1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache
*discard_entry_slab
;
29 static struct kmem_cache
*discard_cmd_slab
;
30 static struct kmem_cache
*sit_entry_set_slab
;
31 static struct kmem_cache
*inmem_entry_slab
;
33 static unsigned long __reverse_ulong(unsigned char *str
)
35 unsigned long tmp
= 0;
36 int shift
= 24, idx
= 0;
38 #if BITS_PER_LONG == 64
42 tmp
|= (unsigned long)str
[idx
++] << shift
;
43 shift
-= BITS_PER_BYTE
;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word
)
56 #if BITS_PER_LONG == 64
57 if ((word
& 0xffffffff00000000UL
) == 0)
62 if ((word
& 0xffff0000) == 0)
67 if ((word
& 0xff00) == 0)
72 if ((word
& 0xf0) == 0)
77 if ((word
& 0xc) == 0)
82 if ((word
& 0x2) == 0)
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
97 unsigned long size
, unsigned long offset
)
99 const unsigned long *p
= addr
+ BIT_WORD(offset
);
100 unsigned long result
= size
;
106 size
-= (offset
& ~(BITS_PER_LONG
- 1));
107 offset
%= BITS_PER_LONG
;
113 tmp
= __reverse_ulong((unsigned char *)p
);
115 tmp
&= ~0UL >> offset
;
116 if (size
< BITS_PER_LONG
)
117 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
121 if (size
<= BITS_PER_LONG
)
123 size
-= BITS_PER_LONG
;
129 return result
- size
+ __reverse_ffs(tmp
);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
133 unsigned long size
, unsigned long offset
)
135 const unsigned long *p
= addr
+ BIT_WORD(offset
);
136 unsigned long result
= size
;
142 size
-= (offset
& ~(BITS_PER_LONG
- 1));
143 offset
%= BITS_PER_LONG
;
149 tmp
= __reverse_ulong((unsigned char *)p
);
152 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
153 if (size
< BITS_PER_LONG
)
158 if (size
<= BITS_PER_LONG
)
160 size
-= BITS_PER_LONG
;
166 return result
- size
+ __reverse_ffz(tmp
);
169 bool f2fs_need_SSR(struct f2fs_sb_info
*sbi
)
171 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
172 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
173 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
175 if (f2fs_lfs_mode(sbi
))
177 if (sbi
->gc_mode
== GC_URGENT
)
179 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
182 return free_sections(sbi
) <= (node_secs
+ 2 * dent_secs
+ imeta_secs
+
183 SM_I(sbi
)->min_ssr_sections
+ reserved_sections(sbi
));
186 void f2fs_register_inmem_page(struct inode
*inode
, struct page
*page
)
188 struct inmem_pages
*new;
190 f2fs_trace_pid(page
);
192 f2fs_set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
196 /* add atomic page indices to the list */
198 INIT_LIST_HEAD(&new->list
);
200 /* increase reference count with clean state */
202 mutex_lock(&F2FS_I(inode
)->inmem_lock
);
203 list_add_tail(&new->list
, &F2FS_I(inode
)->inmem_pages
);
204 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
205 mutex_unlock(&F2FS_I(inode
)->inmem_lock
);
207 trace_f2fs_register_inmem_page(page
, INMEM
);
210 static int __revoke_inmem_pages(struct inode
*inode
,
211 struct list_head
*head
, bool drop
, bool recover
,
214 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
215 struct inmem_pages
*cur
, *tmp
;
218 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
219 struct page
*page
= cur
->page
;
222 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
226 * to avoid deadlock in between page lock and
229 if (!trylock_page(page
))
235 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
238 struct dnode_of_data dn
;
241 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
243 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
244 err
= f2fs_get_dnode_of_data(&dn
, page
->index
,
247 if (err
== -ENOMEM
) {
248 congestion_wait(BLK_RW_ASYNC
,
257 err
= f2fs_get_node_info(sbi
, dn
.nid
, &ni
);
263 if (cur
->old_addr
== NEW_ADDR
) {
264 f2fs_invalidate_blocks(sbi
, dn
.data_blkaddr
);
265 f2fs_update_data_blkaddr(&dn
, NEW_ADDR
);
267 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
268 cur
->old_addr
, ni
.version
, true, true);
272 /* we don't need to invalidate this in the sccessful status */
273 if (drop
|| recover
) {
274 ClearPageUptodate(page
);
275 clear_cold_data(page
);
277 f2fs_clear_page_private(page
);
278 f2fs_put_page(page
, 1);
280 list_del(&cur
->list
);
281 kmem_cache_free(inmem_entry_slab
, cur
);
282 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info
*sbi
, bool gc_failure
)
289 struct list_head
*head
= &sbi
->inode_list
[ATOMIC_FILE
];
291 struct f2fs_inode_info
*fi
;
292 unsigned int count
= sbi
->atomic_files
;
293 unsigned int looped
= 0;
295 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
296 if (list_empty(head
)) {
297 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
300 fi
= list_first_entry(head
, struct f2fs_inode_info
, inmem_ilist
);
301 inode
= igrab(&fi
->vfs_inode
);
303 list_move_tail(&fi
->inmem_ilist
, head
);
304 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
308 if (!fi
->i_gc_failures
[GC_FAILURE_ATOMIC
])
311 set_inode_flag(inode
, FI_ATOMIC_REVOKE_REQUEST
);
312 f2fs_drop_inmem_pages(inode
);
316 congestion_wait(BLK_RW_ASYNC
, DEFAULT_IO_TIMEOUT
);
319 if (++looped
>= count
)
325 void f2fs_drop_inmem_pages(struct inode
*inode
)
327 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
328 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
330 while (!list_empty(&fi
->inmem_pages
)) {
331 mutex_lock(&fi
->inmem_lock
);
332 __revoke_inmem_pages(inode
, &fi
->inmem_pages
,
334 mutex_unlock(&fi
->inmem_lock
);
337 fi
->i_gc_failures
[GC_FAILURE_ATOMIC
] = 0;
339 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
340 if (!list_empty(&fi
->inmem_ilist
))
341 list_del_init(&fi
->inmem_ilist
);
342 if (f2fs_is_atomic_file(inode
)) {
343 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
346 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
349 void f2fs_drop_inmem_page(struct inode
*inode
, struct page
*page
)
351 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
352 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
353 struct list_head
*head
= &fi
->inmem_pages
;
354 struct inmem_pages
*cur
= NULL
;
356 f2fs_bug_on(sbi
, !IS_ATOMIC_WRITTEN_PAGE(page
));
358 mutex_lock(&fi
->inmem_lock
);
359 list_for_each_entry(cur
, head
, list
) {
360 if (cur
->page
== page
)
364 f2fs_bug_on(sbi
, list_empty(head
) || cur
->page
!= page
);
365 list_del(&cur
->list
);
366 mutex_unlock(&fi
->inmem_lock
);
368 dec_page_count(sbi
, F2FS_INMEM_PAGES
);
369 kmem_cache_free(inmem_entry_slab
, cur
);
371 ClearPageUptodate(page
);
372 f2fs_clear_page_private(page
);
373 f2fs_put_page(page
, 0);
375 trace_f2fs_commit_inmem_page(page
, INMEM_INVALIDATE
);
378 static int __f2fs_commit_inmem_pages(struct inode
*inode
)
380 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
381 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
382 struct inmem_pages
*cur
, *tmp
;
383 struct f2fs_io_info fio
= {
388 .op_flags
= REQ_SYNC
| REQ_PRIO
,
389 .io_type
= FS_DATA_IO
,
391 struct list_head revoke_list
;
392 bool submit_bio
= false;
395 INIT_LIST_HEAD(&revoke_list
);
397 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
398 struct page
*page
= cur
->page
;
401 if (page
->mapping
== inode
->i_mapping
) {
402 trace_f2fs_commit_inmem_page(page
, INMEM
);
404 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
406 set_page_dirty(page
);
407 if (clear_page_dirty_for_io(page
)) {
408 inode_dec_dirty_pages(inode
);
409 f2fs_remove_dirty_inode(inode
);
413 fio
.old_blkaddr
= NULL_ADDR
;
414 fio
.encrypted_page
= NULL
;
415 fio
.need_lock
= LOCK_DONE
;
416 err
= f2fs_do_write_data_page(&fio
);
418 if (err
== -ENOMEM
) {
419 congestion_wait(BLK_RW_ASYNC
,
427 /* record old blkaddr for revoking */
428 cur
->old_addr
= fio
.old_blkaddr
;
432 list_move_tail(&cur
->list
, &revoke_list
);
436 f2fs_submit_merged_write_cond(sbi
, inode
, NULL
, 0, DATA
);
440 * try to revoke all committed pages, but still we could fail
441 * due to no memory or other reason, if that happened, EAGAIN
442 * will be returned, which means in such case, transaction is
443 * already not integrity, caller should use journal to do the
444 * recovery or rewrite & commit last transaction. For other
445 * error number, revoking was done by filesystem itself.
447 err
= __revoke_inmem_pages(inode
, &revoke_list
,
450 /* drop all uncommitted pages */
451 __revoke_inmem_pages(inode
, &fi
->inmem_pages
,
454 __revoke_inmem_pages(inode
, &revoke_list
,
455 false, false, false);
461 int f2fs_commit_inmem_pages(struct inode
*inode
)
463 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
464 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
467 f2fs_balance_fs(sbi
, true);
469 down_write(&fi
->i_gc_rwsem
[WRITE
]);
472 set_inode_flag(inode
, FI_ATOMIC_COMMIT
);
474 mutex_lock(&fi
->inmem_lock
);
475 err
= __f2fs_commit_inmem_pages(inode
);
476 mutex_unlock(&fi
->inmem_lock
);
478 clear_inode_flag(inode
, FI_ATOMIC_COMMIT
);
481 up_write(&fi
->i_gc_rwsem
[WRITE
]);
487 * This function balances dirty node and dentry pages.
488 * In addition, it controls garbage collection.
490 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
492 if (time_to_inject(sbi
, FAULT_CHECKPOINT
)) {
493 f2fs_show_injection_info(sbi
, FAULT_CHECKPOINT
);
494 f2fs_stop_checkpoint(sbi
, false);
497 /* balance_fs_bg is able to be pending */
498 if (need
&& excess_cached_nats(sbi
))
499 f2fs_balance_fs_bg(sbi
, false);
501 if (!f2fs_is_checkpoint_ready(sbi
))
505 * We should do GC or end up with checkpoint, if there are so many dirty
506 * dir/node pages without enough free segments.
