1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
21 #include <trace/events/f2fs.h>
23 static struct kmem_cache
*ino_entry_slab
;
24 struct kmem_cache
*f2fs_inode_entry_slab
;
26 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
)
28 f2fs_build_fault_attr(sbi
, 0, 0);
29 set_ckpt_flags(sbi
, CP_ERROR_FLAG
);
31 f2fs_flush_merged_writes(sbi
);
35 * We guarantee no failure on the returned page.
37 struct page
*f2fs_grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
39 struct address_space
*mapping
= META_MAPPING(sbi
);
40 struct page
*page
= NULL
;
42 page
= f2fs_grab_cache_page(mapping
, index
, false);
47 f2fs_wait_on_page_writeback(page
, META
, true, true);
48 if (!PageUptodate(page
))
49 SetPageUptodate(page
);
53 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
56 struct address_space
*mapping
= META_MAPPING(sbi
);
58 struct f2fs_io_info fio
= {
62 .op_flags
= REQ_META
| REQ_PRIO
,
65 .encrypted_page
= NULL
,
70 if (unlikely(!is_meta
))
71 fio
.op_flags
&= ~REQ_META
;
73 page
= f2fs_grab_cache_page(mapping
, index
, false);
78 if (PageUptodate(page
))
83 err
= f2fs_submit_page_bio(&fio
);
85 f2fs_put_page(page
, 1);
90 if (unlikely(page
->mapping
!= mapping
)) {
91 f2fs_put_page(page
, 1);
95 if (unlikely(!PageUptodate(page
))) {
96 f2fs_put_page(page
, 1);
103 struct page
*f2fs_get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
105 return __get_meta_page(sbi
, index
, true);
108 struct page
*f2fs_get_meta_page_nofail(struct f2fs_sb_info
*sbi
, pgoff_t index
)
114 page
= __get_meta_page(sbi
, index
, true);
116 if (PTR_ERR(page
) == -EIO
&&
117 ++count
<= DEFAULT_RETRY_IO_COUNT
)
119 f2fs_stop_checkpoint(sbi
, false);
125 struct page
*f2fs_get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
127 return __get_meta_page(sbi
, index
, false);
130 static bool __is_bitmap_valid(struct f2fs_sb_info
*sbi
, block_t blkaddr
,
133 struct seg_entry
*se
;
134 unsigned int segno
, offset
;
137 if (type
!= DATA_GENERIC_ENHANCE
&& type
!= DATA_GENERIC_ENHANCE_READ
)
140 segno
= GET_SEGNO(sbi
, blkaddr
);
141 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
142 se
= get_seg_entry(sbi
, segno
);
144 exist
= f2fs_test_bit(offset
, se
->cur_valid_map
);
145 if (!exist
&& type
== DATA_GENERIC_ENHANCE
) {
146 f2fs_err(sbi
, "Inconsistent error blkaddr:%u, sit bitmap:%d",
148 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
154 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info
*sbi
,
155 block_t blkaddr
, int type
)
161 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
165 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
166 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
170 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
171 blkaddr
< __start_cp_addr(sbi
)))
175 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
176 blkaddr
< MAIN_BLKADDR(sbi
)))
180 case DATA_GENERIC_ENHANCE
:
181 case DATA_GENERIC_ENHANCE_READ
:
182 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
183 blkaddr
< MAIN_BLKADDR(sbi
))) {
184 f2fs_warn(sbi
, "access invalid blkaddr:%u",
186 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
190 return __is_bitmap_valid(sbi
, blkaddr
, type
);
194 if (unlikely(blkaddr
< SEG0_BLKADDR(sbi
) ||
195 blkaddr
>= MAIN_BLKADDR(sbi
)))
206 * Readahead CP/NAT/SIT/SSA/POR pages
208 int f2fs_ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
212 block_t blkno
= start
;
213 struct f2fs_io_info fio
= {
217 .op_flags
= sync
? (REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
218 .encrypted_page
= NULL
,
220 .is_por
= (type
== META_POR
),
222 struct blk_plug plug
;
224 if (unlikely(type
== META_POR
))
225 fio
.op_flags
&= ~REQ_META
;
227 blk_start_plug(&plug
);
228 for (; nrpages
-- > 0; blkno
++) {
230 if (!f2fs_is_valid_blkaddr(sbi
, blkno
, type
))
235 if (unlikely(blkno
>=
236 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
238 /* get nat block addr */
239 fio
.new_blkaddr
= current_nat_addr(sbi
,
240 blkno
* NAT_ENTRY_PER_BLOCK
);
243 /* get sit block addr */
244 fio
.new_blkaddr
= current_sit_addr(sbi
,
245 blkno
* SIT_ENTRY_PER_BLOCK
);
250 fio
.new_blkaddr
= blkno
;
256 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
257 fio
.new_blkaddr
, false);
260 if (PageUptodate(page
)) {
261 f2fs_put_page(page
, 1);
266 f2fs_submit_page_bio(&fio
);
267 f2fs_put_page(page
, 0);
270 blk_finish_plug(&plug
);
271 return blkno
- start
;
274 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
