1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
27 #include <trace/events/f2fs.h>
29 #define NUM_PREALLOC_POST_READ_CTXS 128
31 static struct kmem_cache
*bio_post_read_ctx_cache
;
32 static struct kmem_cache
*bio_entry_slab
;
33 static mempool_t
*bio_post_read_ctx_pool
;
34 static struct bio_set f2fs_bioset
;
36 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
38 int __init
f2fs_init_bioset(void)
40 if (bioset_init(&f2fs_bioset
, F2FS_BIO_POOL_SIZE
,
41 0, BIOSET_NEED_BVECS
))
46 void f2fs_destroy_bioset(void)
48 bioset_exit(&f2fs_bioset
);
51 static inline struct bio
*__f2fs_bio_alloc(gfp_t gfp_mask
,
52 unsigned int nr_iovecs
)
54 return bio_alloc_bioset(gfp_mask
, nr_iovecs
, &f2fs_bioset
);
57 struct bio
*f2fs_bio_alloc(struct f2fs_sb_info
*sbi
, int npages
, bool noio
)
60 /* No failure on bio allocation */
61 return __f2fs_bio_alloc(GFP_NOIO
, npages
);
64 if (time_to_inject(sbi
, FAULT_ALLOC_BIO
)) {
65 f2fs_show_injection_info(sbi
, FAULT_ALLOC_BIO
);
69 return __f2fs_bio_alloc(GFP_KERNEL
, npages
);
72 static bool __is_cp_guaranteed(struct page
*page
)
74 struct address_space
*mapping
= page
->mapping
;
76 struct f2fs_sb_info
*sbi
;
81 if (f2fs_is_compressed_page(page
))
84 inode
= mapping
->host
;
85 sbi
= F2FS_I_SB(inode
);
87 if (inode
->i_ino
== F2FS_META_INO(sbi
) ||
88 inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
89 S_ISDIR(inode
->i_mode
) ||
90 (S_ISREG(inode
->i_mode
) &&
91 (f2fs_is_atomic_file(inode
) || IS_NOQUOTA(inode
))) ||
97 static enum count_type
__read_io_type(struct page
*page
)
99 struct address_space
*mapping
= page_file_mapping(page
);
102 struct inode
*inode
= mapping
->host
;
103 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
105 if (inode
->i_ino
== F2FS_META_INO(sbi
))
108 if (inode
->i_ino
== F2FS_NODE_INO(sbi
))
114 /* postprocessing steps for read bios */
115 enum bio_post_read_step
{
121 struct bio_post_read_ctx
{
123 struct f2fs_sb_info
*sbi
;
124 struct work_struct work
;
125 unsigned int enabled_steps
;
128 static void __read_end_io(struct bio
*bio
, bool compr
, bool verity
)
132 struct bvec_iter_all iter_all
;
134 bio_for_each_segment_all(bv
, bio
, iter_all
) {
137 #ifdef CONFIG_F2FS_FS_COMPRESSION
138 if (compr
&& f2fs_is_compressed_page(page
)) {
139 f2fs_decompress_pages(bio
, page
, verity
);
146 /* PG_error was set if any post_read step failed */
147 if (bio
->bi_status
|| PageError(page
)) {
148 ClearPageUptodate(page
);
149 /* will re-read again later */
150 ClearPageError(page
);
152 SetPageUptodate(page
);
154 dec_page_count(F2FS_P_SB(page
), __read_io_type(page
));
159 static void f2fs_release_read_bio(struct bio
*bio
);
160 static void __f2fs_read_end_io(struct bio
*bio
, bool compr
, bool verity
)
163 __read_end_io(bio
, false, verity
);
164 f2fs_release_read_bio(bio
);
167 static void f2fs_decompress_bio(struct bio
*bio
, bool verity
)
169 __read_end_io(bio
, true, verity
);
172 static void bio_post_read_processing(struct bio_post_read_ctx
*ctx
);
174 static void f2fs_decrypt_work(struct bio_post_read_ctx
*ctx
)
176 fscrypt_decrypt_bio(ctx
->bio
);
179 static void f2fs_decompress_work(struct bio_post_read_ctx
*ctx
)
181 f2fs_decompress_bio(ctx
->bio
, ctx
->enabled_steps
& (1 << STEP_VERITY
));
184 #ifdef CONFIG_F2FS_FS_COMPRESSION
185 static void f2fs_verify_pages(struct page
**rpages
, unsigned int cluster_size
)
187 f2fs_decompress_end_io(rpages
, cluster_size
, false, true);
190 static void f2fs_verify_bio(struct bio
*bio
)
193 struct bvec_iter_all iter_all
;
195 bio_for_each_segment_all(bv
, bio
, iter_all
) {
196 struct page
*page
= bv
->bv_page
;
197 struct decompress_io_ctx
*dic
;
199 dic
= (struct decompress_io_ctx
*)page_private(page
);
202 if (refcount_dec_not_one(&dic
->ref
))
204 f2fs_verify_pages(dic
->rpages
,
210 if (bio
->bi_status
|| PageError(page
))
213 if (fsverity_verify_page(page
)) {
214 SetPageUptodate(page
);
218 ClearPageUptodate(page
);
219 ClearPageError(page
);
221 dec_page_count(F2FS_P_SB(page
), __read_io_type(page
));
227 static void f2fs_verity_work(struct work_struct
*work
)
229 struct bio_post_read_ctx
*ctx
=
230 container_of(work
, struct bio_post_read_ctx
, work
);
231 struct bio
*bio
= ctx
->bio
;
232 #ifdef CONFIG_F2FS_FS_COMPRESSION
233 unsigned int enabled_steps
= ctx
->enabled_steps
;
237 * fsverity_verify_bio() may call readpages() again, and while verity
238 * will be disabled for this, decryption may still be needed, resulting
239 * in another bio_post_read_ctx being allocated. So to prevent
240 * deadlocks we need to release the current ctx to the mempool first.
241 * This assumes that verity is the last post-read step.
243 mempool_free(ctx
, bio_post_read_ctx_pool
);
244 bio
->bi_private
= NULL
;
246 #ifdef CONFIG_F2FS_FS_COMPRESSION
247 /* previous step is decompression */
248 if (enabled_steps
& (1 << STEP_DECOMPRESS
)) {
249 f2fs_verify_bio(bio
);
250 f2fs_release_read_bio(bio
);
255 fsverity_verify_bio(bio
);
256 __f2fs_read_end_io(bio
, false, false);
259 static void f2fs_post_read_work(struct work_struct
*work
)
261 struct bio_post_read_ctx
*ctx
=
262 container_of(work
, struct bio_post_read_ctx
, work
);
264 if (ctx
->enabled_steps
& (1 << STEP_DECRYPT
))
265 f2fs_decrypt_work(ctx
);
267 if (ctx
->enabled_steps
& (1 << STEP_DECOMPRESS
))
268 f2fs_decompress_work(ctx
);
270 if (ctx
->enabled_steps
& (1 << STEP_VERITY
)) {
271 INIT_WORK(&ctx
->work
, f2fs_verity_work
);
272 fsverity_enqueue_verify_work(&ctx
->work
);
276 __f2fs_read_end_io(ctx
->bio
,
277 ctx
->enabled_steps
& (1 << STEP_DECOMPRESS
), false);
280 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info
*sbi
,
281 struct work_struct
*work
)
283 queue_work(sbi
->post_read_wq
, work
);
286 static void bio_post_read_processing(struct bio_post_read_ctx
*ctx
)
289 * We use different work queues for decryption and for verity because
290 * verity may require reading metadata pages that need decryption, and
291 * we shouldn't recurse to the same workqueue.
294 if (ctx
->enabled_steps
& (1 << STEP_DECRYPT
) ||
295 ctx
->enabled_steps
& (1 << STEP_DECOMPRESS
)) {
296 INIT_WORK(&ctx
->work
, f2fs_post_read_work
);
297 f2fs_enqueue_post_read_work(ctx
->sbi
, &ctx
->work
);
301 if (ctx
->enabled_steps
& (1 << STEP_VERITY
)) {
302 INIT_WORK(&ctx
->work
, f2fs_verity_work
);
303 fsverity_enqueue_verify_work(&ctx
->work
);
307 __f2fs_read_end_io(ctx
->bio
, false, false);
310 static bool f2fs_bio_post_read_required(struct bio
*bio
)
312 return bio
->bi_private
;
315 static void f2fs_read_end_io(struct bio
*bio
)
317 struct f2fs_sb_info
*sbi
= F2FS_P_SB(bio_first_page_all(bio
));
319 if (time_to_inject(sbi
, FAULT_READ_IO
)) {
320 f2fs_show_injection_info(sbi
, FAULT_READ_IO
);
321 bio
->bi_status
= BLK_STS_IOERR
;
324 if (f2fs_bio_post_read_required(bio
)) {
325 struct bio_post_read_ctx
*ctx
= bio
->bi_private
;
327 bio_post_read_processing(ctx
);
331 __f2fs_read_end_io(bio
, false, false);
334 static void f2fs_write_end_io(struct bio
*bio
)
336 struct f2fs_sb_info
*sbi
= bio
->bi_private
;
337 struct bio_vec
*bvec
;
338 struct bvec_iter_all iter_all
;
340 if (time_to_inject(sbi
, FAULT_WRITE_IO
)) {
341 f2fs_show_injection_info(sbi
, FAULT_WRITE_IO
);
342 bio
->bi_status
= BLK_STS_IOERR
;
345 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
346 struct page
*page
= bvec
->bv_page
;
347 enum count_type type
= WB_DATA_TYPE(page
);
349 if (IS_DUMMY_WRITTEN_PAGE(page
)) {
350 set_page_private(page
, (unsigned long)NULL
);
351 ClearPagePrivate(page
);
353 mempool_free(page
, sbi
->write_io_dummy
);
355 if (unlikely(bio
->bi_status
))
356 f2fs_stop_checkpoint(sbi
, true);
360 fscrypt_finalize_bounce_page(&page
);
362 #ifdef CONFIG_F2FS_FS_COMPRESSION
363 if (f2fs_is_compressed_page(page
)) {
364 f2fs_compress_write_end_io(bio
, page
);
369 if (unlikely(bio
->bi_status
)) {
370 mapping_set_error(page
->mapping
, -EIO
);
371 if (type
== F2FS_WB_CP_DATA
)
372 f2fs_stop_checkpoint(sbi
, true);
375 f2fs_bug_on(sbi
, page
->mapping
== NODE_MAPPING(sbi
) &&
376 page
->index
!= nid_of_node(page
));
378 dec_page_count(sbi
, type
);
379 if (f2fs_in_warm_node_list(sbi
, page
))
380 f2fs_del_fsync_node_entry(sbi
, page
);
381 clear_cold_data(page
);
382 end_page_writeback(page
);
384 if (!get_pages(sbi
, F2FS_WB_CP_DATA
) &&
385 wq_has_sleeper(&sbi
->cp_wait
))
386 wake_up(&sbi
->cp_wait
);
391 struct block_device
*f2fs_target_device(struct f2fs_sb_info
*sbi
,
392 block_t blk_addr
, struct bio
*bio
)
394 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
397 if (f2fs_is_multi_device(sbi
)) {
398 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
399 if (FDEV(i
).start_blk
<= blk_addr
&&
400 FDEV(i
).end_blk
>= blk_addr
) {
401 blk_addr
-= FDEV(i
).start_blk
;
408 bio_set_dev(bio
, bdev
);
409 bio
->bi_iter
.bi_sector
= SECTOR_FROM_BLOCK(blk_addr
);
414 int f2fs_target_device_index(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
418 if (!f2fs_is_multi_device(sbi
))
421 for (i
= 0; i
< sbi
->s_ndevs
; i
++)
422 if (FDEV(i
).start_blk
<= blkaddr
&& FDEV(i
).end_blk
>= blkaddr
)
428 * Return true, if pre_bio's bdev is same as its target device.
430 static bool __same_bdev(struct f2fs_sb_info
*sbi
,
431 block_t blk_addr
, struct bio
*bio
)
433 struct block_device
*b
= f2fs_target_device(sbi
, blk_addr
, NULL
);
434 return bio
->bi_disk
== b
->bd_disk
&& bio
->bi_partno
== b
->bd_partno
;
437 static struct bio
*__bio_alloc(struct f2fs_io_info
*fio
, int npages
)
439 struct f2fs_sb_info
*sbi
= fio
->sbi
;
442 bio
= f2fs_bio_alloc(sbi
, npages
, true);
444 f2fs_target_device(sbi
, fio
->new_blkaddr
, bio
);
445 if (is_read_io(fio
->op
)) {
446 bio
->bi_end_io
= f2fs_read_end_io
;
447 bio
->bi_private
= NULL
;
449 bio
->bi_end_io
= f2fs_write_end_io
;
450 bio
->bi_private
= sbi
;
451 bio
->bi_write_hint
= f2fs_io_type_to_rw_hint(sbi
,
452 fio
->type
, fio
->temp
);
455 wbc_init_bio(fio
->io_wbc
, bio
);
460 static inline void __submit_bio(struct f2fs_sb_info
*sbi
,
461 struct bio
*bio
, enum page_type type
)
463 if (!is_read_io(bio_op(bio
))) {
466 if (type
!= DATA
&& type
!= NODE
)
469 if (f2fs_lfs_mode(sbi
) && current
->plug
)
470 blk_finish_plug(current
->plug
);
472 if (F2FS_IO_ALIGNED(sbi
))
475 start
= bio
->bi_iter
.bi_size
>> F2FS_BLKSIZE_BITS
;
476 start
%= F2FS_IO_SIZE(sbi
);
481 /* fill dummy pages */
482 for (; start
< F2FS_IO_SIZE(sbi
); start
++) {
484 mempool_alloc(sbi
->write_io_dummy
,
485 GFP_NOIO
| __GFP_NOFAIL
);
486 f2fs_bug_on(sbi
, !page
);
488 zero_user_segment(page
, 0, PAGE_SIZE
);
489 SetPagePrivate(page
);
490 set_page_private(page
, (unsigned long)DUMMY_WRITTEN_PAGE
);
492 if (bio_add_page(bio
, page
, PAGE_SIZE
, 0) < PAGE_SIZE
)
496 * In the NODE case, we lose next block address chain. So, we
497 * need to do checkpoint in f2fs_sync_file.
