR
381 * We use long descriptors and allocate the whole 32-bit VA space to
382 * TTBR0.
384 if (domain->mmu->features->twobit_imttbcr_sl0)
385 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
386 else
387 tmp = IMTTBCR_SL0_LVL_1;
389 if (domain->mmu->features->cache_snoop)
390 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
391 IMTTBCR_IRGN0_WB_WA;
393 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
395 /* MAIR0 */
396 ipmmu_ctx_write_root(domain, IMMAIR0,
397 domain->cfg.arm_lpae_s1_cfg.mair);
399 /* IMBUSCR */
400 if (domain->mmu->features->setup_imbuscr)
401 ipmmu_ctx_write_root(domain, IMBUSCR,
402 ipmmu_ctx_read_root(domain, IMBUSCR) &
403 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
406 * IMSTR
407 * Clear all interrupt flags.
409 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
412 * IMCTR
413 * Enable the MMU and interrupt generation. The long-descriptor
414 * translation table format doesn't use TEX remapping. Don't enable AF
415 * software management as we have no use for it. Flush the TLB as
416 * required when modifying the context registers.
418 ipmmu_ctx_write_all(domain, IMCTR,
419 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
422 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
424 int ret;
427 * Allocate the page table operations.
429 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
430 * access, Long-descriptor format" that the NStable bit being set in a
431 * table descriptor will result in the NStable and NS bits of all child
432 * entries being ignored and considered as being set. The IPMMU seems
433 * not to comply with this, as it generates a secure access page fault
434 * if any of the NStable and NS bits isn't set when running in
435 * non-secure mode.
437 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
438 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
439 domain->cfg.ias = 32;
440 domain->cfg.oas = 40;
441 domain->cfg.tlb = &ipmmu_flush_ops;
442 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
443 domain->io_domain.geometry.force_aperture = true;
445 * TODO: Add support for coherent walk through CCI with DVM and remove
446 * cache handling. For now, delegate it to the io-pgtable code.
448 domain->cfg.coherent_walk = false;
449 domain->cfg.iommu_dev = domain->mmu->root->dev;
452 * Find an unused context.
454 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
455 if (ret < 0)
456 return ret;
458 domain->context_id = ret;
460 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
461 domain);
462 if (!domain->iop) {
463 ipmmu_domain_free_context(domain->mmu->root,
464 domain->context_id);
465 return -EINVAL;
468 ipmmu_domain_setup_context(domain);
469 return 0;
472 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
474 if (!domain->mmu)
475 return;
478 * Disable the context. Flush the TLB as required when modifying the
479 * context registers.
481 * TODO: Is TLB flush really needed ?
483 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
484 ipmmu_tlb_sync(domain);
485 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
488 /* -----------------------------------------------------------------------------
489 * Fault Handling
492 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
494 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
495 struct ipmmu_vmsa_device *mmu = domain->mmu;
496 unsigned long iova;
497 u32 status;
499 status = ipmmu_ctx_read_root(domain, IMSTR);
500 if (!(status & err_mask))
501 return IRQ_NONE;
503 iova = ipmmu_ctx_read_root(domain, IMELAR);
504 if (IS_ENABLED(CONFIG_64BIT))
505 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
508 * Clear the error status flags. Unlike traditional interrupt flag
509 * registers that must be cleared by writing 1, this status register
510 * seems to require 0. The error address register must be read before,
511 * otherwise its value will be 0.
513 ipmmu_ctx_write_root(domain, IMSTR, 0);
515 /* Log fatal errors. */
516 if (status & IMSTR_MHIT)
517 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
518 iova);
519 if (status & IMSTR_ABORT)
520 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
521 iova);
523 if (!(status & (IMSTR_PF | IMSTR_TF)))
524 return IRQ_NONE;
527 * Try to handle page faults and translation faults.
529 * TODO: We need to look up the faulty device based on the I/O VA. Use
530 * the IOMMU device for now.
532 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
533 return IRQ_HANDLED;
535 dev_err_ratelimited(mmu->dev,
536 "Unhandled fault: status 0x%08x iova 0x%lx\n",
537 status, iova);
539 return IRQ_HANDLED;
542 static irqreturn_t ipmmu_irq(int irq, void *dev)
544 struct ipmmu_vmsa_device *mmu = dev;
545 irqreturn_t status = IRQ_NONE;
546 unsigned int i;
547 unsigned long flags;
549 spin_lock_irqsave(&mmu->lock, flags);
552 * Check interrupts for all active contexts.
