2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
27 #include <linux/refcount.h>
28 #include <linux/part_stat.h>
30 #define DM_MSG_PREFIX "core"
33 * Cookies are numeric values sent with CHANGE and REMOVE
34 * uevents while resuming, removing or renaming the device.
36 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
37 #define DM_COOKIE_LENGTH 24
39 static const char *_name
= DM_NAME
;
41 static unsigned int major
= 0;
42 static unsigned int _major
= 0;
44 static DEFINE_IDR(_minor_idr
);
46 static DEFINE_SPINLOCK(_minor_lock
);
48 static void do_deferred_remove(struct work_struct
*w
);
50 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
52 static struct workqueue_struct
*deferred_remove_workqueue
;
54 atomic_t dm_global_event_nr
= ATOMIC_INIT(0);
55 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq
);
57 void dm_issue_global_event(void)
59 atomic_inc(&dm_global_event_nr
);
60 wake_up(&dm_global_eventq
);
64 * One of these is allocated (on-stack) per original bio.
71 unsigned sector_count
;
75 * One of these is allocated per clone bio.
77 #define DM_TIO_MAGIC 7282014
82 unsigned target_bio_nr
;
89 * One of these is allocated per original bio.
90 * It contains the first clone used for that original.
92 #define DM_IO_MAGIC 5191977
95 struct mapped_device
*md
;
99 unsigned long start_time
;
100 spinlock_t endio_lock
;
101 struct dm_stats_aux stats_aux
;
102 /* last member of dm_target_io is 'struct bio' */
103 struct dm_target_io tio
;
106 void *dm_per_bio_data(struct bio
*bio
, size_t data_size
)
108 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
109 if (!tio
->inside_dm_io
)
110 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - data_size
;
111 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - offsetof(struct dm_io
, tio
) - data_size
;
113 EXPORT_SYMBOL_GPL(dm_per_bio_data
);
115 struct bio
*dm_bio_from_per_bio_data(void *data
, size_t data_size
)
117 struct dm_io
*io
= (struct dm_io
*)((char *)data
+ data_size
);
118 if (io
->magic
== DM_IO_MAGIC
)
119 return (struct bio
*)((char *)io
+ offsetof(struct dm_io
, tio
) + offsetof(struct dm_target_io
, clone
));
120 BUG_ON(io
->magic
!= DM_TIO_MAGIC
);
121 return (struct bio
*)((char *)io
+ offsetof(struct dm_target_io
, clone
));
123 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data
);
125 unsigned dm_bio_get_target_bio_nr(const struct bio
*bio
)
127 return container_of(bio
, struct dm_target_io
, clone
)->target_bio_nr
;
129 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr
);
131 #define MINOR_ALLOCED ((void *)-1)
134 * Bits for the md->flags field.
136 #define DMF_BLOCK_IO_FOR_SUSPEND 0
137 #define DMF_SUSPENDED 1
139 #define DMF_FREEING 3
140 #define DMF_DELETING 4
141 #define DMF_NOFLUSH_SUSPENDING 5
142 #define DMF_DEFERRED_REMOVE 6
143 #define DMF_SUSPENDED_INTERNALLY 7
145 #define DM_NUMA_NODE NUMA_NO_NODE
146 static int dm_numa_node
= DM_NUMA_NODE
;
149 * For mempools pre-allocation at the table loading time.
151 struct dm_md_mempools
{
153 struct bio_set io_bs
;
156 struct table_device
{
157 struct list_head list
;
159 struct dm_dev dm_dev
;
163 * Bio-based DM's mempools' reserved IOs set by the user.
165 #define RESERVED_BIO_BASED_IOS 16
166 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
168 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
170 int param
= READ_ONCE(*module_param
);
171 int modified_param
= 0;
172 bool modified
= true;
175 modified_param
= min
;
176 else if (param
> max
)
177 modified_param
= max
;
182 (void)cmpxchg(module_param
, param
, modified_param
);
183 param
= modified_param
;
189 unsigned __dm_get_module_param(unsigned *module_param
,
190 unsigned def
, unsigned max
)
192 unsigned param
= READ_ONCE(*module_param
);
193 unsigned modified_param
= 0;
196 modified_param
= def
;
197 else if (param
> max
)
198 modified_param
= max
;
200 if (modified_param
) {
201 (void)cmpxchg(module_param
, param
, modified_param
);
202 param
= modified_param
;
208 unsigned dm_get_reserved_bio_based_ios(void)
210 return __dm_get_module_param(&reserved_bio_based_ios
,
211 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
213 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
215 static unsigned dm_get_numa_node(void)
217 return __dm_get_module_param_int(&dm_numa_node
,
218 DM_NUMA_NODE
, num_online_nodes() - 1);
221 static int __init
local_init(void)
225 r
= dm_uevent_init();
229 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
230 if (!deferred_remove_workqueue
) {
232 goto out_uevent_exit
;
236 r
= register_blkdev(_major
, _name
);
238 goto out_free_workqueue
;
246 destroy_workqueue(deferred_remove_workqueue
);
253 static void local_exit(void)
255 flush_scheduled_work();
256 destroy_workqueue(deferred_remove_workqueue
);
258 unregister_blkdev(_major
, _name
);
263 DMINFO("cleaned up");
266 static int (*_inits
[])(void) __initdata
= {
277 static void (*_exits
[])(void) = {
288 static int __init
dm_init(void)
290 const int count
= ARRAY_SIZE(_inits
);
294 for (i
= 0; i
< count
; i
++) {
309 static void __exit
dm_exit(void)
311 int i
= ARRAY_SIZE(_exits
);
317 * Should be empty by this point.
319 idr_destroy(&_minor_idr
);
323 * Block device functions
325 int dm_deleting_md(struct mapped_device
*md
)
327 return test_bit(DMF_DELETING
, &md
->flags
);
330 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
332 struct mapped_device
*md
;
334 spin_lock(&_minor_lock
);
336 md
= bdev
->bd_disk
->private_data
;
340 if (test_bit(DMF_FREEING
, &md
->flags
) ||
341 dm_deleting_md(md
)) {
347 atomic_inc(&md
->open_count
);
349 spin_unlock(&_minor_lock
);
351 return md
? 0 : -ENXIO
;
354 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
356 struct mapped_device
*md
;
358 spin_lock(&_minor_lock
);
360 md
= disk
->private_data
;
364 if (atomic_dec_and_test(&md
->open_count
) &&
365 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
366 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
370 spin_unlock(&_minor_lock
);
373 int dm_open_count(struct mapped_device
*md
)
375 return atomic_read(&md
->open_count
);
379 * Guarantees nothing is using the device before it's deleted.
381 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
385 spin_lock(&_minor_lock
);
387 if (dm_open_count(md
)) {
390 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
391 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
394 set_bit(DMF_DELETING
, &md
->flags
);
396 spin_unlock(&_minor_lock
);
401 int dm_cancel_deferred_remove(struct mapped_device
*md
)
405 spin_lock(&_minor_lock
);
407 if (test_bit(DMF_DELETING
, &md
->flags
))
410 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
412 spin_unlock(&_minor_lock
);
417 static void do_deferred_remove(struct work_struct
*w
)
419 dm_deferred_remove();
422 sector_t
dm_get_size(struct mapped_device
*md
)
424 return get_capacity(md
->disk
);
427 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
432 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
437 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
439 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
441 return dm_get_geometry(md
, geo
);
444 #ifdef CONFIG_BLK_DEV_ZONED
445 int dm_report_zones_cb(struct blk_zone
*zone
, unsigned int idx
, void *data
)
447 struct dm_report_zones_args
*args
= data
;
448 sector_t sector_diff
= args
->tgt
->begin
- args
->start
;
451 * Ignore zones beyond the target range.
453 if (zone
->start
>= args
->start
+ args
->tgt
->len
)
457 * Remap the start sector and write pointer position of the zone
458 * to match its position in the target range.