508 if (has_not_enough_free_secs(sbi
, 0, 0)) {
509 down_write(&sbi
->gc_lock
);
510 f2fs_gc(sbi
, false, false, NULL_SEGNO
);
514 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
, bool from_bg
)
516 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
519 /* try to shrink extent cache when there is no enough memory */
520 if (!f2fs_available_free_memory(sbi
, EXTENT_CACHE
))
521 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
523 /* check the # of cached NAT entries */
524 if (!f2fs_available_free_memory(sbi
, NAT_ENTRIES
))
525 f2fs_try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
527 if (!f2fs_available_free_memory(sbi
, FREE_NIDS
))
528 f2fs_try_to_free_nids(sbi
, MAX_FREE_NIDS
);
530 f2fs_build_free_nids(sbi
, false, false);
532 if (!is_idle(sbi
, REQ_TIME
) &&
533 (!excess_dirty_nats(sbi
) && !excess_dirty_nodes(sbi
)))
536 /* checkpoint is the only way to shrink partial cached entries */
537 if (!f2fs_available_free_memory(sbi
, NAT_ENTRIES
) ||
538 !f2fs_available_free_memory(sbi
, INO_ENTRIES
) ||
539 excess_prefree_segs(sbi
) ||
540 excess_dirty_nats(sbi
) ||
541 excess_dirty_nodes(sbi
) ||
542 f2fs_time_over(sbi
, CP_TIME
)) {
543 if (test_opt(sbi
, DATA_FLUSH
) && from_bg
) {
544 struct blk_plug plug
;
546 mutex_lock(&sbi
->flush_lock
);
548 blk_start_plug(&plug
);
549 f2fs_sync_dirty_inodes(sbi
, FILE_INODE
);
550 blk_finish_plug(&plug
);
552 mutex_unlock(&sbi
->flush_lock
);
554 f2fs_sync_fs(sbi
->sb
, true);
555 stat_inc_bg_cp_count(sbi
->stat_info
);
559 static int __submit_flush_wait(struct f2fs_sb_info
*sbi
,
560 struct block_device
*bdev
)
565 bio
= f2fs_bio_alloc(sbi
, 0, false);
569 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
570 bio_set_dev(bio
, bdev
);
571 ret
= submit_bio_wait(bio
);
574 trace_f2fs_issue_flush(bdev
, test_opt(sbi
, NOBARRIER
),
575 test_opt(sbi
, FLUSH_MERGE
), ret
);
579 static int submit_flush_wait(struct f2fs_sb_info
*sbi
, nid_t ino
)
584 if (!f2fs_is_multi_device(sbi
))
585 return __submit_flush_wait(sbi
, sbi
->sb
->s_bdev
);
587 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
588 if (!f2fs_is_dirty_device(sbi
, ino
, i
, FLUSH_INO
))
590 ret
= __submit_flush_wait(sbi
, FDEV(i
).bdev
);
597 static int issue_flush_thread(void *data
)
599 struct f2fs_sb_info
*sbi
= data
;
600 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
601 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
603 if (kthread_should_stop())
606 sb_start_intwrite(sbi
->sb
);
608 if (!llist_empty(&fcc
->issue_list
)) {
609 struct flush_cmd
*cmd
, *next
;
612 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
613 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
615 cmd
= llist_entry(fcc
->dispatch_list
, struct flush_cmd
, llnode
);
617 ret
= submit_flush_wait(sbi
, cmd
->ino
);
618 atomic_inc(&fcc
->issued_flush
);
620 llist_for_each_entry_safe(cmd
, next
,
621 fcc
->dispatch_list
, llnode
) {
623 complete(&cmd
->wait
);
625 fcc
->dispatch_list
= NULL
;
628 sb_end_intwrite(sbi
->sb
);
630 wait_event_interruptible(*q
,
631 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
635 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
, nid_t ino
)
637 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
638 struct flush_cmd cmd
;
641 if (test_opt(sbi
, NOBARRIER
))
644 if (!test_opt(sbi
, FLUSH_MERGE
)) {
645 atomic_inc(&fcc
->queued_flush
);
646 ret
= submit_flush_wait(sbi
, ino
);
647 atomic_dec(&fcc
->queued_flush
);
648 atomic_inc(&fcc
->issued_flush
);
652 if (atomic_inc_return(&fcc
->queued_flush
) == 1 ||
653 f2fs_is_multi_device(sbi
)) {
654 ret
= submit_flush_wait(sbi
, ino
);
655 atomic_dec(&fcc
->queued_flush
);
657 atomic_inc(&fcc
->issued_flush
);
662 init_completion(&cmd
.wait
);
664 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
666 /* update issue_list before we wake up issue_flush thread */
669 if (waitqueue_active(&fcc
->flush_wait_queue
))
670 wake_up(&fcc
->flush_wait_queue
);
672 if (fcc
->f2fs_issue_flush
) {
673 wait_for_completion(&cmd
.wait
);
674 atomic_dec(&fcc
->queued_flush
);
676 struct llist_node
*list
;
678 list
= llist_del_all(&fcc
->issue_list
);
680 wait_for_completion(&cmd
.wait
);
681 atomic_dec(&fcc
->queued_flush
);
683 struct flush_cmd
*tmp
, *next
;
685 ret
= submit_flush_wait(sbi
, ino
);
687 llist_for_each_entry_safe(tmp
, next
, list
, llnode
) {
690 atomic_dec(&fcc
->queued_flush
);
694 complete(&tmp
->wait
);
702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
704 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
705 struct flush_cmd_control
*fcc
;
708 if (SM_I(sbi
)->fcc_info
) {
709 fcc
= SM_I(sbi
)->fcc_info
;
710 if (fcc
->f2fs_issue_flush
)
715 fcc
= f2fs_kzalloc(sbi
, sizeof(struct flush_cmd_control
), GFP_KERNEL
);
718 atomic_set(&fcc
->issued_flush
, 0);
719 atomic_set(&fcc
->queued_flush
, 0);
720 init_waitqueue_head(&fcc
->flush_wait_queue
);
721 init_llist_head(&fcc
->issue_list
);
722 SM_I(sbi
)->fcc_info
= fcc
;
723 if (!test_opt(sbi
, FLUSH_MERGE
))
727 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
728 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
729 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
730 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
732 SM_I(sbi
)->fcc_info
= NULL
;
739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
, bool free
)
741 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
743 if (fcc
&& fcc
->f2fs_issue_flush
) {
744 struct task_struct
*flush_thread
= fcc
->f2fs_issue_flush
;
746 fcc
->f2fs_issue_flush
= NULL
;
747 kthread_stop(flush_thread
);
751 SM_I(sbi
)->fcc_info
= NULL
;
755 int f2fs_flush_device_cache(struct f2fs_sb_info
*sbi
)
759 if (!f2fs_is_multi_device(sbi
))
762 for (i
= 1; i
< sbi
->s_ndevs
; i
++) {
763 if (!f2fs_test_bit(i
, (char *)&sbi
->dirty_device
))
765 ret
= __submit_flush_wait(sbi
, FDEV(i
).bdev
);
769 spin_lock(&sbi
->dev_lock
);
770 f2fs_clear_bit(i
, (char *)&sbi
->dirty_device
);
771 spin_unlock(&sbi
->dev_lock
);
777 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
778 enum dirty_type dirty_type
)
780 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
782 /* need not be added */
783 if (IS_CURSEG(sbi
, segno
))
786 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
787 dirty_i
->nr_dirty
[dirty_type
]++;
789 if (dirty_type
== DIRTY
) {
790 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
791 enum dirty_type t
= sentry
->type
;
793 if (unlikely(t
>= DIRTY
)) {
797 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
798 dirty_i
->nr_dirty
[t
]++;
802 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
803 enum dirty_type dirty_type
)
805 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
807 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
808 dirty_i
->nr_dirty
[dirty_type
]--;
810 if (dirty_type
== DIRTY
) {
811 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
812 enum dirty_type t
= sentry
->type
;
814 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
815 dirty_i
->nr_dirty
[t
]--;
817 if (get_valid_blocks(sbi
, segno
, true) == 0) {
818 clear_bit(GET_SEC_FROM_SEG(sbi
, segno
),
819 dirty_i
->victim_secmap
);
820 #ifdef CONFIG_F2FS_CHECK_FS
821 clear_bit(segno
, SIT_I(sbi
)->invalid_segmap
);
828 * Should not occur error such as -ENOMEM.
829 * Adding dirty entry into seglist is not critical operation.
830 * If a given segment is one of current working segments, it won't be added.
832 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
834 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
835 unsigned short valid_blocks
, ckpt_valid_blocks
;
837 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
840 mutex_lock(&dirty_i
->seglist_lock
);
842 valid_blocks
= get_valid_blocks(sbi
, segno
, false);
843 ckpt_valid_blocks
= get_ckpt_valid_blocks(sbi
, segno
);
845 if (valid_blocks
== 0 && (!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
) ||
846 ckpt_valid_blocks
== sbi
->blocks_per_seg
)) {
847 __locate_dirty_segment(sbi
, segno
, PRE
);
848 __remove_dirty_segment(sbi
, segno
, DIRTY
);
849 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
850 __locate_dirty_segment(sbi
, segno
, DIRTY
);
852 /* Recovery routine with SSR needs this */
853 __remove_dirty_segment(sbi
, segno
, DIRTY
);
856 mutex_unlock(&dirty_i
->seglist_lock
);
859 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
860 void f2fs_dirty_to_prefree(struct f2fs_sb_info
*sbi
)
862 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
865 mutex_lock(&dirty_i
->seglist_lock
);
866 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[DIRTY
], MAIN_SEGS(sbi
)) {
867 if (get_valid_blocks(sbi
, segno
, false))
869 if (IS_CURSEG(sbi
, segno
))
871 __locate_dirty_segment(sbi
, segno
, PRE
);
872 __remove_dirty_segment(sbi
, segno
, DIRTY
);
874 mutex_unlock(&dirty_i
->seglist_lock
);
877 block_t
f2fs_get_unusable_blocks(struct f2fs_sb_info
*sbi
)
880 (overprovision_segments(sbi
) - reserved_segments(sbi
));
881 block_t ovp_holes
= ovp_hole_segs
<< sbi
->log_blocks_per_seg
;
882 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
883 block_t holes
[2] = {0, 0}; /* DATA and NODE */
885 struct seg_entry
*se
;
888 mutex_lock(&dirty_i
->seglist_lock
);
889 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[DIRTY
], MAIN_SEGS(sbi
)) {
890 se
= get_seg_entry(sbi
, segno
);
891 if (IS_NODESEG(se
->type
))
892 holes
[NODE
] += sbi
->blocks_per_seg
- se
->valid_blocks
;
894 holes
[DATA
] += sbi
->blocks_per_seg
- se
->valid_blocks
;
896 mutex_unlock(&dirty_i
->seglist_lock
);
898 unusable
= holes
[DATA
] > holes
[NODE
] ? holes
[DATA
] : holes
[NODE
];
899 if (unusable
> ovp_holes
)
900 return unusable
- ovp_holes
;
904 int f2fs_disable_cp_again(struct f2fs_sb_info
*sbi
, block_t unusable
)
907 (overprovision_segments(sbi
) - reserved_segments(sbi
));
908 if (unusable
> F2FS_OPTION(sbi
).unusable_cap
)
910 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED_QUICK
) &&
911 dirty_segments(sbi
) > ovp_hole_segs
)
916 /* This is only used by SBI_CP_DISABLED */
917 static unsigned int get_free_segment(struct f2fs_sb_info
*sbi
)
919 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
920 unsigned int segno
