Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / drivers / md / dm.c
blobdb9e46114653119abb57eb61fb72b0622c816329
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 #include <linux/part_stat.h>
30 #define DM_MSG_PREFIX "core"
33 * Cookies are numeric values sent with CHANGE and REMOVE
34 * uevents while resuming, removing or renaming the device.
36 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
37 #define DM_COOKIE_LENGTH 24
39 static const char *_name = DM_NAME;
41 static unsigned int major = 0;
42 static unsigned int _major = 0;
44 static DEFINE_IDR(_minor_idr);
46 static DEFINE_SPINLOCK(_minor_lock);
48 static void do_deferred_remove(struct work_struct *w);
50 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
52 static struct workqueue_struct *deferred_remove_workqueue;
54 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
55 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
57 void dm_issue_global_event(void)
59 atomic_inc(&dm_global_event_nr);
60 wake_up(&dm_global_eventq);
64 * One of these is allocated (on-stack) per original bio.
66 struct clone_info {
67 struct dm_table *map;
68 struct bio *bio;
69 struct dm_io *io;
70 sector_t sector;
71 unsigned sector_count;
75 * One of these is allocated per clone bio.
77 #define DM_TIO_MAGIC 7282014
78 struct dm_target_io {
79 unsigned magic;
80 struct dm_io *io;
81 struct dm_target *ti;
82 unsigned target_bio_nr;
83 unsigned *len_ptr;
84 bool inside_dm_io;
85 struct bio clone;
89 * One of these is allocated per original bio.
90 * It contains the first clone used for that original.
92 #define DM_IO_MAGIC 5191977
93 struct dm_io {
94 unsigned magic;
95 struct mapped_device *md;
96 blk_status_t status;
97 atomic_t io_count;
98 struct bio *orig_bio;
99 unsigned long start_time;
100 spinlock_t endio_lock;
101 struct dm_stats_aux stats_aux;
102 /* last member of dm_target_io is 'struct bio' */
103 struct dm_target_io tio;
106 void *dm_per_bio_data(struct bio *bio, size_t data_size)
108 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
109 if (!tio->inside_dm_io)
110 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
111 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
113 EXPORT_SYMBOL_GPL(dm_per_bio_data);
115 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
117 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
118 if (io->magic == DM_IO_MAGIC)
119 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
120 BUG_ON(io->magic != DM_TIO_MAGIC);
121 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
123 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
125 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
127 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
129 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
131 #define MINOR_ALLOCED ((void *)-1)
134 * Bits for the md->flags field.
136 #define DMF_BLOCK_IO_FOR_SUSPEND 0
137 #define DMF_SUSPENDED 1
138 #define DMF_FROZEN 2
139 #define DMF_FREEING 3
140 #define DMF_DELETING 4
141 #define DMF_NOFLUSH_SUSPENDING 5
142 #define DMF_DEFERRED_REMOVE 6
143 #define DMF_SUSPENDED_INTERNALLY 7
145 #define DM_NUMA_NODE NUMA_NO_NODE
146 static int dm_numa_node = DM_NUMA_NODE;
149 * For mempools pre-allocation at the table loading time.
151 struct dm_md_mempools {
152 struct bio_set bs;
153 struct bio_set io_bs;
156 struct table_device {
157 struct list_head list;
158 refcount_t count;
159 struct dm_dev dm_dev;
163 * Bio-based DM's mempools' reserved IOs set by the user.
165 #define RESERVED_BIO_BASED_IOS 16
166 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
168 static int __dm_get_module_param_int(int *module_param, int min, int max)
170 int param = READ_ONCE(*module_param);
171 int modified_param = 0;
172 bool modified = true;
174 if (param < min)
175 modified_param = min;
176 else if (param > max)
177 modified_param = max;
178 else
179 modified = false;
181 if (modified) {
182 (void)cmpxchg(module_param, param, modified_param);
183 param = modified_param;
186 return param;
189 unsigned __dm_get_module_param(unsigned *module_param,
190 unsigned def, unsigned max)
192 unsigned param = READ_ONCE(*module_param);
193 unsigned modified_param = 0;
195 if (!param)
196 modified_param = def;
197 else if (param > max)
198 modified_param = max;
200 if (modified_param) {
201 (void)cmpxchg(module_param, param, modified_param);
202 param = modified_param;
205 return param;
208 unsigned dm_get_reserved_bio_based_ios(void)
210 return __dm_get_module_param(&reserved_bio_based_ios,
211 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
213 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
215 static unsigned dm_get_numa_node(void)
217 return __dm_get_module_param_int(&dm_numa_node,
218 DM_NUMA_NODE, num_online_nodes() - 1);
221 static int __init local_init(void)
223 int r;
225 r = dm_uevent_init();
226 if (r)
227 return r;
229 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
230 if (!deferred_remove_workqueue) {
231 r = -ENOMEM;
232 goto out_uevent_exit;
235 _major = major;
236 r = register_blkdev(_major, _name);
237 if (r < 0)
238 goto out_free_workqueue;
240 if (!_major)
241 _major = r;
243 return 0;
245 out_free_workqueue:
246 destroy_workqueue(deferred_remove_workqueue);
247 out_uevent_exit:
248 dm_uevent_exit();
250 return r;
253 static void local_exit(void)
255 flush_scheduled_work();
256 destroy_workqueue(deferred_remove_workqueue);
258 unregister_blkdev(_major, _name);
259 dm_uevent_exit();
261 _major = 0;
263 DMINFO("cleaned up");
266 static int (*_inits[])(void) __initdata = {
267 local_init,
268 dm_target_init,
269 dm_linear_init,
270 dm_stripe_init,
271 dm_io_init,
272 dm_kcopyd_init,
273 dm_interface_init,
274 dm_statistics_init,
277 static void (*_exits[])(void) = {
278 local_exit,
279 dm_target_exit,
280 dm_linear_exit,
281 dm_stripe_exit,
282 dm_io_exit,
283 dm_kcopyd_exit,
284 dm_interface_exit,
285 dm_statistics_exit,
288 static int __init dm_init(void)
290 const int count = ARRAY_SIZE(_inits);
292 int r, i;
294 for (i = 0; i < count; i++) {
295 r = _inits[i]();
296 if (r)
297 goto bad;
300 return 0;
302 bad:
303 while (i--)
304 _exits[i]();
306 return r;
309 static void __exit dm_exit(void)
311 int i = ARRAY_SIZE(_exits);
313 while (i--)
314 _exits[i]();
317 * Should be empty by this point.
319 idr_destroy(&_minor_idr);
323 * Block device functions
325 int dm_deleting_md(struct mapped_device *md)
327 return test_bit(DMF_DELETING, &md->flags);
330 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
332 struct mapped_device *md;
334 spin_lock(&_minor_lock);
336 md = bdev->bd_disk->private_data;
337 if (!md)
338 goto out;
340 if (test_bit(DMF_FREEING, &md->flags) ||
341 dm_deleting_md(md)) {
342 md = NULL;
343 goto out;
346 dm_get(md);
347 atomic_inc(&md->open_count);
348 out:
349 spin_unlock(&_minor_lock);
351 return md ? 0 : -ENXIO;
354 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
356 struct mapped_device *md;
358 spin_lock(&_minor_lock);
360 md = disk->private_data;
361 if (WARN_ON(!md))
362 goto out;
364 if (atomic_dec_and_test(&md->open_count) &&
365 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
366 queue_work(deferred_remove_workqueue, &deferred_remove_work);
368 dm_put(md);
369 out:
370 spin_unlock(&_minor_lock);
373 int dm_open_count(struct mapped_device *md)
375 return atomic_read(&md->open_count);
379 * Guarantees nothing is using the device before it's deleted.
381 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
383 int r = 0;
385 spin_lock(&_minor_lock);
387 if (dm_open_count(md)) {
388 r = -EBUSY;
389 if (mark_deferred)
390 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
391 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
392 r = -EEXIST;
393 else
394 set_bit(DMF_DELETING, &md->flags);
396 spin_unlock(&_minor_lock);
398 return r;
401 int dm_cancel_deferred_remove(struct mapped_device *md)
403 int r = 0;
405 spin_lock(&_minor_lock);
407 if (test_bit(DMF_DELETING, &md->flags))
408 r = -EBUSY;
409 else
410 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
412 spin_unlock(&_minor_lock);
414 return r;
417 static void do_deferred_remove(struct work_struct *w)
419 dm_deferred_remove();
422 sector_t dm_get_size(struct mapped_device *md)
424 return get_capacity(md->disk);
427 struct request_queue *dm_get_md_queue(struct mapped_device *md)
429 return md->queue;
432 struct dm_stats *dm_get_stats(struct mapped_device *md)
434 return &md->stats;
437 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
439 struct mapped_device *md = bdev->bd_disk->private_data;
441 return dm_get_geometry(md, geo);
444 #ifdef CONFIG_BLK_DEV_ZONED
445 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
447 struct dm_report_zones_args *args = data;
448 sector_t sector_diff = args->tgt->begin - args->start;
451 * Ignore zones beyond the target range.
453 if (zone->start >= args->start + args->tgt->len)
454 return 0;
457 * Remap the start sector and write pointer position of the zone
458 * to match its position in the target range.