500 set_sbi_flag(sbi
, SBI_NEED_CP
);
503 if (is_read_io(bio_op(bio
)))
504 trace_f2fs_submit_read_bio(sbi
->sb
, type
, bio
);
506 trace_f2fs_submit_write_bio(sbi
->sb
, type
, bio
);
510 void f2fs_submit_bio(struct f2fs_sb_info
*sbi
,
511 struct bio
*bio
, enum page_type type
)
513 __submit_bio(sbi
, bio
, type
);
516 static void __submit_merged_bio(struct f2fs_bio_info
*io
)
518 struct f2fs_io_info
*fio
= &io
->fio
;
523 bio_set_op_attrs(io
->bio
, fio
->op
, fio
->op_flags
);
525 if (is_read_io(fio
->op
))
526 trace_f2fs_prepare_read_bio(io
->sbi
->sb
, fio
->type
, io
->bio
);
528 trace_f2fs_prepare_write_bio(io
->sbi
->sb
, fio
->type
, io
->bio
);
530 __submit_bio(io
->sbi
, io
->bio
, fio
->type
);
534 static bool __has_merged_page(struct bio
*bio
, struct inode
*inode
,
535 struct page
*page
, nid_t ino
)
537 struct bio_vec
*bvec
;
538 struct bvec_iter_all iter_all
;
543 if (!inode
&& !page
&& !ino
)
546 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
547 struct page
*target
= bvec
->bv_page
;
549 if (fscrypt_is_bounce_page(target
)) {
550 target
= fscrypt_pagecache_page(target
);
554 if (f2fs_is_compressed_page(target
)) {
555 target
= f2fs_compress_control_page(target
);
560 if (inode
&& inode
== target
->mapping
->host
)
562 if (page
&& page
== target
)
564 if (ino
&& ino
== ino_of_node(target
))
571 static void __f2fs_submit_merged_write(struct f2fs_sb_info
*sbi
,
572 enum page_type type
, enum temp_type temp
)
574 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
575 struct f2fs_bio_info
*io
= sbi
->write_io
[btype
] + temp
;
577 down_write(&io
->io_rwsem
);
579 /* change META to META_FLUSH in the checkpoint procedure */
580 if (type
>= META_FLUSH
) {
581 io
->fio
.type
= META_FLUSH
;
582 io
->fio
.op
= REQ_OP_WRITE
;
583 io
->fio
.op_flags
= REQ_META
| REQ_PRIO
| REQ_SYNC
;
584 if (!test_opt(sbi
, NOBARRIER
))
585 io
->fio
.op_flags
|= REQ_PREFLUSH
| REQ_FUA
;
587 __submit_merged_bio(io
);
588 up_write(&io
->io_rwsem
);
591 static void __submit_merged_write_cond(struct f2fs_sb_info
*sbi
,
592 struct inode
*inode
, struct page
*page
,
593 nid_t ino
, enum page_type type
, bool force
)
598 for (temp
= HOT
; temp
< NR_TEMP_TYPE
; temp
++) {
600 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
601 struct f2fs_bio_info
*io
= sbi
->write_io
[btype
] + temp
;
603 down_read(&io
->io_rwsem
);
604 ret
= __has_merged_page(io
->bio
, inode
, page
, ino
);
605 up_read(&io
->io_rwsem
);
608 __f2fs_submit_merged_write(sbi
, type
, temp
);
610 /* TODO: use HOT temp only for meta pages now. */
616 void f2fs_submit_merged_write(struct f2fs_sb_info
*sbi
, enum page_type type
)
618 __submit_merged_write_cond(sbi
, NULL
, NULL
, 0, type
, true);
621 void f2fs_submit_merged_write_cond(struct f2fs_sb_info
*sbi
,
622 struct inode
*inode
, struct page
*page
,
623 nid_t ino
, enum page_type type
)
625 __submit_merged_write_cond(sbi
, inode
, page
, ino
, type
, false);
628 void f2fs_flush_merged_writes(struct f2fs_sb_info
*sbi
)
630 f2fs_submit_merged_write(sbi
, DATA
);
631 f2fs_submit_merged_write(sbi
, NODE
);
632 f2fs_submit_merged_write(sbi
, META
);
636 * Fill the locked page with data located in the block address.
637 * A caller needs to unlock the page on failure.
639 int f2fs_submit_page_bio(struct f2fs_io_info
*fio
)
642 struct page
*page
= fio
->encrypted_page
?
643 fio
->encrypted_page
: fio
->page
;
645 if (!f2fs_is_valid_blkaddr(fio
->sbi
, fio
->new_blkaddr
,
646 fio
->is_por
? META_POR
: (__is_meta_io(fio
) ?
647 META_GENERIC
: DATA_GENERIC_ENHANCE
)))
648 return -EFSCORRUPTED
;
650 trace_f2fs_submit_page_bio(page
, fio
);
651 f2fs_trace_ios(fio
, 0);
653 /* Allocate a new bio */
654 bio
= __bio_alloc(fio
, 1);
656 if (bio_add_page(bio
, page
, PAGE_SIZE
, 0) < PAGE_SIZE
) {
661 if (fio
->io_wbc
&& !is_read_io(fio
->op
))
662 wbc_account_cgroup_owner(fio
->io_wbc
, page
, PAGE_SIZE
);
664 bio_set_op_attrs(bio
, fio
->op
, fio
->op_flags
);
666 inc_page_count(fio
->sbi
, is_read_io(fio
->op
) ?
667 __read_io_type(page
): WB_DATA_TYPE(fio
->page
));
669 __submit_bio(fio
->sbi
, bio
, fio
->type
);
673 static bool page_is_mergeable(struct f2fs_sb_info
*sbi
, struct bio
*bio
,
674 block_t last_blkaddr
, block_t cur_blkaddr
)
676 if (last_blkaddr
+ 1 != cur_blkaddr
)
678 return __same_bdev(sbi
, cur_blkaddr
, bio
);
681 static bool io_type_is_mergeable(struct f2fs_bio_info
*io
,
682 struct f2fs_io_info
*fio
)
684 if (io
->fio
.op
!= fio
->op
)
686 return io
->fio
.op_flags
== fio
->op_flags
;
689 static bool io_is_mergeable(struct f2fs_sb_info
*sbi
, struct bio
*bio
,
690 struct f2fs_bio_info
*io
,
691 struct f2fs_io_info
*fio
,
692 block_t last_blkaddr
,
695 if (F2FS_IO_ALIGNED(sbi
) && (fio
->type
== DATA
|| fio
->type
== NODE
)) {
696 unsigned int filled_blocks
=
697 F2FS_BYTES_TO_BLK(bio
->bi_iter
.bi_size
);
698 unsigned int io_size
= F2FS_IO_SIZE(sbi
);
699 unsigned int left_vecs
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
701 /* IOs in bio is aligned and left space of vectors is not enough */
702 if (!(filled_blocks
% io_size
) && left_vecs
< io_size
)
705 if (!page_is_mergeable(sbi
, bio
, last_blkaddr
, cur_blkaddr
))
707 return io_type_is_mergeable(io
, fio
);
710 static void add_bio_entry(struct f2fs_sb_info
*sbi
, struct bio
*bio
,
711 struct page
*page
, enum temp_type temp
)
713 struct f2fs_bio_info
*io
= sbi
->write_io
[DATA
] + temp
;
714 struct bio_entry
*be
;
716 be
= f2fs_kmem_cache_alloc(bio_entry_slab
, GFP_NOFS
);
720 if (bio_add_page(bio
, page
, PAGE_SIZE
, 0) != PAGE_SIZE
)
723 down_write(&io
->bio_list_lock
);
724 list_add_tail(&be
->list
, &io
->bio_list
);
725 up_write(&io
->bio_list_lock
);
728 static void del_bio_entry(struct bio_entry
*be
)
731 kmem_cache_free(bio_entry_slab
, be
);
734 static int add_ipu_page(struct f2fs_sb_info
*sbi
, struct bio
**bio
,
741 for (temp
= HOT
; temp
< NR_TEMP_TYPE
&& !found
; temp
++) {
742 struct f2fs_bio_info
*io
= sbi
->write_io
[DATA
] + temp
;
743 struct list_head
*head
= &io
->bio_list
;
744 struct bio_entry
*be
;
746 down_write(&io
->bio_list_lock
);
747 list_for_each_entry(be
, head
, list
) {
753 if (bio_add_page(*bio
, page
, PAGE_SIZE
, 0) ==
761 __submit_bio(sbi
, *bio
, DATA
);
764 up_write(&io
->bio_list_lock
);
775 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info
*sbi
,
776 struct bio
**bio
, struct page
*page
)
780 struct bio
*target
= bio
? *bio
: NULL
;
782 for (temp
= HOT
; temp
< NR_TEMP_TYPE
&& !found
; temp
++) {
783 struct f2fs_bio_info
*io
= sbi
->write_io
[DATA
] + temp
;
784 struct list_head
*head
= &io
->bio_list
;
785 struct bio_entry
*be
;
787 if (list_empty(head
))
790 down_read(&io
->bio_list_lock
);
791 list_for_each_entry(be
, head
, list
) {
793 found
= (target
== be
->bio
);
795 found
= __has_merged_page(be
->bio
, NULL
,
800 up_read(&io
->bio_list_lock
);
807 down_write(&io
->bio_list_lock
);
808 list_for_each_entry(be
, head
, list
) {
810 found
= (target
== be
->bio
);
812 found
= __has_merged_page(be
->bio
, NULL
,
820 up_write(&io
->bio_list_lock
);
824 __submit_bio(sbi
, target
, DATA
);
831 int f2fs_merge_page_bio(struct f2fs_io_info
*fio
)
833 struct bio
*bio
= *fio
->bio
;
834 struct page
*page
= fio
->encrypted_page
?
835 fio
->encrypted_page
: fio
->page
;
837 if (!f2fs_is_valid_blkaddr(fio
->sbi
, fio
->new_blkaddr
,
838 __is_meta_io(fio
) ? META_GENERIC
: DATA_GENERIC
))
839 return -EFSCORRUPTED
;
841 trace_f2fs_submit_page_bio(page
, fio
);
842 f2fs_trace_ios(fio
, 0);
844 if (bio
&& !page_is_mergeable(fio
->sbi
, bio
, *fio
->last_block
,
846 f2fs_submit_merged_ipu_write(fio
->sbi
, &bio
, NULL
);
849 bio
= __bio_alloc(fio
, BIO_MAX_PAGES
);
850 bio_set_op_attrs(bio
, fio
->op
, fio
->op_flags
);
852 add_bio_entry(fio
->sbi
, bio
, page
, fio
->temp
);
854 if (add_ipu_page(fio
->sbi
, &bio
, page
))
859 wbc_account_cgroup_owner(fio
->io_wbc
, page
, PAGE_SIZE
);
861 inc_page_count(fio
->sbi
, WB_DATA_TYPE(page
));
863 *fio
->last_block
= fio
->new_blkaddr
;
869 void f2fs_submit_page_write(struct f2fs_io_info
*fio
)
871 struct f2fs_sb_info
*sbi
= fio
->sbi
;
872 enum page_type btype
= PAGE_TYPE_OF_BIO(fio
->type
);
873 struct f2fs_bio_info
*io
= sbi
->write_io
[btype
] + fio
->temp
;
874 struct page
*bio_page
;
876 f2fs_bug_on(sbi
, is_read_io(fio
->op
));
878 down_write(&io
->io_rwsem
);
881 spin_lock(&io
->io_lock
);
882 if (list_empty(&io
->io_list
)) {
883 spin_unlock(&io
->io_lock
);
886 fio
= list_first_entry(&io
->io_list
,
887 struct f2fs_io_info
, list
);
888 list_del(&fio
->list
);
889 spin_unlock(&io
->io_lock
);
892 verify_fio_blkaddr(fio
);
894 if (fio
->encrypted_page
)
895 bio_page
= fio
->encrypted_page
;
896 else if (fio
->compressed_page
)
897 bio_page
= fio
->compressed_page
;
899 bio_page
= fio
->page
;
901 /* set submitted = true as a return value */
902 fio
->submitted
= true;
904 inc_page_count(sbi
, WB_DATA_TYPE(bio_page
));
906 if (io
->bio
&& !io_is_mergeable(sbi
, io
->bio
, io
, fio
,
907 io
->last_block_in_bio
, fio
->new_blkaddr
))
908 __submit_merged_bio(io
);
910 if (io
->bio
== NULL
) {
911 if (F2FS_IO_ALIGNED(sbi
) &&
912 (fio
->type
== DATA
|| fio
->type
== NODE
) &&
913 fio
->new_blkaddr
& F2FS_IO_SIZE_MASK(sbi
)) {
914 dec_page_count(sbi
, WB_DATA_TYPE(bio_page
));
918 io
->bio
= __bio_alloc(fio
, BIO_MAX_PAGES
);
922 if (bio_add_page(io
->bio
, bio_page
, PAGE_SIZE
, 0) < PAGE_SIZE
) {
923 __submit_merged_bio(io
);
928 wbc_account_cgroup_owner(fio
->io_wbc
, bio_page
, PAGE_SIZE
);
930 io
->last_block_in_bio
= fio
->new_blkaddr
;
931 f2fs_trace_ios(fio
, 0);
933 trace_f2fs_submit_page_write(fio
->page
, fio
);
938 if (is_sbi_flag_set(sbi
, SBI_IS_SHUTDOWN
) ||
939 !f2fs_is_checkpoint_ready(sbi
))
940 __submit_merged_bio(io
);
941 up_write(&io
->io_rwsem
);
944 static inline bool f2fs_need_verity(const struct inode
*inode
, pgoff_t idx
)
946 return fsverity_active(inode
) &&
947 idx
< DIV_ROUND_UP(inode
->i_size
, PAGE_SIZE
);
950 static struct bio
*f2fs_grab_read_bio(struct inode
*inode
, block_t blkaddr
,
951 unsigned nr_pages
, unsigned op_flag
,
952 pgoff_t first_idx
, bool for_write
)
954 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
956 struct bio_post_read_ctx
*ctx
;
957 unsigned int post_read_steps
= 0;
959 bio
= f2fs_bio_alloc(sbi
, min_t(int, nr_pages
, BIO_MAX_PAGES
),
962 return ERR_PTR(-ENOMEM
);
963 f2fs_target_device(sbi
, blkaddr
, bio
);
964 bio
->bi_end_io
