1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
21 #include <trace/events/f2fs.h>
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
25 static struct kmem_cache
*nat_entry_slab
;
26 static struct kmem_cache
*free_nid_slab
;
27 static struct kmem_cache
*nat_entry_set_slab
;
28 static struct kmem_cache
*fsync_node_entry_slab
;
31 * Check whether the given nid is within node id range.
33 int f2fs_check_nid_range(struct f2fs_sb_info
*sbi
, nid_t nid
)
35 if (unlikely(nid
< F2FS_ROOT_INO(sbi
) || nid
>= NM_I(sbi
)->max_nid
)) {
36 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
37 f2fs_warn(sbi
, "%s: out-of-range nid=%x, run fsck to fix.",
44 bool f2fs_available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
46 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
48 unsigned long avail_ram
;
49 unsigned long mem_size
= 0;
54 /* only uses low memory */
55 avail_ram
= val
.totalram
- val
.totalhigh
;
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60 if (type
== FREE_NIDS
) {
61 mem_size
= (nm_i
->nid_cnt
[FREE_NID
] *
62 sizeof(struct free_nid
)) >> PAGE_SHIFT
;
63 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
64 } else if (type
== NAT_ENTRIES
) {
65 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
67 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
68 if (excess_cached_nats(sbi
))
70 } else if (type
== DIRTY_DENTS
) {
71 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
73 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
74 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
75 } else if (type
== INO_ENTRIES
) {
78 for (i
= 0; i
< MAX_INO_ENTRY
; i
++)
79 mem_size
+= sbi
->im
[i
].ino_num
*
80 sizeof(struct ino_entry
);
81 mem_size
>>= PAGE_SHIFT
;
82 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
83 } else if (type
== EXTENT_CACHE
) {
84 mem_size
= (atomic_read(&sbi
->total_ext_tree
) *
85 sizeof(struct extent_tree
) +
86 atomic_read(&sbi
->total_ext_node
) *
87 sizeof(struct extent_node
)) >> PAGE_SHIFT
;
88 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
89 } else if (type
== INMEM_PAGES
) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size
= get_pages(sbi
, F2FS_INMEM_PAGES
);
92 res
= mem_size
< (val
.totalram
/ 5);
94 if (!sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
100 static void clear_node_page_dirty(struct page
*page
)
102 if (PageDirty(page
)) {
103 f2fs_clear_page_cache_dirty_tag(page
);
104 clear_page_dirty_for_io(page
);
105 dec_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
107 ClearPageUptodate(page
);
110 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
112 return f2fs_get_meta_page_nofail(sbi
, current_nat_addr(sbi
, nid
));
115 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
117 struct page
*src_page
;
118 struct page
*dst_page
;
122 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
124 dst_off
= next_nat_addr(sbi
, current_nat_addr(sbi
, nid
));
126 /* get current nat block page with lock */
127 src_page
= get_current_nat_page(sbi
, nid
);
128 if (IS_ERR(src_page
))
130 dst_page
= f2fs_grab_meta_page(sbi
, dst_off
);
131 f2fs_bug_on(sbi
, PageDirty(src_page
));
133 src_addr
= page_address(src_page
);
134 dst_addr
= page_address(dst_page
);
135 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
136 set_page_dirty(dst_page
);
137 f2fs_put_page(src_page
, 1);
139 set_to_next_nat(nm_i
, nid
);
144 static struct nat_entry
*__alloc_nat_entry(nid_t nid
, bool no_fail
)
146 struct nat_entry
*new;
149 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_F2FS_ZERO
);
151 new = kmem_cache_alloc(nat_entry_slab
, GFP_F2FS_ZERO
);
153 nat_set_nid(new, nid
);
159 static void __free_nat_entry(struct nat_entry
*e
)
161 kmem_cache_free(nat_entry_slab
, e
);
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry
*__init_nat_entry(struct f2fs_nm_info
*nm_i
,
166 struct nat_entry
*ne
, struct f2fs_nat_entry
*raw_ne
, bool no_fail
)
169 f2fs_radix_tree_insert(&nm_i
->nat_root
, nat_get_nid(ne
), ne
);
170 else if (radix_tree_insert(&nm_i
->nat_root
, nat_get_nid(ne
), ne
))
174 node_info_from_raw_nat(&ne
->ni
, raw_ne
);
176 spin_lock(&nm_i
->nat_list_lock
);
177 list_add_tail(&ne
->list
, &nm_i
->nat_entries
);
178 spin_unlock(&nm_i
->nat_list_lock
);
184 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
186 struct nat_entry
*ne
;
188 ne
= radix_tree_lookup(&nm_i
->nat_root
, n
);
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne
&& !get_nat_flag(ne
, IS_DIRTY
)) {
192 spin_lock(&nm_i
->nat_list_lock
);
193 if (!list_empty(&ne
->list
))
194 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
195 spin_unlock(&nm_i
->nat_list_lock
);
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
202 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
204 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
207 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
209 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
214 static struct nat_entry_set
*__grab_nat_entry_set(struct f2fs_nm_info
*nm_i
,
215 struct nat_entry
*ne
)
217 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
218 struct nat_entry_set
*head
;
220 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
222 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
224 INIT_LIST_HEAD(&head
->entry_list
);
225 INIT_LIST_HEAD(&head
->set_list
);
228 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
233 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
234 struct nat_entry
*ne
)
236 struct nat_entry_set
*head
;
237 bool new_ne
= nat_get_blkaddr(ne
) == NEW_ADDR
;
240 head
= __grab_nat_entry_set(nm_i
, ne
);
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
247 if (!new_ne
&& (get_nat_flag(ne
, IS_PREALLOC
) ||
248 !get_nat_flag(ne
, IS_DIRTY
)))
251 set_nat_flag(ne
, IS_PREALLOC
, new_ne
);
253 if (get_nat_flag(ne
, IS_DIRTY
))
256 nm_i
->dirty_nat_cnt
++;
257 set_nat_flag(ne
, IS_DIRTY
, true);
259 spin_lock(&nm_i
->nat_list_lock
);
261 list_del_init(&ne
->list
);
263 list_move_tail(&ne
->list
, &head
->entry_list
);
264 spin_unlock(&nm_i
->nat_list_lock
);
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
268 struct nat_entry_set
*set
, struct nat_entry
*ne
)
270 spin_lock(&nm_i
->nat_list_lock
);
271 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
272 spin_unlock(&nm_i
->nat_list_lock
);
274 set_nat_flag(ne
, IS_DIRTY
, false);
276 nm_i
->dirty_nat_cnt
--;
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
280 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
282 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info
*sbi
, struct page
*page
)
288 return NODE_MAPPING(sbi
) == page
->mapping
&&
289 IS_DNODE(page
) && is_cold_node(page
);
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info
*sbi
)
294 spin_lock_init(&sbi
->fsync_node_lock
);
295 INIT_LIST_HEAD(&sbi
->fsync_node_list
);
296 sbi
->fsync_seg_id
= 0;
297 sbi
->fsync_node_num
= 0;
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info
*sbi
,
303 struct fsync_node_entry
*fn
;
307 fn
= f2fs_kmem_cache_alloc(fsync_node_entry_slab
, GFP_NOFS
);
311 INIT_LIST_HEAD(&fn
->list
);
313 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
314 list_add_tail(&fn
->list
, &sbi
->fsync_node_list
);
315 fn
->seq_id
= sbi
->fsync_seg_id
++;
317 sbi
->fsync_node_num
++;
318 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info
*sbi
, struct page
*page
)
325 struct fsync_node_entry
*fn
;
328 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
329 list_for_each_entry(fn
, &sbi
->fsync_node_list
, list
) {
330 if (fn
->page
== page
) {
332 sbi
->fsync_node_num
--;
333 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
334 kmem_cache_free(fsync_node_entry_slab
, fn
);
339 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info
*sbi
)
347 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
348 sbi
->fsync_seg_id
= 0;
349 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
352 int f2fs_need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
354 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
358 down_read(&nm_i
->nat_tree_lock
);
359 e
= __lookup_nat_cache(nm_i
, nid
);
361 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
362 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
365 up_read(&nm_i
->nat_tree_lock
);
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
371 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
375 down_read(&nm_i
->nat_tree_lock
);
376 e
= __lookup_nat_cache(nm_i
, nid
);
377 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
379 up_read(&nm_i
->nat_tree_lock
);
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
385 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
387 bool need_update
= true;
389 down_read(&nm_i
->nat_tree_lock
);
390 e
= __lookup_nat_cache(nm_i
, ino
);
391 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
392 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
393 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
395 up_read(&nm_i
->nat_tree_lock
);
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info
*sbi
, nid_t nid
,
401 struct f2fs_nat_entry
*ne
)
403 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
404 struct nat_entry
*new, *e
;