460 zone
->start
+= sector_diff
;
461 if (zone
->type
!= BLK_ZONE_TYPE_CONVENTIONAL
) {
462 if (zone
->cond
== BLK_ZONE_COND_FULL
)
463 zone
->wp
= zone
->start
+ zone
->len
;
464 else if (zone
->cond
== BLK_ZONE_COND_EMPTY
)
465 zone
->wp
= zone
->start
;
467 zone
->wp
+= sector_diff
;
470 args
->next_sector
= zone
->start
+ zone
->len
;
471 return args
->orig_cb(zone
, args
->zone_idx
++, args
->orig_data
);
473 EXPORT_SYMBOL_GPL(dm_report_zones_cb
);
475 static int dm_blk_report_zones(struct gendisk
*disk
, sector_t sector
,
476 unsigned int nr_zones
, report_zones_cb cb
, void *data
)
478 struct mapped_device
*md
= disk
->private_data
;
479 struct dm_table
*map
;
481 struct dm_report_zones_args args
= {
482 .next_sector
= sector
,
487 if (dm_suspended_md(md
))
490 map
= dm_get_live_table(md
, &srcu_idx
);
495 struct dm_target
*tgt
;
497 tgt
= dm_table_find_target(map
, args
.next_sector
);
498 if (WARN_ON_ONCE(!tgt
->type
->report_zones
)) {
504 ret
= tgt
->type
->report_zones(tgt
, &args
, nr_zones
);
507 } while (args
.zone_idx
< nr_zones
&&
508 args
.next_sector
< get_capacity(disk
));
512 dm_put_live_table(md
, srcu_idx
);
516 #define dm_blk_report_zones NULL
517 #endif /* CONFIG_BLK_DEV_ZONED */
519 static int dm_prepare_ioctl(struct mapped_device
*md
, int *srcu_idx
,
520 struct block_device
**bdev
)
521 __acquires(md
->io_barrier
)
523 struct dm_target
*tgt
;
524 struct dm_table
*map
;
529 map
= dm_get_live_table(md
, srcu_idx
);
530 if (!map
|| !dm_table_get_size(map
))
533 /* We only support devices that have a single target */
534 if (dm_table_get_num_targets(map
) != 1)
537 tgt
= dm_table_get_target(map
, 0);
538 if (!tgt
->type
->prepare_ioctl
)
541 if (dm_suspended_md(md
))
544 r
= tgt
->type
->prepare_ioctl(tgt
, bdev
);
545 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
546 dm_put_live_table(md
, *srcu_idx
);
554 static void dm_unprepare_ioctl(struct mapped_device
*md
, int srcu_idx
)
555 __releases(md
->io_barrier
)
557 dm_put_live_table(md
, srcu_idx
);
560 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
561 unsigned int cmd
, unsigned long arg
)
563 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
566 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
572 * Target determined this ioctl is being issued against a
573 * subset of the parent bdev; require extra privileges.
575 if (!capable(CAP_SYS_RAWIO
)) {
577 "%s: sending ioctl %x to DM device without required privilege.",
584 r
= __blkdev_driver_ioctl(bdev
, mode
, cmd
, arg
);
586 dm_unprepare_ioctl(md
, srcu_idx
);
590 static void start_io_acct(struct dm_io
*io
);
592 static struct dm_io
*alloc_io(struct mapped_device
*md
, struct bio
*bio
)
595 struct dm_target_io
*tio
;
598 clone
= bio_alloc_bioset(GFP_NOIO
, 0, &md
->io_bs
);
602 tio
= container_of(clone
, struct dm_target_io
, clone
);
603 tio
->inside_dm_io
= true;
606 io
= container_of(tio
, struct dm_io
, tio
);
607 io
->magic
= DM_IO_MAGIC
;
609 atomic_set(&io
->io_count
, 1);
612 spin_lock_init(&io
->endio_lock
);
619 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
621 bio_put(&io
->tio
.clone
);
624 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
, struct dm_target
*ti
,
625 unsigned target_bio_nr
, gfp_t gfp_mask
)
627 struct dm_target_io
*tio
;
629 if (!ci
->io
->tio
.io
) {
630 /* the dm_target_io embedded in ci->io is available */
633 struct bio
*clone
= bio_alloc_bioset(gfp_mask
, 0, &ci
->io
->md
->bs
);
637 tio
= container_of(clone
, struct dm_target_io
, clone
);
638 tio
->inside_dm_io
= false;
641 tio
->magic
= DM_TIO_MAGIC
;
644 tio
->target_bio_nr
= target_bio_nr
;
649 static void free_tio(struct dm_target_io
*tio
)
651 if (tio
->inside_dm_io
)
653 bio_put(&tio
->clone
);
656 static bool md_in_flight_bios(struct mapped_device
*md
)
659 struct hd_struct
*part
= &dm_disk(md
)->part0
;
662 for_each_possible_cpu(cpu
) {
663 sum
+= part_stat_local_read_cpu(part
, in_flight
[0], cpu
);
664 sum
+= part_stat_local_read_cpu(part
, in_flight
[1], cpu
);
670 static bool md_in_flight(struct mapped_device
*md
)
672 if (queue_is_mq(md
->queue
))
673 return blk_mq_queue_inflight(md
->queue
);
675 return md_in_flight_bios(md
);
678 static void start_io_acct(struct dm_io
*io
)
680 struct mapped_device
*md
= io
->md
;
681 struct bio
*bio
= io
->orig_bio
;
683 io
->start_time
= jiffies
;
685 generic_start_io_acct(md
->queue
, bio_op(bio
), bio_sectors(bio
),
686 &dm_disk(md
)->part0
);
688 if (unlikely(dm_stats_used(&md
->stats
)))
689 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
690 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
691 false, 0, &io
->stats_aux
);
694 static void end_io_acct(struct dm_io
*io
)
696 struct mapped_device
*md
= io
->md
;
697 struct bio
*bio
= io
->orig_bio
;
698 unsigned long duration
= jiffies
- io
->start_time
;
700 generic_end_io_acct(md
->queue
, bio_op(bio
), &dm_disk(md
)->part0
,
703 if (unlikely(dm_stats_used(&md
->stats
)))
704 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
705 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
706 true, duration
, &io
->stats_aux
);
708 /* nudge anyone waiting on suspend queue */
709 if (unlikely(wq_has_sleeper(&md
->wait
)))
714 * Add the bio to the list of deferred io.
716 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
720 spin_lock_irqsave(&md
->deferred_lock
, flags
);
721 bio_list_add(&md
->deferred
, bio
);
722 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
723 queue_work(md
->wq
, &md
->work
);
727 * Everyone (including functions in this file), should use this
728 * function to access the md->map field, and make sure they call
729 * dm_put_live_table() when finished.
731 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
733 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
735 return srcu_dereference(md
->map
, &md
->io_barrier
);
738 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
740 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
743 void dm_sync_table(struct mapped_device
*md
)
745 synchronize_srcu(&md
->io_barrier
);
746 synchronize_rcu_expedited();
750 * A fast alternative to dm_get_live_table/dm_put_live_table.
751 * The caller must not block between these two functions.
753 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
756 return rcu_dereference(md
->map
);
759 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
764 static char *_dm_claim_ptr
= "I belong to device-mapper";
767 * Open a table device so we can use it as a map destination.
769 static int open_table_device(struct table_device
*td
, dev_t dev
,
770 struct mapped_device
*md
)
772 struct block_device
*bdev
;
776 BUG_ON(td
->dm_dev
.bdev
);
778 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _dm_claim_ptr
);
780 return PTR_ERR(bdev
);
782 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
784 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
788 td
->dm_dev
.bdev
= bdev
;
789 td
->dm_dev
.dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
794 * Close a table device that we've been using.
796 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
798 if (!td
->dm_dev
.bdev
)
801 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
802 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
803 put_dax(td
->dm_dev
.dax_dev
);
804 td
->dm_dev
.bdev
= NULL
;
805 td
->dm_dev
.dax_dev
= NULL
;
808 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
811 struct table_device
*td
;
813 list_for_each_entry(td
, l
, list
)
814 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
820 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
821 struct dm_dev
**result
)
824 struct table_device
*td
;
826 mutex_lock(&md
->table_devices_lock
);
827 td
= find_table_device(&md
->table_devices
, dev
, mode
);
829 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
831 mutex_unlock(&md
->table_devices_lock
);
835 td
->dm_dev
.mode
= mode
;
836 td
->dm_dev
.bdev
= NULL
;
838 if ((r
= open_table_device(td
, dev
, md
))) {
839 mutex_unlock(&md
->table_devices_lock
);
844 format_dev_t(td
->dm_dev
.name
, dev
);
846 refcount_set(&td
->count
, 1);
847 list_add(&td
->list
, &md
->table_devices
);
849 refcount_inc(&td
->count
);
851 mutex_unlock(&md
->table_devices_lock
);
853 *result
= &td
->dm_dev
;
856 EXPORT_SYMBOL_GPL(dm_get_table_device
);
858 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
860 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
862 mutex_lock(&md
->table_devices_lock
);
863 if (refcount_dec_and_test(&td
->count
)) {
864 close_table_device(td
, md
);
868 mutex_unlock(&md
->table_devices_lock
);
870 EXPORT_SYMBOL(dm_put_table_device
);
872 static void free_table_devices(struct list_head
*devices
)
874 struct list_head
*tmp
, *next
;
876 list_for_each_safe(tmp
, next
, devices
) {
877 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
879 DMWARN("dm_destroy: %s still exists with %d references",
880 td
->dm_dev
.name
, refcount_read(&td
->count
));
886 * Get the geometry associated with a dm device
888 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
896 * Set the geometry of a device.
898 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
900 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
902 if (geo
->start
> sz
) {
903 DMWARN("Start sector is beyond the geometry limits.");
912 static int __noflush_suspending(struct mapped_device
*md
)
914 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
918 * Decrements the number of outstanding ios that a bio has been
919 * cloned into, completing the original io if necc.