460 zone->start += sector_diff;
461 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
462 if (zone->cond == BLK_ZONE_COND_FULL)
463 zone->wp = zone->start + zone->len;
464 else if (zone->cond == BLK_ZONE_COND_EMPTY)
465 zone->wp = zone->start;
466 else
467 zone->wp += sector_diff;
470 args->next_sector = zone->start + zone->len;
471 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
473 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
475 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
476 unsigned int nr_zones, report_zones_cb cb, void *data)
478 struct mapped_device *md = disk->private_data;
479 struct dm_table *map;
480 int srcu_idx, ret;
481 struct dm_report_zones_args args = {
482 .next_sector = sector,
483 .orig_data = data,
484 .orig_cb = cb,
487 if (dm_suspended_md(md))
488 return -EAGAIN;
490 map = dm_get_live_table(md, &srcu_idx);
491 if (!map)
492 return -EIO;
494 do {
495 struct dm_target *tgt;
497 tgt = dm_table_find_target(map, args.next_sector);
498 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
499 ret = -EIO;
500 goto out;
503 args.tgt = tgt;
504 ret = tgt->type->report_zones(tgt, &args, nr_zones);
505 if (ret < 0)
506 goto out;
507 } while (args.zone_idx < nr_zones &&
508 args.next_sector < get_capacity(disk));
510 ret = args.zone_idx;
511 out:
512 dm_put_live_table(md, srcu_idx);
513 return ret;
515 #else
516 #define dm_blk_report_zones NULL
517 #endif /* CONFIG_BLK_DEV_ZONED */
519 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
520 struct block_device **bdev)
521 __acquires(md->io_barrier)
523 struct dm_target *tgt;
524 struct dm_table *map;
525 int r;
527 retry:
528 r = -ENOTTY;
529 map = dm_get_live_table(md, srcu_idx);
530 if (!map || !dm_table_get_size(map))
531 return r;
533 /* We only support devices that have a single target */
534 if (dm_table_get_num_targets(map) != 1)
535 return r;
537 tgt = dm_table_get_target(map, 0);
538 if (!tgt->type->prepare_ioctl)
539 return r;
541 if (dm_suspended_md(md))
542 return -EAGAIN;
544 r = tgt->type->prepare_ioctl(tgt, bdev);
545 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
546 dm_put_live_table(md, *srcu_idx);
547 msleep(10);
548 goto retry;
551 return r;
554 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
555 __releases(md->io_barrier)
557 dm_put_live_table(md, srcu_idx);
560 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
561 unsigned int cmd, unsigned long arg)
563 struct mapped_device *md = bdev->bd_disk->private_data;
564 int r, srcu_idx;
566 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
567 if (r < 0)
568 goto out;
570 if (r > 0) {
572 * Target determined this ioctl is being issued against a
573 * subset of the parent bdev; require extra privileges.
575 if (!capable(CAP_SYS_RAWIO)) {
576 DMWARN_LIMIT(
577 "%s: sending ioctl %x to DM device without required privilege.",
578 current->comm, cmd);
579 r = -ENOIOCTLCMD;
580 goto out;
584 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
585 out:
586 dm_unprepare_ioctl(md, srcu_idx);
587 return r;
590 static void start_io_acct(struct dm_io *io);
592 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
594 struct dm_io *io;
595 struct dm_target_io *tio;
596 struct bio *clone;
598 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
599 if (!clone)
600 return NULL;
602 tio = container_of(clone, struct dm_target_io, clone);
603 tio->inside_dm_io = true;
604 tio->io = NULL;
606 io = container_of(tio, struct dm_io, tio);
607 io->magic = DM_IO_MAGIC;
608 io->status = 0;
609 atomic_set(&io->io_count, 1);
610 io->orig_bio = bio;
611 io->md = md;
612 spin_lock_init(&io->endio_lock);
614 start_io_acct(io);
616 return io;
619 static void free_io(struct mapped_device *md, struct dm_io *io)
621 bio_put(&io->tio.clone);
624 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
625 unsigned target_bio_nr, gfp_t gfp_mask)
627 struct dm_target_io *tio;
629 if (!ci->io->tio.io) {
630 /* the dm_target_io embedded in ci->io is available */
631 tio = &ci->io->tio;
632 } else {
633 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
634 if (!clone)
635 return NULL;
637 tio = container_of(clone, struct dm_target_io, clone);
638 tio->inside_dm_io = false;
641 tio->magic = DM_TIO_MAGIC;
642 tio->io = ci->io;
643 tio->ti = ti;
644 tio->target_bio_nr = target_bio_nr;
646 return tio;
649 static void free_tio(struct dm_target_io *tio)
651 if (tio->inside_dm_io)
652 return;
653 bio_put(&tio->clone);
656 static bool md_in_flight_bios(struct mapped_device *md)
658 int cpu;
659 struct hd_struct *part = &dm_disk(md)->part0;
660 long sum = 0;
662 for_each_possible_cpu(cpu) {
663 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
664 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
667 return sum != 0;
670 static bool md_in_flight(struct mapped_device *md)
672 if (queue_is_mq(md->queue))
673 return blk_mq_queue_inflight(md->queue);
674 else
675 return md_in_flight_bios(md);
678 static void start_io_acct(struct dm_io *io)
680 struct mapped_device *md = io->md;
681 struct bio *bio = io->orig_bio;
683 io->start_time = jiffies;
685 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
686 &dm_disk(md)->part0);
688 if (unlikely(dm_stats_used(&md->stats)))
689 dm_stats_account_io(&md->stats, bio_data_dir(bio),
690 bio->bi_iter.bi_sector, bio_sectors(bio),
691 false, 0, &io->stats_aux);
694 static void end_io_acct(struct dm_io *io)
696 struct mapped_device *md = io->md;
697 struct bio *bio = io->orig_bio;
698 unsigned long duration = jiffies - io->start_time;
700 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
701 io->start_time);
703 if (unlikely(dm_stats_used(&md->stats)))
704 dm_stats_account_io(&md->stats, bio_data_dir(bio),
705 bio->bi_iter.bi_sector, bio_sectors(bio),
706 true, duration, &io->stats_aux);
708 /* nudge anyone waiting on suspend queue */
709 if (unlikely(wq_has_sleeper(&md->wait)))
710 wake_up(&md->wait);
714 * Add the bio to the list of deferred io.
716 static void queue_io(struct mapped_device *md, struct bio *bio)
718 unsigned long flags;
720 spin_lock_irqsave(&md->deferred_lock, flags);
721 bio_list_add(&md->deferred, bio);
722 spin_unlock_irqrestore(&md->deferred_lock, flags);
723 queue_work(md->wq, &md->work);
727 * Everyone (including functions in this file), should use this
728 * function to access the md->map field, and make sure they call
729 * dm_put_live_table() when finished.
731 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
733 *srcu_idx = srcu_read_lock(&md->io_barrier);
735 return srcu_dereference(md->map, &md->io_barrier);
738 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
740 srcu_read_unlock(&md->io_barrier, srcu_idx);
743 void dm_sync_table(struct mapped_device *md)
745 synchronize_srcu(&md->io_barrier);
746 synchronize_rcu_expedited();
750 * A fast alternative to dm_get_live_table/dm_put_live_table.
751 * The caller must not block between these two functions.
753 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
755 rcu_read_lock();
756 return rcu_dereference(md->map);
759 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
761 rcu_read_unlock();
764 static char *_dm_claim_ptr = "I belong to device-mapper";
767 * Open a table device so we can use it as a map destination.
769 static int open_table_device(struct table_device *td, dev_t dev,
770 struct mapped_device *md)
772 struct block_device *bdev;
774 int r;
776 BUG_ON(td->dm_dev.bdev);
778 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
779 if (IS_ERR(bdev))
780 return PTR_ERR(bdev);
782 r = bd_link_disk_holder(bdev, dm_disk(md));
783 if (r) {
784 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
785 return r;
788 td->dm_dev.bdev = bdev;
789 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
790 return 0;
794 * Close a table device that we've been using.
796 static void close_table_device(struct table_device *td, struct mapped_device *md)
798 if (!td->dm_dev.bdev)
799 return;
801 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
802 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
803 put_dax(td->dm_dev.dax_dev);
804 td->dm_dev.bdev = NULL;
805 td->dm_dev.dax_dev = NULL;
808 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
809 fmode_t mode)
811 struct table_device *td;
813 list_for_each_entry(td, l, list)
814 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
815 return td;
817 return NULL;
820 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
821 struct dm_dev **result)
823 int r;
824 struct table_device *td;
826 mutex_lock(&md->table_devices_lock);
827 td = find_table_device(&md->table_devices, dev, mode);
828 if (!td) {
829 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
830 if (!td) {
831 mutex_unlock(&md->table_devices_lock);
832 return -ENOMEM;
835 td->dm_dev.mode = mode;
836 td->dm_dev.bdev = NULL;
838 if ((r = open_table_device(td, dev, md))) {
839 mutex_unlock(&md->table_devices_lock);
840 kfree(td);
841 return r;
844 format_dev_t(td->dm_dev.name, dev);
846 refcount_set(&td->count, 1);
847 list_add(&td->list, &md->table_devices);
848 } else {
849 refcount_inc(&td->count);
851 mutex_unlock(&md->table_devices_lock);
853 *result = &td->dm_dev;
854 return 0;
856 EXPORT_SYMBOL_GPL(dm_get_table_device);
858 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
860 struct table_device *td = container_of(d, struct table_device, dm_dev);
862 mutex_lock(&md->table_devices_lock);
863 if (refcount_dec_and_test(&td->count)) {
864 close_table_device(td, md);
865 list_del(&td->list);
866 kfree(td);
868 mutex_unlock(&md->table_devices_lock);
870 EXPORT_SYMBOL(dm_put_table_device);
872 static void free_table_devices(struct list_head *devices)
874 struct list_head *tmp, *next;
876 list_for_each_safe(tmp, next, devices) {
877 struct table_device *td = list_entry(tmp, struct table_device, list);
879 DMWARN("dm_destroy: %s still exists with %d references",
880 td->dm_dev.name, refcount_read(&td->count));
881 kfree(td);
886 * Get the geometry associated with a dm device
888 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
890 *geo = md->geometry;
892 return 0;
896 * Set the geometry of a device.