406 new = __alloc_nat_entry(nid
, false);
410 down_write(&nm_i
->nat_tree_lock
);
411 e
= __lookup_nat_cache(nm_i
, nid
);
413 e
= __init_nat_entry(nm_i
, new, ne
, false);
415 f2fs_bug_on(sbi
, nat_get_ino(e
) != le32_to_cpu(ne
->ino
) ||
416 nat_get_blkaddr(e
) !=
417 le32_to_cpu(ne
->block_addr
) ||
418 nat_get_version(e
) != ne
->version
);
419 up_write(&nm_i
->nat_tree_lock
);
421 __free_nat_entry(new);
424 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
425 block_t new_blkaddr
, bool fsync_done
)
427 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
429 struct nat_entry
*new = __alloc_nat_entry(ni
->nid
, true);
431 down_write(&nm_i
->nat_tree_lock
);
432 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
434 e
= __init_nat_entry(nm_i
, new, NULL
, true);
435 copy_node_info(&e
->ni
, ni
);
436 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
437 } else if (new_blkaddr
== NEW_ADDR
) {
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
443 copy_node_info(&e
->ni
, ni
);
444 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
446 /* let's free early to reduce memory consumption */
448 __free_nat_entry(new);
451 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
452 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
453 new_blkaddr
== NULL_ADDR
);
454 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
455 new_blkaddr
== NEW_ADDR
);
456 f2fs_bug_on(sbi
, __is_valid_data_blkaddr(nat_get_blkaddr(e
)) &&
457 new_blkaddr
== NEW_ADDR
);
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
461 unsigned char version
= nat_get_version(e
);
462 nat_set_version(e
, inc_node_version(version
));
466 nat_set_blkaddr(e
, new_blkaddr
);
467 if (!__is_valid_data_blkaddr(new_blkaddr
))
468 set_nat_flag(e
, IS_CHECKPOINTED
, false);
469 __set_nat_cache_dirty(nm_i
, e
);
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni
->nid
!= ni
->ino
)
473 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
475 if (fsync_done
&& ni
->nid
== ni
->ino
)
476 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
477 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
479 up_write(&nm_i
->nat_tree_lock
);
482 int f2fs_try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
484 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
487 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
490 spin_lock(&nm_i
->nat_list_lock
);
492 struct nat_entry
*ne
;
494 if (list_empty(&nm_i
->nat_entries
))
497 ne
= list_first_entry(&nm_i
->nat_entries
,
498 struct nat_entry
, list
);
500 spin_unlock(&nm_i
->nat_list_lock
);
502 __del_from_nat_cache(nm_i
, ne
);
505 spin_lock(&nm_i
->nat_list_lock
);
507 spin_unlock(&nm_i
->nat_list_lock
);
509 up_write(&nm_i
->nat_tree_lock
);
510 return nr
- nr_shrink
;
513 int f2fs_get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
,
514 struct node_info
*ni
)
516 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
517 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
518 struct f2fs_journal
*journal
= curseg
->journal
;
519 nid_t start_nid
= START_NID(nid
);
520 struct f2fs_nat_block
*nat_blk
;
521 struct page
*page
= NULL
;
522 struct f2fs_nat_entry ne
;
530 /* Check nat cache */
531 down_read(&nm_i
->nat_tree_lock
);
532 e
= __lookup_nat_cache(nm_i
, nid
);
534 ni
->ino
= nat_get_ino(e
);
535 ni
->blk_addr
= nat_get_blkaddr(e
);
536 ni
->version
= nat_get_version(e
);
537 up_read(&nm_i
->nat_tree_lock
);
541 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
543 /* Check current segment summary */
544 down_read(&curseg
->journal_rwsem
);
545 i
= f2fs_lookup_journal_in_cursum(journal
, NAT_JOURNAL
, nid
, 0);
547 ne
= nat_in_journal(journal
, i
);
548 node_info_from_raw_nat(ni
, &ne
);
550 up_read(&curseg
->journal_rwsem
);
552 up_read(&nm_i
->nat_tree_lock
);
556 /* Fill node_info from nat page */
557 index
= current_nat_addr(sbi
, nid
);
558 up_read(&nm_i
->nat_tree_lock
);
560 page
= f2fs_get_meta_page(sbi
, index
);
562 return PTR_ERR(page
);
564 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
565 ne
= nat_blk
->entries
[nid
- start_nid
];
566 node_info_from_raw_nat(ni
, &ne
);
567 f2fs_put_page(page
, 1);
569 blkaddr
= le32_to_cpu(ne
.block_addr
);
570 if (__is_valid_data_blkaddr(blkaddr
) &&
571 !f2fs_is_valid_blkaddr(sbi
, blkaddr
, DATA_GENERIC_ENHANCE
))
574 /* cache nat entry */
575 cache_nat_entry(sbi
, nid
, &ne
);
580 * readahead MAX_RA_NODE number of node pages.
582 static void f2fs_ra_node_pages(struct page
*parent
, int start
, int n
)
584 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
585 struct blk_plug plug
;
589 blk_start_plug(&plug
);
591 /* Then, try readahead for siblings of the desired node */
593 end
= min(end
, NIDS_PER_BLOCK
);
594 for (i
= start
; i
< end
; i
++) {
595 nid
= get_nid(parent
, i
, false);
596 f2fs_ra_node_page(sbi
, nid
);
599 blk_finish_plug(&plug
);
602 pgoff_t
f2fs_get_next_page_offset(struct dnode_of_data
*dn
, pgoff_t pgofs
)
604 const long direct_index
= ADDRS_PER_INODE(dn
->inode
);
605 const long direct_blks
= ADDRS_PER_BLOCK(dn
->inode
);
606 const long indirect_blks
= ADDRS_PER_BLOCK(dn
->inode
) * NIDS_PER_BLOCK
;
607 unsigned int skipped_unit
= ADDRS_PER_BLOCK(dn
->inode
);
608 int cur_level
= dn
->cur_level
;
609 int max_level
= dn
->max_level
;
615 while (max_level
-- > cur_level
)
616 skipped_unit
*= NIDS_PER_BLOCK
;
618 switch (dn
->max_level
) {
620 base
+= 2 * indirect_blks
;
623 base
+= 2 * direct_blks
;
626 base
+= direct_index
;
629 f2fs_bug_on(F2FS_I_SB(dn
->inode
), 1);
632 return ((pgofs
- base
) / skipped_unit
+ 1) * skipped_unit
+ base
;
636 * The maximum depth is four.
637 * Offset[0] will have raw inode offset.
639 static int get_node_path(struct inode
*inode
, long block
,
640 int offset
[4], unsigned int noffset
[4])
642 const long direct_index
= ADDRS_PER_INODE(inode
);
643 const long direct_blks
= ADDRS_PER_BLOCK(inode
);
644 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
645 const long indirect_blks
= ADDRS_PER_BLOCK(inode
) * NIDS_PER_BLOCK
;
646 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
652 if (block
< direct_index
) {
656 block
-= direct_index
;
657 if (block
< direct_blks
) {
658 offset
[n
++] = NODE_DIR1_BLOCK
;
664 block
-= direct_blks
;
665 if (block
< direct_blks
) {
666 offset
[n
++] = NODE_DIR2_BLOCK
;
672 block
-= direct_blks
;
673 if (block
< indirect_blks
) {
674 offset
[n
++] = NODE_IND1_BLOCK
;
676 offset
[n
++] = block
/ direct_blks
;
677 noffset
[n
] = 4 + offset
[n
- 1];
678 offset
[n
] = block
% direct_blks
;
682 block
-= indirect_blks
;
683 if (block
< indirect_blks
) {
684 offset
[n
++] = NODE_IND2_BLOCK
;
685 noffset
[n
] = 4 + dptrs_per_blk
;
686 offset
[n
++] = block
/ direct_blks
;
687 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
688 offset
[n
] = block
% direct_blks
;
692 block
-= indirect_blks
;
693 if (block
< dindirect_blks
) {
694 offset
[n
++] = NODE_DIND_BLOCK
;
695 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
696 offset
[n
++] = block
/ indirect_blks
;
697 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
698 offset
[n
- 1] * (dptrs_per_blk
+ 1);
699 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
700 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
701 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
703 offset
[n
] = block
% direct_blks
;
714 * Caller should call f2fs_put_dnode(dn).
715 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
716 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
718 int f2fs_get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
720 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
721 struct page
*npage
[4];
722 struct page
*parent
= NULL
;
724 unsigned int noffset
[4];
729 level
= get_node_path(dn
->inode
, index
, offset
, noffset
);
733 nids
[0] = dn
->inode
->i_ino
;
734 npage
[0] = dn
->inode_page
;
737 npage
[0] = f2fs_get_node_page(sbi
, nids
[0]);
738 if (IS_ERR(npage
[0]))
739 return PTR_ERR(npage
[0]);
742 /* if inline_data is set, should not report any block indices */
743 if (f2fs_has_inline_data(dn
->inode
) && index
) {
745 f2fs_put_page(npage
[0], 1);
751 nids
[1] = get_nid(parent
, offset
[0], true);
752 dn
->inode_page
= npage
[0];
753 dn
->inode_page_locked
= true;
755 /* get indirect or direct nodes */
756 for (i
= 1; i
<= level
; i
++) {
759 if (!nids
[i
] && mode
== ALLOC_NODE
) {
761 if (!f2fs_alloc_nid(sbi
, &(nids
[i
]))) {
767 npage
[i
] = f2fs_new_node_page(dn
, noffset
[i
]);
768 if (IS_ERR(npage
[i
])) {
769 f2fs_alloc_nid_failed(sbi
, nids
[i
]);
770 err
= PTR_ERR(npage
[i
]);
774 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
775 f2fs_alloc_nid_done(sbi
, nids
[i
]);
777 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
778 npage
[i
] = f2fs_get_node_page_ra(parent
, offset
[i
- 1]);
779 if (IS_ERR(npage
[i
])) {
780 err
= PTR_ERR(npage
[i
]);
786 dn
->inode_page_locked
= false;
789 f2fs_put_page(parent
, 1);
793 npage
[i
] = f2fs_get_node_page(sbi
, nids
[i
]);
794 if (IS_ERR(npage
[i
])) {
795 err
= PTR_ERR(npage
[i
]);
796 f2fs_put_page(npage
[0], 0);
802 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
805 dn
->nid
= nids
[level
];
806 dn
->ofs_in_node
= offset
[level
];
807 dn
->node_page