921 static void dec_pending(struct dm_io
*io
, blk_status_t error
)
924 blk_status_t io_error
;
926 struct mapped_device
*md
= io
->md
;
928 /* Push-back supersedes any I/O errors */
929 if (unlikely(error
)) {
930 spin_lock_irqsave(&io
->endio_lock
, flags
);
931 if (!(io
->status
== BLK_STS_DM_REQUEUE
&& __noflush_suspending(md
)))
933 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
936 if (atomic_dec_and_test(&io
->io_count
)) {
937 if (io
->status
== BLK_STS_DM_REQUEUE
) {
939 * Target requested pushing back the I/O.
941 spin_lock_irqsave(&md
->deferred_lock
, flags
);
942 if (__noflush_suspending(md
))
943 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
944 bio_list_add_head(&md
->deferred
, io
->orig_bio
);
946 /* noflush suspend was interrupted. */
947 io
->status
= BLK_STS_IOERR
;
948 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
951 io_error
= io
->status
;
956 if (io_error
== BLK_STS_DM_REQUEUE
)
959 if ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
) {
961 * Preflush done for flush with data, reissue
962 * without REQ_PREFLUSH.
964 bio
->bi_opf
&= ~REQ_PREFLUSH
;
967 /* done with normal IO or empty flush */
969 bio
->bi_status
= io_error
;
975 void disable_discard(struct mapped_device
*md
)
977 struct queue_limits
*limits
= dm_get_queue_limits(md
);
979 /* device doesn't really support DISCARD, disable it */
980 limits
->max_discard_sectors
= 0;
981 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, md
->queue
);
984 void disable_write_same(struct mapped_device
*md
)
986 struct queue_limits
*limits
= dm_get_queue_limits(md
);
988 /* device doesn't really support WRITE SAME, disable it */
989 limits
->max_write_same_sectors
= 0;
992 void disable_write_zeroes(struct mapped_device
*md
)
994 struct queue_limits
*limits
= dm_get_queue_limits(md
);
996 /* device doesn't really support WRITE ZEROES, disable it */
997 limits
->max_write_zeroes_sectors
= 0;
1000 static void clone_endio(struct bio
*bio
)
1002 blk_status_t error
= bio
->bi_status
;
1003 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1004 struct dm_io
*io
= tio
->io
;
1005 struct mapped_device
*md
= tio
->io
->md
;
1006 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
1008 if (unlikely(error
== BLK_STS_TARGET
) && md
->type
!= DM_TYPE_NVME_BIO_BASED
) {
1009 if (bio_op(bio
) == REQ_OP_DISCARD
&&
1010 !bio
->bi_disk
->queue
->limits
.max_discard_sectors
)
1011 disable_discard(md
);
1012 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
&&
1013 !bio
->bi_disk
->queue
->limits
.max_write_same_sectors
)
1014 disable_write_same(md
);
1015 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
&&
1016 !bio
->bi_disk
->queue
->limits
.max_write_zeroes_sectors
)
1017 disable_write_zeroes(md
);
1021 int r
= endio(tio
->ti
, bio
, &error
);
1023 case DM_ENDIO_REQUEUE
:
1024 error
= BLK_STS_DM_REQUEUE
;
1028 case DM_ENDIO_INCOMPLETE
:
1029 /* The target will handle the io */
1032 DMWARN("unimplemented target endio return value: %d", r
);
1038 dec_pending(io
, error
);
1042 * Return maximum size of I/O possible at the supplied sector up to the current
1045 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
1047 sector_t target_offset
= dm_target_offset(ti
, sector
);
1049 return ti
->len
- target_offset
;
1052 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
1054 sector_t len
= max_io_len_target_boundary(sector
, ti
);
1055 sector_t offset
, max_len
;
1058 * Does the target need to split even further?
1060 if (ti
->max_io_len
) {
1061 offset
= dm_target_offset(ti
, sector
);
1062 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
1063 max_len
= sector_div(offset
, ti
->max_io_len
);
1065 max_len
= offset
& (ti
->max_io_len
- 1);
1066 max_len
= ti
->max_io_len
- max_len
;
1075 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1077 if (len
> UINT_MAX
) {
1078 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1079 (unsigned long long)len
, UINT_MAX
);
1080 ti
->error
= "Maximum size of target IO is too large";
1084 ti
->max_io_len
= (uint32_t) len
;
1088 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1090 static struct dm_target
*dm_dax_get_live_target(struct mapped_device
*md
,
1091 sector_t sector
, int *srcu_idx
)
1092 __acquires(md
->io_barrier
)
1094 struct dm_table
*map
;
1095 struct dm_target
*ti
;
1097 map
= dm_get_live_table(md
, srcu_idx
);
1101 ti
= dm_table_find_target(map
, sector
);
1108 static long dm_dax_direct_access(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1109 long nr_pages
, void **kaddr
, pfn_t
*pfn
)
1111 struct mapped_device
*md
= dax_get_private(dax_dev
);
1112 sector_t sector
= pgoff
* PAGE_SECTORS
;
1113 struct dm_target
*ti
;
1114 long len
, ret
= -EIO
;
1117 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1121 if (!ti
->type
->direct_access
)
1123 len
= max_io_len(sector
, ti
) / PAGE_SECTORS
;
1126 nr_pages
= min(len
, nr_pages
);
1127 ret
= ti
->type
->direct_access(ti
, pgoff
, nr_pages
, kaddr
, pfn
);
1130 dm_put_live_table(md
, srcu_idx
);
1135 static bool dm_dax_supported(struct dax_device
*dax_dev
, struct block_device
*bdev
,
1136 int blocksize
, sector_t start
, sector_t len
)
1138 struct mapped_device
*md
= dax_get_private(dax_dev
);
1139 struct dm_table
*map
;
1143 map
= dm_get_live_table(md
, &srcu_idx
);
1147 ret
= dm_table_supports_dax(map
, device_supports_dax
, &blocksize
);
1149 dm_put_live_table(md
, srcu_idx
);
1154 static size_t dm_dax_copy_from_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1155 void *addr
, size_t bytes
, struct iov_iter
*i
)
1157 struct mapped_device
*md
= dax_get_private(dax_dev
);
1158 sector_t sector
= pgoff
* PAGE_SECTORS
;
1159 struct dm_target
*ti
;
1163 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1167 if (!ti
->type
->dax_copy_from_iter
) {
1168 ret
= copy_from_iter(addr
, bytes
, i
);
1171 ret
= ti
->type
->dax_copy_from_iter(ti
, pgoff
, addr
, bytes
, i
);
1173 dm_put_live_table(md
, srcu_idx
);
1178 static size_t dm_dax_copy_to_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1179 void *addr
, size_t bytes
, struct iov_iter
*i
)
1181 struct mapped_device
*md
= dax_get_private(dax_dev
);
1182 sector_t sector
= pgoff
* PAGE_SECTORS
;
1183 struct dm_target
*ti
;
1187 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1191 if (!ti
->type
->dax_copy_to_iter
) {
1192 ret
= copy_to_iter(addr
, bytes
, i
);
1195 ret
= ti
->type
->dax_copy_to_iter(ti
, pgoff
, addr
, bytes
, i
);
1197 dm_put_live_table(md
, srcu_idx
);
1202 static int dm_dax_zero_page_range(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1205 struct mapped_device
*md
= dax_get_private(dax_dev
);
1206 sector_t sector
= pgoff
* PAGE_SECTORS
;
1207 struct dm_target
*ti
;
1211 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1215 if (WARN_ON(!ti
->type
->dax_zero_page_range
)) {
1217 * ->zero_page_range() is mandatory dax operation. If we are
1218 * here, something is wrong.
1220 dm_put_live_table(md
, srcu_idx
);
1223 ret
= ti
->type
->dax_zero_page_range(ti
, pgoff
, nr_pages
);
1226 dm_put_live_table(md
, srcu_idx
);
1232 * A target may call dm_accept_partial_bio only from the map routine. It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1243 * +--------------------+---------------+-------+
1245 * <-------------- *tio->len_ptr --------------->
1246 * <------- bi_size ------->
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 * (it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 * (it may be empty if region 1 is non-empty, although there is no reason
1254 * The target requires that region 3 is to be sent in the next bio.