554 for (i = 0; i < mmu->num_ctx; i++) {
555 if (!mmu->domains[i])
556 continue;
557 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
558 status = IRQ_HANDLED;
561 spin_unlock_irqrestore(&mmu->lock, flags);
563 return status;
566 /* -----------------------------------------------------------------------------
567 * IOMMU Operations
570 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
572 struct ipmmu_vmsa_domain *domain;
574 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
575 if (!domain)
576 return NULL;
578 mutex_init(&domain->mutex);
580 return &domain->io_domain;
583 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
585 struct iommu_domain *io_domain = NULL;
587 switch (type) {
588 case IOMMU_DOMAIN_UNMANAGED:
589 io_domain = __ipmmu_domain_alloc(type);
590 break;
592 case IOMMU_DOMAIN_DMA:
593 io_domain = __ipmmu_domain_alloc(type);
594 if (io_domain && iommu_get_dma_cookie(io_domain)) {
595 kfree(io_domain);
596 io_domain = NULL;
598 break;
601 return io_domain;
604 static void ipmmu_domain_free(struct iommu_domain *io_domain)
606 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
609 * Free the domain resources. We assume that all devices have already
610 * been detached.
612 iommu_put_dma_cookie(io_domain);
613 ipmmu_domain_destroy_context(domain);
614 free_io_pgtable_ops(domain->iop);
615 kfree(domain);
618 static int ipmmu_attach_device(struct iommu_domain *io_domain,
619 struct device *dev)
621 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
622 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
623 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
624 unsigned int i;
625 int ret = 0;
627 if (!mmu) {
628 dev_err(dev, "Cannot attach to IPMMU\n");
629 return -ENXIO;
632 mutex_lock(&domain->mutex);
634 if (!domain->mmu) {
635 /* The domain hasn't been used yet, initialize it. */
636 domain->mmu = mmu;
637 ret = ipmmu_domain_init_context(domain);
638 if (ret < 0) {
639 dev_err(dev, "Unable to initialize IPMMU context\n");
640 domain->mmu = NULL;
641 } else {
642 dev_info(dev, "Using IPMMU context %u\n",
643 domain->context_id);
645 } else if (domain->mmu != mmu) {
647 * Something is wrong, we can't attach two devices using
648 * different IOMMUs to the same domain.
650 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
651 dev_name(mmu->dev), dev_name(domain->mmu->dev));
652 ret = -EINVAL;
653 } else
654 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
656 mutex_unlock(&domain->mutex);
658 if (ret < 0)
659 return ret;
661 for (i = 0; i < fwspec->num_ids; ++i)
662 ipmmu_utlb_enable(domain, fwspec->ids[i]);
664 return 0;
667 static void ipmmu_detach_device(struct iommu_domain *io_domain,
668 struct device *dev)
670 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
671 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
672 unsigned int i;
674 for (i = 0; i < fwspec->num_ids; ++i)
675 ipmmu_utlb_disable(domain, fwspec->ids[i]);
678 * TODO: Optimize by disabling the context when no device is attached.
682 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
683 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
685 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
687 if (!domain)
688 return -ENODEV;
690 return domain->iop->map(domain->iop, iova, paddr, size, prot);
693 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
694 size_t size, struct iommu_iotlb_gather *gather)
696 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
698 return domain->iop->unmap(domain->iop, iova, size, gather);
701 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
703 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
705 if (domain->mmu)
706 ipmmu_tlb_flush_all(domain);
709 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
710 struct iommu_iotlb_gather *gather)
712 ipmmu_flush_iotlb_all(io_domain);
715 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
716 dma_addr_t iova)
718 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
720 /* TODO: Is locking needed ? */
722 return domain->iop->iova_to_phys(domain->iop, iova);
725 static int ipmmu_init_platform_device(struct device *dev,
726 struct of_phandle_args *args)
728 struct platform_device *ipmmu_pdev;
730 ipmmu_pdev = of_find_device_by_node(args->np);
731 if (!ipmmu_pdev)
732 return -ENODEV;
734 dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
736 return 0;
739 static const struct soc_device_attribute soc_rcar_gen3[] = {
740 { .soc_id = "r8a774a1", },
741 { .soc_id = "r8a774b1", },
742 { .soc_id = "r8a774c0", },
743 { .soc_id = "r8a7795", },
744 { .soc_id = "r8a7796", },
745 { .soc_id = "r8a77965", },
746 { .soc_id = "r8a77970", },
747 { .soc_id = "r8a77990", },
748 { .soc_id = "r8a77995", },
749 { /* sentinel */ }
752 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
753 { .soc_id = "r8a774b1", },
754 { .soc_id = "r8a774c0", },
755 { .soc_id = "r8a7795", .revision = "ES3.*" },
756 { .soc_id = "r8a77965", },
757 { .soc_id = "r8a77990", },
758 { .soc_id = "r8a77995", },
759 { /* sentinel */ }
762 static const char * const rcar_gen3_slave_whitelist[] = {
765 static bool ipmmu_slave_whitelist(struct device *dev)
767 unsigned int i;
770 * For R-Car Gen3 use a white list to opt-in slave devices.