= 0;
922 mutex_lock(&dirty_i
->seglist_lock
);
923 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[DIRTY
], MAIN_SEGS(sbi
)) {
924 if (get_valid_blocks(sbi
, segno
, false))
926 if (get_ckpt_valid_blocks(sbi
, segno
))
928 mutex_unlock(&dirty_i
->seglist_lock
);
931 mutex_unlock(&dirty_i
->seglist_lock
);
935 static struct discard_cmd
*__create_discard_cmd(struct f2fs_sb_info
*sbi
,
936 struct block_device
*bdev
, block_t lstart
,
937 block_t start
, block_t len
)
939 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
940 struct list_head
*pend_list
;
941 struct discard_cmd
*dc
;
943 f2fs_bug_on(sbi
, !len
);
945 pend_list
= &dcc
->pend_list
[plist_idx(len
)];
947 dc
= f2fs_kmem_cache_alloc(discard_cmd_slab
, GFP_NOFS
);
948 INIT_LIST_HEAD(&dc
->list
);
957 init_completion(&dc
->wait
);
958 list_add_tail(&dc
->list
, pend_list
);
959 spin_lock_init(&dc
->lock
);
961 atomic_inc(&dcc
->discard_cmd_cnt
);
962 dcc
->undiscard_blks
+= len
;
967 static struct discard_cmd
*__attach_discard_cmd(struct f2fs_sb_info
*sbi
,
968 struct block_device
*bdev
, block_t lstart
,
969 block_t start
, block_t len
,
970 struct rb_node
*parent
, struct rb_node
**p
,
973 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
974 struct discard_cmd
*dc
;
976 dc
= __create_discard_cmd(sbi
, bdev
, lstart
, start
, len
);
978 rb_link_node(&dc
->rb_node
, parent
, p
);
979 rb_insert_color_cached(&dc
->rb_node
, &dcc
->root
, leftmost
);
984 static void __detach_discard_cmd(struct discard_cmd_control
*dcc
,
985 struct discard_cmd
*dc
)
987 if (dc
->state
== D_DONE
)
988 atomic_sub(dc
->queued
, &dcc
->queued_discard
);
991 rb_erase_cached(&dc
->rb_node
, &dcc
->root
);
992 dcc
->undiscard_blks
-= dc
->len
;
994 kmem_cache_free(discard_cmd_slab
, dc
);
996 atomic_dec(&dcc
->discard_cmd_cnt
);
999 static void __remove_discard_cmd(struct f2fs_sb_info
*sbi
,
1000 struct discard_cmd
*dc
)
1002 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1003 unsigned long flags
;
1005 trace_f2fs_remove_discard(dc
->bdev
, dc
->start
, dc
->len
);
1007 spin_lock_irqsave(&dc
->lock
, flags
);
1009 spin_unlock_irqrestore(&dc
->lock
, flags
);
1012 spin_unlock_irqrestore(&dc
->lock
, flags
);
1014 f2fs_bug_on(sbi
, dc
->ref
);
1016 if (dc
->error
== -EOPNOTSUPP
)
1021 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1022 KERN_INFO
, sbi
->sb
->s_id
,
1023 dc
->lstart
, dc
->start
, dc
->len
, dc
->error
);
1024 __detach_discard_cmd(dcc
, dc
);
1027 static void f2fs_submit_discard_endio(struct bio
*bio
)
1029 struct discard_cmd
*dc
= (struct discard_cmd
*)bio
->bi_private
;
1030 unsigned long flags
;
1032 dc
->error
= blk_status_to_errno(bio
->bi_status
);
1034 spin_lock_irqsave(&dc
->lock
, flags
);
1036 if (!dc
->bio_ref
&& dc
->state
== D_SUBMIT
) {
1038 complete_all(&dc
->wait
);
1040 spin_unlock_irqrestore(&dc
->lock
, flags
);
1044 static void __check_sit_bitmap(struct f2fs_sb_info
*sbi
,
1045 block_t start
, block_t end
)
1047 #ifdef CONFIG_F2FS_CHECK_FS
1048 struct seg_entry
*sentry
;
1050 block_t blk
= start
;
1051 unsigned long offset
, size
, max_blocks
= sbi
->blocks_per_seg
;
1055 segno
= GET_SEGNO(sbi
, blk
);
1056 sentry
= get_seg_entry(sbi
, segno
);
1057 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blk
);
1059 if (end
< START_BLOCK(sbi
, segno
+ 1))
1060 size
= GET_BLKOFF_FROM_SEG0(sbi
, end
);
1063 map
= (unsigned long *)(sentry
->cur_valid_map
);
1064 offset
= __find_rev_next_bit(map
, size
, offset
);
1065 f2fs_bug_on(sbi
, offset
!= size
);
1066 blk
= START_BLOCK(sbi
, segno
+ 1);
1071 static void __init_discard_policy(struct f2fs_sb_info
*sbi
,
1072 struct discard_policy
*dpolicy
,
1073 int discard_type
, unsigned int granularity
)
1076 dpolicy
->type
= discard_type
;
1077 dpolicy
->sync
= true;
1078 dpolicy
->ordered
= false;
1079 dpolicy
->granularity
= granularity
;
1081 dpolicy
->max_requests
= DEF_MAX_DISCARD_REQUEST
;
1082 dpolicy
->io_aware_gran
= MAX_PLIST_NUM
;
1083 dpolicy
->timeout
= false;
1085 if (discard_type
== DPOLICY_BG
) {
1086 dpolicy
->min_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
1087 dpolicy
->mid_interval
= DEF_MID_DISCARD_ISSUE_TIME
;
1088 dpolicy
->max_interval
= DEF_MAX_DISCARD_ISSUE_TIME
;
1089 dpolicy
->io_aware
= true;
1090 dpolicy
->sync
= false;
1091 dpolicy
->ordered
= true;
1092 if (utilization(sbi
) > DEF_DISCARD_URGENT_UTIL
) {
1093 dpolicy
->granularity
= 1;
1094 dpolicy
->max_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
1096 } else if (discard_type
== DPOLICY_FORCE
) {
1097 dpolicy
->min_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
1098 dpolicy
->mid_interval
= DEF_MID_DISCARD_ISSUE_TIME
;
1099 dpolicy
->max_interval
= DEF_MAX_DISCARD_ISSUE_TIME
;
1100 dpolicy
->io_aware
= false;
1101 } else if (discard_type
== DPOLICY_FSTRIM
) {
1102 dpolicy
->io_aware
= false;
1103 } else if (discard_type
== DPOLICY_UMOUNT
) {
1104 dpolicy
->max_requests
= UINT_MAX
;
1105 dpolicy
->io_aware
= false;
1106 /* we need to issue all to keep CP_TRIMMED_FLAG */
1107 dpolicy
->granularity
= 1;
1108 dpolicy
->timeout
= true;
1112 static void __update_discard_tree_range(struct f2fs_sb_info
*sbi
,
1113 struct block_device
*bdev
, block_t lstart
,
1114 block_t start
, block_t len
);
1115 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1116 static int __submit_discard_cmd(struct f2fs_sb_info
*sbi
,
1117 struct discard_policy
*dpolicy
,
1118 struct discard_cmd
*dc
,
1119 unsigned int *issued
)
1121 struct block_device
*bdev
= dc
->bdev
;
1122 struct request_queue
*q
= bdev_get_queue(bdev
);
1123 unsigned int max_discard_blocks
=
1124 SECTOR_TO_BLOCK(q
->limits
.max_discard_sectors
);
1125 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1126 struct list_head
*wait_list
= (dpolicy
->type
== DPOLICY_FSTRIM
) ?
1127 &(dcc
->fstrim_list
) : &(dcc
->wait_list
);
1128 int flag
= dpolicy
->sync
? REQ_SYNC
: 0;
1129 block_t lstart
, start
, len
, total_len
;
1132 if (dc
->state
!= D_PREP
)
1135 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1138 trace_f2fs_issue_discard(bdev
, dc
->start
, dc
->len
);
1140 lstart
= dc
->lstart
;
1147 while (total_len
&& *issued
< dpolicy
->max_requests
&& !err
) {
1148 struct bio
*bio
= NULL
;
1149 unsigned long flags
;
1152 if (len
> max_discard_blocks
) {
1153 len
= max_discard_blocks
;
1158 if (*issued
== dpolicy
->max_requests
)
1163 if (time_to_inject(sbi
, FAULT_DISCARD
)) {
1164 f2fs_show_injection_info(sbi
, FAULT_DISCARD
);
1168 err
= __blkdev_issue_discard(bdev
,
1169 SECTOR_FROM_BLOCK(start
),
1170 SECTOR_FROM_BLOCK(len
),
1174 spin_lock_irqsave(&dc
->lock
, flags
);
1175 if (dc
->state
== D_PARTIAL
)
1176 dc
->state
= D_SUBMIT
;
1177 spin_unlock_irqrestore(&dc
->lock
, flags
);
1182 f2fs_bug_on(sbi
, !bio
);
1185 * should keep before submission to avoid D_DONE
1188 spin_lock_irqsave(&dc
->lock
, flags
);
1190 dc
->state
= D_SUBMIT
;
1192 dc
->state
= D_PARTIAL
;
1194 spin_unlock_irqrestore(&dc
->lock
, flags
);
1196 atomic_inc(&dcc
->queued_discard
);
1198 list_move_tail(&dc
->list
, wait_list
);
1200 /* sanity check on discard range */
1201 __check_sit_bitmap(sbi
, lstart
, lstart
+ len
);
1203 bio
->bi_private
= dc
;
1204 bio
->bi_end_io
= f2fs_submit_discard_endio
;
1205 bio
->bi_opf
|= flag
;
1208 atomic_inc(&dcc
->issued_discard
);
1210 f2fs_update_iostat(sbi
, FS_DISCARD
, 1);
1219 __update_discard_tree_range(sbi
, bdev
, lstart
, start
, len
);
1223 static struct discard_cmd
*__insert_discard_tree(struct f2fs_sb_info
*sbi
,
1224 struct block_device
*bdev
, block_t lstart
,
1225 block_t start
, block_t len
,
1226 struct rb_node
**insert_p
,
1227 struct rb_node
*insert_parent
)
1229 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1231 struct rb_node
*parent
= NULL
;
1232 struct discard_cmd
*dc
= NULL
;
1233 bool leftmost
= true;
1235 if (insert_p
&& insert_parent
) {
1236 parent
= insert_parent
;
1241 p
= f2fs_lookup_rb_tree_for_insert(sbi
, &dcc
->root
, &parent
,
1244 dc
= __attach_discard_cmd(sbi
, bdev
, lstart
, start
, len
, parent
,
1252 static void __relocate_discard_cmd(struct discard_cmd_control
*dcc
,
1253 struct discard_cmd
*dc
)
1255 list_move_tail(&dc
->list
, &dcc
->pend_list
[plist_idx(dc
->len
)]);
1258 static void __punch_discard_cmd(struct f2fs_sb_info
*sbi
,
1259 struct discard_cmd
*dc
, block_t blkaddr
)
1261 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1262 struct discard_info di
= dc
->di
;
1263 bool modified
= false;
1265 if (dc
->state
== D_DONE
|| dc
->len
== 1) {
1266 __remove_discard_cmd(sbi
, dc
);
1270 dcc
->undiscard_blks
-= di
.len
;
1272 if (blkaddr
> di
.lstart
) {
1273 dc
->len
= blkaddr
- dc
->lstart
;
1274 dcc
->undiscard_blks
+= dc
->len
;
1275 __relocate_discard_cmd(dcc
, dc
);
1279 if (blkaddr
< di
.lstart
+ di
.len
- 1) {
1281 __insert_discard_tree(sbi
, dc
->bdev
, blkaddr
+ 1,
1282 di
.start
+ blkaddr
+ 1 - di
.lstart
,
1283 di
.lstart
+ di
.len
- 1 - blkaddr
,
1289 dcc
->undiscard_blks
+= dc
->len
;
1290 __relocate_discard_cmd(dcc
, dc
);
1295 static void __update_discard_tree_range(struct f2fs_sb_info
*sbi
,
1296 struct block_device
*bdev
, block_t lstart
,
1297 block_t start
, block_t len
)
1299 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1300 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
1301 struct discard_cmd
*dc
;
1302 struct discard_info di
= {0};
1303 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
1304 struct request_queue
*q
= bdev_get_queue(bdev
);
1305 unsigned int max_discard_blocks
=
1306 SECTOR_TO_BLOCK(q
->limits
.max_discard_sectors
);
1307 block_t end
= lstart
+ len
;
1309 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
1311 (struct rb_entry
**)&prev_dc
,
1312 (struct rb_entry
**)&next_dc
,
1313 &insert_p
, &insert_parent
, true, NULL
);
1319 di
.len
= next_dc
? next_dc
->lstart
- lstart
: len
;
1320 di
.len
= min(di
.len
, len
);
1325 struct rb_node
*node
;
1326 bool merged
= false;
1327 struct discard_cmd
*tdc
= NULL
;
1330 di
.lstart
= prev_dc
->lstart
+ prev_dc
->len
;
1331 if (di
.lstart
< lstart
)
1333 if (di
.lstart
>= end
)
1336 if (!next_dc
|| next_dc
->lstart
> end
)
1337 di
.len
= end
- di
.lstart
;
1339 di
.len
= next_dc
->lstart
- di