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1260 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1262 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1263 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1264 BUG_ON(bio
->bi_opf
& REQ_PREFLUSH
);
1265 BUG_ON(bi_size
> *tio
->len_ptr
);
1266 BUG_ON(n_sectors
> bi_size
);
1267 *tio
->len_ptr
-= bi_size
- n_sectors
;
1268 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1270 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1272 static blk_qc_t
__map_bio(struct dm_target_io
*tio
)
1276 struct bio
*clone
= &tio
->clone
;
1277 struct dm_io
*io
= tio
->io
;
1278 struct mapped_device
*md
= io
->md
;
1279 struct dm_target
*ti
= tio
->ti
;
1280 blk_qc_t ret
= BLK_QC_T_NONE
;
1282 clone
->bi_end_io
= clone_endio
;
1285 * Map the clone. If r == 0 we don't need to do
1286 * anything, the target has assumed ownership of
1289 atomic_inc(&io
->io_count
);
1290 sector
= clone
->bi_iter
.bi_sector
;
1292 r
= ti
->type
->map(ti
, clone
);
1294 case DM_MAPIO_SUBMITTED
:
1296 case DM_MAPIO_REMAPPED
:
1297 /* the bio has been remapped so dispatch it */
1298 trace_block_bio_remap(clone
->bi_disk
->queue
, clone
,
1299 bio_dev(io
->orig_bio
), sector
);
1300 if (md
->type
== DM_TYPE_NVME_BIO_BASED
)
1301 ret
= direct_make_request(clone
);
1303 ret
= generic_make_request(clone
);
1307 dec_pending(io
, BLK_STS_IOERR
);
1309 case DM_MAPIO_REQUEUE
:
1311 dec_pending(io
, BLK_STS_DM_REQUEUE
);
1314 DMWARN("unimplemented target map return value: %d", r
);
1321 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1323 bio
->bi_iter
.bi_sector
= sector
;
1324 bio
->bi_iter
.bi_size
= to_bytes(len
);
1328 * Creates a bio that consists of range of complete bvecs.
1330 static int clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1331 sector_t sector
, unsigned len
)
1333 struct bio
*clone
= &tio
->clone
;
1335 __bio_clone_fast(clone
, bio
);
1337 if (bio_integrity(bio
)) {
1340 if (unlikely(!dm_target_has_integrity(tio
->ti
->type
) &&
1341 !dm_target_passes_integrity(tio
->ti
->type
))) {
1342 DMWARN("%s: the target %s doesn't support integrity data.",
1343 dm_device_name(tio
->io
->md
),
1344 tio
->ti
->type
->name
);
1348 r
= bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1353 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1354 clone
->bi_iter
.bi_size
= to_bytes(len
);
1356 if (bio_integrity(bio
))
1357 bio_integrity_trim(clone
);
1362 static void alloc_multiple_bios(struct bio_list
*blist
, struct clone_info
*ci
,
1363 struct dm_target
*ti
, unsigned num_bios
)
1365 struct dm_target_io
*tio
;
1371 if (num_bios
== 1) {
1372 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1373 bio_list_add(blist
, &tio
->clone
);
1377 for (try = 0; try < 2; try++) {
1382 mutex_lock(&ci
->io
->md
->table_devices_lock
);
1383 for (bio_nr
= 0; bio_nr
< num_bios
; bio_nr
++) {
1384 tio
= alloc_tio(ci
, ti
, bio_nr
, try ? GFP_NOIO
: GFP_NOWAIT
);
1388 bio_list_add(blist
, &tio
->clone
);
1391 mutex_unlock(&ci
->io
->md
->table_devices_lock
);
1392 if (bio_nr
== num_bios
)
1395 while ((bio
= bio_list_pop(blist
))) {
1396 tio
= container_of(bio
, struct dm_target_io
, clone
);
1402 static blk_qc_t
__clone_and_map_simple_bio(struct clone_info
*ci
,
1403 struct dm_target_io
*tio
, unsigned *len
)
1405 struct bio
*clone
= &tio
->clone
;
1409 __bio_clone_fast(clone
, ci
->bio
);
1411 bio_setup_sector(clone
, ci
->sector
, *len
);
1413 return __map_bio(tio
);
1416 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1417 unsigned num_bios
, unsigned *len
)
1419 struct bio_list blist
= BIO_EMPTY_LIST
;
1421 struct dm_target_io
*tio
;
1423 alloc_multiple_bios(&blist
, ci
, ti
, num_bios
);
1425 while ((bio
= bio_list_pop(&blist
))) {
1426 tio
= container_of(bio
, struct dm_target_io
, clone
);
1427 (void) __clone_and_map_simple_bio(ci
, tio
, len
);
1431 static int __send_empty_flush(struct clone_info
*ci
)
1433 unsigned target_nr
= 0;
1434 struct dm_target
*ti
;
1437 * Empty flush uses a statically initialized bio, as the base for
1438 * cloning. However, blkg association requires that a bdev is
1439 * associated with a gendisk, which doesn't happen until the bdev is
1440 * opened. So, blkg association is done at issue time of the flush
1441 * rather than when the device is created in alloc_dev().
1443 bio_set_dev(ci
->bio
, ci
->io
->md
->bdev
);
1445 BUG_ON(bio_has_data(ci
->bio
));
1446 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1447 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1449 bio_disassociate_blkg(ci
->bio
);
1454 static int __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1455 sector_t sector
, unsigned *len
)
1457 struct bio
*bio
= ci
->bio
;
1458 struct dm_target_io
*tio
;
1461 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1463 r
= clone_bio(tio
, bio
, sector
, *len
);
1468 (void) __map_bio(tio
);
1473 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1475 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1477 return ti
->num_discard_bios
;
1480 static unsigned get_num_secure_erase_bios(struct dm_target
*ti
)
1482 return ti
->num_secure_erase_bios
;
1485 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1487 return ti
->num_write_same_bios
;
1490 static unsigned get_num_write_zeroes_bios(struct dm_target
*ti
)
1492 return ti
->num_write_zeroes_bios
;
1495 static int __send_changing_extent_only(struct clone_info
*ci
, struct dm_target
*ti
,
1501 * Even though the device advertised support for this type of
1502 * request, that does not mean every target supports it, and
1503 * reconfiguration might also have changed that since the
1504 * check was performed.
1509 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1511 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1514 ci
->sector_count
-= len
;
1519 static int __send_discard(struct clone_info
*ci
, struct dm_target
*ti
)
1521 return __send_changing_extent_only(ci
, ti
, get_num_discard_bios(ti
));
1524 static int __send_secure_erase(struct clone_info
*ci
, struct dm_target
*ti
)
1526 return __send_changing_extent_only(ci
, ti
, get_num_secure_erase_bios(ti
));
1529 static int __send_write_same(struct clone_info
*ci
, struct dm_target
*ti
)
1531 return __send_changing_extent_only(ci
, ti
, get_num_write_same_bios(ti
));
1534 static int __send_write_zeroes(struct clone_info
*ci
, struct dm_target
*ti
)
1536 return __send_changing_extent_only(ci
, ti
, get_num_write_zeroes_bios(ti
));
1539 static bool is_abnormal_io(struct bio
*bio
)
1543 switch (bio_op(bio
)) {
1544 case REQ_OP_DISCARD
:
1545 case REQ_OP_SECURE_ERASE
:
1546 case REQ_OP_WRITE_SAME
:
1547 case REQ_OP_WRITE_ZEROES
:
1555 static bool __process_abnormal_io(struct clone_info
*ci
, struct dm_target
*ti
,
1558 struct bio
*bio
= ci
->bio
;
1560 if (bio_op(bio
) == REQ_OP_DISCARD
)
1561 *result
= __send_discard(ci
, ti
);
1562 else if (bio_op(bio
) == REQ_OP_SECURE_ERASE
)
1563 *result
= __send_secure_erase(ci
, ti
);
1564 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
)
1565 *result
= __send_write_same(ci
, ti
);
1566 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
)
1567 *result
= __send_write_zeroes(ci
, ti
);
1575 * Select the correct strategy for processing a non-flush bio.
1577 static int __split_and_process_non_flush(struct clone_info
*ci
)
1579 struct dm_target
*ti
;
1583 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1587 if (__process_abnormal_io(ci
, ti
, &r
))
1590 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
), ci
->sector_count
);
1592 r
= __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1597 ci
->sector_count
-= len
;
1602 static void init_clone_info(struct clone_info
*ci
, struct mapped_device
*md
,
1603 struct dm_table
*map
, struct bio
*bio
)
1606 ci
->io
= alloc_io(md
, bio
);
1607 ci
->sector
= bio
->bi_iter
.bi_sector
;
1610 #define __dm_part_stat_sub(part, field, subnd) \
1611 (part_stat_get(part, field) -= (subnd))
1614 * Entry point to split a bio into clones and submit them to the targets.
1616 static blk_qc_t
__split_and_process_bio(struct mapped_device
*md
,
1617 struct dm_table
*map
, struct bio
*bio
)
1619 struct clone_info ci
;
1620 blk_qc_t ret
= BLK_QC_T_NONE
;
1623 init_clone_info(&ci
, md
, map
, bio
);
1625 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1626 struct bio flush_bio
;
1629 * Use an on-stack bio for this, it's safe since we don't
1630 * need to reference it after submit. It's just used as
1631 * the basis for the clone(s).
1633 bio_init(&flush_bio
, NULL
, 0);
1634 flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1635 ci
.bio
= &flush_bio
;
1636 ci
.sector_count
= 0;
1637 error
= __send_empty_flush(&ci
);
1638 /* dec_pending submits any data associated with flush */
1639 } else if (op_is_zone_mgmt(bio_op(bio
))) {
1641 ci
.sector_count
= 0;
1642 error
= __split_and_process_non_flush(&ci
);
1645 ci
.sector_count
= bio_sectors(bio
);
1646 while (ci
.sector_count
&& !error
) {
1647 error
= __split_and_process_non_flush(&ci
);
1648 if (current
->bio_list
&& ci
.sector_count
&& !error
) {
1650 * Remainder must be passed to generic_make_request()
1651 * so that it gets handled *after* bios already submitted
1652 * have been completely processed.