277 bool readahead
= false;
279 page
= find_get_page(META_MAPPING(sbi
), index
);
280 if (!page
|| !PageUptodate(page
))
282 f2fs_put_page(page
, 0);
285 f2fs_ra_meta_pages(sbi
, index
, BIO_MAX_PAGES
, META_POR
, true);
288 static int __f2fs_write_meta_page(struct page
*page
,
289 struct writeback_control
*wbc
,
290 enum iostat_type io_type
)
292 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
294 trace_f2fs_writepage(page
, META
);
296 if (unlikely(f2fs_cp_error(sbi
)))
298 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
300 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
303 f2fs_do_write_meta_page(sbi
, page
, io_type
);
304 dec_page_count(sbi
, F2FS_DIRTY_META
);
306 if (wbc
->for_reclaim
)
307 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, META
);
311 if (unlikely(f2fs_cp_error(sbi
)))
312 f2fs_submit_merged_write(sbi
, META
);
317 redirty_page_for_writepage(wbc
, page
);
318 return AOP_WRITEPAGE_ACTIVATE
;
321 static int f2fs_write_meta_page(struct page
*page
,
322 struct writeback_control
*wbc
)
324 return __f2fs_write_meta_page(page
, wbc
, FS_META_IO
);
327 static int f2fs_write_meta_pages(struct address_space
*mapping
,
328 struct writeback_control
*wbc
)
330 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
333 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
336 /* collect a number of dirty meta pages and write together */
337 if (wbc
->sync_mode
!= WB_SYNC_ALL
&&
338 get_pages(sbi
, F2FS_DIRTY_META
) <
339 nr_pages_to_skip(sbi
, META
))
342 /* if locked failed, cp will flush dirty pages instead */
343 if (!mutex_trylock(&sbi
->cp_mutex
))
346 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
347 diff
= nr_pages_to_write(sbi
, META
, wbc
);
348 written
= f2fs_sync_meta_pages(sbi
, META
, wbc
->nr_to_write
, FS_META_IO
);
349 mutex_unlock(&sbi
->cp_mutex
);
350 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
354 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
355 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
359 long f2fs_sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
360 long nr_to_write
, enum iostat_type io_type
)
362 struct address_space
*mapping
= META_MAPPING(sbi
);
363 pgoff_t index
= 0, prev
= ULONG_MAX
;
367 struct writeback_control wbc
= {
370 struct blk_plug plug
;
374 blk_start_plug(&plug
);
376 while ((nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
377 PAGECACHE_TAG_DIRTY
))) {
380 for (i
= 0; i
< nr_pages
; i
++) {
381 struct page
*page
= pvec
.pages
[i
];
383 if (prev
== ULONG_MAX
)
384 prev
= page
->index
- 1;
385 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
386 pagevec_release(&pvec
);
392 if (unlikely(page
->mapping
!= mapping
)) {
397 if (!PageDirty(page
)) {
398 /* someone wrote it for us */
399 goto continue_unlock
;
402 f2fs_wait_on_page_writeback(page
, META
, true, true);
404 if (!clear_page_dirty_for_io(page
))
405 goto continue_unlock
;
407 if (__f2fs_write_meta_page(page
, &wbc
, io_type
)) {
413 if (unlikely(nwritten
>= nr_to_write
))
416 pagevec_release(&pvec
);
421 f2fs_submit_merged_write(sbi
, type
);
423 blk_finish_plug(&plug
);
428 static int f2fs_set_meta_page_dirty(struct page
*page
)
430 trace_f2fs_set_page_dirty(page
, META
);
432 if (!PageUptodate(page
))
433 SetPageUptodate(page
);
434 if (!PageDirty(page
)) {
435 __set_page_dirty_nobuffers(page
);
436 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
437 f2fs_set_page_private(page
, 0);
438 f2fs_trace_pid(page
);
444 const struct address_space_operations f2fs_meta_aops
= {
445 .writepage
= f2fs_write_meta_page
,
446 .writepages
= f2fs_write_meta_pages
,
447 .set_page_dirty
= f2fs_set_meta_page_dirty
,
448 .invalidatepage
= f2fs_invalidate_page
,
449 .releasepage
= f2fs_release_page
,
450 #ifdef CONFIG_MIGRATION
451 .migratepage
= f2fs_migrate_page
,
455 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
,
456 unsigned int devidx
, int type
)
458 struct inode_management
*im
= &sbi
->im
[type
];
459 struct ino_entry
*e
, *tmp
;
461 tmp
= f2fs_kmem_cache_alloc(ino_entry_slab
, GFP_NOFS
);
463 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
465 spin_lock(&im
->ino_lock
);
466 e
= radix_tree_lookup(&im
->ino_root
, ino
);
469 if (unlikely(radix_tree_insert(&im
->ino_root
, ino
, e
)))
472 memset(e
, 0, sizeof(struct ino_entry
));
475 list_add_tail(&e
->list
, &im
->ino_list
);
476 if (type
!= ORPHAN_INO
)
480 if (type
== FLUSH_INO
)
481 f2fs_set_bit(devidx