= npage
[level
];
808 dn
->data_blkaddr
= f2fs_data_blkaddr(dn
);
812 f2fs_put_page(parent
, 1);
814 f2fs_put_page(npage
[0], 0);
816 dn
->inode_page
= NULL
;
817 dn
->node_page
= NULL
;
818 if (err
== -ENOENT
) {
820 dn
->max_level
= level
;
821 dn
->ofs_in_node
= offset
[level
];
826 static int truncate_node(struct dnode_of_data
*dn
)
828 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
833 err
= f2fs_get_node_info(sbi
, dn
->nid
, &ni
);
837 /* Deallocate node address */
838 f2fs_invalidate_blocks(sbi
, ni
.blk_addr
);
839 dec_valid_node_count(sbi
, dn
->inode
, dn
->nid
== dn
->inode
->i_ino
);
840 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
842 if (dn
->nid
== dn
->inode
->i_ino
) {
843 f2fs_remove_orphan_inode(sbi
, dn
->nid
);
844 dec_valid_inode_count(sbi
);
845 f2fs_inode_synced(dn
->inode
);
848 clear_node_page_dirty(dn
->node_page
);
849 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
851 index
= dn
->node_page
->index
;
852 f2fs_put_page(dn
->node_page
, 1);
854 invalidate_mapping_pages(NODE_MAPPING(sbi
),
857 dn
->node_page
= NULL
;
858 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
863 static int truncate_dnode(struct dnode_of_data
*dn
)
871 /* get direct node */
872 page
= f2fs_get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
873 if (PTR_ERR(page
) == -ENOENT
)
875 else if (IS_ERR(page
))
876 return PTR_ERR(page
);
878 /* Make dnode_of_data for parameter */
879 dn
->node_page
= page
;
881 f2fs_truncate_data_blocks(dn
);
882 err
= truncate_node(dn
);
889 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
892 struct dnode_of_data rdn
= *dn
;
894 struct f2fs_node
*rn
;
896 unsigned int child_nofs
;
901 return NIDS_PER_BLOCK
+ 1;
903 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
905 page
= f2fs_get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
907 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
908 return PTR_ERR(page
);
911 f2fs_ra_node_pages(page
, ofs
, NIDS_PER_BLOCK
);
913 rn
= F2FS_NODE(page
);
915 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
916 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
920 ret
= truncate_dnode(&rdn
);
923 if (set_nid(page
, i
, 0, false))
924 dn
->node_changed
= true;
927 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
928 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
929 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
930 if (child_nid
== 0) {
931 child_nofs
+= NIDS_PER_BLOCK
+ 1;
935 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
936 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
937 if (set_nid(page
, i
, 0, false))
938 dn
->node_changed
= true;
940 } else if (ret
< 0 && ret
!= -ENOENT
) {
948 /* remove current indirect node */
949 dn
->node_page
= page
;
950 ret
= truncate_node(dn
);
955 f2fs_put_page(page
, 1);
957 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
961 f2fs_put_page(page
, 1);
962 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
966 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
967 struct f2fs_inode
*ri
, int *offset
, int depth
)
969 struct page
*pages
[2];
976 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
980 /* get indirect nodes in the path */
981 for (i
= 0; i
< idx
+ 1; i
++) {
982 /* reference count'll be increased */
983 pages
[i
] = f2fs_get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
984 if (IS_ERR(pages
[i
])) {
985 err
= PTR_ERR(pages
[i
]);
989 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
992 f2fs_ra_node_pages(pages
[idx
], offset
[idx
+ 1], NIDS_PER_BLOCK
);
994 /* free direct nodes linked to a partial indirect node */
995 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
996 child_nid
= get_nid(pages
[idx
], i
, false);
1000 err
= truncate_dnode(dn
);
1003 if (set_nid(pages
[idx
], i
, 0, false))
1004 dn
->node_changed
= true;
1007 if (offset
[idx
+ 1] == 0) {
1008 dn
->node_page
= pages
[idx
];
1010 err
= truncate_node(dn
);
1014 f2fs_put_page(pages
[idx
], 1);
1017 offset
[idx
+ 1] = 0;
1020 for (i
= idx
; i
>= 0; i
--)
1021 f2fs_put_page(pages
[i
], 1);
1023 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
1029 * All the block addresses of data and nodes should be nullified.
1031 int f2fs_truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
1033 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1034 int err
= 0, cont
= 1;
1035 int level
, offset
[4], noffset
[4];
1036 unsigned int nofs
= 0;
1037 struct f2fs_inode
*ri
;
1038 struct dnode_of_data dn
;
1041 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
1043 level
= get_node_path(inode
, from
, offset
, noffset
);
1047 page
= f2fs_get_node_page(sbi
, inode
->i_ino
);
1049 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
1050 return PTR_ERR(page
);
1053 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
1056 ri
= F2FS_INODE(page
);
1064 if (!offset
[level
- 1])
1066 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
1067 if (err
< 0 && err
!= -ENOENT
)
1069 nofs
+= 1 + NIDS_PER_BLOCK
;
1072 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
1073 if (!offset
[level
- 1])
1075 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
1076 if (err
< 0 && err
!= -ENOENT
)
1085 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
1086 switch (offset
[0]) {
1087 case NODE_DIR1_BLOCK
:
1088 case NODE_DIR2_BLOCK
:
1089 err
= truncate_dnode(&dn
);
1092 case NODE_IND1_BLOCK
:
1093 case NODE_IND2_BLOCK
:
1094 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
1097 case NODE_DIND_BLOCK
:
1098 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
1105 if (err
< 0 && err
!= -ENOENT
)
1107 if (offset
[1] == 0 &&
1108 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
1110 BUG_ON(page
->mapping
!= NODE_MAPPING(sbi
));
1111 f2fs_wait_on_page_writeback(page
, NODE
, true, true);
1112 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
1113 set_page_dirty(page
);
1121 f2fs_put_page(page
, 0);
1122 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
1123 return err
> 0 ? 0 : err
;
1126 /* caller must lock inode page */
1127 int f2fs_truncate_xattr_node(struct inode
*inode
)
1129 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1130 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
1131 struct dnode_of_data dn
;
1138 npage
= f2fs_get_node_page(sbi
, nid
);
1140 return PTR_ERR(npage
);
1142 set_new_dnode(&dn
, inode
, NULL
, npage
, nid
);
1143 err
= truncate_node(&dn
);
1145 f2fs_put_page(npage
, 1);
1149 f2fs_i_xnid_write(inode
, 0);
1155 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1158 int f2fs_remove_inode_page(struct inode
*inode
)
1160 struct dnode_of_data dn
;
1163 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1164 err
= f2fs_get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
1168 err
= f2fs_truncate_xattr_node(inode
);
1170 f2fs_put_dnode(&dn
);
1174 /* remove potential inline_data blocks */
1175 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1176 S_ISLNK(inode
->i_mode
))
1177 f2fs_truncate_data_blocks_range(&dn
, 1);
1179 /* 0 is possible, after f2fs_new_inode() has failed */
1180 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode
)))) {
1181 f2fs_put_dnode(&dn
);
1185 if (unlikely(inode
->i_blocks
!= 0 && inode
->i_blocks
!= 8)) {
1186 f2fs_warn(F2FS_I_SB(inode
),
1187 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1188 inode
->i_ino
, (unsigned long long)inode
->i_blocks
);
1189 set_sbi_flag(F2FS_I_SB(inode
), SBI_NEED_FSCK
);
1192 /* will put inode & node pages */
1193 err
= truncate_node(&dn
);
1195 f2fs_put_dnode(&dn
);
1201 struct page
*f2fs_new_inode_page(struct inode
*inode
)
1203 struct dnode_of_data dn
;
1205 /* allocate inode page for new inode */
1206 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1208 /* caller should f2fs_put_page(page, 1); */
1209 return f2fs_new_node_page(&dn
, 0);
1212 struct page
*f2fs_new_node_page(struct dnode_of_data
*dn
, unsigned int ofs
)
1214 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1215 struct node_info new_ni
;
1219 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
1220 return ERR_PTR(-EPERM
);
1222 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
, false);
1224 return ERR_PTR(-ENOMEM
);
1226 if (unlikely((err
= inc_valid_node_count(sbi
, dn
->inode
, !ofs
))))
1229 #ifdef CONFIG_F2FS_CHECK_FS
1230 err
= f2fs_get_node_info(sbi
, dn
->nid
, &new_ni
);
1232 dec_valid_node_count(sbi
, dn
->inode
, !ofs
);
1235 f2fs_bug_on(sbi
, new_ni
.blk_addr
!= NULL_ADDR
);
1237 new_ni
.nid
= dn
->nid
;
1238 new_ni
.ino
= dn
->inode
->i_ino
;
1239 new_ni
.blk_addr
= NULL_ADDR
;
1242 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1244 f2fs_wait_on_page_writeback(page
, NODE
, true, true);
1245 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
1246 set_cold_node(page
, S_ISDIR(dn
->inode
->i_mode
));
1247 if (!PageUptodate(page
))
1248 SetPageUptodate(page
);
1249 if (set_page_dirty(page
))
1250 dn
->node_changed
= true;
1252 if (f2fs_has_xattr_block(ofs
))
1253 f2fs_i_xnid_write(dn
->inode
, dn
->nid
);
1256 inc_valid_inode_count(sbi
);
1260 clear_node_page_dirty(page
);
1261 f2fs_put_page(page
, 1);
1262 return ERR_PTR(err
);
1266 * Caller should do after getting the following values.