= f2fs_read_end_io
;
965 bio_set_op_attrs(bio
, REQ_OP_READ
, op_flag
);
967 if (f2fs_encrypted_file(inode
))
968 post_read_steps
|= 1 << STEP_DECRYPT
;
969 if (f2fs_compressed_file(inode
))
970 post_read_steps
|= 1 << STEP_DECOMPRESS
;
971 if (f2fs_need_verity(inode
, first_idx
))
972 post_read_steps
|= 1 << STEP_VERITY
;
974 if (post_read_steps
) {
975 /* Due to the mempool, this never fails. */
976 ctx
= mempool_alloc(bio_post_read_ctx_pool
, GFP_NOFS
);
979 ctx
->enabled_steps
= post_read_steps
;
980 bio
->bi_private
= ctx
;
986 static void f2fs_release_read_bio(struct bio
*bio
)
989 mempool_free(bio
->bi_private
, bio_post_read_ctx_pool
);
993 /* This can handle encryption stuffs */
994 static int f2fs_submit_page_read(struct inode
*inode
, struct page
*page
,
995 block_t blkaddr
, bool for_write
)
997 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1000 bio
= f2fs_grab_read_bio(inode
, blkaddr
, 1, 0, page
->index
, for_write
);
1002 return PTR_ERR(bio
);
1004 /* wait for GCed page writeback via META_MAPPING */
1005 f2fs_wait_on_block_writeback(inode
, blkaddr
);
1007 if (bio_add_page(bio
, page
, PAGE_SIZE
, 0) < PAGE_SIZE
) {
1011 ClearPageError(page
);
1012 inc_page_count(sbi
, F2FS_RD_DATA
);
1013 __submit_bio(sbi
, bio
, DATA
);
1017 static void __set_data_blkaddr(struct dnode_of_data
*dn
)
1019 struct f2fs_node
*rn
= F2FS_NODE(dn
->node_page
);
1023 if (IS_INODE(dn
->node_page
) && f2fs_has_extra_attr(dn
->inode
))
1024 base
= get_extra_isize(dn
->inode
);
1026 /* Get physical address of data block */
1027 addr_array
= blkaddr_in_node(rn
);
1028 addr_array
[base
+ dn
->ofs_in_node
] = cpu_to_le32(dn
->data_blkaddr
);
1032 * Lock ordering for the change of data block address:
1035 * update block addresses in the node page
1037 void f2fs_set_data_blkaddr(struct dnode_of_data
*dn
)
1039 f2fs_wait_on_page_writeback(dn
->node_page
, NODE
, true, true);
1040 __set_data_blkaddr(dn
);
1041 if (set_page_dirty(dn
->node_page
))
1042 dn
->node_changed
= true;
1045 void f2fs_update_data_blkaddr(struct dnode_of_data
*dn
, block_t blkaddr
)
1047 dn
->data_blkaddr
= blkaddr
;
1048 f2fs_set_data_blkaddr(dn
);
1049 f2fs_update_extent_cache(dn
);
1052 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1053 int f2fs_reserve_new_blocks(struct dnode_of_data
*dn
, blkcnt_t count
)
1055 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1061 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
1063 if (unlikely((err
= inc_valid_block_count(sbi
, dn
->inode
, &count
))))
1066 trace_f2fs_reserve_new_blocks(dn
->inode
, dn
->nid
,
1067 dn
->ofs_in_node
, count
);
1069 f2fs_wait_on_page_writeback(dn
->node_page
, NODE
, true, true);
1071 for (; count
> 0; dn
->ofs_in_node
++) {
1072 block_t blkaddr
= f2fs_data_blkaddr(dn
);
1073 if (blkaddr
== NULL_ADDR
) {
1074 dn
->data_blkaddr
= NEW_ADDR
;
1075 __set_data_blkaddr(dn
);
1080 if (set_page_dirty(dn
->node_page
))
1081 dn
->node_changed
= true;
1085 /* Should keep dn->ofs_in_node unchanged */
1086 int f2fs_reserve_new_block(struct dnode_of_data
*dn
)
1088 unsigned int ofs_in_node
= dn
->ofs_in_node
;
1091 ret
= f2fs_reserve_new_blocks(dn
, 1);
1092 dn
->ofs_in_node
= ofs_in_node
;
1096 int f2fs_reserve_block(struct dnode_of_data
*dn
, pgoff_t index
)
1098 bool need_put
= dn
->inode_page
? false : true;
1101 err
= f2fs_get_dnode_of_data(dn
, index
, ALLOC_NODE
);
1105 if (dn
->data_blkaddr
== NULL_ADDR
)
1106 err
= f2fs_reserve_new_block(dn
);
1107 if (err
|| need_put
)
1112 int f2fs_get_block(struct dnode_of_data
*dn
, pgoff_t index
)
1114 struct extent_info ei
= {0,0,0};
1115 struct inode
*inode
= dn
->inode
;
1117 if (f2fs_lookup_extent_cache(inode
, index
, &ei
)) {
1118 dn
->data_blkaddr
= ei
.blk
+ index
- ei
.fofs
;
1122 return f2fs_reserve_block(dn
, index
);
1125 struct page
*f2fs_get_read_data_page(struct inode
*inode
, pgoff_t index
,
1126 int op_flags
, bool for_write
)
1128 struct address_space
*mapping
= inode
->i_mapping
;
1129 struct dnode_of_data dn
;
1131 struct extent_info ei
= {0,0,0};
1134 page
= f2fs_grab_cache_page(mapping
, index
, for_write
);
1136 return ERR_PTR(-ENOMEM
);
1138 if (f2fs_lookup_extent_cache(inode
, index
, &ei
)) {
1139 dn
.data_blkaddr
= ei
.blk
+ index
- ei
.fofs
;
1140 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode
), dn
.data_blkaddr
,
1141 DATA_GENERIC_ENHANCE_READ
)) {
1142 err
= -EFSCORRUPTED
;
1148 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
1149 err
= f2fs_get_dnode_of_data(&dn
, index
, LOOKUP_NODE
);
1152 f2fs_put_dnode(&dn
);
1154 if (unlikely(dn
.data_blkaddr
== NULL_ADDR
)) {
1158 if (dn
.data_blkaddr
!= NEW_ADDR
&&
1159 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode
),
1161 DATA_GENERIC_ENHANCE
)) {
1162 err
= -EFSCORRUPTED
;
1166 if (PageUptodate(page
)) {
1172 * A new dentry page is allocated but not able to be written, since its
1173 * new inode page couldn't be allocated due to -ENOSPC.
1174 * In such the case, its blkaddr can be remained as NEW_ADDR.
1175 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1176 * f2fs_init_inode_metadata.
1178 if (dn
.data_blkaddr
== NEW_ADDR
) {
1179 zero_user_segment(page
, 0, PAGE_SIZE
);
1180 if (!PageUptodate(page
))
1181 SetPageUptodate(page
);
1186 err
= f2fs_submit_page_read(inode
, page
, dn
.data_blkaddr
, for_write
);
1192 f2fs_put_page(page
, 1);
1193 return ERR_PTR(err
);
1196 struct page
*f2fs_find_data_page(struct inode
*inode
, pgoff_t index
)
1198 struct address_space
*mapping
= inode
->i_mapping
;
1201 page
= find_get_page(mapping
, index
);
1202 if (page
&& PageUptodate(page
))
1204 f2fs_put_page(page
, 0);
1206 page
= f2fs_get_read_data_page(inode
, index
, 0, false);
1210 if (PageUptodate(page
))
1213 wait_on_page_locked(page
);
1214 if (unlikely(!PageUptodate(page
))) {
1215 f2fs_put_page(page
, 0);
1216 return ERR_PTR(-EIO
);
1222 * If it tries to access a hole, return an error.
1223 * Because, the callers, functions in dir.c and GC, should be able to know
1224 * whether this page exists or not.
1226 struct page
*f2fs_get_lock_data_page(struct inode
*inode
, pgoff_t index
,
1229 struct address_space
*mapping
= inode
->i_mapping
;
1232 page
= f2fs_get_read_data_page(inode
, index
, 0, for_write
);
1236 /* wait for read completion */
1238 if (unlikely(page
->mapping
!= mapping
)) {
1239 f2fs_put_page(page
, 1);
1242 if (unlikely(!PageUptodate(page
))) {
1243 f2fs_put_page(page
, 1);
1244 return ERR_PTR(-EIO
);
1250 * Caller ensures that this data page is never allocated.
1251 * A new zero-filled data page is allocated in the page cache.
1253 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1255 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1256 * ipage should be released by this function.
1258 struct page
*f2fs_get_new_data_page(struct inode
*inode
,
1259 struct page
*ipage
, pgoff_t index
, bool new_i_size
)
1261 struct address_space
*mapping
= inode
->i_mapping
;
1263 struct dnode_of_data dn
;
1266 page
= f2fs_grab_cache_page(mapping
, index
, true);
1269 * before exiting, we should make sure ipage will be released
1270 * if any error occur.
1272 f2fs_put_page(ipage
, 1);
1273 return ERR_PTR(-ENOMEM
);
1276 set_new_dnode(&dn
, inode
, ipage
, NULL
, 0);
1277 err
= f2fs_reserve_block(&dn
, index
);
1279 f2fs_put_page(page
, 1);
1280 return ERR_PTR(err
);
1283 f2fs_put_dnode(&dn
);
1285 if (PageUptodate(page
))
1288 if (dn
.data_blkaddr
== NEW_ADDR
) {
1289 zero_user_segment(page
, 0, PAGE_SIZE
);
1290 if (!PageUptodate(page
))
1291 SetPageUptodate(page
);
1293 f2fs_put_page(page
, 1);
1295 /* if ipage exists, blkaddr should be NEW_ADDR */
1296 f2fs_bug_on(F2FS_I_SB(inode
), ipage
);
1297 page
= f2fs_get_lock_data_page(inode
, index
, true);
1302 if (new_i_size
&& i_size_read(inode
) <
1303 ((loff_t
)(index
+ 1) << PAGE_SHIFT
))
1304 f2fs_i_size_write(inode
, ((loff_t
)(index
+ 1) << PAGE_SHIFT
));
1308 static int __allocate_data_block(struct dnode_of_data
*dn
, int seg_type
)
1310 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1311 struct f2fs_summary sum
;
1312 struct node_info ni
;
1313 block_t old_blkaddr
;
1317 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
1320 err
= f2fs_get_node_info(sbi
, dn
->nid
, &ni
);
1324 dn
->data_blkaddr
= f2fs_data_blkaddr(dn
);
1325 if (dn
->data_blkaddr
!= NULL_ADDR
)
1328 if (unlikely((err
= inc_valid_block_count(sbi
, dn
->inode
, &count
))))
1332 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1333 old_blkaddr
= dn
->data_blkaddr
;
1334 f2fs_allocate_data_block(sbi
, NULL
, old_blkaddr
, &dn
->data_blkaddr
,
1335 &sum
, seg_type
, NULL
, false);
1336 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
1337 invalidate_mapping_pages(META_MAPPING(sbi
),
1338 old_blkaddr
, old_blkaddr
);
1339 f2fs_update_data_blkaddr(dn
, dn
->data_blkaddr
);
1342 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1343 * data from unwritten block via dio_read.
1348 int f2fs_preallocate_blocks(struct kiocb
*iocb
, struct iov_iter
*from
)
1350 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1351 struct f2fs_map_blocks map
;
1354 bool direct_io
= iocb
->ki_flags
& IOCB_DIRECT
;
1356 map
.m_lblk
= F2FS_BLK_ALIGN(iocb
->ki_pos
);
1357 map
.m_len
= F2FS_BYTES_TO_BLK(iocb
->ki_pos
+ iov_iter_count(from
));
1358 if (map
.m_len
> map
.m_lblk
)
1359 map
.m_len
-= map
.m_lblk
;
1363 map
.m_next_pgofs
= NULL
;
1364 map
.m_next_extent
= NULL
;
1365 map
.m_seg_type
= NO_CHECK_TYPE
;
1366 map
.m_may_create
= true;
1369 map
.m_seg_type
= f2fs_rw_hint_to_seg_type(iocb
->ki_hint
);
1370 flag
= f2fs_force_buffered_io(inode
, iocb
, from
) ?
1371 F2FS_GET_BLOCK_PRE_AIO
:
1372 F2FS_GET_BLOCK_PRE_DIO
;
1375 if (iocb
->ki_pos
+ iov_iter_count(from
) > MAX_INLINE_DATA(inode
)) {
1376 err
= f2fs_convert_inline_inode(inode
);
1380 if (f2fs_has_inline_data(inode
))
1383 flag
= F2FS_GET_BLOCK_PRE_AIO
;
1386 err
= f2fs_map_blocks(inode
, &map
, 1, flag
);
1387 if (map
.m_len
> 0 && err
== -ENOSPC
) {
1389 set_inode_flag(inode
, FI_NO_PREALLOC
);
1395 void __do_map_lock(struct f2fs_sb_info
*sbi
, int flag
, bool lock
)
1397 if (flag
== F2FS_GET_BLOCK_PRE_AIO
) {
1399 down_read(&sbi
->node_change
);
1401 up_read(&sbi
->node_change
);
1406 f2fs_unlock_op(sbi
);
1411 * f2fs_map_blocks() tries to find or build mapping relationship which
1412 * maps continuous logical blocks to physical blocks, and return such
1413 * info via f2fs_map_blocks structure.