1653 * We take a clone of the original to store in
1654 * ci.io->orig_bio to be used by end_io_acct() and
1655 * for dec_pending to use for completion handling.
1657 struct bio
*b
= bio_split(bio
, bio_sectors(bio
) - ci
.sector_count
,
1658 GFP_NOIO
, &md
->queue
->bio_split
);
1659 ci
.io
->orig_bio
= b
;
1662 * Adjust IO stats for each split, otherwise upon queue
1663 * reentry there will be redundant IO accounting.
1664 * NOTE: this is a stop-gap fix, a proper fix involves
1665 * significant refactoring of DM core's bio splitting
1666 * (by eliminating DM's splitting and just using bio_split)
1669 __dm_part_stat_sub(&dm_disk(md
)->part0
,
1670 sectors
[op_stat_group(bio_op(bio
))], ci
.sector_count
);
1674 trace_block_split(md
->queue
, b
, bio
->bi_iter
.bi_sector
);
1675 ret
= generic_make_request(bio
);
1681 /* drop the extra reference count */
1682 dec_pending(ci
.io
, errno_to_blk_status(error
));
1687 * Optimized variant of __split_and_process_bio that leverages the
1688 * fact that targets that use it do _not_ have a need to split bios.
1690 static blk_qc_t
__process_bio(struct mapped_device
*md
, struct dm_table
*map
,
1691 struct bio
*bio
, struct dm_target
*ti
)
1693 struct clone_info ci
;
1694 blk_qc_t ret
= BLK_QC_T_NONE
;
1697 init_clone_info(&ci
, md
, map
, bio
);
1699 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1700 struct bio flush_bio
;
1703 * Use an on-stack bio for this, it's safe since we don't
1704 * need to reference it after submit. It's just used as
1705 * the basis for the clone(s).
1707 bio_init(&flush_bio
, NULL
, 0);
1708 flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1709 ci
.bio
= &flush_bio
;
1710 ci
.sector_count
= 0;
1711 error
= __send_empty_flush(&ci
);
1712 /* dec_pending submits any data associated with flush */
1714 struct dm_target_io
*tio
;
1717 ci
.sector_count
= bio_sectors(bio
);
1718 if (__process_abnormal_io(&ci
, ti
, &error
))
1721 tio
= alloc_tio(&ci
, ti
, 0, GFP_NOIO
);
1722 ret
= __clone_and_map_simple_bio(&ci
, tio
, NULL
);
1725 /* drop the extra reference count */
1726 dec_pending(ci
.io
, errno_to_blk_status(error
));
1730 static void dm_queue_split(struct mapped_device
*md
, struct dm_target
*ti
, struct bio
**bio
)
1732 unsigned len
, sector_count
;
1734 sector_count
= bio_sectors(*bio
);
1735 len
= min_t(sector_t
, max_io_len((*bio
)->bi_iter
.bi_sector
, ti
), sector_count
);
1737 if (sector_count
> len
) {
1738 struct bio
*split
= bio_split(*bio
, len
, GFP_NOIO
, &md
->queue
->bio_split
);
1740 bio_chain(split
, *bio
);
1741 trace_block_split(md
->queue
, split
, (*bio
)->bi_iter
.bi_sector
);
1742 generic_make_request(*bio
);
1747 static blk_qc_t
dm_process_bio(struct mapped_device
*md
,
1748 struct dm_table
*map
, struct bio
*bio
)
1750 blk_qc_t ret
= BLK_QC_T_NONE
;
1751 struct dm_target
*ti
= md
->immutable_target
;
1753 if (unlikely(!map
)) {
1759 ti
= dm_table_find_target(map
, bio
->bi_iter
.bi_sector
);
1760 if (unlikely(!ti
)) {
1767 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1768 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1771 if (current
->bio_list
) {
1772 if (is_abnormal_io(bio
))
1773 blk_queue_split(md
->queue
, &bio
);
1775 dm_queue_split(md
, ti
, &bio
);
1778 if (dm_get_md_type(md
) == DM_TYPE_NVME_BIO_BASED
)
1779 return __process_bio(md
, map
, bio
, ti
);
1781 return __split_and_process_bio(md
, map
, bio
);
1784 static blk_qc_t
dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1786 struct mapped_device
*md
= q
->queuedata
;
1787 blk_qc_t ret
= BLK_QC_T_NONE
;
1789 struct dm_table
*map
;
1791 map
= dm_get_live_table(md
, &srcu_idx
);
1793 /* if we're suspended, we have to queue this io for later */
1794 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1795 dm_put_live_table(md
, srcu_idx
);
1797 if (!(bio
->bi_opf
& REQ_RAHEAD
))
1804 ret
= dm_process_bio(md
, map
, bio
);
1806 dm_put_live_table(md
, srcu_idx
);
1810 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1813 struct mapped_device
*md
= congested_data
;
1814 struct dm_table
*map
;
1816 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1817 if (dm_request_based(md
)) {
1819 * With request-based DM we only need to check the
1820 * top-level queue for congestion.
1822 struct backing_dev_info
*bdi
= md
->queue
->backing_dev_info
;
1823 r
= bdi
->wb
.congested
->state
& bdi_bits
;
1825 map
= dm_get_live_table_fast(md
);
1827 r
= dm_table_any_congested(map
, bdi_bits
);
1828 dm_put_live_table_fast(md
);
1835 /*-----------------------------------------------------------------
1836 * An IDR is used to keep track of allocated minor numbers.
1837 *---------------------------------------------------------------*/
1838 static void free_minor(int minor
)
1840 spin_lock(&_minor_lock
);
1841 idr_remove(&_minor_idr
, minor
);
1842 spin_unlock(&_minor_lock
);
1846 * See if the device with a specific minor # is free.
1848 static int specific_minor(int minor
)
1852 if (minor
>= (1 << MINORBITS
))
1855 idr_preload(GFP_KERNEL
);
1856 spin_lock(&_minor_lock
);
1858 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1860 spin_unlock(&_minor_lock
);
1863 return r
== -ENOSPC
? -EBUSY
: r
;
1867 static int next_free_minor(int *minor
)
1871 idr_preload(GFP_KERNEL
);
1872 spin_lock(&_minor_lock
);
1874 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1876 spin_unlock(&_minor_lock
);
1884 static const struct block_device_operations dm_blk_dops
;
1885 static const struct dax_operations dm_dax_ops
;
1887 static void dm_wq_work(struct work_struct
*work
);
1889 static void cleanup_mapped_device(struct mapped_device
*md
)
1892 destroy_workqueue(md
->wq
);
1893 bioset_exit(&md
->bs
);
1894 bioset_exit(&md
->io_bs
);
1897 kill_dax(md
->dax_dev
);
1898 put_dax(md
->dax_dev
);
1903 spin_lock(&_minor_lock
);
1904 md
->disk
->private_data
= NULL
;
1905 spin_unlock(&_minor_lock
);
1906 del_gendisk(md
->disk
);
1911 blk_cleanup_queue(md
->queue
);
1913 cleanup_srcu_struct(&md
->io_barrier
);
1920 mutex_destroy(&md
->suspend_lock
);
1921 mutex_destroy(&md
->type_lock
);
1922 mutex_destroy(&md
->table_devices_lock
);
1924 dm_mq_cleanup_mapped_device(md
);
1928 * Allocate and initialise a blank device with a given minor.
1930 static struct mapped_device
*alloc_dev(int minor
)
1932 int r
, numa_node_id
= dm_get_numa_node();
1933 struct mapped_device
*md
;
1936 md
= kvzalloc_node(sizeof(*md
), GFP_KERNEL
, numa_node_id
);
1938 DMWARN("unable to allocate device, out of memory.");
1942 if (!try_module_get(THIS_MODULE
))
1943 goto bad_module_get
;
1945 /* get a minor number for the dev */
1946 if (minor
== DM_ANY_MINOR
)
1947 r
= next_free_minor(&minor
);
1949 r
= specific_minor(minor
);
1953 r
= init_srcu_struct(&md
->io_barrier
);
1955 goto bad_io_barrier
;
1957 md
->numa_node_id
= numa_node_id
;
1958 md
->init_tio_pdu
= false;
1959 md
->type
= DM_TYPE_NONE
;
1960 mutex_init(&md
->suspend_lock
);
1961 mutex_init(&md
->type_lock
);
1962 mutex_init(&md
->table_devices_lock
);
1963 spin_lock_init(&md
->deferred_lock
);
1964 atomic_set(&md
->holders
, 1);
1965 atomic_set(&md
->open_count
, 0);
1966 atomic_set(&md
->event_nr
, 0);
1967 atomic_set(&md
->uevent_seq
, 0);
1968 INIT_LIST_HEAD(&md
->uevent_list
);
1969 INIT_LIST_HEAD(&md
->table_devices
);
1970 spin_lock_init(&md
->uevent_lock
);
1973 * default to bio-based required ->make_request_fn until DM
1974 * table is loaded and md->type established. If request-based
1975 * table is loaded: blk-mq will override accordingly.