1267 * 0: f2fs_put_page(page, 0)
1268 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1270 static int read_node_page(struct page
*page
, int op_flags
)
1272 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1273 struct node_info ni
;
1274 struct f2fs_io_info fio
= {
1278 .op_flags
= op_flags
,
1280 .encrypted_page
= NULL
,
1284 if (PageUptodate(page
)) {
1285 if (!f2fs_inode_chksum_verify(sbi
, page
)) {
1286 ClearPageUptodate(page
);
1292 err
= f2fs_get_node_info(sbi
, page
->index
, &ni
);
1296 if (unlikely(ni
.blk_addr
== NULL_ADDR
) ||
1297 is_sbi_flag_set(sbi
, SBI_IS_SHUTDOWN
)) {
1298 ClearPageUptodate(page
);
1302 fio
.new_blkaddr
= fio
.old_blkaddr
= ni
.blk_addr
;
1303 return f2fs_submit_page_bio(&fio
);
1307 * Readahead a node page
1309 void f2fs_ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1316 if (f2fs_check_nid_range(sbi
, nid
))
1319 apage
= xa_load(&NODE_MAPPING(sbi
)->i_pages
, nid
);
1323 apage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1327 err
= read_node_page(apage
, REQ_RAHEAD
);
1328 f2fs_put_page(apage
, err
? 1 : 0);
1331 static struct page
*__get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
,
1332 struct page
*parent
, int start
)
1338 return ERR_PTR(-ENOENT
);
1339 if (f2fs_check_nid_range(sbi
, nid
))
1340 return ERR_PTR(-EINVAL
);
1342 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1344 return ERR_PTR(-ENOMEM
);
1346 err
= read_node_page(page
, 0);
1348 f2fs_put_page(page
, 1);
1349 return ERR_PTR(err
);
1350 } else if (err
== LOCKED_PAGE
) {
1356 f2fs_ra_node_pages(parent
, start
+ 1, MAX_RA_NODE
);
1360 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1361 f2fs_put_page(page
, 1);
1365 if (unlikely(!PageUptodate(page
))) {
1370 if (!f2fs_inode_chksum_verify(sbi
, page
)) {
1375 if(unlikely(nid
!= nid_of_node(page
))) {
1376 f2fs_warn(sbi
, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1377 nid
, nid_of_node(page
), ino_of_node(page
),
1378 ofs_of_node(page
), cpver_of_node(page
),
1379 next_blkaddr_of_node(page
));
1382 ClearPageUptodate(page
);
1383 f2fs_put_page(page
, 1);
1384 return ERR_PTR(err
);
1389 struct page
*f2fs_get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1391 return __get_node_page(sbi
, nid
, NULL
, 0);
1394 struct page
*f2fs_get_node_page_ra(struct page
*parent
, int start
)
1396 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1397 nid_t nid
= get_nid(parent
, start
, false);
1399 return __get_node_page(sbi
, nid
, parent
, start
);
1402 static void flush_inline_data(struct f2fs_sb_info
*sbi
, nid_t ino
)
1404 struct inode
*inode
;
1408 /* should flush inline_data before evict_inode */
1409 inode
= ilookup(sbi
->sb
, ino
);
1413 page
= f2fs_pagecache_get_page(inode
->i_mapping
, 0,
1414 FGP_LOCK
|FGP_NOWAIT
, 0);
1418 if (!PageUptodate(page
))
1421 if (!PageDirty(page
))
1424 if (!clear_page_dirty_for_io(page
))
1427 ret
= f2fs_write_inline_data(inode
, page
);
1428 inode_dec_dirty_pages(inode
);
1429 f2fs_remove_dirty_inode(inode
);
1431 set_page_dirty(page
);
1433 f2fs_put_page(page
, 1);
1438 static struct page
*last_fsync_dnode(struct f2fs_sb_info
*sbi
, nid_t ino
)
1441 struct pagevec pvec
;
1442 struct page
*last_page
= NULL
;
1445 pagevec_init(&pvec
);
1448 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1449 PAGECACHE_TAG_DIRTY
))) {
1452 for (i
= 0; i
< nr_pages
; i
++) {
1453 struct page
*page
= pvec
.pages
[i
];
1455 if (unlikely(f2fs_cp_error(sbi
))) {
1456 f2fs_put_page(last_page
, 0);
1457 pagevec_release(&pvec
);
1458 return ERR_PTR(-EIO
);
1461 if (!IS_DNODE(page
) || !is_cold_node(page
))
1463 if (ino_of_node(page
) != ino
)
1468 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1473 if (ino_of_node(page
) != ino
)
1474 goto continue_unlock
;
1476 if (!PageDirty(page
)) {
1477 /* someone wrote it for us */
1478 goto continue_unlock
;
1482 f2fs_put_page(last_page
, 0);
1488 pagevec_release(&pvec
);
1494 static int __write_node_page(struct page
*page
, bool atomic
, bool *submitted
,
1495 struct writeback_control
*wbc
, bool do_balance
,
1496 enum iostat_type io_type
, unsigned int *seq_id
)
1498 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1500 struct node_info ni
;
1501 struct f2fs_io_info fio
= {
1503 .ino
= ino_of_node(page
),
1506 .op_flags
= wbc_to_write_flags(wbc
),
1508 .encrypted_page
= NULL
,
1515 trace_f2fs_writepage(page
, NODE
);
1517 if (unlikely(f2fs_cp_error(sbi
)))
1520 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1523 if (!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
) &&
1524 wbc
->sync_mode
== WB_SYNC_NONE
&&
1525 IS_DNODE(page
) && is_cold_node(page
))
1528 /* get old block addr of this node page */
1529 nid
= nid_of_node(page
);
1530 f2fs_bug_on(sbi
, page
->index
!= nid
);
1532 if (f2fs_get_node_info(sbi
, nid
, &ni
))
1535 if (wbc
->for_reclaim
) {
1536 if (!down_read_trylock(&sbi
->node_write
))
1539 down_read(&sbi
->node_write
);
1542 /* This page is already truncated */
1543 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1544 ClearPageUptodate(page
);
1545 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1546 up_read(&sbi
->node_write
);
1551 if (__is_valid_data_blkaddr(ni
.blk_addr
) &&
1552 !f2fs_is_valid_blkaddr(sbi
, ni
.blk_addr
,
1553 DATA_GENERIC_ENHANCE
)) {
1554 up_read(&sbi
->node_write
);
1558 if (atomic
&& !test_opt(sbi
, NOBARRIER
))
1559 fio
.op_flags
|= REQ_PREFLUSH
| REQ_FUA
;
1561 /* should add to global list before clearing PAGECACHE status */
1562 if (f2fs_in_warm_node_list(sbi
, page
)) {
1563 seq
= f2fs_add_fsync_node_entry(sbi
, page
);
1568 set_page_writeback(page
);
1569 ClearPageError(page
);
1571 fio
.old_blkaddr
= ni
.blk_addr
;
1572 f2fs_do_write_node_page(nid
, &fio
);
1573 set_node_addr(sbi
, &ni
, fio
.new_blkaddr
, is_fsync_dnode(page
));
1574 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1575 up_read(&sbi
->node_write
);
1577 if (wbc
->for_reclaim
) {
1578 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, NODE
);
1584 if (unlikely(f2fs_cp_error(sbi
))) {
1585 f2fs_submit_merged_write(sbi
, NODE
);
1589 *submitted
= fio
.submitted
;
1592 f2fs_balance_fs(sbi
, false);
1596 redirty_page_for_writepage(wbc
, page
);
1597 return AOP_WRITEPAGE_ACTIVATE
;
1600 int f2fs_move_node_page(struct page
*node_page
, int gc_type
)
1604 if (gc_type
== FG_GC
) {
1605 struct writeback_control wbc
= {
1606 .sync_mode
= WB_SYNC_ALL
,
1611 f2fs_wait_on_page_writeback(node_page
, NODE
, true, true);
1613 set_page_dirty(node_page
);
1615 if (!clear_page_dirty_for_io(node_page
)) {
1620 if (__write_node_page(node_page
, false, NULL
,
1621 &wbc
, false, FS_GC_NODE_IO
, NULL
)) {
1623 unlock_page(node_page
);
1627 /* set page dirty and write it */
1628 if (!PageWriteback(node_page
))
1629 set_page_dirty(node_page
);
1632 unlock_page(node_page
);
1634 f2fs_put_page(node_page
, 0);
1638 static int f2fs_write_node_page(struct page
*page
,
1639 struct writeback_control
*wbc
)
1641 return __write_node_page(page
, false, NULL
, wbc
, false,
1645 int f2fs_fsync_node_pages(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
1646 struct writeback_control
*wbc
, bool atomic
,
1647 unsigned int *seq_id
)
1650 struct pagevec pvec
;
1652 struct page
*last_page
= NULL
;
1653 bool marked
= false;
1654 nid_t ino
= inode
->i_ino
;
1659 last_page
= last_fsync_dnode(sbi
, ino
);
1660 if (IS_ERR_OR_NULL(last_page
))
1661 return PTR_ERR_OR_ZERO(last_page
);
1664 pagevec_init(&pvec
);
1667 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1668 PAGECACHE_TAG_DIRTY
))) {
1671 for (i
= 0; i
< nr_pages
; i
++) {
1672 struct page
*page
= pvec
.pages
[i
];
1673 bool submitted
= false;
1675 if (unlikely(f2fs_cp_error(sbi
))) {
1676 f2fs_put_page(last_page
, 0);
1677 pagevec_release(&pvec
);
1682 if (!IS_DNODE(page
) || !is_cold_node(page
))
1684 if (ino_of_node(page
) != ino
)
1689 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1694 if (ino_of_node(page
) != ino
)
1695 goto continue_unlock
;
1697 if (!PageDirty(page
) && page
!= last_page
) {
1698 /* someone wrote it for us */
1699 goto continue_unlock
;
1702 f2fs_wait_on_page_writeback(page
, NODE
, true, true);
1704 set_fsync_mark(page
, 0);
1705 set_dentry_mark(page
, 0);
1707 if (!atomic
|| page
== last_page
) {
1708 set_fsync_mark(page
, 1);
1709 if (IS_INODE(page
)) {
1710 if (is_inode_flag_set(inode
,
1712 f2fs_update_inode(inode
, page
);
1713 set_dentry_mark(page
,
1714 f2fs_need_dentry_mark(sbi
, ino
));
1716 /* may be written by other thread */
1717 if (!PageDirty(page
))
1718 set_page_dirty(page
);
1721 if (!clear_page_dirty_for_io(page
))
1722 goto continue_unlock
;
1724 ret
= __write_node_page(page
, atomic
&&
1726 &submitted
, wbc
, true,
1727 FS_NODE_IO
, seq_id
);
1730 f2fs_put_page(last_page
, 0);
1732 } else if (submitted
) {
1736 if (page
== last_page
) {
1737 f2fs_put_page(page
, 0);
1742 pagevec_release(&pvec
);
1748 if (!ret