.lstart
;
1340 di
.start
= start
+ di
.lstart
- lstart
;
1346 if (prev_dc
&& prev_dc
->state
== D_PREP
&&
1347 prev_dc
->bdev
== bdev
&&
1348 __is_discard_back_mergeable(&di
, &prev_dc
->di
,
1349 max_discard_blocks
)) {
1350 prev_dc
->di
.len
+= di
.len
;
1351 dcc
->undiscard_blks
+= di
.len
;
1352 __relocate_discard_cmd(dcc
, prev_dc
);
1358 if (next_dc
&& next_dc
->state
== D_PREP
&&
1359 next_dc
->bdev
== bdev
&&
1360 __is_discard_front_mergeable(&di
, &next_dc
->di
,
1361 max_discard_blocks
)) {
1362 next_dc
->di
.lstart
= di
.lstart
;
1363 next_dc
->di
.len
+= di
.len
;
1364 next_dc
->di
.start
= di
.start
;
1365 dcc
->undiscard_blks
+= di
.len
;
1366 __relocate_discard_cmd(dcc
, next_dc
);
1368 __remove_discard_cmd(sbi
, tdc
);
1373 __insert_discard_tree(sbi
, bdev
, di
.lstart
, di
.start
,
1374 di
.len
, NULL
, NULL
);
1381 node
= rb_next(&prev_dc
->rb_node
);
1382 next_dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
1386 static int __queue_discard_cmd(struct f2fs_sb_info
*sbi
,
1387 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1389 block_t lblkstart
= blkstart
;
1391 if (!f2fs_bdev_support_discard(bdev
))
1394 trace_f2fs_queue_discard(bdev
, blkstart
, blklen
);
1396 if (f2fs_is_multi_device(sbi
)) {
1397 int devi
= f2fs_target_device_index(sbi
, blkstart
);
1399 blkstart
-= FDEV(devi
).start_blk
;
1401 mutex_lock(&SM_I(sbi
)->dcc_info
->cmd_lock
);
1402 __update_discard_tree_range(sbi
, bdev
, lblkstart
, blkstart
, blklen
);
1403 mutex_unlock(&SM_I(sbi
)->dcc_info
->cmd_lock
);
1407 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info
*sbi
,
1408 struct discard_policy
*dpolicy
)
1410 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1411 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
1412 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
1413 struct discard_cmd
*dc
;
1414 struct blk_plug plug
;
1415 unsigned int pos
= dcc
->next_pos
;
1416 unsigned int issued
= 0;
1417 bool io_interrupted
= false;
1419 mutex_lock(&dcc
->cmd_lock
);
1420 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
1422 (struct rb_entry
**)&prev_dc
,
1423 (struct rb_entry
**)&next_dc
,
1424 &insert_p
, &insert_parent
, true, NULL
);
1428 blk_start_plug(&plug
);
1431 struct rb_node
*node
;
1434 if (dc
->state
!= D_PREP
)
1437 if (dpolicy
->io_aware
&& !is_idle(sbi
, DISCARD_TIME
)) {
1438 io_interrupted
= true;
1442 dcc
->next_pos
= dc
->lstart
+ dc
->len
;
1443 err
= __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
1445 if (issued
>= dpolicy
->max_requests
)
1448 node
= rb_next(&dc
->rb_node
);
1450 __remove_discard_cmd(sbi
, dc
);
1451 dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
1454 blk_finish_plug(&plug
);
1459 mutex_unlock(&dcc
->cmd_lock
);
1461 if (!issued
&& io_interrupted
)
1467 static int __issue_discard_cmd(struct f2fs_sb_info
*sbi
,
1468 struct discard_policy
*dpolicy
)
1470 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1471 struct list_head
*pend_list
;
1472 struct discard_cmd
*dc
, *tmp
;
1473 struct blk_plug plug
;
1475 bool io_interrupted
= false;
1477 if (dpolicy
->timeout
)
1478 f2fs_update_time(sbi
, UMOUNT_DISCARD_TIMEOUT
);
1480 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
1481 if (dpolicy
->timeout
&&
1482 f2fs_time_over(sbi
, UMOUNT_DISCARD_TIMEOUT
))
1485 if (i
+ 1 < dpolicy
->granularity
)
1488 if (i
< DEFAULT_DISCARD_GRANULARITY
&& dpolicy
->ordered
)
1489 return __issue_discard_cmd_orderly(sbi
, dpolicy
);
1491 pend_list
= &dcc
->pend_list
[i
];
1493 mutex_lock(&dcc
->cmd_lock
);
1494 if (list_empty(pend_list
))
1496 if (unlikely(dcc
->rbtree_check
))
1497 f2fs_bug_on(sbi
, !f2fs_check_rb_tree_consistence(sbi
,
1499 blk_start_plug(&plug
);
1500 list_for_each_entry_safe(dc
, tmp
, pend_list
, list
) {
1501 f2fs_bug_on(sbi
, dc
->state
!= D_PREP
);
1503 if (dpolicy
->timeout
&&
1504 f2fs_time_over(sbi
, UMOUNT_DISCARD_TIMEOUT
))
1507 if (dpolicy
->io_aware
&& i
< dpolicy
->io_aware_gran
&&
1508 !is_idle(sbi
, DISCARD_TIME
)) {
1509 io_interrupted
= true;
1513 __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
1515 if (issued
>= dpolicy
->max_requests
)
1518 blk_finish_plug(&plug
);
1520 mutex_unlock(&dcc
->cmd_lock
);
1522 if (issued
>= dpolicy
->max_requests
|| io_interrupted
)
1526 if (!issued
&& io_interrupted
)
1532 static bool __drop_discard_cmd(struct f2fs_sb_info
*sbi
)
1534 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1535 struct list_head
*pend_list
;
1536 struct discard_cmd
*dc
, *tmp
;
1538 bool dropped
= false;
1540 mutex_lock(&dcc
->cmd_lock
);
1541 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
1542 pend_list
= &dcc
->pend_list
[i
];
1543 list_for_each_entry_safe(dc
, tmp
, pend_list
, list
) {
1544 f2fs_bug_on(sbi
, dc
->state
!= D_PREP
);
1545 __remove_discard_cmd(sbi
, dc
);
1549 mutex_unlock(&dcc
->cmd_lock
);
1554 void f2fs_drop_discard_cmd(struct f2fs_sb_info
*sbi
)
1556 __drop_discard_cmd(sbi
);
1559 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info
*sbi
,
1560 struct discard_cmd
*dc
)
1562 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1563 unsigned int len
= 0;
1565 wait_for_completion_io(&dc
->wait
);
1566 mutex_lock(&dcc
->cmd_lock
);
1567 f2fs_bug_on(sbi
, dc
->state
!= D_DONE
);
1572 __remove_discard_cmd(sbi
, dc
);
1574 mutex_unlock(&dcc
->cmd_lock
);
1579 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info
*sbi
,
1580 struct discard_policy
*dpolicy
,
1581 block_t start
, block_t end
)
1583 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1584 struct list_head
*wait_list
= (dpolicy
->type
== DPOLICY_FSTRIM
) ?
1585 &(dcc
->fstrim_list
) : &(dcc
->wait_list
);
1586 struct discard_cmd
*dc
, *tmp
;
1588 unsigned int trimmed
= 0;
1593 mutex_lock(&dcc
->cmd_lock
);
1594 list_for_each_entry_safe(dc
, tmp
, wait_list
, list
) {
1595 if (dc
->lstart
+ dc
->len
<= start
|| end
<= dc
->lstart
)
1597 if (dc
->len
< dpolicy
->granularity
)
1599 if (dc
->state
== D_DONE
&& !dc
->ref
) {
1600 wait_for_completion_io(&dc
->wait
);
1603 __remove_discard_cmd(sbi
, dc
);
1610 mutex_unlock(&dcc
->cmd_lock
);
1613 trimmed
+= __wait_one_discard_bio(sbi
, dc
);
1620 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info
*sbi
,
1621 struct discard_policy
*dpolicy
)
1623 struct discard_policy dp
;
1624 unsigned int discard_blks
;
1627 return __wait_discard_cmd_range(sbi
, dpolicy
, 0, UINT_MAX
);
1630 __init_discard_policy(sbi
, &dp
, DPOLICY_FSTRIM
, 1);
1631 discard_blks
= __wait_discard_cmd_range(sbi
, &dp
, 0, UINT_MAX
);
1632 __init_discard_policy(sbi
, &dp
, DPOLICY_UMOUNT
, 1);
1633 discard_blks
+= __wait_discard_cmd_range(sbi
, &dp
, 0, UINT_MAX
);
1635 return discard_blks
;
1638 /* This should be covered by global mutex, &sit_i->sentry_lock */
1639 static void f2fs_wait_discard_bio(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1641 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1642 struct discard_cmd
*dc
;
1643 bool need_wait
= false;
1645 mutex_lock(&dcc
->cmd_lock
);
1646 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree(&dcc
->root
,
1649 if (dc
->state
== D_PREP
) {
1650 __punch_discard_cmd(sbi
, dc
, blkaddr
);
1656 mutex_unlock(&dcc
->cmd_lock
);
1659 __wait_one_discard_bio(sbi
, dc
);
1662 void f2fs_stop_discard_thread(struct f2fs_sb_info
*sbi
)
1664 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1666 if (dcc
&& dcc
->f2fs_issue_discard
) {
1667 struct task_struct
*discard_thread
= dcc
->f2fs_issue_discard
;
1669 dcc
->f2fs_issue_discard
= NULL
;
1670 kthread_stop(discard_thread
);
1674 /* This comes from f2fs_put_super */
1675 bool f2fs_issue_discard_timeout(struct f2fs_sb_info
*sbi
)
1677 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1678 struct discard_policy dpolicy
;
1681 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_UMOUNT
,
1682 dcc
->discard_granularity
);
1683 __issue_discard_cmd(sbi
, &dpolicy
);
1684 dropped
= __drop_discard_cmd(sbi
);
1686 /* just to make sure there is no pending discard commands */
1687 __wait_all_discard_cmd(sbi
, NULL
);
1689 f2fs_bug_on(sbi
, atomic_read(&dcc
->discard_cmd_cnt
));
1693 static int issue_discard_thread(void *data
)
1695 struct f2fs_sb_info
*sbi
= data
;
1696 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1697 wait_queue_head_t
*q
= &dcc
->discard_wait_queue
;
1698 struct discard_policy dpolicy
;
1699 unsigned int wait_ms
= DEF_MIN_DISCARD_ISSUE_TIME
;
1705 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_BG
,
1706 dcc
->discard_granularity
);
1708 wait_event_interruptible_timeout(*q
,
1709 kthread_should_stop() || freezing(current
) ||
1711 msecs_to_jiffies(wait_ms
));
1713 if (dcc
->discard_wake
)
1714 dcc
->discard_wake
= 0;
1716 /* clean up pending candidates before going to sleep */
1717 if (atomic_read(&dcc
->queued_discard
))
1718 __wait_all_discard_cmd(sbi
, NULL
);
1720 if (try_to_freeze())
1722 if (f2fs_readonly(sbi
->sb
))
1724 if (kthread_should_stop())
1726 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
1727 wait_ms
= dpolicy
.max_interval
;
1731 if (sbi
->gc_mode
== GC_URGENT
)
1732 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_FORCE
, 1);
1734 sb_start_intwrite(sbi
->sb
);
1736 issued
= __issue_discard_cmd(sbi
, &dpolicy
);
1738 __wait_all_discard_cmd(sbi
, &dpolicy
);
1739 wait_ms
= dpolicy
.min_interval
;
1740 } else if (issued
== -1){
1741 wait_ms
= f2fs_time_to_wait(sbi
, DISCARD_TIME
);
1743 wait_ms
= dpolicy
.mid_interval
;
1745 wait_ms
= dpolicy
.max_interval
;
1748 sb_end_intwrite(sbi
->sb
);
1750 } while (!kthread_should_stop());
1754 #ifdef CONFIG_BLK_DEV_ZONED
1755 static int __f2fs_issue_discard_zone(struct f2fs_sb_info
*sbi
,
1756 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1758 sector_t sector
, nr_sects
;
1759 block_t lblkstart
= blkstart
;
1762 if (f2fs_is_multi_device(sbi
)) {
1763 devi
= f2fs_target_device_index(sbi
, blkstart
);
1764 if (blkstart
< FDEV(devi
).start_blk
||
1765 blkstart
> FDEV(devi
).end_blk
) {
1766 f2fs_err(sbi
, "Invalid block %x", blkstart
);
1769 blkstart
-= FDEV(devi
).start_blk
;
1772 /* For sequential zones, reset the zone write pointer */
1773 if (f2fs_blkz_is_seq(sbi
, devi
, blkstart
)) {
1774 sector