1977 md
->queue
= blk_alloc_queue(dm_make_request
, numa_node_id
);
1980 md
->queue
->queuedata
= md
;
1982 md
->disk
= alloc_disk_node(1, md
->numa_node_id
);
1986 init_waitqueue_head(&md
->wait
);
1987 INIT_WORK(&md
->work
, dm_wq_work
);
1988 init_waitqueue_head(&md
->eventq
);
1989 init_completion(&md
->kobj_holder
.completion
);
1991 md
->disk
->major
= _major
;
1992 md
->disk
->first_minor
= minor
;
1993 md
->disk
->fops
= &dm_blk_dops
;
1994 md
->disk
->queue
= md
->queue
;
1995 md
->disk
->private_data
= md
;
1996 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1998 if (IS_ENABLED(CONFIG_DAX_DRIVER
)) {
1999 md
->dax_dev
= alloc_dax(md
, md
->disk
->disk_name
,
2001 if (IS_ERR(md
->dax_dev
))
2005 add_disk_no_queue_reg(md
->disk
);
2006 format_dev_t(md
->name
, MKDEV(_major
, minor
));
2008 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
2012 md
->bdev
= bdget_disk(md
->disk
, 0);
2016 dm_stats_init(&md
->stats
);
2018 /* Populate the mapping, nobody knows we exist yet */
2019 spin_lock(&_minor_lock
);
2020 old_md
= idr_replace(&_minor_idr
, md
, minor
);
2021 spin_unlock(&_minor_lock
);
2023 BUG_ON(old_md
!= MINOR_ALLOCED
);
2028 cleanup_mapped_device(md
);
2032 module_put(THIS_MODULE
);
2038 static void unlock_fs(struct mapped_device
*md
);
2040 static void free_dev(struct mapped_device
*md
)
2042 int minor
= MINOR(disk_devt(md
->disk
));
2046 cleanup_mapped_device(md
);
2048 free_table_devices(&md
->table_devices
);
2049 dm_stats_cleanup(&md
->stats
);
2052 module_put(THIS_MODULE
);
2056 static int __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
2058 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
2061 if (dm_table_bio_based(t
)) {
2063 * The md may already have mempools that need changing.
2064 * If so, reload bioset because front_pad may have changed
2065 * because a different table was loaded.
2067 bioset_exit(&md
->bs
);
2068 bioset_exit(&md
->io_bs
);
2070 } else if (bioset_initialized(&md
->bs
)) {
2072 * There's no need to reload with request-based dm
2073 * because the size of front_pad doesn't change.
2074 * Note for future: If you are to reload bioset,
2075 * prep-ed requests in the queue may refer
2076 * to bio from the old bioset, so you must walk
2077 * through the queue to unprep.
2083 bioset_initialized(&md
->bs
) ||
2084 bioset_initialized(&md
->io_bs
));
2086 ret
= bioset_init_from_src(&md
->bs
, &p
->bs
);
2089 ret
= bioset_init_from_src(&md
->io_bs
, &p
->io_bs
);
2091 bioset_exit(&md
->bs
);
2093 /* mempool bind completed, no longer need any mempools in the table */
2094 dm_table_free_md_mempools(t
);
2099 * Bind a table to the device.
2101 static void event_callback(void *context
)
2103 unsigned long flags
;
2105 struct mapped_device
*md
= (struct mapped_device
*) context
;
2107 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2108 list_splice_init(&md
->uevent_list
, &uevents
);
2109 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2111 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2113 atomic_inc(&md
->event_nr
);
2114 wake_up(&md
->eventq
);
2115 dm_issue_global_event();
2119 * Protected by md->suspend_lock obtained by dm_swap_table().
2121 static void __set_size(struct mapped_device
*md
, sector_t size
)
2123 lockdep_assert_held(&md
->suspend_lock
);
2125 set_capacity(md
->disk
, size
);
2127 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2131 * Returns old map, which caller must destroy.
2133 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2134 struct queue_limits
*limits
)
2136 struct dm_table
*old_map
;
2137 struct request_queue
*q
= md
->queue
;
2138 bool request_based
= dm_table_request_based(t
);
2142 lockdep_assert_held(&md
->suspend_lock
);
2144 size
= dm_table_get_size(t
);
2147 * Wipe any geometry if the size of the table changed.
2149 if (size
!= dm_get_size(md
))
2150 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2152 __set_size(md
, size
);
2154 dm_table_event_callback(t
, event_callback
, md
);
2157 * The queue hasn't been stopped yet, if the old table type wasn't
2158 * for request-based during suspension. So stop it to prevent
2159 * I/O mapping before resume.
2160 * This must be done before setting the queue restrictions,
2161 * because request-based dm may be run just after the setting.
2166 if (request_based
|| md
->type
== DM_TYPE_NVME_BIO_BASED
) {
2168 * Leverage the fact that request-based DM targets and
2169 * NVMe bio based targets are immutable singletons
2170 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2171 * and __process_bio.
2173 md
->immutable_target
= dm_table_get_immutable_target(t
);
2176 ret
= __bind_mempools(md
, t
);
2178 old_map
= ERR_PTR(ret
);
2182 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2183 rcu_assign_pointer(md
->map
, (void *)t
);
2184 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2186 dm_table_set_restrictions(t
, q
, limits
);
2195 * Returns unbound table for the caller to free.
2197 static struct dm_table
*__unbind(struct mapped_device
*md
)
2199 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2204 dm_table_event_callback(map
, NULL
, NULL
);
2205 RCU_INIT_POINTER(md
->map
, NULL
);
2212 * Constructor for a new device.
2214 int dm_create(int minor
, struct mapped_device
**result
)
2217 struct mapped_device
*md
;
2219 md
= alloc_dev(minor
);
2223 r
= dm_sysfs_init(md
);
2234 * Functions to manage md->type.
2235 * All are required to hold md->type_lock.
2237 void dm_lock_md_type(struct mapped_device
*md
)
2239 mutex_lock(&md
->type_lock
);
2242 void dm_unlock_md_type(struct mapped_device
*md
)
2244 mutex_unlock(&md
->type_lock
);
2247 void dm_set_md_type(struct mapped_device
*md
, enum dm_queue_mode type
)
2249 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2253 enum dm_queue_mode
dm_get_md_type(struct mapped_device
*md
)
2258 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2260 return md
->immutable_target_type
;
2264 * The queue_limits are only valid as long as you have a reference
2267 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2269 BUG_ON(!atomic_read(&md
->holders
));
2270 return &md
->queue
->limits
;
2272 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2274 static void dm_init_congested_fn(struct mapped_device
*md
)
2276 md
->queue
->backing_dev_info
->congested_data
= md
;
2277 md
->queue
->backing_dev_info
->congested_fn
= dm_any_congested
;
2281 * Setup the DM device's queue based on md's type
2283 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
2286 struct queue_limits limits
;
2287 enum dm_queue_mode type
= dm_get_md_type(md
);
2290 case DM_TYPE_REQUEST_BASED
:
2291 r
= dm_mq_init_request_queue(md
, t
);
2293 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2296 dm_init_congested_fn(md
);
2298 case DM_TYPE_BIO_BASED
:
2299 case DM_TYPE_DAX_BIO_BASED
:
2300 case DM_TYPE_NVME_BIO_BASED
:
2301 dm_init_congested_fn(md
);
2308 r
= dm_calculate_queue_limits(t
, &limits
);
2310 DMERR("Cannot calculate initial queue limits");
2313 dm_table_set_restrictions(t
, md
->queue
, &limits
);
2314 blk_register_queue(md
->disk
);
2319 struct mapped_device
*dm_get_md(dev_t dev
)
2321 struct mapped_device
*md
;
2322 unsigned minor
= MINOR(dev
);
2324 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2327 spin_lock(&_minor_lock
);
2329 md
= idr_find(&_minor_idr
, minor
);
2330 if (!md
|| md
== MINOR_ALLOCED
|| (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2331 test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2337 spin_unlock(&_minor_lock
);
2341 EXPORT_SYMBOL_GPL(dm_get_md
);
2343 void *dm_get_mdptr(struct mapped_device
*md
)
2345 return md
->interface_ptr
;
2348 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2350 md
->interface_ptr
= ptr
;
2353 void dm_get(struct mapped_device
*md
)
2355 atomic_inc(&md
->holders
);
2356 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2359 int dm_hold(struct mapped_device
*md
)
2361 spin_lock(&_minor_lock
);
2362 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2363 spin_unlock(&_minor_lock
);
2367 spin_unlock(&_minor_lock
);
2370 EXPORT_SYMBOL_GPL(dm_hold
);
2372 const char *dm_device_name(struct mapped_device
*md
)
2376 EXPORT_SYMBOL_GPL(dm_device_name
);
2378 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2380 struct dm_table
*map
;
2385 spin_lock(&_minor_lock
);
2386 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2387 set_bit(DMF_FREEING
, &md
->flags
);
2388 spin_unlock(&_minor_lock
);
2390 blk_set_queue_dying(md
->queue
);
2393 * Take suspend_lock so that presuspend and postsuspend methods
2394 * do not race with internal suspend.