&& atomic
&& !marked
) {
1749 f2fs_debug(sbi
, "Retry to write fsync mark: ino=%u, idx=%lx",
1750 ino
, last_page
->index
);
1751 lock_page(last_page
);
1752 f2fs_wait_on_page_writeback(last_page
, NODE
, true, true);
1753 set_page_dirty(last_page
);
1754 unlock_page(last_page
);
1759 f2fs_submit_merged_write_cond(sbi
, NULL
, NULL
, ino
, NODE
);
1760 return ret
? -EIO
: 0;
1763 static int f2fs_match_ino(struct inode
*inode
, unsigned long ino
, void *data
)
1765 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1768 if (inode
->i_ino
!= ino
)
1771 if (!is_inode_flag_set(inode
, FI_DIRTY_INODE
))
1774 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
1775 clean
= list_empty(&F2FS_I(inode
)->gdirty_list
);
1776 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1781 inode
= igrab(inode
);
1787 static bool flush_dirty_inode(struct page
*page
)
1789 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1790 struct inode
*inode
;
1791 nid_t ino
= ino_of_node(page
);
1793 inode
= find_inode_nowait(sbi
->sb
, ino
, f2fs_match_ino
, NULL
);
1797 f2fs_update_inode(inode
, page
);
1804 int f2fs_sync_node_pages(struct f2fs_sb_info
*sbi
,
1805 struct writeback_control
*wbc
,
1806 bool do_balance
, enum iostat_type io_type
)
1809 struct pagevec pvec
;
1813 int nr_pages
, done
= 0;
1815 pagevec_init(&pvec
);
1820 while (!done
&& (nr_pages
= pagevec_lookup_tag(&pvec
,
1821 NODE_MAPPING(sbi
), &index
, PAGECACHE_TAG_DIRTY
))) {
1824 for (i
= 0; i
< nr_pages
; i
++) {
1825 struct page
*page
= pvec
.pages
[i
];
1826 bool submitted
= false;
1827 bool may_dirty
= true;
1829 /* give a priority to WB_SYNC threads */
1830 if (atomic_read(&sbi
->wb_sync_req
[NODE
]) &&
1831 wbc
->sync_mode
== WB_SYNC_NONE
) {
1837 * flushing sequence with step:
1842 if (step
== 0 && IS_DNODE(page
))
1844 if (step
== 1 && (!IS_DNODE(page
) ||
1845 is_cold_node(page
)))
1847 if (step
== 2 && (!IS_DNODE(page
) ||
1848 !is_cold_node(page
)))
1851 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1853 else if (!trylock_page(page
))
1856 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1862 if (!PageDirty(page
)) {
1863 /* someone wrote it for us */
1864 goto continue_unlock
;
1867 /* flush inline_data */
1868 if (is_inline_node(page
)) {
1869 clear_inline_node(page
);
1871 flush_inline_data(sbi
, ino_of_node(page
));
1875 /* flush dirty inode */
1876 if (IS_INODE(page
) && may_dirty
) {
1878 if (flush_dirty_inode(page
))
1882 f2fs_wait_on_page_writeback(page
, NODE
, true, true);
1884 if (!clear_page_dirty_for_io(page
))
1885 goto continue_unlock
;
1887 set_fsync_mark(page
, 0);
1888 set_dentry_mark(page
, 0);
1890 ret
= __write_node_page(page
, false, &submitted
,
1891 wbc
, do_balance
, io_type
, NULL
);
1897 if (--wbc
->nr_to_write
== 0)
1900 pagevec_release(&pvec
);
1903 if (wbc
->nr_to_write
== 0) {
1910 if (!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
) &&
1911 wbc
->sync_mode
== WB_SYNC_NONE
&& step
== 1)
1918 f2fs_submit_merged_write(sbi
, NODE
);
1920 if (unlikely(f2fs_cp_error(sbi
)))
1925 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
,
1926 unsigned int seq_id
)
1928 struct fsync_node_entry
*fn
;
1930 struct list_head
*head
= &sbi
->fsync_node_list
;
1931 unsigned long flags
;
1932 unsigned int cur_seq_id
= 0;
1935 while (seq_id
&& cur_seq_id
< seq_id
) {
1936 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
1937 if (list_empty(head
)) {
1938 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
1941 fn
= list_first_entry(head
, struct fsync_node_entry
, list
);
1942 if (fn
->seq_id
> seq_id
) {
1943 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
1946 cur_seq_id
= fn
->seq_id
;
1949 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
1951 f2fs_wait_on_page_writeback(page
, NODE
, true, false);
1952 if (TestClearPageError(page
))
1961 ret2
= filemap_check_errors(NODE_MAPPING(sbi
));
1968 static int f2fs_write_node_pages(struct address_space
*mapping
,
1969 struct writeback_control
*wbc
)
1971 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1972 struct blk_plug plug
;
1975 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1978 /* balancing f2fs's metadata in background */
1979 f2fs_balance_fs_bg(sbi
, true);
1981 /* collect a number of dirty node pages and write together */
1982 if (wbc
->sync_mode
!= WB_SYNC_ALL
&&
1983 get_pages(sbi
, F2FS_DIRTY_NODES
) <
1984 nr_pages_to_skip(sbi
, NODE
))
1987 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1988 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
1989 else if (atomic_read(&sbi
->wb_sync_req
[NODE
]))
1992 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1994 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1995 blk_start_plug(&plug
);
1996 f2fs_sync_node_pages(sbi
, wbc
, true, FS_NODE_IO
);
1997 blk_finish_plug(&plug
);
1998 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
2000 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2001 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
2005 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
2006 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
2010 static int f2fs_set_node_page_dirty(struct page
*page
)
2012 trace_f2fs_set_page_dirty(page
, NODE
);
2014 if (!PageUptodate(page
))
2015 SetPageUptodate(page
);
2016 #ifdef CONFIG_F2FS_CHECK_FS
2018 f2fs_inode_chksum_set(F2FS_P_SB(page
), page
);
2020 if (!PageDirty(page
)) {
2021 __set_page_dirty_nobuffers(page
);
2022 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
2023 f2fs_set_page_private(page
, 0);
2024 f2fs_trace_pid(page
);
2031 * Structure of the f2fs node operations
2033 const struct address_space_operations f2fs_node_aops
= {
2034 .writepage
= f2fs_write_node_page
,
2035 .writepages
= f2fs_write_node_pages
,
2036 .set_page_dirty
= f2fs_set_node_page_dirty
,
2037 .invalidatepage
= f2fs_invalidate_page
,
2038 .releasepage
= f2fs_release_page
,
2039 #ifdef CONFIG_MIGRATION
2040 .migratepage
= f2fs_migrate_page
,
2044 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
2047 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
2050 static int __insert_free_nid(struct f2fs_sb_info
*sbi
,
2051 struct free_nid
*i
, enum nid_state state
)
2053 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2055 int err
= radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
);
2059 f2fs_bug_on(sbi
, state
!= i
->state
);
2060 nm_i
->nid_cnt
[state
]++;
2061 if (state
== FREE_NID
)
2062 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
2066 static void __remove_free_nid(struct f2fs_sb_info
*sbi
,
2067 struct free_nid
*i
, enum nid_state state
)
2069 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2071 f2fs_bug_on(sbi
, state
!= i
->state
);
2072 nm_i
->nid_cnt
[state
]--;
2073 if (state
== FREE_NID
)
2075 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
2078 static void __move_free_nid(struct f2fs_sb_info
*sbi
, struct free_nid
*i
,
2079 enum nid_state org_state
, enum nid_state dst_state
)
2081 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2083 f2fs_bug_on(sbi
, org_state
!= i
->state
);
2084 i
->state
= dst_state
;
2085 nm_i
->nid_cnt
[org_state
]--;
2086 nm_i
->nid_cnt
[dst_state
]++;
2088 switch (dst_state
) {
2093 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
2100 static void update_free_nid_bitmap(struct f2fs_sb_info
*sbi
, nid_t nid
,
2101 bool set
, bool build
)
2103 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2104 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(nid
);
2105 unsigned int nid_ofs
= nid
- START_NID(nid
);
2107 if (!test_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
))
2111 if (test_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]))
2113 __set_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
2114 nm_i
->free_nid_count
[nat_ofs
]++;
2116 if (!test_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]))
2118 __clear_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
2120 nm_i
->free_nid_count
[nat_ofs
]--;
2124 /* return if the nid is recognized as free */
2125 static bool add_free_nid(struct f2fs_sb_info
*sbi
,
2126 nid_t nid
, bool build
, bool update
)
2128 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2129 struct free_nid
*i
, *e
;
2130 struct nat_entry
*ne
;
2134 /* 0 nid should not be used */
2135 if (unlikely(nid
== 0))
2138 if (unlikely(f2fs_check_nid_range(sbi
, nid
)))
2141 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
2143 i
->state
= FREE_NID
;
2145 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
2147 spin_lock(&nm_i
->nid_list_lock
);
2155 * - __insert_nid_to_list(PREALLOC_NID)
2156 * - f2fs_balance_fs_bg
2157 * - f2fs_build_free_nids
2158 * - __f2fs_build_free_nids
2161 * - __lookup_nat_cache
2163 * - f2fs_init_inode_metadata
2164 * - f2fs_new_inode_page
2165 * - f2fs_new_node_page
2167 * - f2fs_alloc_nid_done
2168 * - __remove_nid_from_list(PREALLOC_NID)