898 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
900 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
902 if (geo->start > sz) {
903 DMWARN("Start sector is beyond the geometry limits.");
904 return -EINVAL;
907 md->geometry = *geo;
909 return 0;
912 static int __noflush_suspending(struct mapped_device *md)
914 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
918 * Decrements the number of outstanding ios that a bio has been
919 * cloned into, completing the original io if necc.
921 static void dec_pending(struct dm_io *io, blk_status_t error)
923 unsigned long flags;
924 blk_status_t io_error;
925 struct bio *bio;
926 struct mapped_device *md = io->md;
928 /* Push-back supersedes any I/O errors */
929 if (unlikely(error)) {
930 spin_lock_irqsave(&io->endio_lock, flags);
931 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
932 io->status = error;
933 spin_unlock_irqrestore(&io->endio_lock, flags);
936 if (atomic_dec_and_test(&io->io_count)) {
937 if (io->status == BLK_STS_DM_REQUEUE) {
939 * Target requested pushing back the I/O.
941 spin_lock_irqsave(&md->deferred_lock, flags);
942 if (__noflush_suspending(md))
943 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
944 bio_list_add_head(&md->deferred, io->orig_bio);
945 else
946 /* noflush suspend was interrupted. */
947 io->status = BLK_STS_IOERR;
948 spin_unlock_irqrestore(&md->deferred_lock, flags);
951 io_error = io->status;
952 bio = io->orig_bio;
953 end_io_acct(io);
954 free_io(md, io);
956 if (io_error == BLK_STS_DM_REQUEUE)
957 return;
959 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
961 * Preflush done for flush with data, reissue
962 * without REQ_PREFLUSH.
964 bio->bi_opf &= ~REQ_PREFLUSH;
965 queue_io(md, bio);
966 } else {
967 /* done with normal IO or empty flush */
968 if (io_error)
969 bio->bi_status = io_error;
970 bio_endio(bio);
975 void disable_discard(struct mapped_device *md)
977 struct queue_limits *limits = dm_get_queue_limits(md);
979 /* device doesn't really support DISCARD, disable it */
980 limits->max_discard_sectors = 0;
981 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
984 void disable_write_same(struct mapped_device *md)
986 struct queue_limits *limits = dm_get_queue_limits(md);
988 /* device doesn't really support WRITE SAME, disable it */
989 limits->max_write_same_sectors = 0;
992 void disable_write_zeroes(struct mapped_device *md)
994 struct queue_limits *limits = dm_get_queue_limits(md);
996 /* device doesn't really support WRITE ZEROES, disable it */
997 limits->max_write_zeroes_sectors = 0;
1000 static void clone_endio(struct bio *bio)
1002 blk_status_t error = bio->bi_status;
1003 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1004 struct dm_io *io = tio->io;
1005 struct mapped_device *md = tio->io->md;
1006 dm_endio_fn endio = tio->ti->type->end_io;
1008 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
1009 if (bio_op(bio) == REQ_OP_DISCARD &&
1010 !bio->bi_disk->queue->limits.max_discard_sectors)
1011 disable_discard(md);
1012 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1013 !bio->bi_disk->queue->limits.max_write_same_sectors)
1014 disable_write_same(md);
1015 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1016 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1017 disable_write_zeroes(md);
1020 if (endio) {
1021 int r = endio(tio->ti, bio, &error);
1022 switch (r) {
1023 case DM_ENDIO_REQUEUE:
1024 error = BLK_STS_DM_REQUEUE;
1025 /*FALLTHRU*/
1026 case DM_ENDIO_DONE:
1027 break;
1028 case DM_ENDIO_INCOMPLETE:
1029 /* The target will handle the io */
1030 return;
1031 default:
1032 DMWARN("unimplemented target endio return value: %d", r);
1033 BUG();
1037 free_tio(tio);
1038 dec_pending(io, error);
1042 * Return maximum size of I/O possible at the supplied sector up to the current
1043 * target boundary.
1045 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1047 sector_t target_offset = dm_target_offset(ti, sector);
1049 return ti->len - target_offset;
1052 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1054 sector_t len = max_io_len_target_boundary(sector, ti);
1055 sector_t offset, max_len;
1058 * Does the target need to split even further?
1060 if (ti->max_io_len) {
1061 offset = dm_target_offset(ti, sector);
1062 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1063 max_len = sector_div(offset, ti->max_io_len);
1064 else
1065 max_len = offset & (ti->max_io_len - 1);
1066 max_len = ti->max_io_len - max_len;
1068 if (len > max_len)
1069 len = max_len;
1072 return len;
1075 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1077 if (len > UINT_MAX) {
1078 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1079 (unsigned long long)len, UINT_MAX);
1080 ti->error = "Maximum size of target IO is too large";
1081 return -EINVAL;
1084 ti->max_io_len = (uint32_t) len;
1086 return 0;
1088 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1090 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1091 sector_t sector, int *srcu_idx)
1092 __acquires(md->io_barrier)
1094 struct dm_table *map;
1095 struct dm_target *ti;
1097 map = dm_get_live_table(md, srcu_idx);
1098 if (!map)
1099 return NULL;
1101 ti = dm_table_find_target(map, sector);
1102 if (!ti)
1103 return NULL;
1105 return ti;
1108 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1109 long nr_pages, void **kaddr, pfn_t *pfn)
1111 struct mapped_device *md = dax_get_private(dax_dev);
1112 sector_t sector = pgoff * PAGE_SECTORS;
1113 struct dm_target *ti;
1114 long len, ret = -EIO;
1115 int srcu_idx;
1117 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1119 if (!ti)
1120 goto out;
1121 if (!ti->type->direct_access)
1122 goto out;
1123 len = max_io_len(sector, ti) / PAGE_SECTORS;
1124 if (len < 1)
1125 goto out;
1126 nr_pages = min(len, nr_pages);
1127 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1129 out:
1130 dm_put_live_table(md, srcu_idx);
1132 return ret;
1135 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1136 int blocksize, sector_t start, sector_t len)
1138 struct mapped_device *md = dax_get_private(dax_dev);
1139 struct dm_table *map;
1140 int srcu_idx;
1141 bool ret;
1143 map = dm_get_live_table(md, &srcu_idx);
1144 if (!map)
1145 return false;
1147 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1149 dm_put_live_table(md, srcu_idx);
1151 return ret;
1154 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1155 void *addr, size_t bytes, struct iov_iter *i)
1157 struct mapped_device *md = dax_get_private(dax_dev);
1158 sector_t sector = pgoff * PAGE_SECTORS;
1159 struct dm_target *ti;
1160 long ret = 0;
1161 int srcu_idx;
1163 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1165 if (!ti)
1166 goto out;
1167 if (!ti->type->dax_copy_from_iter) {
1168 ret = copy_from_iter(addr, bytes, i);
1169 goto out;
1171 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1172 out:
1173 dm_put_live_table(md, srcu_idx);
1175 return ret;
1178 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1179 void *addr, size_t bytes, struct iov_iter *i)
1181 struct mapped_device *md = dax_get_private(dax_dev);
1182 sector_t sector = pgoff * PAGE_SECTORS;
1183 struct dm_target *ti;
1184 long ret = 0;
1185 int srcu_idx;
1187 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1189 if (!ti)
1190 goto out;
1191 if (!ti->type->dax_copy_to_iter) {
1192 ret = copy_to_iter(addr, bytes, i);
1193 goto out;
1195 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1196 out:
1197 dm_put_live_table(md, srcu_idx);
1199 return ret;
1202 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1203 size_t nr_pages)
1205 struct mapped_device *md = dax_get_private(dax_dev);
1206 sector_t sector = pgoff * PAGE_SECTORS;
1207 struct dm_target *ti;
1208 int ret = -EIO;
1209 int srcu_idx;
1211 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1213 if (!ti)
1214 goto out;
1215 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1217 * ->zero_page_range() is mandatory dax operation. If we are
1218 * here, something is wrong.
1220 dm_put_live_table(md, srcu_idx);
1221 goto out;
1223 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1225 out:
1226 dm_put_live_table(md, srcu_idx);
1228 return ret;
1232 * A target may call dm_accept_partial_bio only from the map routine. It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1242 * | 1 | 2 | 3 |
1243 * +--------------------+---------------+-------+
1245 * <-------------- *tio->len_ptr --------------->
1246 * <------- bi_size ------->
1247 * <-- n_sectors -->
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 * (it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 * (it may be empty if region 1 is non-empty, although there is no reason
1253 * to make it empty)
1254 * The target requires that region 3 is to be sent in the next bio.
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1260 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1262 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1263 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1264 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1265 BUG_ON(bi_size > *tio->len_ptr);
1266 BUG_ON(n_sectors > bi_size);
1267 *tio->len_ptr -= bi_size - n_sectors;
1268 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1270 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1272 static blk_qc_t __map_bio(struct dm_target_io *tio)
1274 int r;
1275 sector_t sector;
1276 struct bio *clone = &tio->clone;
1277 struct dm_io *io = tio->io;
1278 struct mapped_device *md = io->md;
1279 struct dm_target *ti = tio->ti;
1280 blk_qc_t ret = BLK_QC_T_NONE;
1282 clone->bi_end_io = clone_endio;
1285 * Map the clone. If r == 0 we don't need to do
1286 * anything, the target has assumed ownership of
1287 * this io.