2396 mutex_lock(&md
->suspend_lock
);
2397 map
= dm_get_live_table(md
, &srcu_idx
);
2398 if (!dm_suspended_md(md
)) {
2399 dm_table_presuspend_targets(map
);
2400 set_bit(DMF_SUSPENDED
, &md
->flags
);
2401 dm_table_postsuspend_targets(map
);
2403 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2404 dm_put_live_table(md
, srcu_idx
);
2405 mutex_unlock(&md
->suspend_lock
);
2408 * Rare, but there may be I/O requests still going to complete,
2409 * for example. Wait for all references to disappear.
2410 * No one should increment the reference count of the mapped_device,
2411 * after the mapped_device state becomes DMF_FREEING.
2414 while (atomic_read(&md
->holders
))
2416 else if (atomic_read(&md
->holders
))
2417 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2418 dm_device_name(md
), atomic_read(&md
->holders
));
2421 dm_table_destroy(__unbind(md
));
2425 void dm_destroy(struct mapped_device
*md
)
2427 __dm_destroy(md
, true);
2430 void dm_destroy_immediate(struct mapped_device
*md
)
2432 __dm_destroy(md
, false);
2435 void dm_put(struct mapped_device
*md
)
2437 atomic_dec(&md
->holders
);
2439 EXPORT_SYMBOL_GPL(dm_put
);
2441 static int dm_wait_for_completion(struct mapped_device
*md
, long task_state
)
2447 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2449 if (!md_in_flight(md
))
2452 if (signal_pending_state(task_state
, current
)) {
2459 finish_wait(&md
->wait
, &wait
);
2465 * Process the deferred bios
2467 static void dm_wq_work(struct work_struct
*work
)
2469 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2473 struct dm_table
*map
;
2475 map
= dm_get_live_table(md
, &srcu_idx
);
2477 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2478 spin_lock_irq(&md
->deferred_lock
);
2479 c
= bio_list_pop(&md
->deferred
);
2480 spin_unlock_irq(&md
->deferred_lock
);
2485 if (dm_request_based(md
))
2486 (void) generic_make_request(c
);
2488 (void) dm_process_bio(md
, map
, c
);
2491 dm_put_live_table(md
, srcu_idx
);
2494 static void dm_queue_flush(struct mapped_device
*md
)
2496 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2497 smp_mb__after_atomic();
2498 queue_work(md
->wq
, &md
->work
);
2502 * Swap in a new table, returning the old one for the caller to destroy.
2504 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2506 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2507 struct queue_limits limits
;
2510 mutex_lock(&md
->suspend_lock
);
2512 /* device must be suspended */
2513 if (!dm_suspended_md(md
))
2517 * If the new table has no data devices, retain the existing limits.
2518 * This helps multipath with queue_if_no_path if all paths disappear,
2519 * then new I/O is queued based on these limits, and then some paths
2522 if (dm_table_has_no_data_devices(table
)) {
2523 live_map
= dm_get_live_table_fast(md
);
2525 limits
= md
->queue
->limits
;
2526 dm_put_live_table_fast(md
);
2530 r
= dm_calculate_queue_limits(table
, &limits
);
2537 map
= __bind(md
, table
, &limits
);
2538 dm_issue_global_event();
2541 mutex_unlock(&md
->suspend_lock
);
2546 * Functions to lock and unlock any filesystem running on the
2549 static int lock_fs(struct mapped_device
*md
)
2553 WARN_ON(md
->frozen_sb
);
2555 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2556 if (IS_ERR(md
->frozen_sb
)) {
2557 r
= PTR_ERR(md
->frozen_sb
);
2558 md
->frozen_sb
= NULL
;
2562 set_bit(DMF_FROZEN
, &md
->flags
);
2567 static void unlock_fs(struct mapped_device
*md
)
2569 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2572 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2573 md
->frozen_sb
= NULL
;
2574 clear_bit(DMF_FROZEN
, &md
->flags
);
2578 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2579 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2580 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2582 * If __dm_suspend returns 0, the device is completely quiescent
2583 * now. There is no request-processing activity. All new requests
2584 * are being added to md->deferred list.
2586 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2587 unsigned suspend_flags
, long task_state
,
2588 int dmf_suspended_flag
)
2590 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2591 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2594 lockdep_assert_held(&md
->suspend_lock
);
2597 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2598 * This flag is cleared before dm_suspend returns.
2601 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2603 pr_debug("%s: suspending with flush\n", dm_device_name(md
));
2606 * This gets reverted if there's an error later and the targets
2607 * provide the .presuspend_undo hook.
2609 dm_table_presuspend_targets(map
);
2612 * Flush I/O to the device.
2613 * Any I/O submitted after lock_fs() may not be flushed.
2614 * noflush takes precedence over do_lockfs.
2615 * (lock_fs() flushes I/Os and waits for them to complete.)
2617 if (!noflush
&& do_lockfs
) {
2620 dm_table_presuspend_undo_targets(map
);
2626 * Here we must make sure that no processes are submitting requests
2627 * to target drivers i.e. no one may be executing
2628 * __split_and_process_bio. This is called from dm_request and
2631 * To get all processes out of __split_and_process_bio in dm_request,
2632 * we take the write lock. To prevent any process from reentering
2633 * __split_and_process_bio from dm_request and quiesce the thread
2634 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2635 * flush_workqueue(md->wq).
2637 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2639 synchronize_srcu(&md
->io_barrier
);
2642 * Stop md->queue before flushing md->wq in case request-based
2643 * dm defers requests to md->wq from md->queue.
2645 if (dm_request_based(md
))
2646 dm_stop_queue(md
->queue
);
2648 flush_workqueue(md
->wq
);
2651 * At this point no more requests are entering target request routines.
2652 * We call dm_wait_for_completion to wait for all existing requests
2655 r
= dm_wait_for_completion(md
, task_state
);
2657 set_bit(dmf_suspended_flag
, &md
->flags
);
2660 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2662 synchronize_srcu(&md
->io_barrier
);
2664 /* were we interrupted ? */
2668 if (dm_request_based(md
))
2669 dm_start_queue(md
->queue
);
2672 dm_table_presuspend_undo_targets(map
);
2673 /* pushback list is already flushed, so skip flush */
2680 * We need to be able to change a mapping table under a mounted
2681 * filesystem. For example we might want to move some data in
2682 * the background. Before the table can be swapped with
2683 * dm_bind_table, dm_suspend must be called to flush any in
2684 * flight bios and ensure that any further io gets deferred.
2687 * Suspend mechanism in request-based dm.
2689 * 1. Flush all I/Os by lock_fs() if needed.
2690 * 2. Stop dispatching any I/O by stopping the request_queue.
2691 * 3. Wait for all in-flight I/Os to be completed or requeued.
2693 * To abort suspend, start the request_queue.
2695 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2697 struct dm_table
*map
= NULL
;
2701 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2703 if (dm_suspended_md(md
)) {
2708 if (dm_suspended_internally_md(md
)) {
2709 /* already internally suspended, wait for internal resume */
2710 mutex_unlock(&md
->suspend_lock
);
2711 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2717 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2719 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
2723 dm_table_postsuspend_targets(map
);
2726 mutex_unlock(&md
->suspend_lock
);
2730 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
2733 int r
= dm_table_resume_targets(map
);
2741 * Flushing deferred I/Os must be done after targets are resumed
2742 * so that mapping of targets can work correctly.
2743 * Request-based dm is queueing the deferred I/Os in its request_queue.
2745 if (dm_request_based(md
))
2746 dm_start_queue(md
->queue
);
2753 int dm_resume(struct mapped_device
*md
)
2756 struct dm_table
*map
= NULL
;
2760 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2762 if (!dm_suspended_md(md
))
2765 if (dm_suspended_internally_md(md
)) {
2766 /* already internally suspended, wait for internal resume */
2767 mutex_unlock(&md
->suspend_lock
);
2768 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2774 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2775 if (!map
|| !dm_table_get_size(map
))
2778 r
= __dm_resume(md
, map
);
2782 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2784 mutex_unlock(&md
->suspend_lock
);
2790 * Internal suspend/resume works like userspace-driven suspend. It waits
2791 * until all bios finish and prevents issuing new bios to the target drivers.
2792 * It may be used only from the kernel.
2795 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2797 struct dm_table
*map
= NULL
;
2799 lockdep_assert_held(&md
->suspend_lock
);
2801 if (md
->internal_suspend_count
++)
2802 return; /* nested internal suspend */
2804 if (dm_suspended_md(md
)) {
2805 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2806 return; /* nest suspend */
2809 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2812 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2813 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2814 * would require changing .presuspend to return an error -- avoid this
2815 * until there is a need for more elaborate variants of internal suspend.