1415 int f2fs_map_blocks(struct inode
*inode
, struct f2fs_map_blocks
*map
,
1416 int create
, int flag
)
1418 unsigned int maxblocks
= map
->m_len
;
1419 struct dnode_of_data dn
;
1420 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1421 int mode
= map
->m_may_create
? ALLOC_NODE
: LOOKUP_NODE
;
1422 pgoff_t pgofs
, end_offset
, end
;
1423 int err
= 0, ofs
= 1;
1424 unsigned int ofs_in_node
, last_ofs_in_node
;
1426 struct extent_info ei
= {0,0,0};
1428 unsigned int start_pgofs
;
1436 /* it only supports block size == page size */
1437 pgofs
= (pgoff_t
)map
->m_lblk
;
1438 end
= pgofs
+ maxblocks
;
1440 if (!create
&& f2fs_lookup_extent_cache(inode
, pgofs
, &ei
)) {
1441 if (f2fs_lfs_mode(sbi
) && flag
== F2FS_GET_BLOCK_DIO
&&
1445 map
->m_pblk
= ei
.blk
+ pgofs
- ei
.fofs
;
1446 map
->m_len
= min((pgoff_t
)maxblocks
, ei
.fofs
+ ei
.len
- pgofs
);
1447 map
->m_flags
= F2FS_MAP_MAPPED
;
1448 if (map
->m_next_extent
)
1449 *map
->m_next_extent
= pgofs
+ map
->m_len
;
1451 /* for hardware encryption, but to avoid potential issue in future */
1452 if (flag
== F2FS_GET_BLOCK_DIO
)
1453 f2fs_wait_on_block_writeback_range(inode
,
1454 map
->m_pblk
, map
->m_len
);
1459 if (map
->m_may_create
)
1460 __do_map_lock(sbi
, flag
, true);
1462 /* When reading holes, we need its node page */
1463 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
1464 err
= f2fs_get_dnode_of_data(&dn
, pgofs
, mode
);
1466 if (flag
== F2FS_GET_BLOCK_BMAP
)
1468 if (err
== -ENOENT
) {
1470 if (map
->m_next_pgofs
)
1471 *map
->m_next_pgofs
=
1472 f2fs_get_next_page_offset(&dn
, pgofs
);
1473 if (map
->m_next_extent
)
1474 *map
->m_next_extent
=
1475 f2fs_get_next_page_offset(&dn
, pgofs
);
1480 start_pgofs
= pgofs
;
1482 last_ofs_in_node
= ofs_in_node
= dn
.ofs_in_node
;
1483 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, inode
);
1486 blkaddr
= f2fs_data_blkaddr(&dn
);
1488 if (__is_valid_data_blkaddr(blkaddr
) &&
1489 !f2fs_is_valid_blkaddr(sbi
, blkaddr
, DATA_GENERIC_ENHANCE
)) {
1490 err
= -EFSCORRUPTED
;
1494 if (__is_valid_data_blkaddr(blkaddr
)) {
1495 /* use out-place-update for driect IO under LFS mode */
1496 if (f2fs_lfs_mode(sbi
) && flag
== F2FS_GET_BLOCK_DIO
&&
1497 map
->m_may_create
) {
1498 err
= __allocate_data_block(&dn
, map
->m_seg_type
);
1501 blkaddr
= dn
.data_blkaddr
;
1502 set_inode_flag(inode
, FI_APPEND_WRITE
);
1506 if (unlikely(f2fs_cp_error(sbi
))) {
1510 if (flag
== F2FS_GET_BLOCK_PRE_AIO
) {
1511 if (blkaddr
== NULL_ADDR
) {
1513 last_ofs_in_node
= dn
.ofs_in_node
;
1516 WARN_ON(flag
!= F2FS_GET_BLOCK_PRE_DIO
&&
1517 flag
!= F2FS_GET_BLOCK_DIO
);
1518 err
= __allocate_data_block(&dn
,
1521 set_inode_flag(inode
, FI_APPEND_WRITE
);
1525 map
->m_flags
|= F2FS_MAP_NEW
;
1526 blkaddr
= dn
.data_blkaddr
;
1528 if (flag
== F2FS_GET_BLOCK_BMAP
) {
1532 if (flag
== F2FS_GET_BLOCK_PRECACHE
)
1534 if (flag
== F2FS_GET_BLOCK_FIEMAP
&&
1535 blkaddr
== NULL_ADDR
) {
1536 if (map
->m_next_pgofs
)
1537 *map
->m_next_pgofs
= pgofs
+ 1;
1540 if (flag
!= F2FS_GET_BLOCK_FIEMAP
) {
1541 /* for defragment case */
1542 if (map
->m_next_pgofs
)
1543 *map
->m_next_pgofs
= pgofs
+ 1;
1549 if (flag
== F2FS_GET_BLOCK_PRE_AIO
)
1552 if (map
->m_len
== 0) {
1553 /* preallocated unwritten block should be mapped for fiemap. */
1554 if (blkaddr
== NEW_ADDR
)
1555 map
->m_flags
|= F2FS_MAP_UNWRITTEN
;
1556 map
->m_flags
|= F2FS_MAP_MAPPED
;
1558 map
->m_pblk
= blkaddr
;
1560 } else if ((map
->m_pblk
!= NEW_ADDR
&&
1561 blkaddr
== (map
->m_pblk
+ ofs
)) ||
1562 (map
->m_pblk
== NEW_ADDR
&& blkaddr
== NEW_ADDR
) ||
1563 flag
== F2FS_GET_BLOCK_PRE_DIO
) {
1574 /* preallocate blocks in batch for one dnode page */
1575 if (flag
== F2FS_GET_BLOCK_PRE_AIO
&&
1576 (pgofs
== end
|| dn
.ofs_in_node
== end_offset
)) {
1578 dn
.ofs_in_node
= ofs_in_node
;
1579 err
= f2fs_reserve_new_blocks(&dn
, prealloc
);
1583 map
->m_len
+= dn
.ofs_in_node
- ofs_in_node
;
1584 if (prealloc
&& dn
.ofs_in_node
!= last_ofs_in_node
+ 1) {
1588 dn
.ofs_in_node
= end_offset
;
1593 else if (dn
.ofs_in_node
< end_offset
)
1596 if (flag
== F2FS_GET_BLOCK_PRECACHE
) {
1597 if (map
->m_flags
& F2FS_MAP_MAPPED
) {
1598 unsigned int ofs
= start_pgofs
- map
->m_lblk
;
1600 f2fs_update_extent_cache_range(&dn
,
1601 start_pgofs
, map
->m_pblk
+ ofs
,
1606 f2fs_put_dnode(&dn
);
1608 if (map
->m_may_create
) {
1609 __do_map_lock(sbi
, flag
, false);
1610 f2fs_balance_fs(sbi
, dn
.node_changed
);
1616 /* for hardware encryption, but to avoid potential issue in future */
1617 if (flag
== F2FS_GET_BLOCK_DIO
&& map
->m_flags
& F2FS_MAP_MAPPED
)
1618 f2fs_wait_on_block_writeback_range(inode
,
1619 map
->m_pblk
, map
->m_len
);
1621 if (flag
== F2FS_GET_BLOCK_PRECACHE
) {
1622 if (map
->m_flags
& F2FS_MAP_MAPPED
) {
1623 unsigned int ofs
= start_pgofs
- map
->m_lblk
;
1625 f2fs_update_extent_cache_range(&dn
,
1626 start_pgofs
, map
->m_pblk
+ ofs
,
1629 if (map
->m_next_extent
)
1630 *map
->m_next_extent
= pgofs
+ 1;
1632 f2fs_put_dnode(&dn
);
1634 if (map
->m_may_create
) {
1635 __do_map_lock(sbi
, flag
, false);
1636 f2fs_balance_fs(sbi
, dn
.node_changed
);
1639 trace_f2fs_map_blocks(inode
, map
, err
);
1643 bool f2fs_overwrite_io(struct inode
*inode
, loff_t pos
, size_t len
)
1645 struct f2fs_map_blocks map
;
1649 if (pos
+ len
> i_size_read(inode
))
1652 map
.m_lblk
= F2FS_BYTES_TO_BLK(pos
);
1653 map
.m_next_pgofs
= NULL
;
1654 map
.m_next_extent
= NULL
;
1655 map
.m_seg_type
= NO_CHECK_TYPE
;
1656 map
.m_may_create
= false;
1657 last_lblk
= F2FS_BLK_ALIGN(pos
+ len
);
1659 while (map
.m_lblk
< last_lblk
) {
1660 map
.m_len
= last_lblk
- map
.m_lblk
;
1661 err
= f2fs_map_blocks(inode
, &map
, 0, F2FS_GET_BLOCK_DEFAULT
);
1662 if (err
|| map
.m_len
== 0)
1664 map
.m_lblk
+= map
.m_len
;
1669 static int __get_data_block(struct inode
*inode
, sector_t iblock
,
1670 struct buffer_head
*bh
, int create
, int flag
,
1671 pgoff_t
*next_pgofs
, int seg_type
, bool may_write
)
1673 struct f2fs_map_blocks map
;
1676 map
.m_lblk
= iblock
;
1677 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
1678 map
.m_next_pgofs
= next_pgofs
;
1679 map
.m_next_extent
= NULL
;
1680 map
.m_seg_type
= seg_type
;
1681 map
.m_may_create
= may_write
;
1683 err
= f2fs_map_blocks(inode
, &map
, create
, flag
);
1685 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1686 bh
->b_state
= (bh
->b_state
& ~F2FS_MAP_FLAGS
) | map
.m_flags
;
1687 bh
->b_size
= (u64
)map
.m_len
<< inode
->i_blkbits
;
1692 static int get_data_block(struct inode
*inode
, sector_t iblock
,
1693 struct buffer_head
*bh_result
, int create
, int flag
,
1694 pgoff_t
*next_pgofs
)
1696 return __get_data_block(inode
, iblock
, bh_result
, create
,
1698 NO_CHECK_TYPE
, create
);
1701 static int get_data_block_dio_write(struct inode
*inode
, sector_t iblock
,
1702 struct buffer_head
*bh_result
, int create
)
1704 return __get_data_block(inode
, iblock
, bh_result
, create
,
1705 F2FS_GET_BLOCK_DIO
, NULL
,
1706 f2fs_rw_hint_to_seg_type(inode
->i_write_hint
),
1707 IS_SWAPFILE(inode
) ? false : true);
1710 static int get_data_block_dio(struct inode
*inode
, sector_t iblock
,
1711 struct buffer_head
*bh_result
, int create
)
1713 return __get_data_block(inode
, iblock
, bh_result
, create
,
1714 F2FS_GET_BLOCK_DIO
, NULL
,
1715 f2fs_rw_hint_to_seg_type(inode
->i_write_hint
),
1719 static int get_data_block_bmap(struct inode
*inode
, sector_t iblock
,
1720 struct buffer_head
*bh_result
, int create
)
1722 /* Block number less than F2FS MAX BLOCKS */
1723 if (unlikely(iblock
>= F2FS_I_SB(inode
)->max_file_blocks
))
1726 return __get_data_block(inode
, iblock
, bh_result
, create
,
1727 F2FS_GET_BLOCK_BMAP
, NULL
,
1728 NO_CHECK_TYPE
, create
);
1731 static inline sector_t
logical_to_blk(struct inode
*inode
, loff_t offset
)
1733 return (offset
>> inode
->i_blkbits
);
1736 static inline loff_t
blk_to_logical(struct inode
*inode
, sector_t blk
)
1738 return (blk
<< inode
->i_blkbits
);
1741 static int f2fs_xattr_fiemap(struct inode
*inode
,
1742 struct fiemap_extent_info
*fieinfo
)
1744 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1746 struct node_info ni
;
1747 __u64 phys
= 0, len
;
1749 nid_t xnid
= F2FS_I(inode
)->i_xattr_nid
;
1752 if (f2fs_has_inline_xattr(inode
)) {
1755 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
),
1756 inode
->i_ino
, false);
1760 err
= f2fs_get_node_info(sbi
, inode
->i_ino
, &ni
);
1762 f2fs_put_page(page
, 1);
1766 phys
= (__u64
)blk_to_logical(inode
, ni
.blk_addr
);
1767 offset
= offsetof(struct f2fs_inode
, i_addr
) +
1768 sizeof(__le32
) * (DEF_ADDRS_PER_INODE
-
1769 get_inline_xattr_addrs(inode
));
1772 len
= inline_xattr_size(inode
);
1774 f2fs_put_page(page
, 1);
1776 flags
= FIEMAP_EXTENT_DATA_INLINE
| FIEMAP_EXTENT_NOT_ALIGNED
;
1779 flags
|= FIEMAP_EXTENT_LAST
;
1781 err
= fiemap_fill_next_extent(fieinfo
, 0, phys
, len
, flags
);
1782 if (err
|| err
== 1)
1787 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), xnid
, false);
1791 err
= f2fs_get_node_info(sbi
, xnid
, &ni
);
1793 f2fs_put_page(page
, 1);
1797 phys
= (__u64
)blk_to_logical(inode
, ni
.blk_addr
);
1798 len
= inode
->i_sb
->s_blocksize
;
1800 f2fs_put_page(page
, 1);
1802 flags
= FIEMAP_EXTENT_LAST
;
1806 err
= fiemap_fill_next_extent(fieinfo
, 0, phys
, len
, flags
);
1808 return (err
< 0 ? err
: 0);
1811 int f2fs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
1814 struct buffer_head map_bh
;
1815 sector_t start_blk
, last_blk
;
1817 u64 logical
= 0, phys
= 0, size
= 0;
1821 if (fieinfo
->fi_flags
& FIEMAP_FLAG_CACHE
) {
1822 ret
= f2fs_precache_extents(inode
);
1827 ret
= fiemap_check_flags(fieinfo
, FIEMAP_FLAG_SYNC
| FIEMAP_FLAG_XATTR
);
1833 if (fieinfo
->fi_flags
& FIEMAP_FLAG_XATTR
) {
1834 ret
= f2fs_xattr_fiemap(inode
, fieinfo
);
1838 if (f2fs_has_inline_data(inode
) || f2fs_has_inline_dentry(inode
)) {
1839 ret
= f2fs_inline_data_fiemap(inode
, fieinfo
, start
, len
);
1844 if (logical_to_blk(inode
, len
) == 0)
1845 len
= blk_to_logical(inode
, 1);
1847 start_blk
= logical_to_blk(inode
, start
);
1848 last_blk
= logical_to_blk(inode
, start
+ len
- 1);
1851 memset(&map_bh
, 0, sizeof(struct buffer_head
));
1852 map_bh
.b_size
= len
;
1854 ret
= get_data_block(inode
, start_blk
, &map_bh
, 0,
1855 F2FS_GET_BLOCK_FIEMAP
, &next_pgofs
);
1860 if (!buffer_mapped(&map_bh
)) {
1861 start_blk
= next_pgofs
;
1863 if (blk_to_logical(inode
, start_blk
) < blk_to_logical(inode
,
1864 F2FS_I_SB(inode
)->max_file_blocks
))
1867 flags
|= FIEMAP_EXTENT_LAST
;
1871 if (IS_ENCRYPTED(inode
))
1872 flags
|= FIEMAP_EXTENT_DATA_ENCRYPTED
;
1874 ret
= fiemap_fill_next_extent(fieinfo
, logical
,
1878 if (start_blk
> last_blk
|| ret
)
1881 logical
= blk_to_logical(inode
, start_blk
);
1882 phys
= blk_to_logical(inode
, map_bh
.b_blocknr
);
1883 size
= map_bh
.b_size
;
1885 if (buffer_unwritten(&map_bh
))
1886 flags
= FIEMAP_EXTENT_UNWRITTEN
;
1888 start_blk
+= logical_to_blk(inode
, size
);
1892 if (fatal_signal_pending(current
))
1900 inode_unlock(inode
);
1904 static inline loff_t
f2fs_readpage_limit(struct inode
*inode
)
1906 if (IS_ENABLED(CONFIG_FS_VERITY
) &&
1907 (IS_VERITY(inode
) || f2fs_verity_in_progress(inode
)))
1908 return inode
->i_sb
->s_maxbytes
;
1910 return i_size_read(inode
);
1913 static int f2fs_read_single_page(struct inode
*inode
, struct page
*page
,
1915 struct f2fs_map_blocks
*map
,
1916 struct bio
**bio_ret
,
1917 sector_t
*last_block_in_bio
,
1920 struct bio
*bio
= *bio_ret
;
1921 const unsigned blkbits
= inode
->i_blkbits
;
1922 const unsigned blocksize
= 1 << blkbits
;
1923 sector_t block_in_file
;
1924 sector_t last_block
;
1925 sector_t last_block_in_file
;
1929 block_in_file
= (sector_t
)page_index(page
);
1930 last_block
= block_in_file
+ nr_pages
;
1931 last_block_in_file
= (f2fs_readpage_limit(inode
) + blocksize
- 1) >>
1933 if (last_block
> last_block_in_file
)
1934 last_block
= last_block_in_file
;
1936 /* just zeroing out page which is beyond EOF */
1937 if (block_in_file
>= last_block
)
1940 * Map blocks using the previous result first.