771 * For Other SoCs, this returns true anyway.
773 if (!soc_device_match(soc_rcar_gen3))
774 return true;
776 /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
777 if (!soc_device_match(soc_rcar_gen3_whitelist))
778 return false;
780 /* Check whether this slave device can work with the IPMMU */
781 for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
782 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
783 return true;
786 /* Otherwise, do not allow use of IPMMU */
787 return false;
790 static int ipmmu_of_xlate(struct device *dev,
791 struct of_phandle_args *spec)
793 if (!ipmmu_slave_whitelist(dev))
794 return -ENODEV;
796 iommu_fwspec_add_ids(dev, spec->args, 1);
798 /* Initialize once - xlate() will call multiple times */
799 if (to_ipmmu(dev))
800 return 0;
802 return ipmmu_init_platform_device(dev, spec);
805 static int ipmmu_init_arm_mapping(struct device *dev)
807 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
808 struct iommu_group *group;
809 int ret;
811 /* Create a device group and add the device to it. */
812 group = iommu_group_alloc();
813 if (IS_ERR(group)) {
814 dev_err(dev, "Failed to allocate IOMMU group\n");
815 return PTR_ERR(group);
818 ret = iommu_group_add_device(group, dev);
819 iommu_group_put(group);
821 if (ret < 0) {
822 dev_err(dev, "Failed to add device to IPMMU group\n");
823 return ret;
827 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
828 * VAs. This will allocate a corresponding IOMMU domain.
830 * TODO:
831 * - Create one mapping per context (TLB).
832 * - Make the mapping size configurable ? We currently use a 2GB mapping
833 * at a 1GB offset to ensure that NULL VAs will fault.
835 if (!mmu->mapping) {
836 struct dma_iommu_mapping *mapping;
838 mapping = arm_iommu_create_mapping(&platform_bus_type,
839 SZ_1G, SZ_2G);
840 if (IS_ERR(mapping)) {
841 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
842 ret = PTR_ERR(mapping);
843 goto error;
846 mmu->mapping = mapping;
849 /* Attach the ARM VA mapping to the device. */
850 ret = arm_iommu_attach_device(dev, mmu->mapping);
851 if (ret < 0) {
852 dev_err(dev, "Failed to attach device to VA mapping\n");
853 goto error;
856 return 0;
858 error:
859 iommu_group_remove_device(dev);
860 if (mmu->mapping)
861 arm_iommu_release_mapping(mmu->mapping);
863 return ret;
866 static int ipmmu_add_device(struct device *dev)
868 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
869 struct iommu_group *group;
870 int ret;
873 * Only let through devices that have been verified in xlate()
875 if (!mmu)
876 return -ENODEV;
878 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
879 ret = ipmmu_init_arm_mapping(dev);
880 if (ret)
881 return ret;
882 } else {
883 group = iommu_group_get_for_dev(dev);
884 if (IS_ERR(group))
885 return PTR_ERR(group);
887 iommu_group_put(group);
890 iommu_device_link(&mmu->iommu, dev);
891 return 0;
894 static void ipmmu_remove_device(struct device *dev)
896 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
898 iommu_device_unlink(&mmu->iommu, dev);
899 arm_iommu_detach_device(dev);
900 iommu_group_remove_device(dev);
903 static struct iommu_group *ipmmu_find_group(struct device *dev)
905 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
906 struct iommu_group *group;
908 if (mmu->group)
909 return iommu_group_ref_get(mmu->group);
911 group = iommu_group_alloc();
912 if (!IS_ERR(group))
913 mmu->group = group;
915 return group;
918 static const struct iommu_ops ipmmu_ops = {
919 .domain_alloc = ipmmu_domain_alloc,
920 .domain_free = ipmmu_domain_free,
921 .attach_dev = ipmmu_attach_device,