2817 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
2818 DMF_SUSPENDED_INTERNALLY
);
2820 dm_table_postsuspend_targets(map
);
2823 static void __dm_internal_resume(struct mapped_device
*md
)
2825 BUG_ON(!md
->internal_suspend_count
);
2827 if (--md
->internal_suspend_count
)
2828 return; /* resume from nested internal suspend */
2830 if (dm_suspended_md(md
))
2831 goto done
; /* resume from nested suspend */
2834 * NOTE: existing callers don't need to call dm_table_resume_targets
2835 * (which may fail -- so best to avoid it for now by passing NULL map)
2837 (void) __dm_resume(md
, NULL
);
2840 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2841 smp_mb__after_atomic();
2842 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
2845 void dm_internal_suspend_noflush(struct mapped_device
*md
)
2847 mutex_lock(&md
->suspend_lock
);
2848 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
2849 mutex_unlock(&md
->suspend_lock
);
2851 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
2853 void dm_internal_resume(struct mapped_device
*md
)
2855 mutex_lock(&md
->suspend_lock
);
2856 __dm_internal_resume(md
);
2857 mutex_unlock(&md
->suspend_lock
);
2859 EXPORT_SYMBOL_GPL(dm_internal_resume
);
2862 * Fast variants of internal suspend/resume hold md->suspend_lock,
2863 * which prevents interaction with userspace-driven suspend.
2866 void dm_internal_suspend_fast(struct mapped_device
*md
)
2868 mutex_lock(&md
->suspend_lock
);
2869 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2872 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2873 synchronize_srcu(&md
->io_barrier
);
2874 flush_workqueue(md
->wq
);
2875 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2877 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
2879 void dm_internal_resume_fast(struct mapped_device
*md
)
2881 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2887 mutex_unlock(&md
->suspend_lock
);
2889 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
2891 /*-----------------------------------------------------------------
2892 * Event notification.
2893 *---------------------------------------------------------------*/
2894 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2897 char udev_cookie
[DM_COOKIE_LENGTH
];
2898 char *envp
[] = { udev_cookie
, NULL
};
2901 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2903 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2904 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2905 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2910 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2912 return atomic_add_return(1, &md
->uevent_seq
);
2915 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2917 return atomic_read(&md
->event_nr
);
2920 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2922 return wait_event_interruptible(md
->eventq
,
2923 (event_nr
!= atomic_read(&md
->event_nr
)));
2926 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2928 unsigned long flags
;
2930 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2931 list_add(elist
, &md
->uevent_list
);
2932 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2936 * The gendisk is only valid as long as you have a reference
2939 struct gendisk
*dm_disk(struct mapped_device
*md
)
2943 EXPORT_SYMBOL_GPL(dm_disk
);
2945 struct kobject
*dm_kobject(struct mapped_device
*md
)
2947 return &md
->kobj_holder
.kobj
;
2950 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2952 struct mapped_device
*md
;
2954 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2956 spin_lock(&_minor_lock
);
2957 if (test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2963 spin_unlock(&_minor_lock
);
2968 int dm_suspended_md(struct mapped_device
*md
)
2970 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2973 int dm_suspended_internally_md(struct mapped_device
*md
)
2975 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2978 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2980 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2983 int dm_suspended(struct dm_target
*ti
)
2985 return dm_suspended_md(dm_table_get_md(ti
->table
));
2987 EXPORT_SYMBOL_GPL(dm_suspended
);
2989 int dm_noflush_suspending(struct dm_target
*ti
)
2991 return __noflush_suspending(dm_table_get_md(ti
->table
));
2993 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2995 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, enum dm_queue_mode type
,
2996 unsigned integrity
, unsigned per_io_data_size
,
2997 unsigned min_pool_size
)
2999 struct dm_md_mempools
*pools
= kzalloc_node(sizeof(*pools
), GFP_KERNEL
, md
->numa_node_id
);
3000 unsigned int pool_size
= 0;
3001 unsigned int front_pad
, io_front_pad
;
3008 case DM_TYPE_BIO_BASED
:
3009 case DM_TYPE_DAX_BIO_BASED
:
3010 case DM_TYPE_NVME_BIO_BASED
:
3011 pool_size
= max(dm_get_reserved_bio_based_ios(), min_pool_size
);
3012 front_pad
= roundup(per_io_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
3013 io_front_pad
= roundup(front_pad
, __alignof__(struct dm_io
)) + offsetof(struct dm_io
, tio
);
3014 ret
= bioset_init(&pools
->io_bs
, pool_size
, io_front_pad
, 0);
3017 if (integrity
&& bioset_integrity_create(&pools
->io_bs
, pool_size
))
3020 case DM_TYPE_REQUEST_BASED
:
3021 pool_size
= max(dm_get_reserved_rq_based_ios(), min_pool_size
);
3022 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
3023 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3029 ret
= bioset_init(&pools
->bs
, pool_size
, front_pad
, 0);
3033 if (integrity
&& bioset_integrity_create(&pools
->bs
, pool_size
))
3039 dm_free_md_mempools(pools
);
3044 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
3049 bioset_exit(&pools
->bs
);
3050 bioset_exit(&pools
->io_bs
);
3062 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
3065 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3066 struct dm_table
*table
;
3067 struct dm_target
*ti
;
3068 int ret
= -ENOTTY
, srcu_idx
;
3070 table
= dm_get_live_table(md
, &srcu_idx
);
3071 if (!table
|| !dm_table_get_size(table
))
3074 /* We only support devices that have a single target */
3075 if (dm_table_get_num_targets(table
) != 1)
3077 ti
= dm_table_get_target(table
, 0);
3080 if (!ti
->type
->iterate_devices
)
3083 ret
= ti
->type
->iterate_devices(ti
, fn
, data
);
3085 dm_put_live_table(md
, srcu_idx
);
3090 * For register / unregister we need to manually call out to every path.
3092 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
3093 sector_t start
, sector_t len
, void *data
)
3095 struct dm_pr
*pr
= data
;
3096 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3098 if (!ops
|| !ops
->pr_register
)
3100 return ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
3103 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3114 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3115 if (ret
&& new_key
) {
3116 /* unregister all paths if we failed to register any path */
3117 pr
.old_key
= new_key
;
3120 pr
.fail_early
= false;
3121 dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3127 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
3130 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3131 const struct pr_ops
*ops
;
3134 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3138 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3139 if (ops
&& ops
->pr_reserve
)
3140 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
3144 dm_unprepare_ioctl(md
, srcu_idx
);
3148 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
3150 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3151 const struct pr_ops
*ops
;
3154 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3158 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3159 if (ops
&& ops
->pr_release
)
3160 r
= ops
->pr_release(bdev
, key
, type
);
3164 dm_unprepare_ioctl(md
, srcu_idx
);
3168 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3169 enum pr_type type
, bool abort
)
3171 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3172 const struct pr_ops
*ops
;
3175 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3179 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3180 if (ops
&& ops
->pr_preempt
)
3181 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
3185 dm_unprepare_ioctl(md
, srcu_idx
);
3189 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
3191 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3192 const struct pr_ops
*ops
;
3195 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3199 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3200 if (ops
&& ops
->pr_clear
)
3201 r
= ops
->pr_clear(bdev
, key
);
3205 dm_unprepare_ioctl(md
, srcu_idx
);
3209 static const struct pr_ops dm_pr_ops
= {
3210 .pr_register
= dm_pr_register
,
3211 .pr_reserve
= dm_pr_reserve
,
3212 .pr_release
= dm_pr_release
,
3213 .pr_preempt
= dm_pr_preempt
,
3214 .pr_clear
= dm_pr_clear
,
3217 static const struct block_device_operations dm_blk_dops
= {
3218 .open
= dm_blk_open
,
3219 .release
= dm_blk_close
,
3220 .ioctl
= dm_blk_ioctl
,
3221 .getgeo
= dm_blk_getgeo
,
3222 .report_zones
= dm_blk_report_zones
,
3223 .pr_ops
= &dm_pr_ops
,
3224 .owner
= THIS_MODULE
3227 static const struct dax_operations dm_dax_ops
= {
3228 .direct_access
= dm_dax_direct_access
,
3229 .dax_supported
= dm_dax_supported
,
3230 .copy_from_iter
= dm_dax_copy_from_iter
,
3231 .copy_to_iter
= dm_dax_copy_to_iter
,
3232 .zero_page_range
= dm_dax_zero_page_range
,
3238 module_init(dm_init
);
3239 module_exit(dm_exit
);
3241 module_param(major
, uint
, 0);
3242 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3244 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3245 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3247 module_param(dm_numa_node
, int, S_IRUGO
| S_IWUSR
);
3248 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
3250 MODULE_DESCRIPTION(DM_NAME
" driver");
3251 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3252 MODULE_LICENSE("GPL");