, (char *)&e
->dirty_device
);
483 spin_unlock(&im
->ino_lock
);
484 radix_tree_preload_end();
487 kmem_cache_free(ino_entry_slab
, tmp
);
490 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
492 struct inode_management
*im
= &sbi
->im
[type
];
495 spin_lock(&im
->ino_lock
);
496 e
= radix_tree_lookup(&im
->ino_root
, ino
);
499 radix_tree_delete(&im
->ino_root
, ino
);
501 spin_unlock(&im
->ino_lock
);
502 kmem_cache_free(ino_entry_slab
, e
);
505 spin_unlock(&im
->ino_lock
);
508 void f2fs_add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
510 /* add new dirty ino entry into list */
511 __add_ino_entry(sbi
, ino
, 0, type
);
514 void f2fs_remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
516 /* remove dirty ino entry from list */
517 __remove_ino_entry(sbi
, ino
, type
);
520 /* mode should be APPEND_INO or UPDATE_INO */
521 bool f2fs_exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
523 struct inode_management
*im
= &sbi
->im
[mode
];
526 spin_lock(&im
->ino_lock
);
527 e
= radix_tree_lookup(&im
->ino_root
, ino
);
528 spin_unlock(&im
->ino_lock
);
529 return e
? true : false;
532 void f2fs_release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
534 struct ino_entry
*e
, *tmp
;
537 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
< MAX_INO_ENTRY
; i
++) {
538 struct inode_management
*im
= &sbi
->im
[i
];
540 spin_lock(&im
->ino_lock
);
541 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
543 radix_tree_delete(&im
->ino_root
, e
->ino
);
544 kmem_cache_free(ino_entry_slab
, e
);
547 spin_unlock(&im
->ino_lock
);
551 void f2fs_set_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
552 unsigned int devidx
, int type
)
554 __add_ino_entry(sbi
, ino
, devidx
, type
);
557 bool f2fs_is_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
558 unsigned int devidx
, int type
)
560 struct inode_management
*im
= &sbi
->im
[type
];
562 bool is_dirty
= false;
564 spin_lock(&im
->ino_lock
);
565 e
= radix_tree_lookup(&im
->ino_root
, ino
);
566 if (e
&& f2fs_test_bit(devidx
, (char *)&e
->dirty_device
))
568 spin_unlock(&im
->ino_lock
);
572 int f2fs_acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
574 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
577 spin_lock(&im
->ino_lock
);
579 if (time_to_inject(sbi
, FAULT_ORPHAN
)) {
580 spin_unlock(&im
->ino_lock
);
581 f2fs_show_injection_info(sbi
, FAULT_ORPHAN
);
585 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
589 spin_unlock(&im
->ino_lock
);
594 void f2fs_release_orphan_inode(struct f2fs_sb_info
*sbi
)
596 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
598 spin_lock(&im
->ino_lock
);
599 f2fs_bug_on(sbi
, im
->ino_num
== 0);
601 spin_unlock(&im
->ino_lock
);
604 void f2fs_add_orphan_inode(struct inode
*inode
)
606 /* add new orphan ino entry into list */
607 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, 0, ORPHAN_INO
);
608 f2fs_update_inode_page(inode
);
611 void f2fs_remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
613 /* remove orphan entry from orphan list */
614 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
617 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
623 inode
= f2fs_iget_retry(sbi
->sb
, ino
);
626 * there should be a bug that we can't find the entry
629 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
630 return PTR_ERR(inode
);
633 err
= dquot_initialize(inode
);
641 /* truncate all the data during iput */
644 err
= f2fs_get_node_info(sbi
, ino
, &ni
);
648 /* ENOMEM was fully retried in f2fs_evict_inode. */
649 if (ni
.blk_addr
!= NULL_ADDR
) {
656 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
657 f2fs_warn(sbi
, "%s: orphan failed (ino=%x), run fsck to fix.",
662 int f2fs_recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
664 block_t start_blk
, orphan_blocks
, i
, j
;
665 unsigned int s_flags
= sbi
->sb
->s_flags
;
671 if (!is_set_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
))
674 if (bdev_read_only(sbi
->sb
->s_bdev
)) {
675 f2fs_info(sbi
, "write access unavailable, skipping orphan cleanup");
679 if (s_flags
& SB_RDONLY
) {
680 f2fs_info(sbi
, "orphan cleanup on readonly fs");
681 sbi
->sb
->s_flags
&= ~SB_RDONLY
;
685 /* Needed for iput() to work correctly and not trash data */
686 sbi
->sb
->s_flags
|= SB_ACTIVE
;
689 * Turn on quotas which were not enabled for read-only mounts if
690 * filesystem has quota feature, so that they are updated correctly.