1942 if ((map
->m_flags
& F2FS_MAP_MAPPED
) &&
1943 block_in_file
> map
->m_lblk
&&
1944 block_in_file
< (map
->m_lblk
+ map
->m_len
))
1948 * Then do more f2fs_map_blocks() calls until we are
1949 * done with this page.
1951 map
->m_lblk
= block_in_file
;
1952 map
->m_len
= last_block
- block_in_file
;
1954 ret
= f2fs_map_blocks(inode
, map
, 0, F2FS_GET_BLOCK_DEFAULT
);
1958 if ((map
->m_flags
& F2FS_MAP_MAPPED
)) {
1959 block_nr
= map
->m_pblk
+ block_in_file
- map
->m_lblk
;
1960 SetPageMappedToDisk(page
);
1962 if (!PageUptodate(page
) && (!PageSwapCache(page
) &&
1963 !cleancache_get_page(page
))) {
1964 SetPageUptodate(page
);
1968 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode
), block_nr
,
1969 DATA_GENERIC_ENHANCE_READ
)) {
1970 ret
= -EFSCORRUPTED
;
1975 zero_user_segment(page
, 0, PAGE_SIZE
);
1976 if (f2fs_need_verity(inode
, page
->index
) &&
1977 !fsverity_verify_page(page
)) {
1981 if (!PageUptodate(page
))
1982 SetPageUptodate(page
);
1988 * This page will go to BIO. Do we need to send this
1991 if (bio
&& !page_is_mergeable(F2FS_I_SB(inode
), bio
,
1992 *last_block_in_bio
, block_nr
)) {
1994 __submit_bio(F2FS_I_SB(inode
), bio
, DATA
);
1998 bio
= f2fs_grab_read_bio(inode
, block_nr
, nr_pages
,
1999 is_readahead
? REQ_RAHEAD
: 0, page
->index
,
2009 * If the page is under writeback, we need to wait for
2010 * its completion to see the correct decrypted data.
2012 f2fs_wait_on_block_writeback(inode
, block_nr
);
2014 if (bio_add_page(bio
, page
, blocksize
, 0) < blocksize
)
2015 goto submit_and_realloc
;
2017 inc_page_count(F2FS_I_SB(inode
), F2FS_RD_DATA
);
2018 ClearPageError(page
);
2019 *last_block_in_bio
= block_nr
;
2023 __submit_bio(F2FS_I_SB(inode
), bio
, DATA
);
2032 #ifdef CONFIG_F2FS_FS_COMPRESSION
2033 int f2fs_read_multi_pages(struct compress_ctx
*cc
, struct bio
**bio_ret
,
2034 unsigned nr_pages
, sector_t
*last_block_in_bio
,
2035 bool is_readahead
, bool for_write
)
2037 struct dnode_of_data dn
;
2038 struct inode
*inode
= cc
->inode
;
2039 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2040 struct bio
*bio
= *bio_ret
;
2041 unsigned int start_idx
= cc
->cluster_idx
<< cc
->log_cluster_size
;
2042 sector_t last_block_in_file
;
2043 const unsigned blkbits
= inode
->i_blkbits
;
2044 const unsigned blocksize
= 1 << blkbits
;
2045 struct decompress_io_ctx
*dic
= NULL
;
2049 f2fs_bug_on(sbi
, f2fs_cluster_is_empty(cc
));
2051 last_block_in_file
= (f2fs_readpage_limit(inode
) +
2052 blocksize
- 1) >> blkbits
;
2054 /* get rid of pages beyond EOF */
2055 for (i
= 0; i
< cc
->cluster_size
; i
++) {
2056 struct page
*page
= cc
->rpages
[i
];
2060 if ((sector_t
)page
->index
>= last_block_in_file
) {
2061 zero_user_segment(page
, 0, PAGE_SIZE
);
2062 if (!PageUptodate(page
))
2063 SetPageUptodate(page
);
2064 } else if (!PageUptodate(page
)) {
2068 cc
->rpages
[i
] = NULL
;
2072 /* we are done since all pages are beyond EOF */
2073 if (f2fs_cluster_is_empty(cc
))
2076 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
2077 ret
= f2fs_get_dnode_of_data(&dn
, start_idx
, LOOKUP_NODE
);
2081 /* cluster was overwritten as normal cluster */
2082 if (dn
.data_blkaddr
!= COMPRESS_ADDR
)
2085 for (i
= 1; i
< cc
->cluster_size
; i
++) {
2088 blkaddr
= data_blkaddr(dn
.inode
, dn
.node_page
,
2089 dn
.ofs_in_node
+ i
);
2091 if (!__is_valid_data_blkaddr(blkaddr
))
2094 if (!f2fs_is_valid_blkaddr(sbi
, blkaddr
, DATA_GENERIC
)) {
2101 /* nothing to decompress */
2102 if (cc
->nr_cpages
== 0) {
2107 dic
= f2fs_alloc_dic(cc
);
2113 for (i
= 0; i
< dic
->nr_cpages
; i
++) {
2114 struct page
*page
= dic
->cpages
[i
];
2117 blkaddr
= data_blkaddr(dn
.inode
, dn
.node_page
,
2118 dn
.ofs_in_node
+ i
+ 1);
2120 if (bio
&& !page_is_mergeable(sbi
, bio
,
2121 *last_block_in_bio
, blkaddr
)) {
2123 __submit_bio(sbi
, bio
, DATA
);
2128 bio
= f2fs_grab_read_bio(inode
, blkaddr
, nr_pages
,
2129 is_readahead
? REQ_RAHEAD
: 0,
2130 page
->index
, for_write
);
2134 if (refcount_sub_and_test(dic
->nr_cpages
- i
,
2136 f2fs_decompress_end_io(dic
->rpages
,
2137 cc
->cluster_size
, true,
2141 f2fs_put_dnode(&dn
);
2147 f2fs_wait_on_block_writeback(inode
, blkaddr
);
2149 if (bio_add_page(bio
, page
, blocksize
, 0) < blocksize
)
2150 goto submit_and_realloc
;
2152 inc_page_count(sbi
, F2FS_RD_DATA
);
2153 ClearPageError(page
);
2154 *last_block_in_bio
= blkaddr
;
2157 f2fs_put_dnode(&dn
);
2163 f2fs_put_dnode(&dn
);
2165 f2fs_decompress_end_io(cc
->rpages
, cc
->cluster_size
, true, false);
2172 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2173 * Major change was from block_size == page_size in f2fs by default.
2175 * Note that the aops->readpages() function is ONLY used for read-ahead. If
2176 * this function ever deviates from doing just read-ahead, it should either
2177 * use ->readpage() or do the necessary surgery to decouple ->readpages()
2180 int f2fs_mpage_readpages(struct address_space
*mapping
,
2181 struct list_head
*pages
, struct page
*page
,
2182 unsigned nr_pages
, bool is_readahead
)
2184 struct bio
*bio
= NULL
;
2185 sector_t last_block_in_bio
= 0;
2186 struct inode
*inode
= mapping
->host
;
2187 struct f2fs_map_blocks map
;
2188 #ifdef CONFIG_F2FS_FS_COMPRESSION
2189 struct compress_ctx cc
= {
2191 .log_cluster_size
= F2FS_I(inode
)->i_log_cluster_size
,
2192 .cluster_size
= F2FS_I(inode
)->i_cluster_size
,
2193 .cluster_idx
= NULL_CLUSTER
,
2200 unsigned max_nr_pages
= nr_pages
;
2207 map
.m_next_pgofs
= NULL
;
2208 map
.m_next_extent
= NULL
;
2209 map
.m_seg_type
= NO_CHECK_TYPE
;
2210 map
.m_may_create
= false;
2212 for (; nr_pages
; nr_pages
--) {
2214 page
= list_last_entry(pages
, struct page
, lru
);
2216 prefetchw(&page
->flags
);
2217 list_del(&page
->lru
);
2218 if (add_to_page_cache_lru(page
, mapping
,
2220 readahead_gfp_mask(mapping
)))
2224 #ifdef CONFIG_F2FS_FS_COMPRESSION
2225 if (f2fs_compressed_file(inode
)) {
2226 /* there are remained comressed pages, submit them */
2227 if (!f2fs_cluster_can_merge_page(&cc
, page
->index
)) {
2228 ret
= f2fs_read_multi_pages(&cc
, &bio
,
2231 is_readahead
, false);
2232 f2fs_destroy_compress_ctx(&cc
);
2234 goto set_error_page
;
2236 ret
= f2fs_is_compressed_cluster(inode
, page
->index
);
2238 goto set_error_page
;
2240 goto read_single_page
;
2242 ret
= f2fs_init_compress_ctx(&cc
);
2244 goto set_error_page
;
2246 f2fs_compress_ctx_add_page(&cc
, page
);
2253 ret
= f2fs_read_single_page(inode
, page
, max_nr_pages
, &map
,
2254 &bio
, &last_block_in_bio
, is_readahead
);
2256 #ifdef CONFIG_F2FS_FS_COMPRESSION
2260 zero_user_segment(page
, 0, PAGE_SIZE
);
2267 #ifdef CONFIG_F2FS_FS_COMPRESSION
2268 if (f2fs_compressed_file(inode
)) {
2270 if (nr_pages
== 1 && !f2fs_cluster_is_empty(&cc
)) {
2271 ret
= f2fs_read_multi_pages(&cc
, &bio
,
2274 is_readahead
, false);
2275 f2fs_destroy_compress_ctx(&cc
);
2280 BUG_ON(pages
&& !list_empty(pages
));
2282 __submit_bio(F2FS_I_SB(inode
), bio
, DATA
);
2283 return pages
? 0 : ret
;
2286 static int f2fs_read_data_page(struct file
*file
, struct page
*page
)
2288 struct inode
*inode
= page_file_mapping(page
)->host
;
2291 trace_f2fs_readpage(page
, DATA
);
2293 if (!f2fs_is_compress_backend_ready(inode
)) {
2298 /* If the file has inline data, try to read it directly */
2299 if (f2fs_has_inline_data(inode
))
2300 ret
= f2fs_read_inline_data(inode
, page
);
2302 ret
= f2fs_mpage_readpages(page_file_mapping(page
),
2303 NULL
, page
, 1, false);
2307 static int f2fs_read_data_pages(struct file
*file
,
2308 struct address_space
*mapping
,
2309 struct list_head
*pages
, unsigned nr_pages
)
2311 struct inode
*inode
= mapping
->host
;
2312 struct page
*page
= list_last_entry(pages
, struct page
, lru
);
2314 trace_f2fs_readpages(inode
, page
, nr_pages
);
2316 if (!f2fs_is_compress_backend_ready(inode
))
2319 /* If the file has inline data, skip readpages */
2320 if (f2fs_has_inline_data(inode
))
2323 return f2fs_mpage_readpages(mapping
, pages
, NULL
, nr_pages
, true);
2326 int f2fs_encrypt_one_page(struct f2fs_io_info
*fio
)
2328 struct inode
*inode
= fio
->page
->mapping
->host
;
2329 struct page
*mpage
, *page
;
2330 gfp_t gfp_flags
= GFP_NOFS
;
2332 if (!f2fs_encrypted_file(inode
))
2335 page
= fio
->compressed_page
? fio
->compressed_page
: fio
->page
;
2337 /* wait for GCed page writeback via META_MAPPING */
2338 f2fs_wait_on_block_writeback(inode
, fio
->old_blkaddr
);
2341 fio
->encrypted_page
= fscrypt_encrypt_pagecache_blocks(page
,
2342 PAGE_SIZE
, 0, gfp_flags
);
2343 if (IS_ERR(fio
->encrypted_page
)) {
2344 /* flush pending IOs and wait for a while in the ENOMEM case */
2345 if (PTR_ERR(fio
->encrypted_page
) == -ENOMEM
) {
2346 f2fs_flush_merged_writes(fio
->sbi
);
2347 congestion_wait(BLK_RW_ASYNC
, DEFAULT_IO_TIMEOUT
);
2348 gfp_flags
|= __GFP_NOFAIL
;
2351 return PTR_ERR(fio
->encrypted_page
);
2354 mpage
= find_lock_page(META_MAPPING(fio
->sbi
), fio
->old_blkaddr
);
2356 if (PageUptodate(mpage
))
2357 memcpy(page_address(mpage
),
2358 page_address(fio
->encrypted_page
), PAGE_SIZE
);
2359 f2fs_put_page(mpage
, 1);
2364 static inline bool check_inplace_update_policy(struct inode
*inode
,
2365 struct f2fs_io_info
*fio
)
2367 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2368 unsigned int policy
= SM_I(sbi
)->ipu_policy
;
2370 if (policy
& (0x1 << F2FS_IPU_FORCE
))
2372 if (policy
& (0x1 << F2FS_IPU_SSR
) && f2fs_need_SSR(sbi
))
2374 if (policy
& (0x1 << F2FS_IPU_UTIL
) &&
2375 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
2377 if (policy
& (0x1 << F2FS_IPU_SSR_UTIL
) && f2fs_need_SSR(sbi
) &&
2378 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
2382 * IPU for rewrite async pages
2384 if (policy
& (0x1 << F2FS_IPU_ASYNC
) &&
2385 fio
&& fio
->op
== REQ_OP_WRITE
&&
2386 !(fio
->op_flags
& REQ_SYNC
) &&
2387 !IS_ENCRYPTED(inode
))
2390 /* this is only set during fdatasync */
2391 if (policy
& (0x1 << F2FS_IPU_FSYNC
) &&
2392 is_inode_flag_set(inode
, FI_NEED_IPU
))
2395 if (unlikely(fio
&& is_sbi_flag_set(sbi
, SBI_CP_DISABLED
) &&
2396 !f2fs_is_checkpointed_data(sbi
, fio
->old_blkaddr
)))
2402 bool f2fs_should_update_inplace(struct inode
*inode
, struct f2fs_io_info
*fio
)
2404 if (f2fs_is_pinned_file(inode
))
2407 /* if this is cold file, we should overwrite to avoid fragmentation */
2408 if (file_is_cold(inode
))
2411 return check_inplace_update_policy(inode
, fio
);
2414 bool f2fs_should_update_outplace(struct inode
*inode
, struct f2fs_io_info
*fio
)
2416 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2418 if (f2fs_lfs_mode(sbi
))
2420 if (S_ISDIR(inode
->i_mode
))
2422 if (IS_NOQUOTA(inode
))
2424 if (f2fs_is_atomic_file(inode
))
2427 if (is_cold_data(fio
->page
))
2429 if (IS_ATOMIC_WRITTEN_PAGE(fio
->page
))
2431 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
) &&
2432 f2fs_is_checkpointed_data(sbi
, fio
->old_blkaddr
)))
2438 static inline bool need_inplace_update(struct f2fs_io_info
*fio
)
2440 struct inode
*inode
= fio
->page
->mapping
->host
;
2442 if (f2fs_should_update_outplace(inode
, fio
))
2445 return f2fs_should_update_inplace(inode
, fio
);
2448 int f2fs_do_write_data_page(struct f2fs_io_info
*fio
)
2450 struct page
*page
= fio
->page
;
2451 struct inode
*inode
= page
->mapping
->host
;
2452 struct dnode_of_data dn
;
2453 struct extent_info ei
= {0,0,0};
2454 struct node_info ni
;
2455 bool ipu_force
= false;
2458 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
2459 if (need_inplace_update(fio
) &&
2460 f2fs_lookup_extent_cache(inode
, page
->index
, &ei
)) {
2461 fio
->old_blkaddr
= ei
.blk
+ page
->index
- ei
.fofs
;
2463 if (!f2fs_is_valid_blkaddr(fio
->sbi
, fio
->old_blkaddr
,
2464 DATA_GENERIC_ENHANCE
))
2465 return -EFSCORRUPTED
;
2468 fio
->need_lock
= LOCK_DONE
;
2472 /* Deadlock due to between page->lock and f2fs_lock_op */
2473 if (fio
->need_lock
== LOCK_REQ
&& !f2fs_trylock_op(fio
->sbi
))
2476 err
= f2fs_get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
);
2480 fio
->old_blkaddr
= dn
.data_blkaddr
;
2482 /* This page is already truncated */
2483 if (fio
->old_blkaddr
== NULL_ADDR
) {
2484 ClearPageUptodate(page
);
2485 clear_cold_data(page
);
2489 if (__is_valid_data_blkaddr(fio
->old_blkaddr
) &&
2490 !f2fs_is_valid_blkaddr(fio
->sbi
, fio
->old_blkaddr
,
2491 DATA_GENERIC_ENHANCE
)) {
2492 err
= -EFSCORRUPTED
;
2496 * If current allocation needs SSR,
2497 * it had better in-place writes for updated data.