= SECTOR_FROM_BLOCK(blkstart
);
1775 nr_sects
= SECTOR_FROM_BLOCK(blklen
);
1777 if (sector
& (bdev_zone_sectors(bdev
) - 1) ||
1778 nr_sects
!= bdev_zone_sectors(bdev
)) {
1779 f2fs_err(sbi
, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1780 devi
, sbi
->s_ndevs
? FDEV(devi
).path
: "",
1784 trace_f2fs_issue_reset_zone(bdev
, blkstart
);
1785 return blkdev_zone_mgmt(bdev
, REQ_OP_ZONE_RESET
,
1786 sector
, nr_sects
, GFP_NOFS
);
1789 /* For conventional zones, use regular discard if supported */
1790 return __queue_discard_cmd(sbi
, bdev
, lblkstart
, blklen
);
1794 static int __issue_discard_async(struct f2fs_sb_info
*sbi
,
1795 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1797 #ifdef CONFIG_BLK_DEV_ZONED
1798 if (f2fs_sb_has_blkzoned(sbi
) && bdev_is_zoned(bdev
))
1799 return __f2fs_issue_discard_zone(sbi
, bdev
, blkstart
, blklen
);
1801 return __queue_discard_cmd(sbi
, bdev
, blkstart
, blklen
);
1804 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
1805 block_t blkstart
, block_t blklen
)
1807 sector_t start
= blkstart
, len
= 0;
1808 struct block_device
*bdev
;
1809 struct seg_entry
*se
;
1810 unsigned int offset
;
1814 bdev
= f2fs_target_device(sbi
, blkstart
, NULL
);
1816 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++, len
++) {
1818 struct block_device
*bdev2
=
1819 f2fs_target_device(sbi
, i
, NULL
);
1821 if (bdev2
!= bdev
) {
1822 err
= __issue_discard_async(sbi
, bdev
,
1832 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
1833 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
1835 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
1836 sbi
->discard_blks
--;
1840 err
= __issue_discard_async(sbi
, bdev
, start
, len
);
1844 static bool add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
,
1847 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1848 int max_blocks
= sbi
->blocks_per_seg
;
1849 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
1850 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1851 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1852 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
1853 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
1854 unsigned int start
= 0, end
= -1;
1855 bool force
= (cpc
->reason
& CP_DISCARD
);
1856 struct discard_entry
*de
= NULL
;
1857 struct list_head
*head
= &SM_I(sbi
)->dcc_info
->entry_list
;
1860 if (se
->valid_blocks
== max_blocks
|| !f2fs_hw_support_discard(sbi
))
1864 if (!f2fs_realtime_discard_enable(sbi
) || !se
->valid_blocks
||
1865 SM_I(sbi
)->dcc_info
->nr_discards
>=
1866 SM_I(sbi
)->dcc_info
->max_discards
)
1870 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1871 for (i
= 0; i
< entries
; i
++)
1872 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
1873 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
1875 while (force
|| SM_I(sbi
)->dcc_info
->nr_discards
<=
1876 SM_I(sbi
)->dcc_info
->max_discards
) {
1877 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
1878 if (start
>= max_blocks
)
1881 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
1882 if (force
&& start
&& end
!= max_blocks
1883 && (end
- start
) < cpc
->trim_minlen
)
1890 de
= f2fs_kmem_cache_alloc(discard_entry_slab
,
1892 de
->start_blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
);
1893 list_add_tail(&de
->list
, head
);
1896 for (i
= start
; i
< end
; i
++)
1897 __set_bit_le(i
, (void *)de
->discard_map
);
1899 SM_I(sbi
)->dcc_info
->nr_discards
+= end
- start
;
1904 static void release_discard_addr(struct discard_entry
*entry
)
1906 list_del(&entry
->list
);
1907 kmem_cache_free(discard_entry_slab
, entry
);
1910 void f2fs_release_discard_addrs(struct f2fs_sb_info
*sbi
)
1912 struct list_head
*head
= &(SM_I(sbi
)->dcc_info
->entry_list
);
1913 struct discard_entry
*entry
, *this;
1916 list_for_each_entry_safe(entry
, this, head
, list
)
1917 release_discard_addr(entry
);
1921 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1923 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
1925 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1928 mutex_lock(&dirty_i
->seglist_lock
);
1929 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
1930 __set_test_and_free(sbi
, segno
);
1931 mutex_unlock(&dirty_i
->seglist_lock
);
1934 void f2fs_clear_prefree_segments(struct f2fs_sb_info
*sbi
,
1935 struct cp_control
*cpc
)
1937 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1938 struct list_head
*head
= &dcc
->entry_list
;
1939 struct discard_entry
*entry
, *this;
1940 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1941 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
1942 unsigned int start
= 0, end
= -1;
1943 unsigned int secno
, start_segno
;
1944 bool force
= (cpc
->reason
& CP_DISCARD
);
1945 bool need_align
= f2fs_lfs_mode(sbi
) && __is_large_section(sbi
);
1947 mutex_lock(&dirty_i
->seglist_lock
);
1952 if (need_align
&& end
!= -1)
1954 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
1955 if (start
>= MAIN_SEGS(sbi
))
1957 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
1961 start
= rounddown(start
, sbi
->segs_per_sec
);
1962 end
= roundup(end
, sbi
->segs_per_sec
);
1965 for (i
= start
; i
< end
; i
++) {
1966 if (test_and_clear_bit(i
, prefree_map
))
1967 dirty_i
->nr_dirty
[PRE
]--;
1970 if (!f2fs_realtime_discard_enable(sbi
))
1973 if (force
&& start
>= cpc
->trim_start
&&
1974 (end
- 1) <= cpc
->trim_end
)
1977 if (!f2fs_lfs_mode(sbi
) || !__is_large_section(sbi
)) {
1978 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
1979 (end
- start
) << sbi
->log_blocks_per_seg
);
1983 secno
= GET_SEC_FROM_SEG(sbi
, start
);
1984 start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
1985 if (!IS_CURSEC(sbi
, secno
) &&
1986 !get_valid_blocks(sbi
, start
, true))
1987 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start_segno
),
1988 sbi
->segs_per_sec
<< sbi
->log_blocks_per_seg
);
1990 start
= start_segno
+ sbi
->segs_per_sec
;
1996 mutex_unlock(&dirty_i
->seglist_lock
);
1998 /* send small discards */
1999 list_for_each_entry_safe(entry
, this, head
, list
) {
2000 unsigned int cur_pos
= 0, next_pos
, len
, total_len
= 0;
2001 bool is_valid
= test_bit_le(0, entry
->discard_map
);
2005 next_pos
= find_next_zero_bit_le(entry
->discard_map
,
2006 sbi
->blocks_per_seg
, cur_pos
);
2007 len
= next_pos
- cur_pos
;
2009 if (f2fs_sb_has_blkzoned(sbi
) ||
2010 (force
&& len
< cpc
->trim_minlen
))
2013 f2fs_issue_discard(sbi
, entry
->start_blkaddr
+ cur_pos
,
2017 next_pos
= find_next_bit_le(entry
->discard_map
,
2018 sbi
->blocks_per_seg
, cur_pos
);
2022 is_valid
= !is_valid
;
2024 if (cur_pos
< sbi
->blocks_per_seg
)
2027 release_discard_addr(entry
);
2028 dcc
->nr_discards
-= total_len
;
2031 wake_up_discard_thread(sbi
, false);
2034 static int create_discard_cmd_control(struct f2fs_sb_info
*sbi
)
2036 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
2037 struct discard_cmd_control
*dcc
;
2040 if (SM_I(sbi
)->dcc_info
) {
2041 dcc
= SM_I(sbi
)->dcc_info
;
2045 dcc
= f2fs_kzalloc(sbi
, sizeof(struct discard_cmd_control
), GFP_KERNEL
);
2049 dcc
->discard_granularity
= DEFAULT_DISCARD_GRANULARITY
;
2050 INIT_LIST_HEAD(&dcc
->entry_list
);
2051 for (i
= 0; i
< MAX_PLIST_NUM
; i
++)
2052 INIT_LIST_HEAD(&dcc
->pend_list
[i
]);
2053 INIT_LIST_HEAD(&dcc
->wait_list
);
2054 INIT_LIST_HEAD(&dcc
->fstrim_list
);
2055 mutex_init(&dcc
->cmd_lock
);
2056 atomic_set(&dcc
->issued_discard
, 0);
2057 atomic_set(&dcc
->queued_discard
, 0);
2058 atomic_set(&dcc
->discard_cmd_cnt
, 0);
2059 dcc
->nr_discards
= 0;
2060 dcc
->max_discards
= MAIN_SEGS(sbi
) << sbi
->log_blocks_per_seg
;
2061 dcc
->undiscard_blks
= 0;
2063 dcc
->root
= RB_ROOT_CACHED
;
2064 dcc
->rbtree_check
= false;
2066 init_waitqueue_head(&dcc
->discard_wait_queue
);
2067 SM_I(sbi
)->dcc_info
= dcc
;
2069 dcc
->f2fs_issue_discard
= kthread_run(issue_discard_thread
, sbi
,
2070 "f2fs_discard-%u:%u", MAJOR(dev
), MINOR(dev
));
2071 if (IS_ERR(dcc
->f2fs_issue_discard
)) {
2072 err
= PTR_ERR(dcc
->f2fs_issue_discard
);
2074 SM_I(sbi
)->dcc_info
= NULL
;
2081 static void destroy_discard_cmd_control(struct f2fs_sb_info
*sbi
)
2083 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
2088 f2fs_stop_discard_thread(sbi
);
2091 * Recovery can cache discard commands, so in error path of
2092 * fill_super(), it needs to give a chance to handle them.
2094 if (unlikely(atomic_read(&dcc
->discard_cmd_cnt
)))
2095 f2fs_issue_discard_timeout(sbi
);
2098 SM_I(sbi
)->dcc_info
= NULL
;
2101 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
2103 struct sit_info
*sit_i
= SIT_I(sbi
);
2105 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
2106 sit_i
->dirty_sentries
++;
2113 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
2114 unsigned int segno
, int modified
)
2116 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
2119 __mark_sit_entry_dirty(sbi
, segno
);
2122 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
2124 struct seg_entry
*se
;
2125 unsigned int segno
, offset
;
2126 long int new_vblocks
;
2128 #ifdef CONFIG_F2FS_CHECK_FS
2132 segno
= GET_SEGNO(sbi
, blkaddr
);
2134 se
= get_seg_entry(sbi
, segno
);
2135 new_vblocks
= se
->valid_blocks
+ del
;
2136 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
2138 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
2139 (new_vblocks
> sbi
->blocks_per_seg
)));
2141 se
->valid_blocks
= new_vblocks
;
2142 se
->mtime
= get_mtime(sbi
, false);
2143 if (se
->mtime
> SIT_I(sbi
)->max_mtime
)
2144 SIT_I(sbi
)->max_mtime
= se
->mtime
;
2146 /* Update valid block bitmap */
2148 exist
= f2fs_test_and_set_bit(offset
, se
->cur_valid_map
);
2149 #ifdef CONFIG_F2FS_CHECK_FS
2150 mir_exist
= f2fs_test_and_set_bit(offset
,
2151 se
->cur_valid_map_mir
);
2152 if (unlikely(exist
!= mir_exist
)) {
2153 f2fs_err(sbi
, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2155 f2fs_bug_on(sbi
, 1);
2158 if (unlikely(exist
)) {
2159 f2fs_err(sbi
, "Bitmap was wrongly set, blk:%u",
2161 f2fs_bug_on(sbi
, 1);
2166 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
2167 sbi
->discard_blks
--;
2170 * SSR should never reuse block which is checkpointed
2171 * or newly invalidated.