692 quota_enabled
= f2fs_enable_quota_files(sbi
, s_flags
& SB_RDONLY
);
695 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
696 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
698 f2fs_ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
700 for (i
= 0; i
< orphan_blocks
; i
++) {
702 struct f2fs_orphan_block
*orphan_blk
;
704 page
= f2fs_get_meta_page(sbi
, start_blk
+ i
);
710 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
711 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
712 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
713 err
= recover_orphan_inode(sbi
, ino
);
715 f2fs_put_page(page
, 1);
719 f2fs_put_page(page
, 1);
721 /* clear Orphan Flag */
722 clear_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
);
724 set_sbi_flag(sbi
, SBI_IS_RECOVERED
);
727 /* Turn quotas off */
729 f2fs_quota_off_umount(sbi
->sb
);
731 sbi
->sb
->s_flags
= s_flags
; /* Restore SB_RDONLY status */
736 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
738 struct list_head
*head
;
739 struct f2fs_orphan_block
*orphan_blk
= NULL
;
740 unsigned int nentries
= 0;
741 unsigned short index
= 1;
742 unsigned short orphan_blocks
;
743 struct page
*page
= NULL
;
744 struct ino_entry
*orphan
= NULL
;
745 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
747 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
750 * we don't need to do spin_lock(&im->ino_lock) here, since all the
751 * orphan inode operations are covered under f2fs_lock_op().
752 * And, spin_lock should be avoided due to page operations below.
754 head
= &im
->ino_list
;
756 /* loop for each orphan inode entry and write them in Jornal block */
757 list_for_each_entry(orphan
, head
, list
) {
759 page
= f2fs_grab_meta_page(sbi
, start_blk
++);
761 (struct f2fs_orphan_block
*)page_address(page
);
762 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
765 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
767 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
769 * an orphan block is full of 1020 entries,
770 * then we need to flush current orphan blocks
771 * and bring another one in memory
773 orphan_blk
->blk_addr
= cpu_to_le16(index
);
774 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
775 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
776 set_page_dirty(page
);
777 f2fs_put_page(page
, 1);
785 orphan_blk
->blk_addr
= cpu_to_le16(index
);
786 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
787 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
788 set_page_dirty(page
);
789 f2fs_put_page(page
, 1);
793 static __u32
f2fs_checkpoint_chksum(struct f2fs_sb_info
*sbi
,
794 struct f2fs_checkpoint
*ckpt
)
796 unsigned int chksum_ofs
= le32_to_cpu(ckpt
->checksum_offset
);
799 chksum
= f2fs_crc32(sbi
, ckpt
, chksum_ofs
);
800 if (chksum_ofs
< CP_CHKSUM_OFFSET
) {
801 chksum_ofs
+= sizeof(chksum
);
802 chksum
= f2fs_chksum(sbi
, chksum
, (__u8
*)ckpt
+ chksum_ofs
,
803 F2FS_BLKSIZE
- chksum_ofs
);
808 static int get_checkpoint_version(struct f2fs_sb_info
*sbi
, block_t cp_addr
,
809 struct f2fs_checkpoint
**cp_block
, struct page
**cp_page
,
810 unsigned long long *version
)
812 size_t crc_offset
= 0;
815 *cp_page
= f2fs_get_meta_page(sbi
, cp_addr
);
816 if (IS_ERR(*cp_page
))
817 return PTR_ERR(*cp_page
);
819 *cp_block
= (struct f2fs_checkpoint
*)page_address(*cp_page
);
821 crc_offset
= le32_to_cpu((*cp_block
)->checksum_offset
);
822 if (crc_offset
< CP_MIN_CHKSUM_OFFSET
||
823 crc_offset
> CP_CHKSUM_OFFSET
) {
824 f2fs_put_page(*cp_page
, 1);
825 f2fs_warn(sbi
, "invalid crc_offset: %zu", crc_offset
);
829 crc
= f2fs_checkpoint_chksum(sbi
, *cp_block
);
830 if (crc
!= cur_cp_crc(*cp_block
)) {
831 f2fs_put_page(*cp_page
, 1);
832 f2fs_warn(sbi
, "invalid crc value");
836 *version
= cur_cp_version(*cp_block
);
840 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
841 block_t cp_addr
, unsigned long long *version
)
843 struct page
*cp_page_1
= NULL
, *cp_page_2
= NULL
;
844 struct f2fs_checkpoint
*cp_block
= NULL
;
845 unsigned long long cur_version
= 0, pre_version
= 0;
848 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
849 &cp_page_1
, version
);
853 if (le32_to_cpu(cp_block
->cp_pack_total_block_count
) >
854 sbi
->blocks_per_seg
) {
855 f2fs_warn(sbi
, "invalid cp_pack_total_block_count:%u",
856 le32_to_cpu(cp_block
->cp_pack_total_block_count
));
859 pre_version
= *version
;
861 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
862 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
863 &cp_page_2
, version
);
866 cur_version
= *version
;
868 if (cur_version
== pre_version
) {
869 *version
= cur_version
;
870 f2fs_put_page(cp_page_2
, 1);
873 f2fs_put_page(cp_page_2
, 1);
875 f2fs_put_page(cp_page_1
, 1);
879 int f2fs_get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
881 struct f2fs_checkpoint
*cp_block
;
882 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
883 struct page
*cp1
, *cp2
, *cur_page
;
884 unsigned long blk_size
= sbi
->blocksize
;
885 unsigned long long cp1_version
= 0, cp2_version
= 0;
886 unsigned long long cp_start_blk_no
;
887 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
892 sbi
->ckpt
= f2fs_kvzalloc(sbi
, array_size(blk_size
, cp_blks
),
897 * Finding out valid cp block involves read both
898 * sets( cp pack 1 and cp pack 2)
900 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
901 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
903 /* The second checkpoint pack should start at the next segment */
904 cp_start_blk_no
+= ((unsigned long long)1) <<
905 le32_to_cpu(fsb
->log_blocks_per_seg
);
906 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
909 if (ver_after(cp2_version
, cp1_version
))