2500 (__is_valid_data_blkaddr(fio
->old_blkaddr
) &&
2501 need_inplace_update(fio
))) {
2502 err
= f2fs_encrypt_one_page(fio
);
2506 set_page_writeback(page
);
2507 ClearPageError(page
);
2508 f2fs_put_dnode(&dn
);
2509 if (fio
->need_lock
== LOCK_REQ
)
2510 f2fs_unlock_op(fio
->sbi
);
2511 err
= f2fs_inplace_write_data(fio
);
2513 if (f2fs_encrypted_file(inode
))
2514 fscrypt_finalize_bounce_page(&fio
->encrypted_page
);
2515 if (PageWriteback(page
))
2516 end_page_writeback(page
);
2518 set_inode_flag(inode
, FI_UPDATE_WRITE
);
2520 trace_f2fs_do_write_data_page(fio
->page
, IPU
);
2524 if (fio
->need_lock
== LOCK_RETRY
) {
2525 if (!f2fs_trylock_op(fio
->sbi
)) {
2529 fio
->need_lock
= LOCK_REQ
;
2532 err
= f2fs_get_node_info(fio
->sbi
, dn
.nid
, &ni
);
2536 fio
->version
= ni
.version
;
2538 err
= f2fs_encrypt_one_page(fio
);
2542 set_page_writeback(page
);
2543 ClearPageError(page
);
2545 if (fio
->compr_blocks
&& fio
->old_blkaddr
== COMPRESS_ADDR
)
2546 f2fs_i_compr_blocks_update(inode
, fio
->compr_blocks
- 1, false);
2548 /* LFS mode write path */
2549 f2fs_outplace_write_data(&dn
, fio
);
2550 trace_f2fs_do_write_data_page(page
, OPU
);
2551 set_inode_flag(inode
, FI_APPEND_WRITE
);
2552 if (page
->index
== 0)
2553 set_inode_flag(inode
, FI_FIRST_BLOCK_WRITTEN
);
2555 f2fs_put_dnode(&dn
);
2557 if (fio
->need_lock
== LOCK_REQ
)
2558 f2fs_unlock_op(fio
->sbi
);
2562 int f2fs_write_single_data_page(struct page
*page
, int *submitted
,
2564 sector_t
*last_block
,
2565 struct writeback_control
*wbc
,
2566 enum iostat_type io_type
,
2569 struct inode
*inode
= page
->mapping
->host
;
2570 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2571 loff_t i_size
= i_size_read(inode
);
2572 const pgoff_t end_index
= ((unsigned long long)i_size
)
2574 loff_t psize
= (loff_t
)(page
->index
+ 1) << PAGE_SHIFT
;
2575 unsigned offset
= 0;
2576 bool need_balance_fs
= false;
2578 struct f2fs_io_info fio
= {
2580 .ino
= inode
->i_ino
,
2583 .op_flags
= wbc_to_write_flags(wbc
),
2584 .old_blkaddr
= NULL_ADDR
,
2586 .encrypted_page
= NULL
,
2588 .compr_blocks
= compr_blocks
,
2589 .need_lock
= LOCK_RETRY
,
2593 .last_block
= last_block
,
2596 trace_f2fs_writepage(page
, DATA
);
2598 /* we should bypass data pages to proceed the kworkder jobs */
2599 if (unlikely(f2fs_cp_error(sbi
))) {
2600 mapping_set_error(page
->mapping
, -EIO
);
2602 * don't drop any dirty dentry pages for keeping lastest
2603 * directory structure.
2605 if (S_ISDIR(inode
->i_mode
))
2610 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
2613 if (page
->index
< end_index
||
2614 f2fs_verity_in_progress(inode
) ||
2619 * If the offset is out-of-range of file size,
2620 * this page does not have to be written to disk.
2622 offset
= i_size
& (PAGE_SIZE
- 1);
2623 if ((page
->index
>= end_index
+ 1) || !offset
)
2626 zero_user_segment(page
, offset
, PAGE_SIZE
);
2628 if (f2fs_is_drop_cache(inode
))
2630 /* we should not write 0'th page having journal header */
2631 if (f2fs_is_volatile_file(inode
) && (!page
->index
||
2632 (!wbc
->for_reclaim
&&
2633 f2fs_available_free_memory(sbi
, BASE_CHECK
))))
2636 /* Dentry blocks are controlled by checkpoint */
2637 if (S_ISDIR(inode
->i_mode
)) {
2638 fio
.need_lock
= LOCK_DONE
;
2639 err
= f2fs_do_write_data_page(&fio
);
2643 if (!wbc
->for_reclaim
)
2644 need_balance_fs
= true;
2645 else if (has_not_enough_free_secs(sbi
, 0, 0))
2648 set_inode_flag(inode
, FI_HOT_DATA
);
2651 if (f2fs_has_inline_data(inode
)) {
2652 err
= f2fs_write_inline_data(inode
, page
);
2657 if (err
== -EAGAIN
) {
2658 err
= f2fs_do_write_data_page(&fio
);
2659 if (err
== -EAGAIN
) {
2660 fio
.need_lock
= LOCK_REQ
;
2661 err
= f2fs_do_write_data_page(&fio
);
2666 file_set_keep_isize(inode
);
2668 spin_lock(&F2FS_I(inode
)->i_size_lock
);
2669 if (F2FS_I(inode
)->last_disk_size
< psize
)
2670 F2FS_I(inode
)->last_disk_size
= psize
;
2671 spin_unlock(&F2FS_I(inode
)->i_size_lock
);
2675 if (err
&& err
!= -ENOENT
)
2679 inode_dec_dirty_pages(inode
);
2681 ClearPageUptodate(page
);
2682 clear_cold_data(page
);
2685 if (wbc
->for_reclaim
) {
2686 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, DATA
);
2687 clear_inode_flag(inode
, FI_HOT_DATA
);
2688 f2fs_remove_dirty_inode(inode
);
2692 if (!S_ISDIR(inode
->i_mode
) && !IS_NOQUOTA(inode
) &&
2693 !F2FS_I(inode
)->cp_task
)
2694 f2fs_balance_fs(sbi
, need_balance_fs
);
2696 if (unlikely(f2fs_cp_error(sbi
))) {
2697 f2fs_submit_merged_write(sbi
, DATA
);
2698 f2fs_submit_merged_ipu_write(sbi
, bio
, NULL
);
2703 *submitted
= fio
.submitted
? 1 : 0;
2708 redirty_page_for_writepage(wbc
, page
);
2710 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2711 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2712 * file_write_and_wait_range() will see EIO error, which is critical
2713 * to return value of fsync() followed by atomic_write failure to user.
2715 if (!err
|| wbc
->for_reclaim
)
2716 return AOP_WRITEPAGE_ACTIVATE
;
2721 static int f2fs_write_data_page(struct page
*page
,
2722 struct writeback_control
*wbc
)
2724 #ifdef CONFIG_F2FS_FS_COMPRESSION
2725 struct inode
*inode
= page
->mapping
->host
;
2727 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode
))))
2730 if (f2fs_compressed_file(inode
)) {
2731 if (f2fs_is_compressed_cluster(inode
, page
->index
)) {
2732 redirty_page_for_writepage(wbc
, page
);
2733 return AOP_WRITEPAGE_ACTIVATE
;
2739 return f2fs_write_single_data_page(page
, NULL
, NULL
, NULL
,
2740 wbc
, FS_DATA_IO
, 0);
2744 * This function was copied from write_cche_pages from mm/page-writeback.c.
2745 * The major change is making write step of cold data page separately from
2746 * warm/hot data page.
2748 static int f2fs_write_cache_pages(struct address_space
*mapping
,
2749 struct writeback_control
*wbc
,
2750 enum iostat_type io_type
)
2753 int done
= 0, retry
= 0;
2754 struct pagevec pvec
;
2755 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
2756 struct bio
*bio
= NULL
;
2757 sector_t last_block
;
2758 #ifdef CONFIG_F2FS_FS_COMPRESSION
2759 struct inode
*inode
= mapping
->host
;
2760 struct compress_ctx cc
= {
2762 .log_cluster_size
= F2FS_I(inode
)->i_log_cluster_size
,
2763 .cluster_size
= F2FS_I(inode
)->i_cluster_size
,
2764 .cluster_idx
= NULL_CLUSTER
,
2770 .rlen
= PAGE_SIZE
* F2FS_I(inode
)->i_cluster_size
,
2775 pgoff_t
uninitialized_var(writeback_index
);
2777 pgoff_t end
; /* Inclusive */
2780 int range_whole
= 0;
2786 pagevec_init(&pvec
);
2788 if (get_dirty_pages(mapping
->host
) <=
2789 SM_I(F2FS_M_SB(mapping
))->min_hot_blocks
)
2790 set_inode_flag(mapping
->host
, FI_HOT_DATA
);
2792 clear_inode_flag(mapping
->host
, FI_HOT_DATA
);
2794 if (wbc
->range_cyclic
) {
2795 writeback_index
= mapping
->writeback_index
; /* prev offset */
2796 index
= writeback_index
;
2803 index
= wbc
->range_start
>> PAGE_SHIFT
;
2804 end
= wbc
->range_end
>> PAGE_SHIFT
;
2805 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2807 cycled
= 1; /* ignore range_cyclic tests */
2809 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2810 tag
= PAGECACHE_TAG_TOWRITE
;
2812 tag
= PAGECACHE_TAG_DIRTY
;
2815 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2816 tag_pages_for_writeback(mapping
, index
, end
);
2818 while (!done
&& !retry
&& (index
<= end
)) {
2819 nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
, end
,
2824 for (i
= 0; i
< nr_pages
; i
++) {
2825 struct page
*page
= pvec
.pages
[i
];
2829 #ifdef CONFIG_F2FS_FS_COMPRESSION
2830 if (f2fs_compressed_file(inode
)) {
2831 ret
= f2fs_init_compress_ctx(&cc
);
2837 if (!f2fs_cluster_can_merge_page(&cc
,
2839 ret
= f2fs_write_multi_pages(&cc
,
2840 &submitted
, wbc
, io_type
);
2846 if (unlikely(f2fs_cp_error(sbi
)))
2849 if (f2fs_cluster_is_empty(&cc
)) {
2850 void *fsdata
= NULL
;
2854 ret2
= f2fs_prepare_compress_overwrite(
2856 page
->index
, &fsdata
);
2862 !f2fs_compress_write_end(inode
,
2863 fsdata
, page
->index
,
2873 /* give a priority to WB_SYNC threads */
2874 if (atomic_read(&sbi
->wb_sync_req
[DATA
]) &&
2875 wbc
->sync_mode
== WB_SYNC_NONE
) {
2879 #ifdef CONFIG_F2FS_FS_COMPRESSION
2882 done_index
= page
->index
;
2886 if (unlikely(page
->mapping
!= mapping
)) {
2892 if (!PageDirty(page
)) {
2893 /* someone wrote it for us */
2894 goto continue_unlock
;
2897 if (PageWriteback(page
)) {
2898 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
2899 f2fs_wait_on_page_writeback(page
,
2902 goto continue_unlock
;
2905 if (!clear_page_dirty_for_io(page
))
2906 goto continue_unlock
;
2908 #ifdef CONFIG_F2FS_FS_COMPRESSION
2909 if (f2fs_compressed_file(inode
)) {
2911 f2fs_compress_ctx_add_page(&cc
, page
);
2915 ret
= f2fs_write_single_data_page(page
, &submitted
,
2916 &bio
, &last_block
, wbc
, io_type
, 0);
2917 if (ret
== AOP_WRITEPAGE_ACTIVATE
)
2919 #ifdef CONFIG_F2FS_FS_COMPRESSION
2922 nwritten
+= submitted
;
2923 wbc
->nr_to_write
-= submitted
;
2925 if (unlikely(ret
)) {
2927 * keep nr_to_write, since vfs uses this to
2928 * get # of written pages.