2173 if (!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)) {
2174 if (!f2fs_test_and_set_bit(offset
, se
->ckpt_valid_map
))
2175 se
->ckpt_valid_blocks
++;
2178 exist
= f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
);
2179 #ifdef CONFIG_F2FS_CHECK_FS
2180 mir_exist
= f2fs_test_and_clear_bit(offset
,
2181 se
->cur_valid_map_mir
);
2182 if (unlikely(exist
!= mir_exist
)) {
2183 f2fs_err(sbi
, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2185 f2fs_bug_on(sbi
, 1);
2188 if (unlikely(!exist
)) {
2189 f2fs_err(sbi
, "Bitmap was wrongly cleared, blk:%u",
2191 f2fs_bug_on(sbi
, 1);
2194 } else if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
2196 * If checkpoints are off, we must not reuse data that
2197 * was used in the previous checkpoint. If it was used
2198 * before, we must track that to know how much space we
2201 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
)) {
2202 spin_lock(&sbi
->stat_lock
);
2203 sbi
->unusable_block_count
++;
2204 spin_unlock(&sbi
->stat_lock
);
2208 if (f2fs_test_and_clear_bit(offset
, se
->discard_map
))
2209 sbi
->discard_blks
++;
2211 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
2212 se
->ckpt_valid_blocks
+= del
;
2214 __mark_sit_entry_dirty(sbi
, segno
);
2216 /* update total number of valid blocks to be written in ckpt area */
2217 SIT_I(sbi
)->written_valid_blocks
+= del
;
2219 if (__is_large_section(sbi
))
2220 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
2223 void f2fs_invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
2225 unsigned int segno
= GET_SEGNO(sbi
, addr
);
2226 struct sit_info
*sit_i
= SIT_I(sbi
);
2228 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
2229 if (addr
== NEW_ADDR
|| addr
== COMPRESS_ADDR
)
2232 invalidate_mapping_pages(META_MAPPING(sbi
), addr
, addr
);
2234 /* add it into sit main buffer */
2235 down_write(&sit_i
->sentry_lock
);
2237 update_sit_entry(sbi
, addr
, -1);
2239 /* add it into dirty seglist */
2240 locate_dirty_segment(sbi
, segno
);
2242 up_write(&sit_i
->sentry_lock
);
2245 bool f2fs_is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
2247 struct sit_info
*sit_i
= SIT_I(sbi
);
2248 unsigned int segno
, offset
;
2249 struct seg_entry
*se
;
2252 if (!__is_valid_data_blkaddr(blkaddr
))
2255 down_read(&sit_i
->sentry_lock
);
2257 segno
= GET_SEGNO(sbi
, blkaddr
);
2258 se
= get_seg_entry(sbi
, segno
);
2259 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
2261 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
2264 up_read(&sit_i
->sentry_lock
);
2270 * This function should be resided under the curseg_mutex lock
2272 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
2273 struct f2fs_summary
*sum
)
2275 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2276 void *addr
= curseg
->sum_blk
;
2277 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
2278 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
2282 * Calculate the number of current summary pages for writing
2284 int f2fs_npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
2286 int valid_sum_count
= 0;
2289 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2290 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
2291 valid_sum_count
+= sbi
->blocks_per_seg
;
2294 valid_sum_count
+= le16_to_cpu(
2295 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
2297 valid_sum_count
+= curseg_blkoff(sbi
, i
);
2301 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
2302 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
2303 if (valid_sum_count
<= sum_in_page
)
2305 else if ((valid_sum_count
- sum_in_page
) <=
2306 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
2312 * Caller should put this summary page
2314 struct page
*f2fs_get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
2316 return f2fs_get_meta_page_nofail(sbi
, GET_SUM_BLOCK(sbi
, segno
));
2319 void f2fs_update_meta_page(struct f2fs_sb_info
*sbi
,
2320 void *src
, block_t blk_addr
)
2322 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
2324 memcpy(page_address(page
), src
, PAGE_SIZE
);
2325 set_page_dirty(page
);
2326 f2fs_put_page(page
, 1);
2329 static void write_sum_page(struct f2fs_sb_info
*sbi
,
2330 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
2332 f2fs_update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
2335 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
2336 int type
, block_t blk_addr
)
2338 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2339 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
2340 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
2341 struct f2fs_summary_block
*dst
;
2343 dst
= (struct f2fs_summary_block
*)page_address(page
);
2344 memset(dst
, 0, PAGE_SIZE
);
2346 mutex_lock(&curseg
->curseg_mutex
);
2348 down_read(&curseg
->journal_rwsem
);
2349 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
2350 up_read(&curseg
->journal_rwsem
);
2352 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
2353 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
2355 mutex_unlock(&curseg
->curseg_mutex
);
2357 set_page_dirty(page
);
2358 f2fs_put_page(page
, 1);
2361 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
2363 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2364 unsigned int segno
= curseg
->segno
+ 1;
2365 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2367 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
2368 return !test_bit(segno
, free_i
->free_segmap
);
2373 * Find a new segment from the free segments bitmap to right order
2374 * This function should be returned with success, otherwise BUG
2376 static void get_new_segment(struct f2fs_sb_info
*sbi
,
2377 unsigned int *newseg
, bool new_sec
, int dir
)
2379 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2380 unsigned int segno
, secno
, zoneno
;
2381 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
2382 unsigned int hint
= GET_SEC_FROM_SEG(sbi
, *newseg
);
2383 unsigned int old_zoneno
= GET_ZONE_FROM_SEG(sbi
, *newseg
);
2384 unsigned int left_start
= hint
;
2389 spin_lock(&free_i
->segmap_lock
);
2391 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
2392 segno
= find_next_zero_bit(free_i
->free_segmap
,
2393 GET_SEG_FROM_SEC(sbi
, hint
+ 1), *newseg
+ 1);
2394 if (segno
< GET_SEG_FROM_SEC(sbi
, hint
+ 1))
2398 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
2399 if (secno
>= MAIN_SECS(sbi
)) {
2400 if (dir
== ALLOC_RIGHT
) {
2401 secno
= find_next_zero_bit(free_i
->free_secmap
,
2403 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
2406 left_start
= hint
- 1;
2412 while (test_bit(left_start
, free_i
->free_secmap
)) {
2413 if (left_start
> 0) {
2417 left_start
= find_next_zero_bit(free_i
->free_secmap
,
2419 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
2424 segno
= GET_SEG_FROM_SEC(sbi
, secno
);
2425 zoneno
= GET_ZONE_FROM_SEC(sbi
, secno
);
2427 /* give up on finding another zone */
2430 if (sbi
->secs_per_zone
== 1)
2432 if (zoneno
== old_zoneno
)
2434 if (dir
== ALLOC_LEFT
) {
2435 if (!go_left
&& zoneno
+ 1 >= total_zones
)
2437 if (go_left
&& zoneno
== 0)
2440 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
2441 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
2444 if (i
< NR_CURSEG_TYPE
) {
2445 /* zone is in user, try another */
2447 hint
= zoneno
* sbi
->secs_per_zone
- 1;
2448 else if (zoneno
+ 1 >= total_zones
)
2451 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
2453 goto find_other_zone
;
2456 /* set it as dirty segment in free segmap */
2457 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
2458 __set_inuse(sbi
, segno
);
2460 spin_unlock(&free_i
->segmap_lock
);
2463 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
2465 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2466 struct summary_footer
*sum_footer
;
2468 curseg
->segno
= curseg
->next_segno
;
2469 curseg
->zone
= GET_ZONE_FROM_SEG(sbi
, curseg
->segno
);
2470 curseg
->next_blkoff
= 0;
2471 curseg
->next_segno
= NULL_SEGNO
;
2473 sum_footer
= &(curseg
->sum_blk
->footer
);
2474 memset(sum_footer
, 0, sizeof(struct summary_footer
));
2475 if (IS_DATASEG(type
))
2476 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
2477 if (IS_NODESEG(type
))
2478 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
2479 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
2482 static unsigned int __get_next_segno(struct f2fs_sb_info
*sbi
, int type
)
2484 /* if segs_per_sec is large than 1, we need to keep original policy. */
2485 if (__is_large_section(sbi
))
2486 return CURSEG_I(sbi
, type
)->segno
;
2488 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
2491 if (test_opt(sbi
, NOHEAP
) &&
2492 (type
== CURSEG_HOT_DATA
|| IS_NODESEG(type
)))
2495 if (SIT_I(sbi
)->last_victim
[ALLOC_NEXT
])
2496 return SIT_I(sbi
)->last_victim
[ALLOC_NEXT
];
2498 /* find segments from 0 to reuse freed segments */
2499 if (F2FS_OPTION(sbi
).alloc_mode
== ALLOC_MODE_REUSE
)
2502 return CURSEG_I(sbi
, type
)->segno
;
2506 * Allocate a current working segment.
2507 * This function always allocates a free segment in LFS manner.
2509 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
2511 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2512 unsigned int segno
= curseg
->segno
;
2513 int dir
= ALLOC_LEFT
;
2515 write_sum_page(sbi
, curseg
->sum_blk
,
2516 GET_SUM_BLOCK(sbi
, segno
));
2517 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
2520 if (test_opt(sbi
, NOHEAP
))
2523 segno
= __get_next_segno(sbi
, type
);
2524 get_new_segment(sbi
, &segno
, new_sec
, dir
);
2525 curseg
->next_segno
= segno
;
2526 reset_curseg(sbi
, type
, 1);
2527 curseg
->alloc_type
= LFS
;
2530 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
2531 struct curseg_info
*seg
, block_t start
)
2533 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
2534 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
2535 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
2536 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
2537 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
2540 for (i
= 0; i
< entries
; i
++)
2541 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
2543 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
2545 seg
->next_blkoff
= pos
;
2549 * If a segment is written by LFS manner, next block offset is just obtained
2550 * by increasing the current block offset. However, if a segment is written by
2551 * SSR manner, next block offset obtained by calling __next_free_blkoff
2553 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
2554 struct curseg_info
*seg
)
2556 if (seg
->alloc_type
== SSR
)
2557 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
2563 * This function always allocates a used segment(from dirty seglist) by SSR
2564 * manner, so it should recover the existing segment information of valid blocks
2566 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
)
2568 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2569 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2570 unsigned int new_segno
= curseg
->next_segno
;
2571 struct f2fs_summary_block
*sum_node
;
2572 struct page
*sum_page
;
2574 write_sum_page(sbi
, curseg
->sum_blk
,
2575 GET_SUM_BLOCK(sbi
, curseg
->segno
));
2576 __set_test_and_inuse(sbi
, new_segno
);
2578 mutex_lock(&dirty_i
->seglist_lock
);
2579 __remove_dirty_segment(sbi
, new_segno
, PRE
);
2580 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
2581 mutex_unlock(&dirty_i
->seglist_lock
);
2583 reset_curseg(sbi
, type
, 1);
2584 curseg
->alloc_type
= SSR
;
2585 __next_free_blkoff(sbi
, curseg
, 0);
2587 sum_page
= f2fs_get_sum_page(sbi
, new_segno
);
2588 f2fs_bug_on(sbi
, IS_ERR(sum_page
));
2589 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
2590 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
2591 f2fs_put_page(sum_page
, 1);
2594 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
2596 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2597 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
2598 unsigned segno
= NULL_SEGNO
;
2600 bool reversed
= false;
2602 /* f2fs_need_SSR() already forces to do this */
2603 if (v_ops
->get_victim(sbi
, &segno
, BG_GC
, type
, SSR
)) {
2604 curseg
->next_segno
= segno
;
2608 /* For node segments, let's do SSR more intensively */
2609 if (IS_NODESEG(type
)) {
2610 if (type
>= CURSEG_WARM_NODE
) {
2612 i
= CURSEG_COLD_NODE
;
2614 i
= CURSEG_HOT_NODE
;
2616 cnt
= NR_CURSEG_NODE_TYPE
;
2618 if (type
>= CURSEG_WARM_DATA
) {
2620 i
= CURSEG_COLD_DATA
;
2622 i
= CURSEG_HOT_DATA
;
2624 cnt
= NR_CURSEG_DATA_TYPE
;
2627 for (; cnt
-- > 0; reversed
? i
-- : i
++) {
2630 if (v_ops
->get_victim(sbi
, &segno
, BG_GC
, i
, SSR
)) {
2631 curseg
->next_segno
= segno
;
2636 /* find valid_blocks=0 in dirty list */
2637 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
2638 segno
= get_free_segment(sbi
);
2639 if (segno
!= NULL_SEGNO
) {
2640 curseg
->next_segno
= segno
;
2648 * flush out current segment and replace it with new segment
2649 * This function should be returned with success, otherwise BUG
2651 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
2652 int type
, bool force
)
2654 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2657 new_curseg(sbi
, type
, true);
2658 else if (!is_set_ckpt_flags(sbi
, CP_CRC_RECOVERY_FLAG
) &&
2659 type
== CURSEG_WARM_NODE
)
2660 new_curseg(sbi
, type
, false);
2661 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
) &&
2662 likely(!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
2663 new_curseg(sbi
, type
, false);
2664 else if (f2fs_need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
2665 change_curseg(sbi
, type
);
2667 new_curseg(sbi
, type
, false);
2669 stat_inc_seg_type(sbi
, curseg
);
2672 void allocate_segment_for_resize(struct f2fs_sb_info
*sbi
, int type
,
2673 unsigned int start
, unsigned int end
)
2675 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2678 down_read(&SM_I(sbi
)->curseg_lock
);
2679 mutex_lock(&curseg
->curseg_mutex
);
2680 down_write(&SIT_I(sbi
)->sentry_lock
);
2682 segno
= CURSEG_I(sbi
, type
)->segno
;
2683 if (segno
< start
|| segno
> end
)
2686 if (f2fs_need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
2687 change_curseg(sbi
, type
);
2689 new_curseg(sbi
, type
, true);
2691 stat_inc_seg_type(sbi
, curseg
);
2693 locate_dirty_segment(sbi
, segno
);
2695 up_write(&SIT_I(sbi
)->sentry_lock
);
2697 if (segno
!= curseg
->segno
)
2698 f2fs_notice(sbi
, "For resize: curseg of type %d: %u ==> %u",
2699 type
, segno
, curseg
->segno
);
2701 mutex_unlock(&curseg
->curseg_mutex
);
2702 up_read(&SM_I(sbi
)->curseg_lock
);
2705 void f2fs_allocate_new_segments(struct f2fs_sb_info
*sbi
, int type
)
2707 struct curseg_info
*curseg
;
2708 unsigned int old_segno
;
2711 down_write(&SIT_I(sbi
)->sentry_lock
);
2713 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2714 if (type
!= NO_CHECK_TYPE
&& i
!= type
)
2717 curseg
= CURSEG_I(sbi
, i
);
2718 if (type
== NO_CHECK_TYPE
|| curseg
->next_blkoff
||
2719 get_valid_blocks(sbi
, curseg
->segno
, false) ||
2720 get_ckpt_valid_blocks(sbi
, curseg
->segno
)) {
2721 old_segno
= curseg
->segno
;
2722 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, i
, true);
2723 locate_dirty_segment(sbi
, old_segno
);
2727 up_write(&SIT_I(sbi
)->sentry_lock
);
2730 static const struct segment_allocation default_salloc_ops
= {
2731 .allocate_segment
= allocate_segment_by_default
,
2734 bool f2fs_exist_trim_candidates(struct f2fs_sb_info
*sbi
,
2735 struct cp_control
*cpc
)
2737 __u64 trim_start
= cpc
->trim_start
;
2738 bool has_candidate
= false;
2740 down_write(&SIT_I(sbi
)->sentry_lock
);
2741 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++) {
2742 if (add_discard_addrs(sbi
, cpc
, true)) {
2743 has_candidate
= true;
2747 up_write(&SIT_I(sbi
)->sentry_lock
);
2749 cpc
->trim_start
= trim_start
;
2750 return has_candidate
;
2753 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info
*sbi
,
2754 struct discard_policy
*dpolicy
,
2755 unsigned int start
, unsigned int end
)
2757 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
2758 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
2759 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
2760 struct discard_cmd
*dc
;
2761 struct blk_plug plug
;
2763 unsigned int trimmed
= 0;
2768 mutex_lock(&dcc
->cmd_lock
);
2769 if (unlikely(dcc
->rbtree_check
))
2770 f2fs_bug_on(sbi
, !f2fs_check_rb_tree_consistence(sbi
,
2773 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
2775 (struct rb_entry
**)&prev_dc
,
2776 (struct rb_entry
**)&next_dc
,
2777 &insert_p
, &insert_parent
, true, NULL
);
2781 blk_start_plug(&plug
);
2783 while (dc
&& dc
->lstart
<= end
) {
2784 struct rb_node
*node
;
2787 if (dc
->len
< dpolicy
->granularity
)
2790 if (dc
->state
!= D_PREP
) {
2791 list_move_tail(&dc
->list
, &dcc
->fstrim_list
);
2795 err
= __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
2797 if (issued
>= dpolicy
->max_requests
) {
2798 start
= dc
->lstart
+ dc
->len
;
2801 __remove_discard_cmd(sbi
, dc
);
2803 blk_finish_plug(&plug
);
2804 mutex_unlock(&dcc
->cmd_lock
);
2805 trimmed
+= __wait_all_discard_cmd(sbi
, NULL
);
2806 congestion_wait(BLK_RW_ASYNC
, DEFAULT_IO_TIMEOUT
);
2810 node
= rb_next(&dc
->rb_node
);
2812 __remove_discard_cmd(sbi
, dc
);
2813 dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
2815 if (fatal_signal_pending(current
))
2819 blk_finish_plug(&plug
);
2820 mutex_unlock(&dcc
->cmd_lock
);
2825 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
2827 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
2828 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
2829 unsigned int start_segno
, end_segno
;
2830 block_t start_block
, end_block
;
2831 struct cp_control cpc
;
2832 struct discard_policy dpolicy
;
2833 unsigned long long trimmed
= 0;
2835 bool need_align
= f2fs_lfs_mode(sbi
) && __is_large_section(sbi
);
2837 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
2840 if (end
< MAIN_BLKADDR(sbi
))
2843 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
2844 f2fs_warn(sbi
, "Found FS corruption, run fsck to fix.");
2845 return -EFSCORRUPTED
;
2848 /* start/end segment number in main_area */
2849 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
2850 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
2851 GET_SEGNO(sbi
, end
);
2853 start_segno
= rounddown(start_segno
, sbi
->segs_per_sec
);
2854 end_segno
= roundup(end_segno
+ 1, sbi
->segs_per_sec
) - 1;
2857 cpc
.reason
= CP_DISCARD
;
2858 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
2859 cpc
.trim_start
= start_segno
;
2860 cpc
.trim_end
= end_segno
;
2862 if (sbi
->discard_blks
== 0)
2865 down_write(&sbi
->gc_lock
);
2866 err
= f2fs_write_checkpoint(sbi
, &cpc
);
2867 up_write(&sbi
->gc_lock
);
2872 * We filed discard candidates, but actually we don't need to wait for
2873 * all of them, since they'll be issued in idle time along with runtime
2874 * discard option. User configuration looks like using runtime discard
2875 * or periodic fstrim instead of it.