922 .detach_dev = ipmmu_detach_device,
923 .map = ipmmu_map,
924 .unmap = ipmmu_unmap,
925 .flush_iotlb_all = ipmmu_flush_iotlb_all,
926 .iotlb_sync = ipmmu_iotlb_sync,
927 .iova_to_phys = ipmmu_iova_to_phys,
928 .add_device = ipmmu_add_device,
929 .remove_device = ipmmu_remove_device,
930 .device_group = ipmmu_find_group,
931 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
932 .of_xlate = ipmmu_of_xlate,
935 /* -----------------------------------------------------------------------------
936 * Probe/remove and init
939 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
941 unsigned int i;
943 /* Disable all contexts. */
944 for (i = 0; i < mmu->num_ctx; ++i)
945 ipmmu_ctx_write(mmu, i, IMCTR, 0);
948 static const struct ipmmu_features ipmmu_features_default = {
949 .use_ns_alias_offset = true,
950 .has_cache_leaf_nodes = false,
951 .number_of_contexts = 1, /* software only tested with one context */
952 .num_utlbs = 32,
953 .setup_imbuscr = true,
954 .twobit_imttbcr_sl0 = false,
955 .reserved_context = false,
956 .cache_snoop = true,
957 .ctx_offset_base = 0,
958 .ctx_offset_stride = 0x40,
959 .utlb_offset_base = 0,
962 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
963 .use_ns_alias_offset = false,
964 .has_cache_leaf_nodes = true,
965 .number_of_contexts = 8,
966 .num_utlbs = 48,
967 .setup_imbuscr = false,
968 .twobit_imttbcr_sl0 = true,
969 .reserved_context = true,
970 .cache_snoop = false,
971 .ctx_offset_base = 0,
972 .ctx_offset_stride = 0x40,
973 .utlb_offset_base = 0,
976 static const struct of_device_id ipmmu_of_ids[] = {
978 .compatible = "renesas,ipmmu-vmsa",
979 .data = &ipmmu_features_default,
980 }, {
981 .compatible = "renesas,ipmmu-r8a774a1",
982 .data = &ipmmu_features_rcar_gen3,
983 }, {
984 .compatible = "renesas,ipmmu-r8a774b1",
985 .data = &ipmmu_features_rcar_gen3,
986 }, {
987 .compatible = "renesas,ipmmu-r8a774c0",
988 .data = &ipmmu_features_rcar_gen3,
989 }, {
990 .compatible = "renesas,ipmmu-r8a7795",
991 .data = &ipmmu_features_rcar_gen3,
992 }, {
993 .compatible = "renesas,ipmmu-r8a7796",
994 .data = &ipmmu_features_rcar_gen3,
995 }, {
996 .compatible = "renesas,ipmmu-r8a77965",
997 .data = &ipmmu_features_rcar_gen3,
998 }, {
999 .compatible = "renesas,ipmmu-r8a77970",
1000 .data = &ipmmu_features_rcar_gen3,
1001 }, {
1002 .compatible = "renesas,ipmmu-r8a77990",
1003 .data = &ipmmu_features_rcar_gen3,
1004 }, {
1005 .compatible = "renesas,ipmmu-r8a77995",
1006 .data = &ipmmu_features_rcar_gen3,
1007 }, {
1008 /* Terminator */
1012 static int ipmmu_probe(struct platform_device *pdev)
1014 struct ipmmu_vmsa_device *mmu;
1015 struct resource *res;
1016 int irq;
1017 int ret;
1019 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1020 if (!mmu) {
1021 dev_err(&pdev->dev, "cannot allocate device data\n");
1022 return -ENOMEM;
1025 mmu->dev = &pdev->dev;
1026 spin_lock_init(&mmu->lock);
1027 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1028 mmu->features = of_device_get_match_data(&pdev->dev);
1029 memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1030 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1032 /* Map I/O memory and request IRQ. */
1033 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1034 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1035 if (IS_ERR(mmu->base))
1036 return PTR_ERR(mmu->base);
1039 * The IPMMU has two register banks, for secure and non-secure modes.
1040 * The bank mapped at the beginning of the IPMMU address space
1041 * corresponds to the running mode of the CPU. When running in secure
1042 * mode the non-secure register bank is also available at an offset.