1289 atomic_inc(&io->io_count);
1290 sector = clone->bi_iter.bi_sector;
1292 r = ti->type->map(ti, clone);
1293 switch (r) {
1294 case DM_MAPIO_SUBMITTED:
1295 break;
1296 case DM_MAPIO_REMAPPED:
1297 /* the bio has been remapped so dispatch it */
1298 trace_block_bio_remap(clone->bi_disk->queue, clone,
1299 bio_dev(io->orig_bio), sector);
1300 if (md->type == DM_TYPE_NVME_BIO_BASED)
1301 ret = direct_make_request(clone);
1302 else
1303 ret = generic_make_request(clone);
1304 break;
1305 case DM_MAPIO_KILL:
1306 free_tio(tio);
1307 dec_pending(io, BLK_STS_IOERR);
1308 break;
1309 case DM_MAPIO_REQUEUE:
1310 free_tio(tio);
1311 dec_pending(io, BLK_STS_DM_REQUEUE);
1312 break;
1313 default:
1314 DMWARN("unimplemented target map return value: %d", r);
1315 BUG();
1318 return ret;
1321 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1323 bio->bi_iter.bi_sector = sector;
1324 bio->bi_iter.bi_size = to_bytes(len);
1328 * Creates a bio that consists of range of complete bvecs.
1330 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1331 sector_t sector, unsigned len)
1333 struct bio *clone = &tio->clone;
1335 __bio_clone_fast(clone, bio);
1337 if (bio_integrity(bio)) {
1338 int r;
1340 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1341 !dm_target_passes_integrity(tio->ti->type))) {
1342 DMWARN("%s: the target %s doesn't support integrity data.",
1343 dm_device_name(tio->io->md),
1344 tio->ti->type->name);
1345 return -EIO;
1348 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1349 if (r < 0)
1350 return r;
1353 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1354 clone->bi_iter.bi_size = to_bytes(len);
1356 if (bio_integrity(bio))
1357 bio_integrity_trim(clone);
1359 return 0;
1362 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1363 struct dm_target *ti, unsigned num_bios)
1365 struct dm_target_io *tio;
1366 int try;
1368 if (!num_bios)
1369 return;
1371 if (num_bios == 1) {
1372 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1373 bio_list_add(blist, &tio->clone);
1374 return;
1377 for (try = 0; try < 2; try++) {
1378 int bio_nr;
1379 struct bio *bio;
1381 if (try)
1382 mutex_lock(&ci->io->md->table_devices_lock);
1383 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1384 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1385 if (!tio)
1386 break;
1388 bio_list_add(blist, &tio->clone);
1390 if (try)
1391 mutex_unlock(&ci->io->md->table_devices_lock);
1392 if (bio_nr == num_bios)
1393 return;
1395 while ((bio = bio_list_pop(blist))) {
1396 tio = container_of(bio, struct dm_target_io, clone);
1397 free_tio(tio);
1402 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1403 struct dm_target_io *tio, unsigned *len)
1405 struct bio *clone = &tio->clone;
1407 tio->len_ptr = len;
1409 __bio_clone_fast(clone, ci->bio);
1410 if (len)
1411 bio_setup_sector(clone, ci->sector, *len);
1413 return __map_bio(tio);
1416 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1417 unsigned num_bios, unsigned *len)
1419 struct bio_list blist = BIO_EMPTY_LIST;
1420 struct bio *bio;
1421 struct dm_target_io *tio;
1423 alloc_multiple_bios(&blist, ci, ti, num_bios);
1425 while ((bio = bio_list_pop(&blist))) {
1426 tio = container_of(bio, struct dm_target_io, clone);
1427 (void) __clone_and_map_simple_bio(ci, tio, len);
1431 static int __send_empty_flush(struct clone_info *ci)
1433 unsigned target_nr = 0;
1434 struct dm_target *ti;
1437 * Empty flush uses a statically initialized bio, as the base for
1438 * cloning. However, blkg association requires that a bdev is
1439 * associated with a gendisk, which doesn't happen until the bdev is
1440 * opened. So, blkg association is done at issue time of the flush
1441 * rather than when the device is created in alloc_dev().
1443 bio_set_dev(ci->bio, ci->io->md->bdev);
1445 BUG_ON(bio_has_data(ci->bio));
1446 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1447 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1449 bio_disassociate_blkg(ci->bio);
1451 return 0;
1454 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1455 sector_t sector, unsigned *len)
1457 struct bio *bio = ci->bio;
1458 struct dm_target_io *tio;
1459 int r;
1461 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1462 tio->len_ptr = len;
1463 r = clone_bio(tio, bio, sector, *len);
1464 if (r < 0) {
1465 free_tio(tio);
1466 return r;
1468 (void) __map_bio(tio);
1470 return 0;
1473 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1475 static unsigned get_num_discard_bios(struct dm_target *ti)
1477 return ti->num_discard_bios;
1480 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1482 return ti->num_secure_erase_bios;
1485 static unsigned get_num_write_same_bios(struct dm_target *ti)
1487 return ti->num_write_same_bios;
1490 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1492 return ti->num_write_zeroes_bios;
1495 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1496 unsigned num_bios)
1498 unsigned len;
1501 * Even though the device advertised support for this type of
1502 * request, that does not mean every target supports it, and
1503 * reconfiguration might also have changed that since the
1504 * check was performed.
1506 if (!num_bios)
1507 return -EOPNOTSUPP;
1509 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1511 __send_duplicate_bios(ci, ti, num_bios, &len);
1513 ci->sector += len;
1514 ci->sector_count -= len;
1516 return 0;
1519 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1521 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1524 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1526 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1529 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1531 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1534 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1536 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1539 static bool is_abnormal_io(struct bio *bio)
1541 bool r = false;
1543 switch (bio_op(bio)) {
1544 case REQ_OP_DISCARD:
1545 case REQ_OP_SECURE_ERASE:
1546 case REQ_OP_WRITE_SAME:
1547 case REQ_OP_WRITE_ZEROES:
1548 r = true;
1549 break;
1552 return r;
1555 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1556 int *result)
1558 struct bio *bio = ci->bio;
1560 if (bio_op(bio) == REQ_OP_DISCARD)
1561 *result = __send_discard(ci, ti);
1562 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1563 *result = __send_secure_erase(ci, ti);
1564 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1565 *result = __send_write_same(ci, ti);
1566 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1567 *result = __send_write_zeroes(ci, ti);
1568 else
1569 return false;
1571 return true;
1575 * Select the correct strategy for processing a non-flush bio.
1577 static int __split_and_process_non_flush(struct clone_info *ci)
1579 struct dm_target *ti;
1580 unsigned len;
1581 int r;
1583 ti = dm_table_find_target(ci->map, ci->sector);
1584 if (!ti)
1585 return -EIO;
1587 if (__process_abnormal_io(ci, ti, &r))
1588 return r;
1590 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1592 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1593 if (r < 0)
1594 return r;
1596 ci->sector += len;
1597 ci->sector_count -= len;
1599 return 0;
1602 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1603 struct dm_table *map, struct bio *bio)
1605 ci->map = map;
1606 ci->io = alloc_io(md, bio);
1607 ci->sector = bio->bi_iter.bi_sector;
1610 #define __dm_part_stat_sub(part, field, subnd) \
1611 (part_stat_get(part, field) -= (subnd))
1614 * Entry point to split a bio into clones and submit them to the targets.
1616 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1617 struct dm_table *map, struct bio *bio)
1619 struct clone_info ci;
1620 blk_qc_t ret = BLK_QC_T_NONE;
1621 int error = 0;
1623 init_clone_info(&ci, md, map, bio);
1625 if (bio->bi_opf & REQ_PREFLUSH) {
1626 struct bio flush_bio;
1629 * Use an on-stack bio for this, it's safe since we don't
1630 * need to reference it after submit. It's just used as
1631 * the basis for the clone(s).
1633 bio_init(&flush_bio, NULL, 0);
1634 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1635 ci.bio = &flush_bio;
1636 ci.sector_count = 0;
1637 error = __send_empty_flush(&ci);
1638 /* dec_pending submits any data associated with flush */
1639 } else if (op_is_zone_mgmt(bio_op(bio))) {
1640 ci.bio = bio;
1641 ci.sector_count = 0;
1642 error = __split_and_process_non_flush(&ci);
1643 } else {
1644 ci.bio = bio;
1645 ci.sector_count = bio_sectors(bio);
1646 while (ci.sector_count && !error) {
1647 error = __split_and_process_non_flush(&ci);
1648 if (current->bio_list && ci.sector_count && !error) {
1650 * Remainder must be passed to generic_make_request()
1651 * so that it gets handled *after* bios already submitted
1652 * have been completely processed.
1653 * We take a clone of the original to store in
1654 * ci.io->orig_bio to be used by end_io_acct() and
1655 * for dec_pending to use for completion handling.
1657 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1658 GFP_NOIO, &md->queue->bio_split);
1659 ci.io->orig_bio = b;
1662 * Adjust IO stats for each split, otherwise upon queue
1663 * reentry there will be redundant IO accounting.
1664 * NOTE: this is a stop-gap fix, a proper fix involves
1665 * significant refactoring of DM core's bio splitting
1666 * (by eliminating DM's splitting and just using bio_split)
1668 part_stat_lock();
1669 __dm_part_stat_sub(&dm_disk(md)->part0,
1670 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1671 part_stat_unlock();
1673 bio_chain(b, bio);
1674 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1675 ret = generic_make_request(bio);
1676 break;
1681 /* drop the extra reference count */
1682 dec_pending(ci.io, errno_to_blk_status(error));
1683 return ret;
1687 * Optimized variant of __split_and_process_bio that leverages the
1688 * fact that targets that use it do _not_ have a need to split bios.