922 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
923 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
926 sbi
->cur_cp_pack
= 1;
928 sbi
->cur_cp_pack
= 2;
930 /* Sanity checking of checkpoint */
931 if (f2fs_sanity_check_ckpt(sbi
)) {
933 goto free_fail_no_cp
;
939 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
941 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
943 for (i
= 1; i
< cp_blks
; i
++) {
944 void *sit_bitmap_ptr
;
945 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
947 cur_page
= f2fs_get_meta_page(sbi
, cp_blk_no
+ i
);
948 if (IS_ERR(cur_page
)) {
949 err
= PTR_ERR(cur_page
);
950 goto free_fail_no_cp
;
952 sit_bitmap_ptr
= page_address(cur_page
);
953 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
954 f2fs_put_page(cur_page
, 1);
957 f2fs_put_page(cp1
, 1);
958 f2fs_put_page(cp2
, 1);
962 f2fs_put_page(cp1
, 1);
963 f2fs_put_page(cp2
, 1);
969 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
971 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
972 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
974 if (is_inode_flag_set(inode
, flag
))
977 set_inode_flag(inode
, flag
);
978 if (!f2fs_is_volatile_file(inode
))
979 list_add_tail(&F2FS_I(inode
)->dirty_list
,
980 &sbi
->inode_list
[type
]);
981 stat_inc_dirty_inode(sbi
, type
);
984 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
986 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
988 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
991 list_del_init(&F2FS_I(inode
)->dirty_list
);
992 clear_inode_flag(inode
, flag
);
993 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
996 void f2fs_update_dirty_page(struct inode
*inode
, struct page
*page
)
998 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
999 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
1001 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
1002 !S_ISLNK(inode
->i_mode
))
1005 spin_lock(&sbi
->inode_lock
[type
]);
1006 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
1007 __add_dirty_inode(inode
, type
);
1008 inode_inc_dirty_pages(inode
);
1009 spin_unlock(&sbi
->inode_lock
[type
]);
1011 f2fs_set_page_private(page
, 0);
1012 f2fs_trace_pid(page
);
1015 void f2fs_remove_dirty_inode(struct inode
*inode
)
1017 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1018 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
1020 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
1021 !S_ISLNK(inode
->i_mode
))
1024 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
1027 spin_lock(&sbi
->inode_lock
[type
]);
1028 __remove_dirty_inode(inode
, type
);
1029 spin_unlock(&sbi
->inode_lock
[type
]);
1032 int f2fs_sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
)
1034 struct list_head
*head
;
1035 struct inode
*inode
;
1036 struct f2fs_inode_info
*fi
;
1037 bool is_dir
= (type
== DIR_INODE
);
1038 unsigned long ino
= 0;
1040 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
1041 get_pages(sbi
, is_dir
?
1042 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1044 if (unlikely(f2fs_cp_error(sbi
)))
1047 spin_lock(&sbi
->inode_lock
[type
]);
1049 head
= &sbi
->inode_list
[type
];
1050 if (list_empty(head
)) {
1051 spin_unlock(&sbi
->inode_lock
[type
]);
1052 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
1053 get_pages(sbi
, is_dir
?
1054 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1057 fi
= list_first_entry(head
, struct f2fs_inode_info
, dirty_list
);
1058 inode
= igrab(&fi
->vfs_inode
);
1059 spin_unlock(&sbi
->inode_lock
[type
]);
1061 unsigned long cur_ino
= inode
->i_ino
;
1063 F2FS_I(inode
)->cp_task
= current
;
1065 filemap_fdatawrite(inode
->i_mapping
);
1067 F2FS_I(inode
)->cp_task
= NULL
;
1070 /* We need to give cpu to another writers. */
1077 * We should submit bio, since it exists several
1078 * wribacking dentry pages in the freeing inode.
1080 f2fs_submit_merged_write(sbi
, DATA
);
1086 int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
1088 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
1089 struct inode
*inode
;
1090 struct f2fs_inode_info
*fi
;
1091 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
1094 if (unlikely(f2fs_cp_error(sbi
)))
1097 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
1098 if (list_empty(head
)) {
1099 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1102 fi
= list_first_entry(head
, struct f2fs_inode_info
,
1104 inode
= igrab(&fi
->vfs_inode
);
1105 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1107 sync_inode_metadata(inode
, 0);
1109 /* it's on eviction */
1110 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
))
1111 f2fs_update_inode_page(inode
);
1118 static void __prepare_cp_block(struct f2fs_sb_info
*sbi
)
1120 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1121 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1122 nid_t last_nid
= nm_i
->next_scan_nid
;
1124 next_free_nid(sbi
, &last_nid
);
1125 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
1126 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
1127 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
1128 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
1131 static bool __need_flush_quota(struct f2fs_sb_info
*sbi
)
1135 if (!is_journalled_quota(sbi
))
1138 down_write(&sbi
->quota_sem
);
1139 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
)) {
1141 } else if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
)) {
1143 } else if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_FLUSH
)) {
1144 clear_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1146 } else if (get_pages(sbi
, F2FS_DIRTY_QDATA
)) {
1149 up_write(&sbi
->quota_sem
);
1154 * Freeze all the FS-operations for checkpoint.