2169 * - __insert_nid_to_list(FREE_NID)
2171 ne
= __lookup_nat_cache(nm_i
, nid
);
2172 if (ne
&& (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
2173 nat_get_blkaddr(ne
) != NULL_ADDR
))
2176 e
= __lookup_free_nid_list(nm_i
, nid
);
2178 if (e
->state
== FREE_NID
)
2184 err
= __insert_free_nid(sbi
, i
, FREE_NID
);
2187 update_free_nid_bitmap(sbi
, nid
, ret
, build
);
2189 nm_i
->available_nids
++;
2191 spin_unlock(&nm_i
->nid_list_lock
);
2192 radix_tree_preload_end();
2195 kmem_cache_free(free_nid_slab
, i
);
2199 static void remove_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
)
2201 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2203 bool need_free
= false;
2205 spin_lock(&nm_i
->nid_list_lock
);
2206 i
= __lookup_free_nid_list(nm_i
, nid
);
2207 if (i
&& i
->state
== FREE_NID
) {
2208 __remove_free_nid(sbi
, i
, FREE_NID
);
2211 spin_unlock(&nm_i
->nid_list_lock
);
2214 kmem_cache_free(free_nid_slab
, i
);
2217 static int scan_nat_page(struct f2fs_sb_info
*sbi
,
2218 struct page
*nat_page
, nid_t start_nid
)
2220 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2221 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
2223 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(start_nid
);
2226 __set_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
);
2228 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
2230 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
2231 if (unlikely(start_nid
>= nm_i
->max_nid
))
2234 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
2236 if (blk_addr
== NEW_ADDR
)
2239 if (blk_addr
== NULL_ADDR
) {
2240 add_free_nid(sbi
, start_nid
, true, true);
2242 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2243 update_free_nid_bitmap(sbi
, start_nid
, false, true);
2244 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2251 static void scan_curseg_cache(struct f2fs_sb_info
*sbi
)
2253 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2254 struct f2fs_journal
*journal
= curseg
->journal
;
2257 down_read(&curseg
->journal_rwsem
);
2258 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2262 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
2263 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2264 if (addr
== NULL_ADDR
)
2265 add_free_nid(sbi
, nid
, true, false);
2267 remove_free_nid(sbi
, nid
);
2269 up_read(&curseg
->journal_rwsem
);
2272 static void scan_free_nid_bits(struct f2fs_sb_info
*sbi
)
2274 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2275 unsigned int i
, idx
;
2278 down_read(&nm_i
->nat_tree_lock
);
2280 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2281 if (!test_bit_le(i
, nm_i
->nat_block_bitmap
))
2283 if (!nm_i
->free_nid_count
[i
])
2285 for (idx
= 0; idx
< NAT_ENTRY_PER_BLOCK
; idx
++) {
2286 idx
= find_next_bit_le(nm_i
->free_nid_bitmap
[i
],
2287 NAT_ENTRY_PER_BLOCK
, idx
);
2288 if (idx
>= NAT_ENTRY_PER_BLOCK
)
2291 nid
= i
* NAT_ENTRY_PER_BLOCK
+ idx
;
2292 add_free_nid(sbi
, nid
, true, false);
2294 if (nm_i
->nid_cnt
[FREE_NID
] >= MAX_FREE_NIDS
)
2299 scan_curseg_cache(sbi
);
2301 up_read(&nm_i
->nat_tree_lock
);
2304 static int __f2fs_build_free_nids(struct f2fs_sb_info
*sbi
,
2305 bool sync
, bool mount
)
2307 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2309 nid_t nid
= nm_i
->next_scan_nid
;
2311 if (unlikely(nid
>= nm_i
->max_nid
))
2314 /* Enough entries */
2315 if (nm_i
->nid_cnt
[FREE_NID
] >= NAT_ENTRY_PER_BLOCK
)
2318 if (!sync
&& !f2fs_available_free_memory(sbi
, FREE_NIDS
))
2322 /* try to find free nids in free_nid_bitmap */
2323 scan_free_nid_bits(sbi
);
2325 if (nm_i
->nid_cnt
[FREE_NID
] >= NAT_ENTRY_PER_BLOCK
)
2329 /* readahead nat pages to be scanned */
2330 f2fs_ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
2333 down_read(&nm_i
->nat_tree_lock
);
2336 if (!test_bit_le(NAT_BLOCK_OFFSET(nid
),
2337 nm_i
->nat_block_bitmap
)) {
2338 struct page
*page
= get_current_nat_page(sbi
, nid
);
2341 ret
= PTR_ERR(page
);
2343 ret
= scan_nat_page(sbi
, page
, nid
);
2344 f2fs_put_page(page
, 1);
2348 up_read(&nm_i
->nat_tree_lock
);
2349 f2fs_err(sbi
, "NAT is corrupt, run fsck to fix it");
2354 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
2355 if (unlikely(nid
>= nm_i
->max_nid
))
2358 if (++i
>= FREE_NID_PAGES
)
2362 /* go to the next free nat pages to find free nids abundantly */
2363 nm_i
->next_scan_nid
= nid
;
2365 /* find free nids from current sum_pages */
2366 scan_curseg_cache(sbi
);
2368 up_read(&nm_i
->nat_tree_lock
);
2370 f2fs_ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
2371 nm_i
->ra_nid_pages
, META_NAT
, false);
2376 int f2fs_build_free_nids(struct f2fs_sb_info
*sbi
, bool sync
, bool mount
)
2380 mutex_lock(&NM_I(sbi
)->build_lock
);
2381 ret
= __f2fs_build_free_nids(sbi
, sync
, mount
);
2382 mutex_unlock(&NM_I(sbi
)->build_lock
);
2388 * If this function returns success, caller can obtain a new nid
2389 * from second parameter of this function.
2390 * The returned nid could be used ino as well as nid when inode is created.
2392 bool f2fs_alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
2394 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2395 struct free_nid
*i
= NULL
;
2397 if (time_to_inject(sbi
, FAULT_ALLOC_NID
)) {
2398 f2fs_show_injection_info(sbi
, FAULT_ALLOC_NID
);
2402 spin_lock(&nm_i
->nid_list_lock
);
2404 if (unlikely(nm_i
->available_nids
== 0)) {
2405 spin_unlock(&nm_i
->nid_list_lock
);
2409 /* We should not use stale free nids created by f2fs_build_free_nids */
2410 if (nm_i
->nid_cnt
[FREE_NID
] && !on_f2fs_build_free_nids(nm_i
)) {
2411 f2fs_bug_on(sbi
, list_empty(&nm_i
->free_nid_list
));
2412 i
= list_first_entry(&nm_i
->free_nid_list
,
2413 struct free_nid
, list
);
2416 __move_free_nid(sbi
, i
, FREE_NID
, PREALLOC_NID
);
2417 nm_i
->available_nids
--;
2419 update_free_nid_bitmap(sbi
, *nid
, false, false);
2421 spin_unlock(&nm_i
->nid_list_lock
);
2424 spin_unlock(&nm_i
->nid_list_lock
);
2426 /* Let's scan nat pages and its caches to get free nids */
2427 if (!f2fs_build_free_nids(sbi
, true, false))
2433 * f2fs_alloc_nid() should be called prior to this function.
2435 void f2fs_alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
2437 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2440 spin_lock(&nm_i
->nid_list_lock
);
2441 i
= __lookup_free_nid_list(nm_i
, nid
);
2442 f2fs_bug_on(sbi
, !i
);
2443 __remove_free_nid(sbi
, i
, PREALLOC_NID
);
2444 spin_unlock(&nm_i
->nid_list_lock
);
2446 kmem_cache_free(free_nid_slab
, i
);
2450 * f2fs_alloc_nid() should be called prior to this function.
2452 void f2fs_alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
2454 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2456 bool need_free
= false;
2461 spin_lock(&nm_i
->nid_list_lock
);
2462 i
= __lookup_free_nid_list(nm_i
, nid
);
2463 f2fs_bug_on(sbi
, !i
);
2465 if (!f2fs_available_free_memory(sbi
, FREE_NIDS
)) {
2466 __remove_free_nid(sbi
, i
, PREALLOC_NID
);
2469 __move_free_nid(sbi
, i
, PREALLOC_NID
, FREE_NID
);
2472 nm_i
->available_nids
++;
2474 update_free_nid_bitmap(sbi
, nid
, true, false);
2476 spin_unlock(&nm_i
->nid_list_lock
);
2479 kmem_cache_free(free_nid_slab
, i
);
2482 int f2fs_try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
2484 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2485 struct free_nid
*i
, *next
;
2488 if (nm_i
->nid_cnt
[FREE_NID
] <= MAX_FREE_NIDS
)
2491 if (!mutex_trylock(&nm_i
->build_lock
))
2494 spin_lock(&nm_i
->nid_list_lock
);
2495 list_for_each_entry_safe(i
, next
, &nm_i
->free_nid_list
, list
) {
2496 if (nr_shrink
<= 0 ||
2497 nm_i
->nid_cnt
[FREE_NID
] <= MAX_FREE_NIDS
)
2500 __remove_free_nid(sbi
, i
, FREE_NID
);
2501 kmem_cache_free(free_nid_slab
, i
);
2504 spin_unlock(&nm_i
->nid_list_lock
);
2505 mutex_unlock(&nm_i
->build_lock
);
2507 return nr
- nr_shrink
;
2510 void f2fs_recover_inline_xattr(struct inode
*inode
, struct page
*page
)
2512 void *src_addr
, *dst_addr
;
2515 struct f2fs_inode
*ri
;
2517 ipage
= f2fs_get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
2518 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
2520 ri
= F2FS_INODE(page
);
2521 if (ri
->i_inline
& F2FS_INLINE_XATTR
) {
2522 set_inode_flag(inode
, FI_INLINE_XATTR
);
2524 clear_inode_flag(inode
, FI_INLINE_XATTR
);
2528 dst_addr
= inline_xattr_addr(inode
, ipage
);
2529 src_addr
= inline_xattr_addr(inode
, page
);
2530 inline_size
= inline_xattr_size(inode
);
2532 f2fs_wait_on_page_writeback(ipage
, NODE
, true, true);
2533 memcpy(dst_addr
, src_addr
, inline_size
);
2535 f2fs_update_inode(inode
, ipage
);
2536 f2fs_put_page(ipage
, 1);
2539 int f2fs_recover_xattr_data(struct inode
*inode
, struct page
*page
)
2541 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2542 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
2544 struct dnode_of_data dn
;
2545 struct node_info ni
;
2552 /* 1: invalidate the previous xattr nid */