1690 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1691 struct bio *bio, struct dm_target *ti)
1693 struct clone_info ci;
1694 blk_qc_t ret = BLK_QC_T_NONE;
1695 int error = 0;
1697 init_clone_info(&ci, md, map, bio);
1699 if (bio->bi_opf & REQ_PREFLUSH) {
1700 struct bio flush_bio;
1703 * Use an on-stack bio for this, it's safe since we don't
1704 * need to reference it after submit. It's just used as
1705 * the basis for the clone(s).
1707 bio_init(&flush_bio, NULL, 0);
1708 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1709 ci.bio = &flush_bio;
1710 ci.sector_count = 0;
1711 error = __send_empty_flush(&ci);
1712 /* dec_pending submits any data associated with flush */
1713 } else {
1714 struct dm_target_io *tio;
1716 ci.bio = bio;
1717 ci.sector_count = bio_sectors(bio);
1718 if (__process_abnormal_io(&ci, ti, &error))
1719 goto out;
1721 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1722 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1724 out:
1725 /* drop the extra reference count */
1726 dec_pending(ci.io, errno_to_blk_status(error));
1727 return ret;
1730 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1732 unsigned len, sector_count;
1734 sector_count = bio_sectors(*bio);
1735 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1737 if (sector_count > len) {
1738 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1740 bio_chain(split, *bio);
1741 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1742 generic_make_request(*bio);
1743 *bio = split;
1747 static blk_qc_t dm_process_bio(struct mapped_device *md,
1748 struct dm_table *map, struct bio *bio)
1750 blk_qc_t ret = BLK_QC_T_NONE;
1751 struct dm_target *ti = md->immutable_target;
1753 if (unlikely(!map)) {
1754 bio_io_error(bio);
1755 return ret;
1758 if (!ti) {
1759 ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1760 if (unlikely(!ti)) {
1761 bio_io_error(bio);
1762 return ret;
1767 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1768 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1769 * won't be imposed.
1771 if (current->bio_list) {
1772 if (is_abnormal_io(bio))
1773 blk_queue_split(md->queue, &bio);
1774 else
1775 dm_queue_split(md, ti, &bio);
1778 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1779 return __process_bio(md, map, bio, ti);
1780 else
1781 return __split_and_process_bio(md, map, bio);
1784 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1786 struct mapped_device *md = q->queuedata;
1787 blk_qc_t ret = BLK_QC_T_NONE;
1788 int srcu_idx;
1789 struct dm_table *map;
1791 map = dm_get_live_table(md, &srcu_idx);
1793 /* if we're suspended, we have to queue this io for later */
1794 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1795 dm_put_live_table(md, srcu_idx);
1797 if (!(bio->bi_opf & REQ_RAHEAD))
1798 queue_io(md, bio);
1799 else
1800 bio_io_error(bio);
1801 return ret;
1804 ret = dm_process_bio(md, map, bio);
1806 dm_put_live_table(md, srcu_idx);
1807 return ret;
1810 static int dm_any_congested(void *congested_data, int bdi_bits)
1812 int r = bdi_bits;
1813 struct mapped_device *md = congested_data;
1814 struct dm_table *map;
1816 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1817 if (dm_request_based(md)) {
1819 * With request-based DM we only need to check the
1820 * top-level queue for congestion.
1822 struct backing_dev_info *bdi = md->queue->backing_dev_info;
1823 r = bdi->wb.congested->state & bdi_bits;
1824 } else {
1825 map = dm_get_live_table_fast(md);
1826 if (map)
1827 r = dm_table_any_congested(map, bdi_bits);
1828 dm_put_live_table_fast(md);
1832 return r;
1835 /*-----------------------------------------------------------------
1836 * An IDR is used to keep track of allocated minor numbers.
1837 *---------------------------------------------------------------*/
1838 static void free_minor(int minor)
1840 spin_lock(&_minor_lock);
1841 idr_remove(&_minor_idr, minor);
1842 spin_unlock(&_minor_lock);
1846 * See if the device with a specific minor # is free.
1848 static int specific_minor(int minor)
1850 int r;
1852 if (minor >= (1 << MINORBITS))
1853 return -EINVAL;
1855 idr_preload(GFP_KERNEL);
1856 spin_lock(&_minor_lock);
1858 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1860 spin_unlock(&_minor_lock);
1861 idr_preload_end();
1862 if (r < 0)
1863 return r == -ENOSPC ? -EBUSY : r;
1864 return 0;
1867 static int next_free_minor(int *minor)
1869 int r;
1871 idr_preload(GFP_KERNEL);
1872 spin_lock(&_minor_lock);
1874 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1876 spin_unlock(&_minor_lock);
1877 idr_preload_end();
1878 if (r < 0)
1879 return r;
1880 *minor = r;
1881 return 0;
1884 static const struct block_device_operations dm_blk_dops;
1885 static const struct dax_operations dm_dax_ops;
1887 static void dm_wq_work(struct work_struct *work);
1889 static void cleanup_mapped_device(struct mapped_device *md)
1891 if (md->wq)
1892 destroy_workqueue(md->wq);
1893 bioset_exit(&md->bs);
1894 bioset_exit(&md->io_bs);
1896 if (md->dax_dev) {
1897 kill_dax(md->dax_dev);
1898 put_dax(md->dax_dev);
1899 md->dax_dev = NULL;
1902 if (md->disk) {
1903 spin_lock(&_minor_lock);
1904 md->disk->private_data = NULL;
1905 spin_unlock(&_minor_lock);
1906 del_gendisk(md->disk);
1907 put_disk(md->disk);
1910 if (md->queue)
1911 blk_cleanup_queue(md->queue);
1913 cleanup_srcu_struct(&md->io_barrier);
1915 if (md->bdev) {
1916 bdput(md->bdev);
1917 md->bdev = NULL;
1920 mutex_destroy(&md->suspend_lock);
1921 mutex_destroy(&md->type_lock);
1922 mutex_destroy(&md->table_devices_lock);
1924 dm_mq_cleanup_mapped_device(md);
1928 * Allocate and initialise a blank device with a given minor.
1930 static struct mapped_device *alloc_dev(int minor)
1932 int r, numa_node_id = dm_get_numa_node();
1933 struct mapped_device *md;
1934 void *old_md;
1936 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1937 if (!md) {
1938 DMWARN("unable to allocate device, out of memory.");
1939 return NULL;
1942 if (!try_module_get(THIS_MODULE))
1943 goto bad_module_get;
1945 /* get a minor number for the dev */
1946 if (minor == DM_ANY_MINOR)
1947 r = next_free_minor(&minor);
1948 else
1949 r = specific_minor(minor);
1950 if (r < 0)
1951 goto bad_minor;
1953 r = init_srcu_struct(&md->io_barrier);
1954 if (r < 0)
1955 goto bad_io_barrier;
1957 md->numa_node_id = numa_node_id;
1958 md->init_tio_pdu = false;
1959 md->type = DM_TYPE_NONE;
1960 mutex_init(&md->suspend_lock);
1961 mutex_init(&md->type_lock);
1962 mutex_init(&md->table_devices_lock);
1963 spin_lock_init(&md->deferred_lock);
1964 atomic_set(&md->holders, 1);
1965 atomic_set(&md->open_count, 0);
1966 atomic_set(&md->event_nr, 0);
1967 atomic_set(&md->uevent_seq, 0);
1968 INIT_LIST_HEAD(&md->uevent_list);
1969 INIT_LIST_HEAD(&md->table_devices);
1970 spin_lock_init(&md->uevent_lock);
1973 * default to bio-based required ->make_request_fn until DM
1974 * table is loaded and md->type established. If request-based
1975 * table is loaded: blk-mq will override accordingly.
1977 md->queue = blk_alloc_queue(dm_make_request, numa_node_id);
1978 if (!md->queue)
1979 goto bad;
1980 md->queue->queuedata = md;
1982 md->disk = alloc_disk_node(1, md->numa_node_id);
1983 if (!md->disk)
1984 goto bad;
1986 init_waitqueue_head(&md->wait);
1987 INIT_WORK(&md->work, dm_wq_work);
1988 init_waitqueue_head(&md->eventq);
1989 init_completion(&md->kobj_holder.completion);
1991 md->disk->major = _major;
1992 md->disk->first_minor = minor;
1993 md->disk->fops = &dm_blk_dops;
1994 md->disk->queue = md->queue;
1995 md->disk->private_data = md;
1996 sprintf(md->disk->disk_name, "dm-%d", minor);
1998 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1999 md->dax_dev = alloc_dax(md, md->disk->disk_name,
2000 &dm_dax_ops, 0);
2001 if (IS_ERR(md->dax_dev))
2002 goto bad;
2005 add_disk_no_queue_reg(md->disk);
2006 format_dev_t(md->name, MKDEV(_major, minor));
2008 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2009 if (!md->wq)
2010 goto bad;
2012 md->bdev = bdget_disk(md->disk, 0);
2013 if (!md->bdev)
2014 goto bad;
2016 dm_stats_init(&md->stats);
2018 /* Populate the mapping, nobody knows we exist yet */
2019 spin_lock(&_minor_lock);
2020 old_md = idr_replace(&_minor_idr, md, minor);
2021 spin_unlock(&_minor_lock);
2023 BUG_ON(old_md != MINOR_ALLOCED);
2025 return md;
2027 bad:
2028 cleanup_mapped_device(md);
2029 bad_io_barrier:
2030 free_minor(minor);
2031 bad_minor:
2032 module_put(THIS_MODULE);
2033 bad_module_get:
2034 kvfree(md);
2035 return NULL;
2038 static void unlock_fs(struct mapped_device *md);
2040 static void free_dev(struct mapped_device *md)
2042 int minor = MINOR(disk_devt(md->disk));
2044 unlock_fs(md);
2046 cleanup_mapped_device(md);
2048 free_table_devices(&md->table_devices);
2049 dm_stats_cleanup(&md->stats);
2050 free_minor(minor);
2052 module_put(THIS_MODULE);
2053 kvfree(md);
2056 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2058 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2059 int ret = 0;
2061 if (dm_table_bio_based(t)) {
2063 * The md may already have mempools that need changing.