2877 if (f2fs_realtime_discard_enable(sbi
))
2880 start_block
= START_BLOCK(sbi
, start_segno
);
2881 end_block
= START_BLOCK(sbi
, end_segno
+ 1);
2883 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_FSTRIM
, cpc
.trim_minlen
);
2884 trimmed
= __issue_discard_cmd_range(sbi
, &dpolicy
,
2885 start_block
, end_block
);
2887 trimmed
+= __wait_discard_cmd_range(sbi
, &dpolicy
,
2888 start_block
, end_block
);
2891 range
->len
= F2FS_BLK_TO_BYTES(trimmed
);
2895 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
2897 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2898 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
2903 int f2fs_rw_hint_to_seg_type(enum rw_hint hint
)
2906 case WRITE_LIFE_SHORT
:
2907 return CURSEG_HOT_DATA
;
2908 case WRITE_LIFE_EXTREME
:
2909 return CURSEG_COLD_DATA
;
2911 return CURSEG_WARM_DATA
;
2915 /* This returns write hints for each segment type. This hints will be
2916 * passed down to block layer. There are mapping tables which depend on
2917 * the mount option 'whint_mode'.
2919 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2921 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2925 * META WRITE_LIFE_NOT_SET
2929 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2930 * extension list " "
2933 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2934 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2935 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2936 * WRITE_LIFE_NONE " "
2937 * WRITE_LIFE_MEDIUM " "
2938 * WRITE_LIFE_LONG " "
2941 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2942 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2943 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2944 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2945 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2946 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2948 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2952 * META WRITE_LIFE_MEDIUM;
2953 * HOT_NODE WRITE_LIFE_NOT_SET
2955 * COLD_NODE WRITE_LIFE_NONE
2956 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2957 * extension list " "
2960 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2961 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2962 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2963 * WRITE_LIFE_NONE " "
2964 * WRITE_LIFE_MEDIUM " "
2965 * WRITE_LIFE_LONG " "
2968 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2969 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2970 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2971 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2972 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2973 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2976 enum rw_hint
f2fs_io_type_to_rw_hint(struct f2fs_sb_info
*sbi
,
2977 enum page_type type
, enum temp_type temp
)
2979 if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_USER
) {
2982 return WRITE_LIFE_NOT_SET
;
2983 else if (temp
== HOT
)
2984 return WRITE_LIFE_SHORT
;
2985 else if (temp
== COLD
)
2986 return WRITE_LIFE_EXTREME
;
2988 return WRITE_LIFE_NOT_SET
;
2990 } else if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_FS
) {
2993 return WRITE_LIFE_LONG
;
2994 else if (temp
== HOT
)
2995 return WRITE_LIFE_SHORT
;
2996 else if (temp
== COLD
)
2997 return WRITE_LIFE_EXTREME
;
2998 } else if (type
== NODE
) {
2999 if (temp
== WARM
|| temp
== HOT
)
3000 return WRITE_LIFE_NOT_SET
;
3001 else if (temp
== COLD
)
3002 return WRITE_LIFE_NONE
;
3003 } else if (type
== META
) {
3004 return WRITE_LIFE_MEDIUM
;
3007 return WRITE_LIFE_NOT_SET
;
3010 static int __get_segment_type_2(struct f2fs_io_info
*fio
)
3012 if (fio
->type
== DATA
)
3013 return CURSEG_HOT_DATA
;
3015 return CURSEG_HOT_NODE
;
3018 static int __get_segment_type_4(struct f2fs_io_info
*fio
)
3020 if (fio
->type
== DATA
) {
3021 struct inode
*inode
= fio
->page
->mapping
->host
;
3023 if (S_ISDIR(inode
->i_mode
))
3024 return CURSEG_HOT_DATA
;
3026 return CURSEG_COLD_DATA
;
3028 if (IS_DNODE(fio
->page
) && is_cold_node(fio
->page
))
3029 return CURSEG_WARM_NODE
;
3031 return CURSEG_COLD_NODE
;
3035 static int __get_segment_type_6(struct f2fs_io_info
*fio
)
3037 if (fio
->type
== DATA
) {
3038 struct inode
*inode
= fio
->page
->mapping
->host
;
3040 if (is_cold_data(fio
->page
) || file_is_cold(inode
) ||
3041 f2fs_compressed_file(inode
))
3042 return CURSEG_COLD_DATA
;
3043 if (file_is_hot(inode
) ||
3044 is_inode_flag_set(inode
, FI_HOT_DATA
) ||
3045 f2fs_is_atomic_file(inode
) ||
3046 f2fs_is_volatile_file(inode
))
3047 return CURSEG_HOT_DATA
;
3048 return f2fs_rw_hint_to_seg_type(inode
->i_write_hint
);
3050 if (IS_DNODE(fio
->page
))
3051 return is_cold_node(fio
->page
) ? CURSEG_WARM_NODE
:
3053 return CURSEG_COLD_NODE
;
3057 static int __get_segment_type(struct f2fs_io_info
*fio
)
3061 switch (F2FS_OPTION(fio
->sbi
).active_logs
) {
3063 type
= __get_segment_type_2(fio
);
3066 type
= __get_segment_type_4(fio
);
3069 type
= __get_segment_type_6(fio
);
3072 f2fs_bug_on(fio
->sbi
, true);
3077 else if (IS_WARM(type
))
3084 void f2fs_allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
3085 block_t old_blkaddr
, block_t
*new_blkaddr
,
3086 struct f2fs_summary
*sum
, int type
,
3087 struct f2fs_io_info
*fio
, bool add_list
)
3089 struct sit_info
*sit_i
= SIT_I(sbi
);
3090 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
3091 bool put_pin_sem
= false;
3093 if (type
== CURSEG_COLD_DATA
) {
3094 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3095 if (down_read_trylock(&sbi
->pin_sem
)) {
3098 type
= CURSEG_WARM_DATA
;
3099 curseg
= CURSEG_I(sbi
, type
);
3101 } else if (type
== CURSEG_COLD_DATA_PINNED
) {
3102 type
= CURSEG_COLD_DATA
;
3105 down_read(&SM_I(sbi
)->curseg_lock
);
3107 mutex_lock(&curseg
->curseg_mutex
);
3108 down_write(&sit_i
->sentry_lock
);
3110 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
3112 f2fs_wait_discard_bio(sbi
, *new_blkaddr
);
3115 * __add_sum_entry should be resided under the curseg_mutex
3116 * because, this function updates a summary entry in the
3117 * current summary block.
3119 __add_sum_entry(sbi
, type
, sum
);
3121 __refresh_next_blkoff(sbi
, curseg
);
3123 stat_inc_block_count(sbi
, curseg
);
3126 * SIT information should be updated before segment allocation,
3127 * since SSR needs latest valid block information.
3129 update_sit_entry(sbi
, *new_blkaddr
, 1);
3130 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
3131 update_sit_entry(sbi
, old_blkaddr
, -1);
3133 if (!__has_curseg_space(sbi
, type
))
3134 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
3137 * segment dirty status should be updated after segment allocation,
3138 * so we just need to update status only one time after previous
3139 * segment being closed.