1156 static int block_operations(struct f2fs_sb_info
*sbi
)
1158 struct writeback_control wbc
= {
1159 .sync_mode
= WB_SYNC_ALL
,
1160 .nr_to_write
= LONG_MAX
,
1163 struct blk_plug plug
;
1164 int err
= 0, cnt
= 0;
1166 blk_start_plug(&plug
);
1170 if (__need_flush_quota(sbi
)) {
1173 if (++cnt
> DEFAULT_RETRY_QUOTA_FLUSH_COUNT
) {
1174 set_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1175 set_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1176 goto retry_flush_dents
;
1178 f2fs_unlock_all(sbi
);
1180 /* only failed during mount/umount/freeze/quotactl */
1181 locked
= down_read_trylock(&sbi
->sb
->s_umount
);
1182 f2fs_quota_sync(sbi
->sb
, -1);
1184 up_read(&sbi
->sb
->s_umount
);
1186 goto retry_flush_quotas
;
1190 /* write all the dirty dentry pages */
1191 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
1192 f2fs_unlock_all(sbi
);
1193 err
= f2fs_sync_dirty_inodes(sbi
, DIR_INODE
);
1197 goto retry_flush_quotas
;
1201 * POR: we should ensure that there are no dirty node pages
1202 * until finishing nat/sit flush. inode->i_blocks can be updated.
1204 down_write(&sbi
->node_change
);
1206 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
1207 up_write(&sbi
->node_change
);
1208 f2fs_unlock_all(sbi
);
1209 err
= f2fs_sync_inode_meta(sbi
);
1213 goto retry_flush_quotas
;
1217 down_write(&sbi
->node_write
);
1219 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
1220 up_write(&sbi
->node_write
);
1221 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
1222 err
= f2fs_sync_node_pages(sbi
, &wbc
, false, FS_CP_NODE_IO
);
1223 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
1225 up_write(&sbi
->node_change
);
1226 f2fs_unlock_all(sbi
);
1230 goto retry_flush_nodes
;
1234 * sbi->node_change is used only for AIO write_begin path which produces
1235 * dirty node blocks and some checkpoint values by block allocation.
1237 __prepare_cp_block(sbi
);
1238 up_write(&sbi
->node_change
);
1240 blk_finish_plug(&plug
);
1244 static void unblock_operations(struct f2fs_sb_info
*sbi
)
1246 up_write(&sbi
->node_write
);
1247 f2fs_unlock_all(sbi
);
1250 void f2fs_wait_on_all_pages(struct f2fs_sb_info
*sbi
, int type
)
1255 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1257 if (!get_pages(sbi
, type
))
1260 if (unlikely(f2fs_cp_error(sbi
)))
1263 io_schedule_timeout(DEFAULT_IO_TIMEOUT
);
1265 finish_wait(&sbi
->cp_wait
, &wait
);
1268 static void update_ckpt_flags(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1270 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1271 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1272 unsigned long flags
;
1274 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1276 if ((cpc
->reason
& CP_UMOUNT
) &&
1277 le32_to_cpu(ckpt
->cp_pack_total_block_count
) >
1278 sbi
->blocks_per_seg
- NM_I(sbi
)->nat_bits_blocks
)
1279 disable_nat_bits(sbi
, false);
1281 if (cpc
->reason
& CP_TRIMMED
)
1282 __set_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1284 __clear_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1286 if (cpc
->reason
& CP_UMOUNT
)
1287 __set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1289 __clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1291 if (cpc
->reason
& CP_FASTBOOT
)
1292 __set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1294 __clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1297 __set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1299 __clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1301 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1302 __set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1304 if (is_sbi_flag_set(sbi
, SBI_IS_RESIZEFS
))
1305 __set_ckpt_flags(ckpt
, CP_RESIZEFS_FLAG
);
1307 __clear_ckpt_flags(ckpt
, CP_RESIZEFS_FLAG
);
1309 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))
1310 __set_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1312 __clear_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1314 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED_QUICK
))
1315 __set_ckpt_flags(ckpt
, CP_DISABLED_QUICK_FLAG
);
1317 __clear_ckpt_flags(ckpt
, CP_DISABLED_QUICK_FLAG
);
1319 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
))
1320 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1322 __clear_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1324 if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
))
1325 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1327 /* set this flag to activate crc|cp_ver for recovery */
1328 __set_ckpt_flags(ckpt
, CP_CRC_RECOVERY_FLAG
);
1329 __clear_ckpt_flags(ckpt
, CP_NOCRC_RECOVERY_FLAG
);
1331 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1334 static void commit_checkpoint(struct f2fs_sb_info
*sbi
,
1335 void *src
, block_t blk_addr
)
1337 struct writeback_control wbc
= {
1342 * pagevec_lookup_tag and lock_page again will take
1343 * some extra time. Therefore, f2fs_update_meta_pages and
1344 * f2fs_sync_meta_pages are combined in this function.