2930 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
2933 } else if (ret
== -EAGAIN
) {
2935 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
2937 congestion_wait(BLK_RW_ASYNC
,
2938 DEFAULT_IO_TIMEOUT
);
2943 done_index
= page
->index
+ 1;
2948 if (wbc
->nr_to_write
<= 0 &&
2949 wbc
->sync_mode
== WB_SYNC_NONE
) {
2957 pagevec_release(&pvec
);
2960 #ifdef CONFIG_F2FS_FS_COMPRESSION
2961 /* flush remained pages in compress cluster */
2962 if (f2fs_compressed_file(inode
) && !f2fs_cluster_is_empty(&cc
)) {
2963 ret
= f2fs_write_multi_pages(&cc
, &submitted
, wbc
, io_type
);
2964 nwritten
+= submitted
;
2965 wbc
->nr_to_write
-= submitted
;
2972 if ((!cycled
&& !done
) || retry
) {
2975 end
= writeback_index
- 1;
2978 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2979 mapping
->writeback_index
= done_index
;
2982 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping
), mapping
->host
,
2984 /* submit cached bio of IPU write */
2986 f2fs_submit_merged_ipu_write(sbi
, &bio
, NULL
);
2991 static inline bool __should_serialize_io(struct inode
*inode
,
2992 struct writeback_control
*wbc
)
2994 /* to avoid deadlock in path of data flush */
2995 if (F2FS_I(inode
)->cp_task
)
2998 if (!S_ISREG(inode
->i_mode
))
3000 if (IS_NOQUOTA(inode
))
3003 if (f2fs_compressed_file(inode
))
3005 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
3007 if (get_dirty_pages(inode
) >= SM_I(F2FS_I_SB(inode
))->min_seq_blocks
)
3012 static int __f2fs_write_data_pages(struct address_space
*mapping
,
3013 struct writeback_control
*wbc
,
3014 enum iostat_type io_type
)
3016 struct inode
*inode
= mapping
->host
;
3017 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
3018 struct blk_plug plug
;
3020 bool locked
= false;
3022 /* deal with chardevs and other special file */
3023 if (!mapping
->a_ops
->writepage
)
3026 /* skip writing if there is no dirty page in this inode */
3027 if (!get_dirty_pages(inode
) && wbc
->sync_mode
== WB_SYNC_NONE
)
3030 /* during POR, we don't need to trigger writepage at all. */
3031 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
3034 if ((S_ISDIR(inode
->i_mode
) || IS_NOQUOTA(inode
)) &&
3035 wbc
->sync_mode
== WB_SYNC_NONE
&&
3036 get_dirty_pages(inode
) < nr_pages_to_skip(sbi
, DATA
) &&
3037 f2fs_available_free_memory(sbi
, DIRTY_DENTS
))
3040 /* skip writing during file defragment */
3041 if (is_inode_flag_set(inode
, FI_DO_DEFRAG
))
3044 trace_f2fs_writepages(mapping
->host
, wbc
, DATA
);
3046 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3047 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3048 atomic_inc(&sbi
->wb_sync_req
[DATA
]);
3049 else if (atomic_read(&sbi
->wb_sync_req
[DATA
]))
3052 if (__should_serialize_io(inode
, wbc
)) {
3053 mutex_lock(&sbi
->writepages
);
3057 blk_start_plug(&plug
);
3058 ret
= f2fs_write_cache_pages(mapping
, wbc
, io_type
);
3059 blk_finish_plug(&plug
);
3062 mutex_unlock(&sbi
->writepages
);
3064 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3065 atomic_dec(&sbi
->wb_sync_req
[DATA
]);
3067 * if some pages were truncated, we cannot guarantee its mapping->host
3068 * to detect pending bios.
3071 f2fs_remove_dirty_inode(inode
);
3075 wbc
->pages_skipped
+= get_dirty_pages(inode
);
3076 trace_f2fs_writepages(mapping
->host
, wbc
, DATA
);
3080 static int f2fs_write_data_pages(struct address_space
*mapping
,
3081 struct writeback_control
*wbc
)
3083 struct inode
*inode
= mapping
->host
;
3085 return __f2fs_write_data_pages(mapping
, wbc
,
3086 F2FS_I(inode
)->cp_task
== current
?
3087 FS_CP_DATA_IO
: FS_DATA_IO
);
3090 static void f2fs_write_failed(struct address_space
*mapping
, loff_t to
)
3092 struct inode
*inode
= mapping
->host
;
3093 loff_t i_size
= i_size_read(inode
);
3095 if (IS_NOQUOTA(inode
))
3098 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3099 if (to
> i_size
&& !f2fs_verity_in_progress(inode
)) {
3100 down_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
3101 down_write(&F2FS_I(inode
)->i_mmap_sem
);
3103 truncate_pagecache(inode
, i_size
);
3104 f2fs_truncate_blocks(inode
, i_size
, true);
3106 up_write(&F2FS_I(inode
)->i_mmap_sem
);
3107 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
3111 static int prepare_write_begin(struct f2fs_sb_info
*sbi
,
3112 struct page
*page
, loff_t pos
, unsigned len
,
3113 block_t
*blk_addr
, bool *node_changed
)
3115 struct inode
*inode
= page
->mapping
->host
;
3116 pgoff_t index
= page
->index
;
3117 struct dnode_of_data dn
;
3119 bool locked
= false;
3120 struct extent_info ei
= {0,0,0};
3125 * we already allocated all the blocks, so we don't need to get
3126 * the block addresses when there is no need to fill the page.
3128 if (!f2fs_has_inline_data(inode
) && len
== PAGE_SIZE
&&
3129 !is_inode_flag_set(inode
, FI_NO_PREALLOC
) &&
3130 !f2fs_verity_in_progress(inode
))
3133 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3134 if (f2fs_has_inline_data(inode
) && pos
+ len
> MAX_INLINE_DATA(inode
))
3135 flag
= F2FS_GET_BLOCK_DEFAULT
;
3137 flag
= F2FS_GET_BLOCK_PRE_AIO
;
3139 if (f2fs_has_inline_data(inode
) ||
3140 (pos
& PAGE_MASK
) >= i_size_read(inode
)) {
3141 __do_map_lock(sbi
, flag
, true);
3146 /* check inline_data */
3147 ipage
= f2fs_get_node_page(sbi
, inode
->i_ino
);
3148 if (IS_ERR(ipage
)) {
3149 err
= PTR_ERR(ipage
);
3153 set_new_dnode(&dn
, inode
, ipage
, ipage
, 0);
3155 if (f2fs_has_inline_data(inode
)) {
3156 if (pos
+ len
<= MAX_INLINE_DATA(inode
)) {
3157 f2fs_do_read_inline_data(page
, ipage
);
3158 set_inode_flag(inode
, FI_DATA_EXIST
);
3160 set_inline_node(ipage
);
3162 err
= f2fs_convert_inline_page(&dn
, page
);
3165 if (dn
.data_blkaddr
== NULL_ADDR
)
3166 err
= f2fs_get_block(&dn
, index
);
3168 } else if (locked
) {
3169 err
= f2fs_get_block(&dn
, index
);
3171 if (f2fs_lookup_extent_cache(inode
, index
, &ei
)) {
3172 dn
.data_blkaddr
= ei
.blk
+ index
- ei
.fofs
;
3175 err
= f2fs_get_dnode_of_data(&dn
, index
, LOOKUP_NODE
);
3176 if (err
|| dn
.data_blkaddr
== NULL_ADDR
) {
3177 f2fs_put_dnode(&dn
);
3178 __do_map_lock(sbi
, F2FS_GET_BLOCK_PRE_AIO
,
3180 WARN_ON(flag
!= F2FS_GET_BLOCK_PRE_AIO
);
3187 /* convert_inline_page can make node_changed */
3188 *blk_addr
= dn
.data_blkaddr
;
3189 *node_changed
= dn
.node_changed
;
3191 f2fs_put_dnode(&dn
);
3194 __do_map_lock(sbi
, flag
, false);
3198 static int f2fs_write_begin(struct file
*file
, struct address_space
*mapping
,
3199 loff_t pos
, unsigned len
, unsigned flags
,
3200 struct page
**pagep
, void **fsdata
)
3202 struct inode
*inode
= mapping
->host
;
3203 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
3204 struct page
*page
= NULL
;
3205 pgoff_t index
= ((unsigned long long) pos
) >> PAGE_SHIFT
;
3206 bool need_balance
= false, drop_atomic
= false;
3207 block_t blkaddr
= NULL_ADDR
;
3210 trace_f2fs_write_begin(inode
, pos
, len
, flags
);
3212 if (!f2fs_is_checkpoint_ready(sbi
)) {
3217 if ((f2fs_is_atomic_file(inode
) &&
3218 !f2fs_available_free_memory(sbi
, INMEM_PAGES
)) ||
3219 is_inode_flag_set(inode
, FI_ATOMIC_REVOKE_REQUEST
)) {
3226 * We should check this at this moment to avoid deadlock on inode page
3227 * and #0 page. The locking rule for inline_data conversion should be:
3228 * lock_page(page #0) -> lock_page(inode_page)
3231 err
= f2fs_convert_inline_inode(inode
);
3236 #ifdef CONFIG_F2FS_FS_COMPRESSION
3237 if (f2fs_compressed_file(inode
)) {
3242 ret
= f2fs_prepare_compress_overwrite(inode
, pagep
,
3255 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3256 * wait_for_stable_page. Will wait that below with our IO control.
3258 page
= f2fs_pagecache_get_page(mapping
, index
,
3259 FGP_LOCK
| FGP_WRITE
| FGP_CREAT
, GFP_NOFS
);
3265 /* TODO: cluster can be compressed due to race with .writepage */
3269 err
= prepare_write_begin(sbi
, page
, pos
, len
,
3270 &blkaddr
, &need_balance
);
3274 if (need_balance
&& !IS_NOQUOTA(inode
) &&
3275 has_not_enough_free_secs(sbi
, 0, 0)) {
3277 f2fs_balance_fs(sbi
, true);
3279 if (page
->mapping
!= mapping
) {
3280 /* The page got truncated from under us */
3281 f2fs_put_page(page
, 1);
3286 f2fs_wait_on_page_writeback(page
, DATA
, false, true);
3288 if (len
== PAGE_SIZE
|| PageUptodate(page
))
3291 if (!(pos
& (PAGE_SIZE
- 1)) && (pos
+ len
) >= i_size_read(inode
) &&
3292 !f2fs_verity_in_progress(inode
)) {
3293 zero_user_segment(page
, len
, PAGE_SIZE
);
3297 if (blkaddr
== NEW_ADDR
) {
3298 zero_user_segment(page
, 0, PAGE_SIZE
);
3299 SetPageUptodate(page
);
3301 if (!f2fs_is_valid_blkaddr(sbi
, blkaddr
,
3302 DATA_GENERIC_ENHANCE_READ
)) {
3303 err
= -EFSCORRUPTED
;
3306 err
= f2fs_submit_page_read(inode
, page
, blkaddr
, true);
3311 if (unlikely(page
->mapping
!= mapping
)) {
3312 f2fs_put_page(page
, 1);
3315 if (unlikely(!PageUptodate(page
))) {
3323 f2fs_put_page(page
, 1);
3324 f2fs_write_failed(mapping
, pos
+ len
);
3326 f2fs_drop_inmem_pages_all(sbi
, false);
3330 static int f2fs_write_end(struct file
*file
,
3331 struct address_space
*mapping
,
3332 loff_t pos
, unsigned len
, unsigned copied
,
3333 struct page
*page
, void *fsdata
)
3335 struct inode
*inode
= page
->mapping
->host
;
3337 trace_f2fs_write_end(inode
, pos
, len
, copied
);
3340 * This should be come from len == PAGE_SIZE, and we expect copied
3341 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3342 * let generic_perform_write() try to copy data again through copied=0.