2064 * If so, reload bioset because front_pad may have changed
2065 * because a different table was loaded.
2067 bioset_exit(&md->bs);
2068 bioset_exit(&md->io_bs);
2070 } else if (bioset_initialized(&md->bs)) {
2072 * There's no need to reload with request-based dm
2073 * because the size of front_pad doesn't change.
2074 * Note for future: If you are to reload bioset,
2075 * prep-ed requests in the queue may refer
2076 * to bio from the old bioset, so you must walk
2077 * through the queue to unprep.
2079 goto out;
2082 BUG_ON(!p ||
2083 bioset_initialized(&md->bs) ||
2084 bioset_initialized(&md->io_bs));
2086 ret = bioset_init_from_src(&md->bs, &p->bs);
2087 if (ret)
2088 goto out;
2089 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2090 if (ret)
2091 bioset_exit(&md->bs);
2092 out:
2093 /* mempool bind completed, no longer need any mempools in the table */
2094 dm_table_free_md_mempools(t);
2095 return ret;
2099 * Bind a table to the device.
2101 static void event_callback(void *context)
2103 unsigned long flags;
2104 LIST_HEAD(uevents);
2105 struct mapped_device *md = (struct mapped_device *) context;
2107 spin_lock_irqsave(&md->uevent_lock, flags);
2108 list_splice_init(&md->uevent_list, &uevents);
2109 spin_unlock_irqrestore(&md->uevent_lock, flags);
2111 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2113 atomic_inc(&md->event_nr);
2114 wake_up(&md->eventq);
2115 dm_issue_global_event();
2119 * Protected by md->suspend_lock obtained by dm_swap_table().
2121 static void __set_size(struct mapped_device *md, sector_t size)
2123 lockdep_assert_held(&md->suspend_lock);
2125 set_capacity(md->disk, size);
2127 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2131 * Returns old map, which caller must destroy.
2133 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2134 struct queue_limits *limits)
2136 struct dm_table *old_map;
2137 struct request_queue *q = md->queue;
2138 bool request_based = dm_table_request_based(t);
2139 sector_t size;
2140 int ret;
2142 lockdep_assert_held(&md->suspend_lock);
2144 size = dm_table_get_size(t);
2147 * Wipe any geometry if the size of the table changed.
2149 if (size != dm_get_size(md))
2150 memset(&md->geometry, 0, sizeof(md->geometry));
2152 __set_size(md, size);
2154 dm_table_event_callback(t, event_callback, md);
2157 * The queue hasn't been stopped yet, if the old table type wasn't
2158 * for request-based during suspension. So stop it to prevent
2159 * I/O mapping before resume.
2160 * This must be done before setting the queue restrictions,
2161 * because request-based dm may be run just after the setting.
2163 if (request_based)
2164 dm_stop_queue(q);
2166 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2168 * Leverage the fact that request-based DM targets and
2169 * NVMe bio based targets are immutable singletons
2170 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2171 * and __process_bio.
2173 md->immutable_target = dm_table_get_immutable_target(t);
2176 ret = __bind_mempools(md, t);
2177 if (ret) {
2178 old_map = ERR_PTR(ret);
2179 goto out;
2182 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2183 rcu_assign_pointer(md->map, (void *)t);
2184 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2186 dm_table_set_restrictions(t, q, limits);
2187 if (old_map)
2188 dm_sync_table(md);
2190 out:
2191 return old_map;
2195 * Returns unbound table for the caller to free.
2197 static struct dm_table *__unbind(struct mapped_device *md)
2199 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2201 if (!map)
2202 return NULL;
2204 dm_table_event_callback(map, NULL, NULL);
2205 RCU_INIT_POINTER(md->map, NULL);
2206 dm_sync_table(md);
2208 return map;
2212 * Constructor for a new device.
2214 int dm_create(int minor, struct mapped_device **result)
2216 int r;
2217 struct mapped_device *md;
2219 md = alloc_dev(minor);
2220 if (!md)
2221 return -ENXIO;
2223 r = dm_sysfs_init(md);
2224 if (r) {
2225 free_dev(md);
2226 return r;
2229 *result = md;
2230 return 0;
2234 * Functions to manage md->type.
2235 * All are required to hold md->type_lock.
2237 void dm_lock_md_type(struct mapped_device *md)
2239 mutex_lock(&md->type_lock);
2242 void dm_unlock_md_type(struct mapped_device *md)
2244 mutex_unlock(&md->type_lock);
2247 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2249 BUG_ON(!mutex_is_locked(&md->type_lock));
2250 md->type = type;
2253 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2255 return md->type;
2258 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2260 return md->immutable_target_type;
2264 * The queue_limits are only valid as long as you have a reference
2265 * count on 'md'.
2267 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2269 BUG_ON(!atomic_read(&md->holders));
2270 return &md->queue->limits;
2272 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2274 static void dm_init_congested_fn(struct mapped_device *md)
2276 md->queue->backing_dev_info->congested_data = md;
2277 md->queue->backing_dev_info->congested_fn = dm_any_congested;
2281 * Setup the DM device's queue based on md's type
2283 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2285 int r;
2286 struct queue_limits limits;
2287 enum dm_queue_mode type = dm_get_md_type(md);
2289 switch (type) {
2290 case DM_TYPE_REQUEST_BASED:
2291 r = dm_mq_init_request_queue(md, t);
2292 if (r) {
2293 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2294 return r;
2296 dm_init_congested_fn(md);
2297 break;
2298 case DM_TYPE_BIO_BASED:
2299 case DM_TYPE_DAX_BIO_BASED:
2300 case DM_TYPE_NVME_BIO_BASED:
2301 dm_init_congested_fn(md);
2302 break;
2303 case DM_TYPE_NONE:
2304 WARN_ON_ONCE(true);
2305 break;
2308 r = dm_calculate_queue_limits(t, &limits);
2309 if (r) {
2310 DMERR("Cannot calculate initial queue limits");
2311 return r;
2313 dm_table_set_restrictions(t, md->queue, &limits);
2314 blk_register_queue(md->disk);
2316 return 0;
2319 struct mapped_device *dm_get_md(dev_t dev)
2321 struct mapped_device *md;
2322 unsigned minor = MINOR(dev);
2324 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2325 return NULL;
2327 spin_lock(&_minor_lock);
2329 md = idr_find(&_minor_idr, minor);
2330 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2331 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2332 md = NULL;
2333 goto out;
2335 dm_get(md);
2336 out:
2337 spin_unlock(&_minor_lock);
2339 return md;
2341 EXPORT_SYMBOL_GPL(dm_get_md);
2343 void *dm_get_mdptr(struct mapped_device *md)
2345 return md->interface_ptr;
2348 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2350 md->interface_ptr = ptr;
2353 void dm_get(struct mapped_device *md)
2355 atomic_inc(&md->holders);
2356 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2359 int dm_hold(struct mapped_device *md)
2361 spin_lock(&_minor_lock);
2362 if (test_bit(DMF_FREEING, &md->flags)) {
2363 spin_unlock(&_minor_lock);
2364 return -EBUSY;
2366 dm_get(md);
2367 spin_unlock(&_minor_lock);
2368 return 0;
2370 EXPORT_SYMBOL_GPL(dm_hold);
2372 const char *dm_device_name(struct mapped_device *md)
2374 return md->name;
2376 EXPORT_SYMBOL_GPL(dm_device_name);
2378 static void __dm_destroy(struct mapped_device *md, bool wait)
2380 struct dm_table *map;
2381 int srcu_idx;
2383 might_sleep();
2385 spin_lock(&_minor_lock);
2386 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2387 set_bit(DMF_FREEING, &md->flags);
2388 spin_unlock(&_minor_lock);
2390 blk_set_queue_dying(md->queue);
2393 * Take suspend_lock so that presuspend and postsuspend methods
2394 * do not race with internal suspend.
2396 mutex_lock(&md->suspend_lock);
2397 map = dm_get_live_table(md, &srcu_idx);
2398 if (!dm_suspended_md(md)) {
2399 dm_table_presuspend_targets(map);
2400 set_bit(DMF_SUSPENDED, &md->flags);
2401 dm_table_postsuspend_targets(map);
2403 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2404 dm_put_live_table(md, srcu_idx);
2405 mutex_unlock(&md->suspend_lock);
2408 * Rare, but there may be I/O requests still going to complete,
2409 * for example. Wait for all references to disappear.
2410 * No one should increment the reference count of the mapped_device,
2411 * after the mapped_device state becomes DMF_FREEING.