2553 err
= f2fs_get_node_info(sbi
, prev_xnid
, &ni
);
2557 f2fs_invalidate_blocks(sbi
, ni
.blk_addr
);
2558 dec_valid_node_count(sbi
, inode
, false);
2559 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
2562 /* 2: update xattr nid in inode */
2563 if (!f2fs_alloc_nid(sbi
, &new_xnid
))
2566 set_new_dnode(&dn
, inode
, NULL
, NULL
, new_xnid
);
2567 xpage
= f2fs_new_node_page(&dn
, XATTR_NODE_OFFSET
);
2568 if (IS_ERR(xpage
)) {
2569 f2fs_alloc_nid_failed(sbi
, new_xnid
);
2570 return PTR_ERR(xpage
);
2573 f2fs_alloc_nid_done(sbi
, new_xnid
);
2574 f2fs_update_inode_page(inode
);
2576 /* 3: update and set xattr node page dirty */
2577 memcpy(F2FS_NODE(xpage
), F2FS_NODE(page
), VALID_XATTR_BLOCK_SIZE
);
2579 set_page_dirty(xpage
);
2580 f2fs_put_page(xpage
, 1);
2585 int f2fs_recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
2587 struct f2fs_inode
*src
, *dst
;
2588 nid_t ino
= ino_of_node(page
);
2589 struct node_info old_ni
, new_ni
;
2593 err
= f2fs_get_node_info(sbi
, ino
, &old_ni
);
2597 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
2600 ipage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), ino
, false);
2602 congestion_wait(BLK_RW_ASYNC
, DEFAULT_IO_TIMEOUT
);
2606 /* Should not use this inode from free nid list */
2607 remove_free_nid(sbi
, ino
);
2609 if (!PageUptodate(ipage
))
2610 SetPageUptodate(ipage
);
2611 fill_node_footer(ipage
, ino
, ino
, 0, true);
2612 set_cold_node(ipage
, false);
2614 src
= F2FS_INODE(page
);
2615 dst
= F2FS_INODE(ipage
);
2617 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
2619 dst
->i_blocks
= cpu_to_le64(1);
2620 dst
->i_links
= cpu_to_le32(1);
2621 dst
->i_xattr_nid
= 0;
2622 dst
->i_inline
= src
->i_inline
& (F2FS_INLINE_XATTR
| F2FS_EXTRA_ATTR
);
2623 if (dst
->i_inline
& F2FS_EXTRA_ATTR
) {
2624 dst
->i_extra_isize
= src
->i_extra_isize
;
2626 if (f2fs_sb_has_flexible_inline_xattr(sbi
) &&
2627 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2628 i_inline_xattr_size
))
2629 dst
->i_inline_xattr_size
= src
->i_inline_xattr_size
;
2631 if (f2fs_sb_has_project_quota(sbi
) &&
2632 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2634 dst
->i_projid
= src
->i_projid
;
2636 if (f2fs_sb_has_inode_crtime(sbi
) &&
2637 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2639 dst
->i_crtime
= src
->i_crtime
;
2640 dst
->i_crtime_nsec
= src
->i_crtime_nsec
;
2647 if (unlikely(inc_valid_node_count(sbi
, NULL
, true)))
2649 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
2650 inc_valid_inode_count(sbi
);
2651 set_page_dirty(ipage
);
2652 f2fs_put_page(ipage
, 1);
2656 int f2fs_restore_node_summary(struct f2fs_sb_info
*sbi
,
2657 unsigned int segno
, struct f2fs_summary_block
*sum
)
2659 struct f2fs_node
*rn
;
2660 struct f2fs_summary
*sum_entry
;
2662 int i
, idx
, last_offset
, nrpages
;
2664 /* scan the node segment */
2665 last_offset
= sbi
->blocks_per_seg
;
2666 addr
= START_BLOCK(sbi
, segno
);
2667 sum_entry
= &sum
->entries
[0];
2669 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
2670 nrpages
= min(last_offset
- i
, BIO_MAX_PAGES
);
2672 /* readahead node pages */
2673 f2fs_ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
2675 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
2676 struct page
*page
= f2fs_get_tmp_page(sbi
, idx
);
2679 return PTR_ERR(page
);
2681 rn
= F2FS_NODE(page
);
2682 sum_entry
->nid
= rn
->footer
.nid
;
2683 sum_entry
->version
= 0;
2684 sum_entry
->ofs_in_node
= 0;
2686 f2fs_put_page(page
, 1);
2689 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
2695 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
2697 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2698 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2699 struct f2fs_journal
*journal
= curseg
->journal
;
2702 down_write(&curseg
->journal_rwsem
);
2703 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2704 struct nat_entry
*ne
;
2705 struct f2fs_nat_entry raw_ne
;
2706 nid_t nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2708 raw_ne
= nat_in_journal(journal
, i
);
2710 ne
= __lookup_nat_cache(nm_i
, nid
);
2712 ne
= __alloc_nat_entry(nid
, true);
2713 __init_nat_entry(nm_i
, ne
, &raw_ne
, true);
2717 * if a free nat in journal has not been used after last
2718 * checkpoint, we should remove it from available nids,
2719 * since later we will add it again.
2721 if (!get_nat_flag(ne
, IS_DIRTY
) &&
2722 le32_to_cpu(raw_ne
.block_addr
) == NULL_ADDR
) {
2723 spin_lock(&nm_i
->nid_list_lock
);
2724 nm_i
->available_nids
--;
2725 spin_unlock(&nm_i
->nid_list_lock
);
2728 __set_nat_cache_dirty(nm_i
, ne
);
2730 update_nats_in_cursum(journal
, -i
);
2731 up_write(&curseg
->journal_rwsem
);
2734 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
2735 struct list_head
*head
, int max
)
2737 struct nat_entry_set
*cur
;
2739 if (nes
->entry_cnt
>= max
)
2742 list_for_each_entry(cur
, head
, set_list
) {
2743 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
2744 list_add(&nes
->set_list
, cur
->set_list
.prev
);
2749 list_add_tail(&nes
->set_list
, head
);
2752 static void __update_nat_bits(struct f2fs_sb_info
*sbi
, nid_t start_nid
,
2755 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2756 unsigned int nat_index
= start_nid
/ NAT_ENTRY_PER_BLOCK
;
2757 struct f2fs_nat_block
*nat_blk
= page_address(page
);
2761 if (!enabled_nat_bits(sbi
, NULL
))
2764 if (nat_index
== 0) {
2768 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++) {
2769 if (le32_to_cpu(nat_blk
->entries
[i
].block_addr
) != NULL_ADDR
)
2773 __set_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2774 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2778 __clear_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2779 if (valid
== NAT_ENTRY_PER_BLOCK
)
2780 __set_bit_le(nat_index
, nm_i
->full_nat_bits
);
2782 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2785 static int __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
2786 struct nat_entry_set
*set
, struct cp_control
*cpc
)
2788 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2789 struct f2fs_journal
*journal
= curseg
->journal
;
2790 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
2791 bool to_journal
= true;
2792 struct f2fs_nat_block
*nat_blk
;
2793 struct nat_entry
*ne
, *cur
;
2794 struct page
*page
= NULL
;
2797 * there are two steps to flush nat entries:
2798 * #1, flush nat entries to journal in current hot data summary block.
2799 * #2, flush nat entries to nat page.
2801 if (enabled_nat_bits(sbi
, cpc
) ||
2802 !__has_cursum_space(journal
, set
->entry_cnt
, NAT_JOURNAL
))
2806 down_write(&curseg
->journal_rwsem
);
2808 page
= get_next_nat_page(sbi
, start_nid
);
2810 return PTR_ERR(page
);
2812 nat_blk
= page_address(page
);
2813 f2fs_bug_on(sbi
, !nat_blk
);
2816 /* flush dirty nats in nat entry set */
2817 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
2818 struct f2fs_nat_entry
*raw_ne
;
2819 nid_t nid
= nat_get_nid(ne
);
2822 f2fs_bug_on(sbi
, nat_get_blkaddr(ne
) == NEW_ADDR
);
2825 offset
= f2fs_lookup_journal_in_cursum(journal
,
2826 NAT_JOURNAL
, nid
, 1);
2827 f2fs_bug_on(sbi
, offset
< 0);
2828 raw_ne
= &nat_in_journal(journal
, offset
);
2829 nid_in_journal(journal
, offset
) = cpu_to_le32(nid
);
2831 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
2833 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
2835 __clear_nat_cache_dirty(NM_I(sbi
), set
, ne
);
2836 if (nat_get_blkaddr(ne
) == NULL_ADDR
) {
2837 add_free_nid(sbi
, nid
, false, true);
2839 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2840 update_free_nid_bitmap(sbi
, nid
, false, false);
2841 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2846 up_write(&curseg
->journal_rwsem
);
2848 __update_nat_bits(sbi
, start_nid
, page
);
2849 f2fs_put_page(page
, 1);
2852 /* Allow dirty nats by node block allocation in write_begin */
2853 if (!set
->entry_cnt
) {
2854 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
2855 kmem_cache_free(nat_entry_set_slab
, set
);
2861 * This function is called during the checkpointing process.
2863 int f2fs_flush_nat_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2865 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2866 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2867 struct f2fs_journal
*journal
= curseg
->journal
;
2868 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2869 struct nat_entry_set
*set
, *tmp
;
2875 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2876 if (enabled_nat_bits(sbi
, cpc
)) {
2877 down_write(&nm_i
->nat_tree_lock
);
2878 remove_nats_in_journal(sbi
);
2879 up_write(&nm_i
->nat_tree_lock
);
2882 if (!nm_i
->dirty_nat_cnt
)
2885 down_write(&nm_i
->nat_tree_lock
);
2888 * if there are no enough space in journal to store dirty nat
2889 * entries, remove all entries from journal and merge them
2890 * into nat entry set.