1346 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
1349 f2fs_wait_on_page_writeback(page
, META
, true, true);
1351 memcpy(page_address(page
), src
, PAGE_SIZE
);
1353 set_page_dirty(page
);
1354 if (unlikely(!clear_page_dirty_for_io(page
)))
1355 f2fs_bug_on(sbi
, 1);
1357 /* writeout cp pack 2 page */
1358 err
= __f2fs_write_meta_page(page
, &wbc
, FS_CP_META_IO
);
1359 if (unlikely(err
&& f2fs_cp_error(sbi
))) {
1360 f2fs_put_page(page
, 1);
1364 f2fs_bug_on(sbi
, err
);
1365 f2fs_put_page(page
, 0);
1367 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1368 f2fs_submit_merged_write(sbi
, META_FLUSH
);
1371 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1373 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1374 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1375 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
, flags
;
1377 unsigned int data_sum_blocks
, orphan_blocks
;
1380 int cp_payload_blks
= __cp_payload(sbi
);
1381 struct super_block
*sb
= sbi
->sb
;
1382 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1386 /* Flush all the NAT/SIT pages */
1387 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1389 /* start to update checkpoint, cp ver is already updated previously */
1390 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
, true));
1391 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1392 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1393 ckpt
->cur_node_segno
[i
] =
1394 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
1395 ckpt
->cur_node_blkoff
[i
] =
1396 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
1397 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
1398 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
1400 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1401 ckpt
->cur_data_segno
[i
] =
1402 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
1403 ckpt
->cur_data_blkoff
[i
] =
1404 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
1405 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
1406 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
1409 /* 2 cp + n data seg summary + orphan inode blocks */
1410 data_sum_blocks
= f2fs_npages_for_summary_flush(sbi
, false);
1411 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1412 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1413 __set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1415 __clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1416 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1418 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1419 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1422 if (__remain_node_summaries(cpc
->reason
))
1423 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1424 cp_payload_blks
+ data_sum_blocks
+
1425 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1427 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1428 cp_payload_blks
+ data_sum_blocks
+
1431 /* update ckpt flag for checkpoint */
1432 update_ckpt_flags(sbi
, cpc
);
1434 /* update SIT/NAT bitmap */
1435 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1436 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1438 crc32
= f2fs_checkpoint_chksum(sbi
, ckpt
);
1439 *((__le32
*)((unsigned char *)ckpt
+
1440 le32_to_cpu(ckpt
->checksum_offset
)))
1441 = cpu_to_le32(crc32
);
1443 start_blk
= __start_cp_next_addr(sbi
);
1445 /* write nat bits */
1446 if (enabled_nat_bits(sbi
, cpc
)) {
1447 __u64 cp_ver
= cur_cp_version(ckpt
);
1450 cp_ver
|= ((__u64
)crc32
<< 32);
1451 *(__le64
*)nm_i
->nat_bits
= cpu_to_le64(cp_ver
);
1453 blk
= start_blk
+ sbi
->blocks_per_seg
- nm_i
->nat_bits_blocks
;
1454 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++)
1455 f2fs_update_meta_page(sbi
, nm_i
->nat_bits
+
1456 (i
<< F2FS_BLKSIZE_BITS
), blk
+ i
);
1459 /* write out checkpoint buffer at block 0 */
1460 f2fs_update_meta_page(sbi
, ckpt
, start_blk
++);
1462 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1463 f2fs_update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1467 write_orphan_inodes(sbi
, start_blk
);
1468 start_blk
+= orphan_blocks
;
1471 f2fs_write_data_summaries(sbi
, start_blk
);
1472 start_blk
+= data_sum_blocks
;
1474 /* Record write statistics in the hot node summary */
1475 kbytes_written
= sbi
->kbytes_written
;
1476 if (sb
->s_bdev
->bd_part
)
1477 kbytes_written
+= BD_PART_WRITTEN(sbi
);
1479 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1481 if (__remain_node_summaries(cpc
->reason
)) {
1482 f2fs_write_node_summaries(sbi
, start_blk
);
1483 start_blk
+= NR_CURSEG_NODE_TYPE
;
1486 /* update user_block_counts */
1487 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1488 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1490 /* Here, we have one bio having CP pack except cp pack 2 page */
1491 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1492 /* Wait for all dirty meta pages to be submitted for IO */
1493 f2fs_wait_on_all_pages(sbi
, F2FS_DIRTY_META
);
1495 /* wait for previous submitted meta pages writeback */
1496 f2fs_wait_on_all_pages(sbi
, F2FS_WB_CP_DATA
);
1498 /* flush all device cache */
1499 err
= f2fs_flush_device_cache(sbi
);
1503 /* barrier and flush checkpoint cp pack 2 page if it can */
1504 commit_checkpoint(sbi
, ckpt
, start_blk
);
1505 f2fs_wait_on_all_pages(sbi
, F2FS_WB_CP_DATA
);
1508 * invalidate intermediate page cache borrowed from meta inode which are
1509 * used for migration of encrypted or verity inode's blocks.