1044 * Secure mode operation isn't clearly documented and is thus currently
1045 * not implemented in the driver. Furthermore, preliminary tests of
1046 * non-secure operation with the main register bank were not successful.
1047 * Offset the registers base unconditionally to point to the non-secure
1048 * alias space for now.
1050 if (mmu->features->use_ns_alias_offset)
1051 mmu->base += IM_NS_ALIAS_OFFSET;
1053 mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1056 * Determine if this IPMMU instance is a root device by checking for
1057 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1059 if (!mmu->features->has_cache_leaf_nodes ||
1060 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1061 mmu->root = mmu;
1062 else
1063 mmu->root = ipmmu_find_root();
1066 * Wait until the root device has been registered for sure.
1068 if (!mmu->root)
1069 return -EPROBE_DEFER;
1071 /* Root devices have mandatory IRQs */
1072 if (ipmmu_is_root(mmu)) {
1073 irq = platform_get_irq(pdev, 0);
1074 if (irq < 0)
1075 return irq;
1077 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1078 dev_name(&pdev->dev), mmu);
1079 if (ret < 0) {
1080 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1081 return ret;
1084 ipmmu_device_reset(mmu);
1086 if (mmu->features->reserved_context) {
1087 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1088 set_bit(0, mmu->ctx);
1093 * Register the IPMMU to the IOMMU subsystem in the following cases:
1094 * - R-Car Gen2 IPMMU (all devices registered)
1095 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1097 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1098 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1099 dev_name(&pdev->dev));
1100 if (ret)
1101 return ret;
1103 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1104 iommu_device_set_fwnode(&mmu->iommu,
1105 &pdev->dev.of_node->fwnode);
1107 ret = iommu_device_register(&mmu->iommu);
1108 if (ret)
1109 return ret;
1111 #if defined(CONFIG_IOMMU_DMA)
1112 if (!iommu_present(&platform_bus_type))
1113 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1114 #endif
1118 * We can't create the ARM mapping here as it requires the bus to have
1119 * an IOMMU, which only happens when bus_set_iommu() is called in
1120 * ipmmu_init() after the probe function returns.
1123 platform_set_drvdata(pdev, mmu);
1125 return 0;
1128 static int ipmmu_remove(struct platform_device *pdev)
1130 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1132 iommu_device_sysfs_remove(&mmu->iommu);
1133 iommu_device_unregister(&mmu->iommu);
1135 arm_iommu_release_mapping(mmu->mapping);
1137 ipmmu_device_reset(mmu);
1139 return 0;
1142 #ifdef CONFIG_PM_SLEEP
1143 static int ipmmu_resume_noirq(struct device *dev)
1145 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1146 unsigned int i;
1148 /* Reset root MMU and restore contexts */
1149 if (ipmmu_is_root(mmu)) {
1150 ipmmu_device_reset(mmu);
1152 for (i = 0; i < mmu->num_ctx; i++) {
1153 if (!mmu->domains[i])
1154 continue;
1156 ipmmu_domain_setup_context(mmu->domains[i]);
1160 /* Re-enable active micro-TLBs */
1161 for (i = 0; i < mmu->features->num_utlbs; i++) {
1162 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1163 continue;
1165 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1168 return 0;
1171 static const struct dev_pm_ops ipmmu_pm = {
1172 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1174 #define DEV_PM_OPS &ipmmu_pm
1175 #else
1176 #define DEV_PM_OPS NULL
1177 #endif /* CONFIG_PM_SLEEP */
1179 static struct platform_driver ipmmu_driver = {
1180 .driver = {
1181 .name = "ipmmu-vmsa",
1182 .of_match_table = of_match_ptr(ipmmu_of_ids),
1183 .pm = DEV_PM_OPS,
1185 .probe = ipmmu_probe,
1186 .remove = ipmmu_remove,
1189 static int __init ipmmu_init(void)
1191 struct device_node *np;
1192 static bool setup_done;
1193 int ret;
1195 if (setup_done)
1196 return 0;
1198 np = of_find_matching_node(NULL, ipmmu_of_ids);
1199 if (!np)
1200 return 0;
1202 of_node_put(np);
1204 ret = platform_driver_register(&ipmmu_driver);
1205 if (ret < 0)
1206 return ret;
1208 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1209 if (!iommu_present(&platform_bus_type))
1210 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1211 #endif
1213 setup_done = true;
1214 return 0;
1216 subsys_initcall(ipmmu_init);