2413 if (wait)
2414 while (atomic_read(&md->holders))
2415 msleep(1);
2416 else if (atomic_read(&md->holders))
2417 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2418 dm_device_name(md), atomic_read(&md->holders));
2420 dm_sysfs_exit(md);
2421 dm_table_destroy(__unbind(md));
2422 free_dev(md);
2425 void dm_destroy(struct mapped_device *md)
2427 __dm_destroy(md, true);
2430 void dm_destroy_immediate(struct mapped_device *md)
2432 __dm_destroy(md, false);
2435 void dm_put(struct mapped_device *md)
2437 atomic_dec(&md->holders);
2439 EXPORT_SYMBOL_GPL(dm_put);
2441 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2443 int r = 0;
2444 DEFINE_WAIT(wait);
2446 while (1) {
2447 prepare_to_wait(&md->wait, &wait, task_state);
2449 if (!md_in_flight(md))
2450 break;
2452 if (signal_pending_state(task_state, current)) {
2453 r = -EINTR;
2454 break;
2457 io_schedule();
2459 finish_wait(&md->wait, &wait);
2461 return r;
2465 * Process the deferred bios
2467 static void dm_wq_work(struct work_struct *work)
2469 struct mapped_device *md = container_of(work, struct mapped_device,
2470 work);
2471 struct bio *c;
2472 int srcu_idx;
2473 struct dm_table *map;
2475 map = dm_get_live_table(md, &srcu_idx);
2477 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2478 spin_lock_irq(&md->deferred_lock);
2479 c = bio_list_pop(&md->deferred);
2480 spin_unlock_irq(&md->deferred_lock);
2482 if (!c)
2483 break;
2485 if (dm_request_based(md))
2486 (void) generic_make_request(c);
2487 else
2488 (void) dm_process_bio(md, map, c);
2491 dm_put_live_table(md, srcu_idx);
2494 static void dm_queue_flush(struct mapped_device *md)
2496 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2497 smp_mb__after_atomic();
2498 queue_work(md->wq, &md->work);
2502 * Swap in a new table, returning the old one for the caller to destroy.
2504 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2506 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2507 struct queue_limits limits;
2508 int r;
2510 mutex_lock(&md->suspend_lock);
2512 /* device must be suspended */
2513 if (!dm_suspended_md(md))
2514 goto out;
2517 * If the new table has no data devices, retain the existing limits.
2518 * This helps multipath with queue_if_no_path if all paths disappear,
2519 * then new I/O is queued based on these limits, and then some paths
2520 * reappear.
2522 if (dm_table_has_no_data_devices(table)) {
2523 live_map = dm_get_live_table_fast(md);
2524 if (live_map)
2525 limits = md->queue->limits;
2526 dm_put_live_table_fast(md);
2529 if (!live_map) {
2530 r = dm_calculate_queue_limits(table, &limits);
2531 if (r) {
2532 map = ERR_PTR(r);
2533 goto out;
2537 map = __bind(md, table, &limits);
2538 dm_issue_global_event();
2540 out:
2541 mutex_unlock(&md->suspend_lock);
2542 return map;
2546 * Functions to lock and unlock any filesystem running on the
2547 * device.
2549 static int lock_fs(struct mapped_device *md)
2551 int r;
2553 WARN_ON(md->frozen_sb);
2555 md->frozen_sb = freeze_bdev(md->bdev);
2556 if (IS_ERR(md->frozen_sb)) {
2557 r = PTR_ERR(md->frozen_sb);
2558 md->frozen_sb = NULL;
2559 return r;
2562 set_bit(DMF_FROZEN, &md->flags);
2564 return 0;
2567 static void unlock_fs(struct mapped_device *md)
2569 if (!test_bit(DMF_FROZEN, &md->flags))
2570 return;
2572 thaw_bdev(md->bdev, md->frozen_sb);
2573 md->frozen_sb = NULL;
2574 clear_bit(DMF_FROZEN, &md->flags);
2578 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2579 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2580 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2582 * If __dm_suspend returns 0, the device is completely quiescent
2583 * now. There is no request-processing activity. All new requests
2584 * are being added to md->deferred list.
2586 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2587 unsigned suspend_flags, long task_state,
2588 int dmf_suspended_flag)
2590 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2591 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2592 int r;
2594 lockdep_assert_held(&md->suspend_lock);
2597 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2598 * This flag is cleared before dm_suspend returns.
2600 if (noflush)
2601 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2602 else
2603 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2606 * This gets reverted if there's an error later and the targets
2607 * provide the .presuspend_undo hook.
2609 dm_table_presuspend_targets(map);
2612 * Flush I/O to the device.
2613 * Any I/O submitted after lock_fs() may not be flushed.
2614 * noflush takes precedence over do_lockfs.
2615 * (lock_fs() flushes I/Os and waits for them to complete.)
2617 if (!noflush && do_lockfs) {
2618 r = lock_fs(md);
2619 if (r) {
2620 dm_table_presuspend_undo_targets(map);
2621 return r;
2626 * Here we must make sure that no processes are submitting requests
2627 * to target drivers i.e. no one may be executing
2628 * __split_and_process_bio. This is called from dm_request and
2629 * dm_wq_work.
2631 * To get all processes out of __split_and_process_bio in dm_request,
2632 * we take the write lock. To prevent any process from reentering
2633 * __split_and_process_bio from dm_request and quiesce the thread
2634 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2635 * flush_workqueue(md->wq).
2637 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2638 if (map)
2639 synchronize_srcu(&md->io_barrier);
2642 * Stop md->queue before flushing md->wq in case request-based
2643 * dm defers requests to md->wq from md->queue.
2645 if (dm_request_based(md))
2646 dm_stop_queue(md->queue);
2648 flush_workqueue(md->wq);
2651 * At this point no more requests are entering target request routines.
2652 * We call dm_wait_for_completion to wait for all existing requests
2653 * to finish.
2655 r = dm_wait_for_completion(md, task_state);
2656 if (!r)
2657 set_bit(dmf_suspended_flag, &md->flags);
2659 if (noflush)
2660 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2661 if (map)
2662 synchronize_srcu(&md->io_barrier);
2664 /* were we interrupted ? */
2665 if (r < 0) {
2666 dm_queue_flush(md);
2668 if (dm_request_based(md))
2669 dm_start_queue(md->queue);
2671 unlock_fs(md);
2672 dm_table_presuspend_undo_targets(map);
2673 /* pushback list is already flushed, so skip flush */
2676 return r;
2680 * We need to be able to change a mapping table under a mounted
2681 * filesystem. For example we might want to move some data in
2682 * the background. Before the table can be swapped with
2683 * dm_bind_table, dm_suspend must be called to flush any in
2684 * flight bios and ensure that any further io gets deferred.
2687 * Suspend mechanism in request-based dm.
2689 * 1. Flush all I/Os by lock_fs() if needed.
2690 * 2. Stop dispatching any I/O by stopping the request_queue.
2691 * 3. Wait for all in-flight I/Os to be completed or requeued.
2693 * To abort suspend, start the request_queue.
2695 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2697 struct dm_table *map = NULL;
2698 int r = 0;
2700 retry:
2701 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2703 if (dm_suspended_md(md)) {
2704 r = -EINVAL;
2705 goto out_unlock;
2708 if (dm_suspended_internally_md(md)) {
2709 /* already internally suspended, wait for internal resume */
2710 mutex_unlock(&md->suspend_lock);
2711 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2712 if (r)
2713 return r;
2714 goto retry;
2717 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2719 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2720 if (r)
2721 goto out_unlock;
2723 dm_table_postsuspend_targets(map);
2725 out_unlock:
2726 mutex_unlock(&md->suspend_lock);
2727 return r;
2730 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2732 if (map) {
2733 int r = dm_table_resume_targets(map);
2734 if (r)
2735 return r;
2738 dm_queue_flush(md);
2741 * Flushing deferred I/Os must be done after targets are resumed
2742 * so that mapping of targets can work correctly.
2743 * Request-based dm is queueing the deferred I/Os in its request_queue.
2745 if (dm_request_based(md))
2746 dm_start_queue(md->queue);
2748 unlock_fs(md);
2750 return 0;
2753 int dm_resume(struct mapped_device *md)
2755 int r;
2756 struct dm_table *map = NULL;
2758 retry:
2759 r = -EINVAL;
2760 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2762 if (!dm_suspended_md(md))
2763 goto out;
2765 if (dm_suspended_internally_md(md)) {
2766 /* already internally suspended, wait for internal resume */
2767 mutex_unlock(&md->suspend_lock);
2768 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2769 if (r)
2770 return r;
2771 goto retry;
2774 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2775 if (!map || !dm_table_get_size(map))
2776 goto out;
2778 r = __dm_resume(md, map);
2779 if (r)
2780 goto out;
2782 clear_bit(DMF_SUSPENDED, &md->flags);
2783 out:
2784 mutex_unlock(&md->suspend_lock);
2786 return r;
2790 * Internal suspend/resume works like userspace-driven suspend. It waits
2791 * until all bios finish and prevents issuing new bios to the target drivers.
2792 * It may be used only from the kernel.
2795 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2797 struct dm_table *map = NULL;
2799 lockdep_assert_held(&md->suspend_lock);
2801 if (md->internal_suspend_count++)
2802 return; /* nested internal suspend */
2804 if (dm_suspended_md(md)) {
2805 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2806 return; /* nest suspend */
2809 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2812 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2813 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2814 * would require changing .presuspend to return an error -- avoid this
2815 * until there is a need for more elaborate variants of internal suspend.
2817 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2818 DMF_SUSPENDED_INTERNALLY);
2820 dm_table_postsuspend_targets(map);
2823 static void __dm_internal_resume(struct mapped_device *md)
2825 BUG_ON(!md->internal_suspend_count);
2827 if (--md->internal_suspend_count)
2828 return; /* resume from nested internal suspend */
2830 if (dm_suspended_md(md))
2831 goto done; /* resume from nested suspend */
2834 * NOTE: existing callers don't need to call dm_table_resume_targets
2835 * (which may fail -- so best to avoid it for now by passing NULL map)
2837 (void) __dm_resume(md, NULL);
2839 done:
2840 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2841 smp_mb__after_atomic();
2842 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2845 void dm_internal_suspend_noflush(struct mapped_device *md)
2847 mutex_lock(&md->suspend_lock);
2848 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2849 mutex_unlock(&md->suspend_lock);
2851 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2853 void dm_internal_resume(struct mapped_device *md)
2855 mutex_lock(&md->suspend_lock);
2856 __dm_internal_resume(md);
2857 mutex_unlock(&md->suspend_lock);
2859 EXPORT_SYMBOL_GPL(dm_internal_resume);
2862 * Fast variants of internal suspend/resume hold md->suspend_lock,
2863 * which prevents interaction with userspace-driven suspend.