3344 if (!PageUptodate(page
)) {
3345 if (unlikely(copied
!= len
))
3348 SetPageUptodate(page
);
3351 #ifdef CONFIG_F2FS_FS_COMPRESSION
3352 /* overwrite compressed file */
3353 if (f2fs_compressed_file(inode
) && fsdata
) {
3354 f2fs_compress_write_end(inode
, fsdata
, page
->index
, copied
);
3355 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
3363 set_page_dirty(page
);
3365 if (pos
+ copied
> i_size_read(inode
) &&
3366 !f2fs_verity_in_progress(inode
))
3367 f2fs_i_size_write(inode
, pos
+ copied
);
3369 f2fs_put_page(page
, 1);
3370 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
3374 static int check_direct_IO(struct inode
*inode
, struct iov_iter
*iter
,
3377 unsigned i_blkbits
= READ_ONCE(inode
->i_blkbits
);
3378 unsigned blkbits
= i_blkbits
;
3379 unsigned blocksize_mask
= (1 << blkbits
) - 1;
3380 unsigned long align
= offset
| iov_iter_alignment(iter
);
3381 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
3383 if (align
& blocksize_mask
) {
3385 blkbits
= blksize_bits(bdev_logical_block_size(bdev
));
3386 blocksize_mask
= (1 << blkbits
) - 1;
3387 if (align
& blocksize_mask
)
3394 static void f2fs_dio_end_io(struct bio
*bio
)
3396 struct f2fs_private_dio
*dio
= bio
->bi_private
;
3398 dec_page_count(F2FS_I_SB(dio
->inode
),
3399 dio
->write
? F2FS_DIO_WRITE
: F2FS_DIO_READ
);
3401 bio
->bi_private
= dio
->orig_private
;
3402 bio
->bi_end_io
= dio
->orig_end_io
;
3409 static void f2fs_dio_submit_bio(struct bio
*bio
, struct inode
*inode
,
3412 struct f2fs_private_dio
*dio
;
3413 bool write
= (bio_op(bio
) == REQ_OP_WRITE
);
3415 dio
= f2fs_kzalloc(F2FS_I_SB(inode
),
3416 sizeof(struct f2fs_private_dio
), GFP_NOFS
);
3421 dio
->orig_end_io
= bio
->bi_end_io
;
3422 dio
->orig_private
= bio
->bi_private
;
3425 bio
->bi_end_io
= f2fs_dio_end_io
;
3426 bio
->bi_private
= dio
;
3428 inc_page_count(F2FS_I_SB(inode
),
3429 write
? F2FS_DIO_WRITE
: F2FS_DIO_READ
);
3434 bio
->bi_status
= BLK_STS_IOERR
;
3438 static ssize_t
f2fs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
3440 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
3441 struct inode
*inode
= mapping
->host
;
3442 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
3443 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
3444 size_t count
= iov_iter_count(iter
);
3445 loff_t offset
= iocb
->ki_pos
;
3446 int rw
= iov_iter_rw(iter
);
3448 enum rw_hint hint
= iocb
->ki_hint
;
3449 int whint_mode
= F2FS_OPTION(sbi
).whint_mode
;
3452 err
= check_direct_IO(inode
, iter
, offset
);
3454 return err
< 0 ? err
: 0;
3456 if (f2fs_force_buffered_io(inode
, iocb
, iter
))
3459 do_opu
= allow_outplace_dio(inode
, iocb
, iter
);
3461 trace_f2fs_direct_IO_enter(inode
, offset
, count
, rw
);
3463 if (rw
== WRITE
&& whint_mode
== WHINT_MODE_OFF
)
3464 iocb
->ki_hint
= WRITE_LIFE_NOT_SET
;
3466 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
3467 if (!down_read_trylock(&fi
->i_gc_rwsem
[rw
])) {
3468 iocb
->ki_hint
= hint
;
3472 if (do_opu
&& !down_read_trylock(&fi
->i_gc_rwsem
[READ
])) {
3473 up_read(&fi
->i_gc_rwsem
[rw
]);
3474 iocb
->ki_hint
= hint
;
3479 down_read(&fi
->i_gc_rwsem
[rw
]);
3481 down_read(&fi
->i_gc_rwsem
[READ
]);
3484 err
= __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
,
3485 iter
, rw
== WRITE
? get_data_block_dio_write
:
3486 get_data_block_dio
, NULL
, f2fs_dio_submit_bio
,
3487 rw
== WRITE
? DIO_LOCKING
| DIO_SKIP_HOLES
:
3491 up_read(&fi
->i_gc_rwsem
[READ
]);
3493 up_read(&fi
->i_gc_rwsem
[rw
]);
3496 if (whint_mode
== WHINT_MODE_OFF
)
3497 iocb
->ki_hint
= hint
;
3499 f2fs_update_iostat(F2FS_I_SB(inode
), APP_DIRECT_IO
,
3502 set_inode_flag(inode
, FI_UPDATE_WRITE
);
3503 } else if (err
< 0) {
3504 f2fs_write_failed(mapping
, offset
+ count
);
3509 trace_f2fs_direct_IO_exit(inode
, offset
, count
, rw
, err
);
3514 void f2fs_invalidate_page(struct page
*page
, unsigned int offset
,
3515 unsigned int length
)
3517 struct inode
*inode
= page
->mapping
->host
;
3518 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
3520 if (inode
->i_ino
>= F2FS_ROOT_INO(sbi
) &&
3521 (offset
% PAGE_SIZE
|| length
!= PAGE_SIZE
))
3524 if (PageDirty(page
)) {
3525 if (inode
->i_ino
== F2FS_META_INO(sbi
)) {
3526 dec_page_count(sbi
, F2FS_DIRTY_META
);
3527 } else if (inode
->i_ino
== F2FS_NODE_INO(sbi
)) {
3528 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
3530 inode_dec_dirty_pages(inode
);
3531 f2fs_remove_dirty_inode(inode
);
3535 clear_cold_data(page
);
3537 if (IS_ATOMIC_WRITTEN_PAGE(page
))
3538 return f2fs_drop_inmem_page(inode
, page
);
3540 f2fs_clear_page_private(page
);
3543 int f2fs_release_page(struct page
*page
, gfp_t wait
)
3545 /* If this is dirty page, keep PagePrivate */
3546 if (PageDirty(page
))
3549 /* This is atomic written page, keep Private */
3550 if (IS_ATOMIC_WRITTEN_PAGE(page
))
3553 clear_cold_data(page
);
3554 f2fs_clear_page_private(page
);
3558 static int f2fs_set_data_page_dirty(struct page
*page
)
3560 struct inode
*inode
= page_file_mapping(page
)->host
;
3562 trace_f2fs_set_page_dirty(page
, DATA
);
3564 if (!PageUptodate(page
))
3565 SetPageUptodate(page
);
3566 if (PageSwapCache(page
))
3567 return __set_page_dirty_nobuffers(page
);
3569 if (f2fs_is_atomic_file(inode
) && !f2fs_is_commit_atomic_write(inode
)) {
3570 if (!IS_ATOMIC_WRITTEN_PAGE(page
)) {
3571 f2fs_register_inmem_page(inode
, page
);
3575 * Previously, this page has been registered, we just
3581 if (!PageDirty(page
)) {
3582 __set_page_dirty_nobuffers(page
);
3583 f2fs_update_dirty_page(inode
, page
);
3589 static sector_t
f2fs_bmap(struct address_space
*mapping
, sector_t block
)
3591 struct inode
*inode
= mapping
->host
;
3593 if (f2fs_has_inline_data(inode
))
3596 /* make sure allocating whole blocks */
3597 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
3598 filemap_write_and_wait(mapping
);
3600 return generic_block_bmap(mapping
, block
, get_data_block_bmap
);
3603 #ifdef CONFIG_MIGRATION
3604 #include <linux/migrate.h>
3606 int f2fs_migrate_page(struct address_space
*mapping
,
3607 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
3609 int rc
, extra_count
;
3610 struct f2fs_inode_info
*fi
= F2FS_I(mapping
->host
);
3611 bool atomic_written
= IS_ATOMIC_WRITTEN_PAGE(page
);
3613 BUG_ON(PageWriteback(page
));
3615 /* migrating an atomic written page is safe with the inmem_lock hold */
3616 if (atomic_written
) {
3617 if (mode
!= MIGRATE_SYNC
)
3619 if (!mutex_trylock(&fi
->inmem_lock
))
3623 /* one extra reference was held for atomic_write page */
3624 extra_count
= atomic_written
? 1 : 0;
3625 rc
= migrate_page_move_mapping(mapping
, newpage
,
3627 if (rc
!= MIGRATEPAGE_SUCCESS
) {
3629 mutex_unlock(&fi
->inmem_lock
);
3633 if (atomic_written
) {
3634 struct inmem_pages
*cur
;
3635 list_for_each_entry(cur
, &fi
->inmem_pages
, list
)
3636 if (cur
->page
== page
) {
3637 cur
->page
= newpage
;
3640 mutex_unlock(&fi
->inmem_lock
);
3645 if (PagePrivate(page
)) {
3646 f2fs_set_page_private(newpage
, page_private(page
));
3647 f2fs_clear_page_private(page
);
3650 if (mode
!= MIGRATE_SYNC_NO_COPY
)
3651 migrate_page_copy(newpage
, page
);
3653 migrate_page_states(newpage
, page
);
3655 return MIGRATEPAGE_SUCCESS
;
3660 /* Copied from generic_swapfile_activate() to check any holes */
3661 static int check_swap_activate(struct swap_info_struct
*sis
,
3662 struct file
*swap_file
, sector_t
*span
)
3664 struct address_space
*mapping
= swap_file
->f_mapping
;
3665 struct inode
*inode
= mapping
->host
;
3666 unsigned blocks_per_page
;
3667 unsigned long page_no
;
3669 sector_t probe_block
;
3670 sector_t last_block
;
3671 sector_t lowest_block
= -1;
3672 sector_t highest_block
= 0;
3676 blkbits
= inode
->i_blkbits
;
3677 blocks_per_page
= PAGE_SIZE
>> blkbits
;
3680 * Map all the blocks into the extent list. This code doesn't try
3685 last_block
= i_size_read(inode
) >> blkbits
;
3686 while ((probe_block
+ blocks_per_page
) <= last_block
&&
3687 page_no
< sis
->max
) {
3688 unsigned block_in_page
;
3689 sector_t first_block
;
3695 block
= probe_block
;
3696 err
= bmap(inode
, &block
);
3699 first_block
= block
;
3702 * It must be PAGE_SIZE aligned on-disk
3704 if (first_block
& (blocks_per_page
- 1)) {
3709 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
3712 block
= probe_block
+ block_in_page
;
3713 err
= bmap(inode
, &block
);
3718 if (block
!= first_block
+ block_in_page
) {
3725 first_block
>>= (PAGE_SHIFT
- blkbits
);
3726 if (page_no
) { /* exclude the header page */
3727 if (first_block
< lowest_block
)
3728 lowest_block
= first_block
;
3729 if (first_block
> highest_block
)
3730 highest_block
= first_block
;
3734 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3736 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
3741 probe_block
+= blocks_per_page
;
3746 *span
= 1 + highest_block
- lowest_block
;
3748 page_no
= 1; /* force Empty message */
3750 sis
->pages
= page_no
- 1;
3751 sis
->highest_bit
= page_no
- 1;
3755 pr_err("swapon: swapfile has holes\n");
3759 static int f2fs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
3762 struct inode
*inode
= file_inode(file
);
3765 if (!S_ISREG(inode
->i_mode
))
3768 if (f2fs_readonly(F2FS_I_SB(inode
)->sb
))
3771 ret
= f2fs_convert_inline_inode(inode
);
3775 if (f2fs_disable_compressed_file(inode
))
3778 ret
= check_swap_activate(sis
, file
, span
);
3782 set_inode_flag(inode
, FI_PIN_FILE
);
3783 f2fs_precache_extents(inode
);
3784 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
3788 static void f2fs_swap_deactivate(struct file
*file
)
3790 struct inode
*inode
= file_inode(file
);
3792 clear_inode_flag(inode
, FI_PIN_FILE
);
3795 static int f2fs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
3801 static void f2fs_swap_deactivate(struct file
*file
)
3806 const struct address_space_operations f2fs_dblock_aops
= {
3807 .readpage
= f2fs_read_data_page
,
3808 .readpages
= f2fs_read_data_pages
,
3809 .writepage
= f2fs_write_data_page
,
3810 .writepages
= f2fs_write_data_pages
,
3811 .write_begin
= f2fs_write_begin
,
3812 .write_end
= f2fs_write_end
,
3813 .set_page_dirty
= f2fs_set_data_page_dirty
,
3814 .invalidatepage
= f2fs_invalidate_page
,
3815 .releasepage
= f2fs_release_page
,
3816 .direct_IO
= f2fs_direct_IO
,
3818 .swap_activate
= f2fs_swap_activate
,
3819 .swap_deactivate
= f2fs_swap_deactivate
,
3820 #ifdef CONFIG_MIGRATION
3821 .migratepage
= f2fs_migrate_page
,
3825 void f2fs_clear_page_cache_dirty_tag(struct page
*page
)
3827 struct address_space
*mapping
= page_mapping(page
);
3828 unsigned long flags
;
3830 xa_lock_irqsave(&mapping
->i_pages
, flags
);
3831 __xa_clear_mark(&mapping
->i_pages
, page_index(page
),
3832 PAGECACHE_TAG_DIRTY
);
3833 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
3836 int __init
f2fs_init_post_read_processing(void)
3838 bio_post_read_ctx_cache
=
3839 kmem_cache_create("f2fs_bio_post_read_ctx",
3840 sizeof(struct bio_post_read_ctx
), 0, 0, NULL
);
3841 if (!bio_post_read_ctx_cache
)
3843 bio_post_read_ctx_pool
=
3844 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS
,
3845 bio_post_read_ctx_cache
);
3846 if (!bio_post_read_ctx_pool
)
3847 goto fail_free_cache
;
3851 kmem_cache_destroy(bio_post_read_ctx_cache
);
3856 void f2fs_destroy_post_read_processing(void)
3858 mempool_destroy(bio_post_read_ctx_pool
);
3859 kmem_cache_destroy(bio_post_read_ctx_cache
);
3862 int f2fs_init_post_read_wq(struct f2fs_sb_info
*sbi
)
3864 if (!f2fs_sb_has_encrypt(sbi
) &&
3865 !f2fs_sb_has_verity(sbi
) &&
3866 !f2fs_sb_has_compression(sbi
))
3869 sbi
->post_read_wq
= alloc_workqueue("f2fs_post_read_wq",
3870 WQ_UNBOUND
| WQ_HIGHPRI
,
3872 if (!sbi
->post_read_wq
)
3877 void f2fs_destroy_post_read_wq(struct f2fs_sb_info
*sbi
)
3879 if (sbi
->post_read_wq
)
3880 destroy_workqueue(sbi
->post_read_wq
);
3883 int __init
f2fs_init_bio_entry_cache(void)
3885 bio_entry_slab
= f2fs_kmem_cache_create("f2fs_bio_entry_slab",
3886 sizeof(struct bio_entry
));
3887 if (!bio_entry_slab
)
3892 void f2fs_destroy_bio_entry_cache(void)
3894 kmem_cache_destroy(bio_entry_slab
);