1511 if (f2fs_sb_has_encrypt(sbi
) || f2fs_sb_has_verity(sbi
))
1512 invalidate_mapping_pages(META_MAPPING(sbi
),
1513 MAIN_BLKADDR(sbi
), MAX_BLKADDR(sbi
) - 1);
1515 f2fs_release_ino_entry(sbi
, false);
1517 f2fs_reset_fsync_node_info(sbi
);
1519 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1520 clear_sbi_flag(sbi
, SBI_NEED_CP
);
1521 clear_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1523 spin_lock(&sbi
->stat_lock
);
1524 sbi
->unusable_block_count
= 0;
1525 spin_unlock(&sbi
->stat_lock
);
1527 __set_cp_next_pack(sbi
);
1530 * redirty superblock if metadata like node page or inode cache is
1531 * updated during writing checkpoint.
1533 if (get_pages(sbi
, F2FS_DIRTY_NODES
) ||
1534 get_pages(sbi
, F2FS_DIRTY_IMETA
))
1535 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1537 f2fs_bug_on(sbi
, get_pages(sbi
, F2FS_DIRTY_DENTS
));
1539 return unlikely(f2fs_cp_error(sbi
)) ? -EIO
: 0;
1542 int f2fs_write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1544 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1545 unsigned long long ckpt_ver
;
1548 if (f2fs_readonly(sbi
->sb
) || f2fs_hw_is_readonly(sbi
))
1551 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
1552 if (cpc
->reason
!= CP_PAUSE
)
1554 f2fs_warn(sbi
, "Start checkpoint disabled!");
1556 mutex_lock(&sbi
->cp_mutex
);
1558 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1559 ((cpc
->reason
& CP_FASTBOOT
) || (cpc
->reason
& CP_SYNC
) ||
1560 ((cpc
->reason
& CP_DISCARD
) && !sbi
->discard_blks
)))
1562 if (unlikely(f2fs_cp_error(sbi
))) {
1567 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1569 err
= block_operations(sbi
);
1573 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1575 f2fs_flush_merged_writes(sbi
);
1577 /* this is the case of multiple fstrims without any changes */
1578 if (cpc
->reason
& CP_DISCARD
) {
1579 if (!f2fs_exist_trim_candidates(sbi
, cpc
)) {
1580 unblock_operations(sbi
);
1584 if (NM_I(sbi
)->dirty_nat_cnt
== 0 &&
1585 SIT_I(sbi
)->dirty_sentries
== 0 &&
1586 prefree_segments(sbi
) == 0) {
1587 f2fs_flush_sit_entries(sbi
, cpc
);
1588 f2fs_clear_prefree_segments(sbi
, cpc
);
1589 unblock_operations(sbi
);
1595 * update checkpoint pack index
1596 * Increase the version number so that
1597 * SIT entries and seg summaries are written at correct place
1599 ckpt_ver
= cur_cp_version(ckpt
);
1600 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1602 /* write cached NAT/SIT entries to NAT/SIT area */
1603 err
= f2fs_flush_nat_entries(sbi
, cpc
);
1607 f2fs_flush_sit_entries(sbi
, cpc
);
1609 err
= do_checkpoint(sbi
, cpc
);
1611 f2fs_release_discard_addrs(sbi
);
1613 f2fs_clear_prefree_segments(sbi
, cpc
);
1615 unblock_operations(sbi
);
1616 stat_inc_cp_count(sbi
->stat_info
);
1618 if (cpc
->reason
& CP_RECOVERY
)
1619 f2fs_notice(sbi
, "checkpoint: version = %llx", ckpt_ver
);
1621 /* update CP_TIME to trigger checkpoint periodically */
1622 f2fs_update_time(sbi
, CP_TIME
);
1623 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1625 mutex_unlock(&sbi
->cp_mutex
);
1629 void f2fs_init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1633 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1634 struct inode_management
*im
= &sbi
->im
[i
];
1636 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1637 spin_lock_init(&im
->ino_lock
);
1638 INIT_LIST_HEAD(&im
->ino_list
);
1642 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1643 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1644 F2FS_ORPHANS_PER_BLOCK
;
1647 int __init
f2fs_create_checkpoint_caches(void)
1649 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1650 sizeof(struct ino_entry
));
1651 if (!ino_entry_slab
)
1653 f2fs_inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1654 sizeof(struct inode_entry
));
1655 if (!f2fs_inode_entry_slab
) {
1656 kmem_cache_destroy(ino_entry_slab
);
1662 void f2fs_destroy_checkpoint_caches(void)
1664 kmem_cache_destroy(ino_entry_slab
);
1665 kmem_cache_destroy(f2fs_inode_entry_slab
);