2892 if (enabled_nat_bits(sbi
, cpc
) ||
2893 !__has_cursum_space(journal
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
2894 remove_nats_in_journal(sbi
);
2896 while ((found
= __gang_lookup_nat_set(nm_i
,
2897 set_idx
, SETVEC_SIZE
, setvec
))) {
2899 set_idx
= setvec
[found
- 1]->set
+ 1;
2900 for (idx
= 0; idx
< found
; idx
++)
2901 __adjust_nat_entry_set(setvec
[idx
], &sets
,
2902 MAX_NAT_JENTRIES(journal
));
2905 /* flush dirty nats in nat entry set */
2906 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
) {
2907 err
= __flush_nat_entry_set(sbi
, set
, cpc
);
2912 up_write(&nm_i
->nat_tree_lock
);
2913 /* Allow dirty nats by node block allocation in write_begin */
2918 static int __get_nat_bitmaps(struct f2fs_sb_info
*sbi
)
2920 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2921 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2922 unsigned int nat_bits_bytes
= nm_i
->nat_blocks
/ BITS_PER_BYTE
;
2924 __u64 cp_ver
= cur_cp_version(ckpt
);
2925 block_t nat_bits_addr
;
2927 if (!enabled_nat_bits(sbi
, NULL
))
2930 nm_i
->nat_bits_blocks
= F2FS_BLK_ALIGN((nat_bits_bytes
<< 1) + 8);
2931 nm_i
->nat_bits
= f2fs_kvzalloc(sbi
,
2932 nm_i
->nat_bits_blocks
<< F2FS_BLKSIZE_BITS
, GFP_KERNEL
);
2933 if (!nm_i
->nat_bits
)
2936 nat_bits_addr
= __start_cp_addr(sbi
) + sbi
->blocks_per_seg
-
2937 nm_i
->nat_bits_blocks
;
2938 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++) {
2941 page
= f2fs_get_meta_page(sbi
, nat_bits_addr
++);
2943 return PTR_ERR(page
);
2945 memcpy(nm_i
->nat_bits
+ (i
<< F2FS_BLKSIZE_BITS
),
2946 page_address(page
), F2FS_BLKSIZE
);
2947 f2fs_put_page(page
, 1);
2950 cp_ver
|= (cur_cp_crc(ckpt
) << 32);
2951 if (cpu_to_le64(cp_ver
) != *(__le64
*)nm_i
->nat_bits
) {
2952 disable_nat_bits(sbi
, true);
2956 nm_i
->full_nat_bits
= nm_i
->nat_bits
+ 8;
2957 nm_i
->empty_nat_bits
= nm_i
->full_nat_bits
+ nat_bits_bytes
;
2959 f2fs_notice(sbi
, "Found nat_bits in checkpoint");
2963 static inline void load_free_nid_bitmap(struct f2fs_sb_info
*sbi
)
2965 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2967 nid_t nid
, last_nid
;
2969 if (!enabled_nat_bits(sbi
, NULL
))
2972 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2973 i
= find_next_bit_le(nm_i
->empty_nat_bits
, nm_i
->nat_blocks
, i
);
2974 if (i
>= nm_i
->nat_blocks
)
2977 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2979 nid
= i
* NAT_ENTRY_PER_BLOCK
;
2980 last_nid
= nid
+ NAT_ENTRY_PER_BLOCK
;
2982 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2983 for (; nid
< last_nid
; nid
++)
2984 update_free_nid_bitmap(sbi
, nid
, true, true);
2985 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2988 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2989 i
= find_next_bit_le(nm_i
->full_nat_bits
, nm_i
->nat_blocks
, i
);
2990 if (i
>= nm_i
->nat_blocks
)
2993 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2997 static int init_node_manager(struct f2fs_sb_info
*sbi
)
2999 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
3000 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
3001 unsigned char *version_bitmap
;
3002 unsigned int nat_segs
;
3005 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
3007 /* segment_count_nat includes pair segment so divide to 2. */
3008 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
3009 nm_i
->nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
3010 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nm_i
->nat_blocks
;
3012 /* not used nids: 0, node, meta, (and root counted as valid node) */
3013 nm_i
->available_nids
= nm_i
->max_nid
- sbi
->total_valid_node_count
-
3014 F2FS_RESERVED_NODE_NUM
;
3015 nm_i
->nid_cnt
[FREE_NID
] = 0;
3016 nm_i
->nid_cnt
[PREALLOC_NID
] = 0;
3018 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
3019 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
3020 nm_i
->dirty_nats_ratio
= DEF_DIRTY_NAT_RATIO_THRESHOLD
;
3022 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
3023 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
3024 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
3025 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
3026 INIT_LIST_HEAD(&nm_i
->nat_entries
);
3027 spin_lock_init(&nm_i
->nat_list_lock
);
3029 mutex_init(&nm_i
->build_lock
);
3030 spin_lock_init(&nm_i
->nid_list_lock
);
3031 init_rwsem(&nm_i
->nat_tree_lock
);
3033 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
3034 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
3035 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
3036 if (!version_bitmap
)
3039 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
3041 if (!nm_i
->nat_bitmap
)
3044 err
= __get_nat_bitmaps(sbi
);
3048 #ifdef CONFIG_F2FS_CHECK_FS
3049 nm_i
->nat_bitmap_mir
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
3051 if (!nm_i
->nat_bitmap_mir
)
3058 static int init_free_nid_cache(struct f2fs_sb_info
*sbi
)
3060 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
3063 nm_i
->free_nid_bitmap
=
3064 f2fs_kvzalloc(sbi
, array_size(sizeof(unsigned char *),
3067 if (!nm_i
->free_nid_bitmap
)
3070 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
3071 nm_i
->free_nid_bitmap
[i
] = f2fs_kvzalloc(sbi
,
3072 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK
), GFP_KERNEL
);
3073 if (!nm_i
->free_nid_bitmap
[i
])
3077 nm_i
->nat_block_bitmap
= f2fs_kvzalloc(sbi
, nm_i
->nat_blocks
/ 8,
3079 if (!nm_i
->nat_block_bitmap
)
3082 nm_i
->free_nid_count
=
3083 f2fs_kvzalloc(sbi
, array_size(sizeof(unsigned short),
3086 if (!nm_i
->free_nid_count
)
3091 int f2fs_build_node_manager(struct f2fs_sb_info
*sbi
)
3095 sbi
->nm_info
= f2fs_kzalloc(sbi
, sizeof(struct f2fs_nm_info
),
3100 err
= init_node_manager(sbi
);
3104 err
= init_free_nid_cache(sbi
);
3108 /* load free nid status from nat_bits table */
3109 load_free_nid_bitmap(sbi
);
3111 return f2fs_build_free_nids(sbi
, true, true);
3114 void f2fs_destroy_node_manager(struct f2fs_sb_info
*sbi
)
3116 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
3117 struct free_nid
*i
, *next_i
;
3118 struct nat_entry
*natvec
[NATVEC_SIZE
];
3119 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
3126 /* destroy free nid list */
3127 spin_lock(&nm_i
->nid_list_lock
);
3128 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
3129 __remove_free_nid(sbi
, i
, FREE_NID
);
3130 spin_unlock(&nm_i
->nid_list_lock
);
3131 kmem_cache_free(free_nid_slab
, i
);
3132 spin_lock(&nm_i
->nid_list_lock
);
3134 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[FREE_NID
]);
3135 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[PREALLOC_NID
]);
3136 f2fs_bug_on(sbi
, !list_empty(&nm_i
->free_nid_list
));
3137 spin_unlock(&nm_i
->nid_list_lock
);
3139 /* destroy nat cache */
3140 down_write(&nm_i
->nat_tree_lock
);
3141 while ((found
= __gang_lookup_nat_cache(nm_i
,
3142 nid
, NATVEC_SIZE
, natvec
))) {
3145 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
3146 for (idx
= 0; idx
< found
; idx
++) {
3147 spin_lock(&nm_i
->nat_list_lock
);
3148 list_del(&natvec
[idx
]->list
);
3149 spin_unlock(&nm_i
->nat_list_lock
);
3151 __del_from_nat_cache(nm_i
, natvec
[idx
]);
3154 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
3156 /* destroy nat set cache */
3158 while ((found
= __gang_lookup_nat_set(nm_i
,
3159 nid
, SETVEC_SIZE
, setvec
))) {
3162 nid
= setvec
[found
- 1]->set
+ 1;
3163 for (idx
= 0; idx
< found
; idx
++) {
3164 /* entry_cnt is not zero, when cp_error was occurred */
3165 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
3166 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
3167 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
3170 up_write(&nm_i
->nat_tree_lock
);
3172 kvfree(nm_i
->nat_block_bitmap
);
3173 if (nm_i
->free_nid_bitmap
) {
3176 for (i
= 0; i
< nm_i
->nat_blocks
; i
++)
3177 kvfree(nm_i
->free_nid_bitmap
[i
]);
3178 kvfree(nm_i
->free_nid_bitmap
);
3180 kvfree(nm_i
->free_nid_count
);
3182 kvfree(nm_i
->nat_bitmap
);
3183 kvfree(nm_i
->nat_bits
);
3184 #ifdef CONFIG_F2FS_CHECK_FS
3185 kvfree(nm_i
->nat_bitmap_mir
);
3187 sbi
->nm_info
= NULL
;
3191 int __init
f2fs_create_node_manager_caches(void)
3193 nat_entry_slab
= f2fs_kmem_cache_create("f2fs_nat_entry",
3194 sizeof(struct nat_entry
));
3195 if (!nat_entry_slab
)
3198 free_nid_slab
= f2fs_kmem_cache_create("f2fs_free_nid",
3199 sizeof(struct free_nid
));
3201 goto destroy_nat_entry
;
3203 nat_entry_set_slab
= f2fs_kmem_cache_create("f2fs_nat_entry_set",
3204 sizeof(struct nat_entry_set
));
3205 if (!nat_entry_set_slab
)
3206 goto destroy_free_nid
;
3208 fsync_node_entry_slab
= f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3209 sizeof(struct fsync_node_entry
));
3210 if (!fsync_node_entry_slab
)
3211 goto destroy_nat_entry_set
;
3214 destroy_nat_entry_set
:
3215 kmem_cache_destroy(nat_entry_set_slab
);
3217 kmem_cache_destroy(free_nid_slab
);
3219 kmem_cache_destroy(nat_entry_slab
);
3224 void f2fs_destroy_node_manager_caches(void)
3226 kmem_cache_destroy(fsync_node_entry_slab
);
3227 kmem_cache_destroy(nat_entry_set_slab
);
3228 kmem_cache_destroy(free_nid_slab
);
3229 kmem_cache_destroy(nat_entry_slab
);