2866 void dm_internal_suspend_fast(struct mapped_device *md)
2868 mutex_lock(&md->suspend_lock);
2869 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2870 return;
2872 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2873 synchronize_srcu(&md->io_barrier);
2874 flush_workqueue(md->wq);
2875 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2877 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2879 void dm_internal_resume_fast(struct mapped_device *md)
2881 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2882 goto done;
2884 dm_queue_flush(md);
2886 done:
2887 mutex_unlock(&md->suspend_lock);
2889 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2891 /*-----------------------------------------------------------------
2892 * Event notification.
2893 *---------------------------------------------------------------*/
2894 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2895 unsigned cookie)
2897 char udev_cookie[DM_COOKIE_LENGTH];
2898 char *envp[] = { udev_cookie, NULL };
2900 if (!cookie)
2901 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2902 else {
2903 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2904 DM_COOKIE_ENV_VAR_NAME, cookie);
2905 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2906 action, envp);
2910 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2912 return atomic_add_return(1, &md->uevent_seq);
2915 uint32_t dm_get_event_nr(struct mapped_device *md)
2917 return atomic_read(&md->event_nr);
2920 int dm_wait_event(struct mapped_device *md, int event_nr)
2922 return wait_event_interruptible(md->eventq,
2923 (event_nr != atomic_read(&md->event_nr)));
2926 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2928 unsigned long flags;
2930 spin_lock_irqsave(&md->uevent_lock, flags);
2931 list_add(elist, &md->uevent_list);
2932 spin_unlock_irqrestore(&md->uevent_lock, flags);
2936 * The gendisk is only valid as long as you have a reference
2937 * count on 'md'.
2939 struct gendisk *dm_disk(struct mapped_device *md)
2941 return md->disk;
2943 EXPORT_SYMBOL_GPL(dm_disk);
2945 struct kobject *dm_kobject(struct mapped_device *md)
2947 return &md->kobj_holder.kobj;
2950 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2952 struct mapped_device *md;
2954 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2956 spin_lock(&_minor_lock);
2957 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2958 md = NULL;
2959 goto out;
2961 dm_get(md);
2962 out:
2963 spin_unlock(&_minor_lock);
2965 return md;
2968 int dm_suspended_md(struct mapped_device *md)
2970 return test_bit(DMF_SUSPENDED, &md->flags);
2973 int dm_suspended_internally_md(struct mapped_device *md)
2975 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2978 int dm_test_deferred_remove_flag(struct mapped_device *md)
2980 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2983 int dm_suspended(struct dm_target *ti)
2985 return dm_suspended_md(dm_table_get_md(ti->table));
2987 EXPORT_SYMBOL_GPL(dm_suspended);
2989 int dm_noflush_suspending(struct dm_target *ti)
2991 return __noflush_suspending(dm_table_get_md(ti->table));
2993 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2995 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2996 unsigned integrity, unsigned per_io_data_size,
2997 unsigned min_pool_size)
2999 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3000 unsigned int pool_size = 0;
3001 unsigned int front_pad, io_front_pad;
3002 int ret;
3004 if (!pools)
3005 return NULL;
3007 switch (type) {
3008 case DM_TYPE_BIO_BASED:
3009 case DM_TYPE_DAX_BIO_BASED:
3010 case DM_TYPE_NVME_BIO_BASED:
3011 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3012 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3013 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3014 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3015 if (ret)
3016 goto out;
3017 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3018 goto out;
3019 break;
3020 case DM_TYPE_REQUEST_BASED:
3021 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3022 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3023 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3024 break;
3025 default:
3026 BUG();
3029 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3030 if (ret)
3031 goto out;
3033 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3034 goto out;
3036 return pools;
3038 out:
3039 dm_free_md_mempools(pools);
3041 return NULL;
3044 void dm_free_md_mempools(struct dm_md_mempools *pools)
3046 if (!pools)
3047 return;
3049 bioset_exit(&pools->bs);
3050 bioset_exit(&pools->io_bs);
3052 kfree(pools);
3055 struct dm_pr {
3056 u64 old_key;
3057 u64 new_key;
3058 u32 flags;
3059 bool fail_early;
3062 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3063 void *data)
3065 struct mapped_device *md = bdev->bd_disk->private_data;
3066 struct dm_table *table;
3067 struct dm_target *ti;
3068 int ret = -ENOTTY, srcu_idx;
3070 table = dm_get_live_table(md, &srcu_idx);
3071 if (!table || !dm_table_get_size(table))
3072 goto out;
3074 /* We only support devices that have a single target */
3075 if (dm_table_get_num_targets(table) != 1)
3076 goto out;
3077 ti = dm_table_get_target(table, 0);
3079 ret = -EINVAL;
3080 if (!ti->type->iterate_devices)
3081 goto out;
3083 ret = ti->type->iterate_devices(ti, fn, data);
3084 out:
3085 dm_put_live_table(md, srcu_idx);
3086 return ret;
3090 * For register / unregister we need to manually call out to every path.
3092 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3093 sector_t start, sector_t len, void *data)
3095 struct dm_pr *pr = data;
3096 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3098 if (!ops || !ops->pr_register)
3099 return -EOPNOTSUPP;
3100 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3103 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3104 u32 flags)
3106 struct dm_pr pr = {
3107 .old_key = old_key,
3108 .new_key = new_key,
3109 .flags = flags,
3110 .fail_early = true,
3112 int ret;
3114 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3115 if (ret && new_key) {
3116 /* unregister all paths if we failed to register any path */
3117 pr.old_key = new_key;
3118 pr.new_key = 0;
3119 pr.flags = 0;
3120 pr.fail_early = false;
3121 dm_call_pr(bdev, __dm_pr_register, &pr);
3124 return ret;
3127 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3128 u32 flags)
3130 struct mapped_device *md = bdev->bd_disk->private_data;
3131 const struct pr_ops *ops;
3132 int r, srcu_idx;
3134 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3135 if (r < 0)
3136 goto out;
3138 ops = bdev->bd_disk->fops->pr_ops;
3139 if (ops && ops->pr_reserve)
3140 r = ops->pr_reserve(bdev, key, type, flags);
3141 else
3142 r = -EOPNOTSUPP;
3143 out:
3144 dm_unprepare_ioctl(md, srcu_idx);
3145 return r;
3148 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3150 struct mapped_device *md = bdev->bd_disk->private_data;
3151 const struct pr_ops *ops;
3152 int r, srcu_idx;
3154 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3155 if (r < 0)
3156 goto out;
3158 ops = bdev->bd_disk->fops->pr_ops;
3159 if (ops && ops->pr_release)
3160 r = ops->pr_release(bdev, key, type);
3161 else
3162 r = -EOPNOTSUPP;
3163 out:
3164 dm_unprepare_ioctl(md, srcu_idx);
3165 return r;
3168 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3169 enum pr_type type, bool abort)
3171 struct mapped_device *md = bdev->bd_disk->private_data;
3172 const struct pr_ops *ops;
3173 int r, srcu_idx;
3175 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3176 if (r < 0)
3177 goto out;
3179 ops = bdev->bd_disk->fops->pr_ops;
3180 if (ops && ops->pr_preempt)
3181 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3182 else
3183 r = -EOPNOTSUPP;
3184 out:
3185 dm_unprepare_ioctl(md, srcu_idx);
3186 return r;
3189 static int dm_pr_clear(struct block_device *bdev, u64 key)
3191 struct mapped_device *md = bdev->bd_disk->private_data;
3192 const struct pr_ops *ops;
3193 int r, srcu_idx;
3195 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3196 if (r < 0)
3197 goto out;
3199 ops = bdev->bd_disk->fops->pr_ops;
3200 if (ops && ops->pr_clear)
3201 r = ops->pr_clear(bdev, key);
3202 else
3203 r = -EOPNOTSUPP;
3204 out:
3205 dm_unprepare_ioctl(md, srcu_idx);
3206 return r;
3209 static const struct pr_ops dm_pr_ops = {
3210 .pr_register = dm_pr_register,
3211 .pr_reserve = dm_pr_reserve,
3212 .pr_release = dm_pr_release,
3213 .pr_preempt = dm_pr_preempt,
3214 .pr_clear = dm_pr_clear,
3217 static const struct block_device_operations dm_blk_dops = {
3218 .open = dm_blk_open,
3219 .release = dm_blk_close,
3220 .ioctl = dm_blk_ioctl,
3221 .getgeo = dm_blk_getgeo,
3222 .report_zones = dm_blk_report_zones,
3223 .pr_ops = &dm_pr_ops,
3224 .owner = THIS_MODULE
3227 static const struct dax_operations dm_dax_ops = {
3228 .direct_access = dm_dax_direct_access,
3229 .dax_supported = dm_dax_supported,
3230 .copy_from_iter = dm_dax_copy_from_iter,
3231 .copy_to_iter = dm_dax_copy_to_iter,
3232 .zero_page_range = dm_dax_zero_page_range,
3236 * module hooks
3238 module_init(dm_init);
3239 module_exit(dm_exit);
3241 module_param(major, uint, 0);
3242 MODULE_PARM_DESC(major, "The major number of the device mapper");
3244 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3245 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3247 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3248 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3250 MODULE_DESCRIPTION(DM_NAME " driver");
3251 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3252 MODULE_LICENSE("GPL");