3141 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
3142 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, *new_blkaddr
));
3144 up_write(&sit_i
->sentry_lock
);
3146 if (page
&& IS_NODESEG(type
)) {
3147 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
3149 f2fs_inode_chksum_set(sbi
, page
);
3152 if (F2FS_IO_ALIGNED(sbi
))
3156 struct f2fs_bio_info
*io
;
3158 INIT_LIST_HEAD(&fio
->list
);
3159 fio
->in_list
= true;
3160 io
= sbi
->write_io
[fio
->type
] + fio
->temp
;
3161 spin_lock(&io
->io_lock
);
3162 list_add_tail(&fio
->list
, &io
->io_list
);
3163 spin_unlock(&io
->io_lock
);
3166 mutex_unlock(&curseg
->curseg_mutex
);
3168 up_read(&SM_I(sbi
)->curseg_lock
);
3171 up_read(&sbi
->pin_sem
);
3174 static void update_device_state(struct f2fs_io_info
*fio
)
3176 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3177 unsigned int devidx
;
3179 if (!f2fs_is_multi_device(sbi
))
3182 devidx
= f2fs_target_device_index(sbi
, fio
->new_blkaddr
);
3184 /* update device state for fsync */
3185 f2fs_set_dirty_device(sbi
, fio
->ino
, devidx
, FLUSH_INO
);
3187 /* update device state for checkpoint */
3188 if (!f2fs_test_bit(devidx
, (char *)&sbi
->dirty_device
)) {
3189 spin_lock(&sbi
->dev_lock
);
3190 f2fs_set_bit(devidx
, (char *)&sbi
->dirty_device
);
3191 spin_unlock(&sbi
->dev_lock
);
3195 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
3197 int type
= __get_segment_type(fio
);
3198 bool keep_order
= (f2fs_lfs_mode(fio
->sbi
) && type
== CURSEG_COLD_DATA
);
3201 down_read(&fio
->sbi
->io_order_lock
);
3203 f2fs_allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
3204 &fio
->new_blkaddr
, sum
, type
, fio
, true);
3205 if (GET_SEGNO(fio
->sbi
, fio
->old_blkaddr
) != NULL_SEGNO
)
3206 invalidate_mapping_pages(META_MAPPING(fio
->sbi
),
3207 fio
->old_blkaddr
, fio
->old_blkaddr
);
3209 /* writeout dirty page into bdev */
3210 f2fs_submit_page_write(fio
);
3212 fio
->old_blkaddr
= fio
->new_blkaddr
;
3216 update_device_state(fio
);
3219 up_read(&fio
->sbi
->io_order_lock
);
3222 void f2fs_do_write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
3223 enum iostat_type io_type
)
3225 struct f2fs_io_info fio
= {
3230 .op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
,
3231 .old_blkaddr
= page
->index
,
3232 .new_blkaddr
= page
->index
,
3234 .encrypted_page
= NULL
,
3238 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
3239 fio
.op_flags
&= ~REQ_META
;
3241 set_page_writeback(page
);
3242 ClearPageError(page
);
3243 f2fs_submit_page_write(&fio
);
3245 stat_inc_meta_count(sbi
, page
->index
);
3246 f2fs_update_iostat(sbi
, io_type
, F2FS_BLKSIZE
);
3249 void f2fs_do_write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
3251 struct f2fs_summary sum
;
3253 set_summary(&sum
, nid
, 0, 0);
3254 do_write_page(&sum
, fio
);
3256 f2fs_update_iostat(fio
->sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3259 void f2fs_outplace_write_data(struct dnode_of_data
*dn
,
3260 struct f2fs_io_info
*fio
)
3262 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3263 struct f2fs_summary sum
;
3265 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
3266 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, fio
->version
);
3267 do_write_page(&sum
, fio
);
3268 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
3270 f2fs_update_iostat(sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3273 int f2fs_inplace_write_data(struct f2fs_io_info
*fio
)
3276 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3279 fio
->new_blkaddr
= fio
->old_blkaddr
;
3280 /* i/o temperature is needed for passing down write hints */
3281 __get_segment_type(fio
);
3283 segno
= GET_SEGNO(sbi
, fio
->new_blkaddr
);
3285 if (!IS_DATASEG(get_seg_entry(sbi
, segno
)->type
)) {
3286 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
3287 f2fs_warn(sbi
, "%s: incorrect segment(%u) type, run fsck to fix.",
3289 return -EFSCORRUPTED
;
3292 stat_inc_inplace_blocks(fio
->sbi
);
3294 if (fio
->bio
&& !(SM_I(sbi
)->ipu_policy
& (1 << F2FS_IPU_NOCACHE
)))
3295 err
= f2fs_merge_page_bio(fio
);
3297 err
= f2fs_submit_page_bio(fio
);
3299 update_device_state(fio
);
3300 f2fs_update_iostat(fio
->sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3306 static inline int __f2fs_get_curseg(struct f2fs_sb_info
*sbi
,
3311 for (i
= CURSEG_HOT_DATA
; i
< NO_CHECK_TYPE
; i
++) {
3312 if (CURSEG_I(sbi
, i
)->segno
== segno
)
3318 void f2fs_do_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
3319 block_t old_blkaddr
, block_t new_blkaddr
,
3320 bool recover_curseg
, bool recover_newaddr
)
3322 struct sit_info
*sit_i
= SIT_I(sbi
);
3323 struct curseg_info
*curseg
;
3324 unsigned int segno
, old_cursegno
;
3325 struct seg_entry
*se
;
3327 unsigned short old_blkoff
;
3329 segno
= GET_SEGNO(sbi
, new_blkaddr
);
3330 se
= get_seg_entry(sbi
, segno
);
3333 down_write(&SM_I(sbi
)->curseg_lock
);
3335 if (!recover_curseg
) {
3336 /* for recovery flow */
3337 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
3338 if (old_blkaddr
== NULL_ADDR
)
3339 type
= CURSEG_COLD_DATA
;
3341 type
= CURSEG_WARM_DATA
;
3344 if (IS_CURSEG(sbi
, segno
)) {
3345 /* se->type is volatile as SSR allocation */
3346 type
= __f2fs_get_curseg(sbi
, segno
);
3347 f2fs_bug_on(sbi
, type
== NO_CHECK_TYPE
);
3349 type
= CURSEG_WARM_DATA
;
3353 f2fs_bug_on(sbi
, !IS_DATASEG(type
));
3354 curseg
= CURSEG_I(sbi
, type
);
3356 mutex_lock(&curseg
->curseg_mutex
);
3357 down_write(&sit_i
->sentry_lock
);
3359 old_cursegno
= curseg
->segno
;
3360 old_blkoff
= curseg
->next_blkoff
;
3362 /* change the current segment */
3363 if (segno
!= curseg
->segno
) {
3364 curseg
->next_segno
= segno
;
3365 change_curseg(sbi
, type
);
3368 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
3369 __add_sum_entry(sbi
, type
, sum
);
3371 if (!recover_curseg
|| recover_newaddr
)
3372 update_sit_entry(sbi
, new_blkaddr
, 1);
3373 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
) {
3374 invalidate_mapping_pages(META_MAPPING(sbi
),
3375 old_blkaddr
, old_blkaddr
);
3376 update_sit_entry(sbi
, old_blkaddr
, -1);
3379 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
3380 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
3382 locate_dirty_segment(sbi
, old_cursegno
);
3384 if (recover_curseg
) {
3385 if (old_cursegno
!= curseg
->segno
) {
3386 curseg
->next_segno
= old_cursegno
;
3387 change_curseg(sbi
, type
);
3389 curseg
->next_blkoff
= old_blkoff
;
3392 up_write(&sit_i
->sentry_lock
);
3393 mutex_unlock(&curseg
->curseg_mutex
);
3394 up_write(&SM_I(sbi
)->curseg_lock
);
3397 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
3398 block_t old_addr
, block_t new_addr
,
3399 unsigned char version
, bool recover_curseg
,
3400 bool recover_newaddr
)
3402 struct f2fs_summary sum
;
3404 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
3406 f2fs_do_replace_block(sbi
, &sum
, old_addr
, new_addr
,
3407 recover_curseg
, recover_newaddr
);
3409 f2fs_update_data_blkaddr(dn
, new_addr
);
3412 void f2fs_wait_on_page_writeback(struct page
*page
,
3413 enum page_type type
, bool ordered
, bool locked
)
3415 if (PageWriteback(page
)) {
3416 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
3418 /* submit cached LFS IO */
3419 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, type
);
3420 /* sbumit cached IPU IO */
3421 f2fs_submit_merged_ipu_write(sbi
, NULL
, page
);
3423 wait_on_page_writeback(page
);
3424 f2fs_bug_on(sbi
, locked
&& PageWriteback(page
));
3426 wait_for_stable_page(page
);
3431 void f2fs_wait_on_block_writeback(struct inode
*inode
, block_t blkaddr
)
3433 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
3436 if (!f2fs_post_read_required(inode
))
3439 if (!__is_valid_data_blkaddr(blkaddr
))
3442 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
3444 f2fs_wait_on_page_writeback(cpage
, DATA
, true, true);
3445 f2fs_put_page(cpage
, 1);
3449 void f2fs_wait_on_block_writeback_range(struct inode
*inode
, block_t blkaddr
,
3454 for (i
= 0; i
< len
; i
++)
3455 f2fs_wait_on_block_writeback(inode
, blkaddr
+ i
);
3458 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
3460 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
3461 struct curseg_info
*seg_i
;
3462 unsigned char *kaddr
;
3467 start
= start_sum_block(sbi
);
3469 page
= f2fs_get_meta_page(sbi
, start
++);
3471 return PTR_ERR(page
);
3472 kaddr
= (unsigned char *)page_address(page
);
3474 /* Step 1: restore nat cache */
3475 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
3476 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
3478 /* Step 2: restore sit cache */
3479 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3480 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
3481 offset
= 2 * SUM_JOURNAL_SIZE
;
3483 /* Step 3: restore summary entries */
3484 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
3485 unsigned short blk_off
;
3488 seg_i
= CURSEG_I(sbi
, i
);
3489 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
3490 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
3491 seg_i
->next_segno
= segno
;
3492 reset_curseg(sbi
, i
, 0);
3493 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
3494 seg_i
->next_blkoff
= blk_off
;
3496 if (seg_i
->alloc_type
== SSR
)
3497 blk_off
= sbi
->blocks_per_seg
;
3499 for (j
= 0; j
< blk_off
; j
++) {
3500 struct f2fs_summary
*s
;
3501 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
3502 seg_i
->sum_blk
->entries
[j
] = *s
;
3503 offset
+= SUMMARY_SIZE
;
3504 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
3508 f2fs_put_page(page
, 1);
3511 page
= f2fs_get_meta_page(sbi
, start
++);
3513 return PTR_ERR(page
);
3514 kaddr
= (unsigned char *)page_address(page
);
3518 f2fs_put_page(page
, 1);
3522 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
3524 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
3525 struct f2fs_summary_block
*sum
;
3526 struct curseg_info
*curseg
;
3528 unsigned short blk_off
;
3529 unsigned int segno
= 0;
3530 block_t blk_addr
= 0;
3533 /* get segment number and block addr */
3534 if (IS_DATASEG(type
)) {
3535 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
3536 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
3538 if (__exist_node_summaries(sbi
))
3539 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
3541 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
3543 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
3545 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
3547 if (__exist_node_summaries(sbi
))
3548 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
3549 type
- CURSEG_HOT_NODE
);
3551 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
3554 new = f2fs_get_meta_page(sbi
, blk_addr
);
3556 return PTR_ERR(new);
3557 sum
= (struct f2fs_summary_block
*)page_address(new);
3559 if (IS_NODESEG(type
)) {
3560 if (__exist_node_summaries(sbi
)) {
3561 struct f2fs_summary
*ns
= &sum
->entries
[0];
3563 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
3565 ns
->ofs_in_node
= 0;
3568 err
= f2fs_restore_node_summary(sbi
, segno
, sum
);
3574 /* set uncompleted segment to curseg */
3575 curseg
= CURSEG_I(sbi
, type
);
3576 mutex_lock(&curseg
->curseg_mutex
);
3578 /* update journal info */
3579 down_write(&curseg
->journal_rwsem
);
3580 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
3581 up_write(&curseg
->journal_rwsem
);
3583 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
3584 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
3585 curseg
->next_segno
= segno
;
3586 reset_curseg(sbi
, type
, 0);
3587 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
3588 curseg
->next_blkoff
= blk_off
;
3589 mutex_unlock(&curseg
->curseg_mutex
);
3591 f2fs_put_page(new, 1);
3595 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
3597 struct f2fs_journal
*sit_j
= CURSEG_I(sbi
, CURSEG_COLD_DATA
)->journal
;
3598 struct f2fs_journal
*nat_j
= CURSEG_I(sbi
, CURSEG_HOT_DATA
)->journal
;
3599 int type
= CURSEG_HOT_DATA
;
3602 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
)) {
3603 int npages
= f2fs_npages_for_summary_flush(sbi
, true);
3606 f2fs_ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
3609 /* restore for compacted data summary */
3610 err
= read_compacted_summaries(sbi
);
3613 type
= CURSEG_HOT_NODE
;
3616 if (__exist_node_summaries(sbi
))
3617 f2fs_ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
3618 NR_CURSEG_TYPE
- type
, META_CP
, true);
3620 for (; type
<= CURSEG_COLD_NODE
; type
++) {
3621 err
= read_normal_summaries(sbi
, type
);
3626 /* sanity check for summary blocks */
3627 if (nats_in_cursum(nat_j
) > NAT_JOURNAL_ENTRIES
||
3628 sits_in_cursum(sit_j
) > SIT_JOURNAL_ENTRIES
) {
3629 f2fs_err(sbi
, "invalid journal entries nats %u sits %u\n",
3630 nats_in_cursum(nat_j
), sits_in_cursum(sit_j
));
3637 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
3640 unsigned char *kaddr
;
3641 struct f2fs_summary
*summary
;
3642 struct curseg_info
*seg_i
;
3643 int written_size
= 0;
3646 page
= f2fs_grab_meta_page(sbi
, blkaddr
++);
3647 kaddr
= (unsigned char *)page_address(page
);
3648 memset(kaddr
, 0, PAGE_SIZE
);
3650 /* Step 1: write nat cache */
3651 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
3652 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
3653 written_size
+= SUM_JOURNAL_SIZE
;
3655 /* Step 2: write sit cache */
3656 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3657 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
3658 written_size
+= SUM_JOURNAL_SIZE
;
3660 /* Step 3: write summary entries */
3661 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
3662 unsigned short blkoff
;
3663 seg_i
= CURSEG_I(sbi
, i
);
3664 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
3665 blkoff
= sbi
->blocks_per_seg
;
3667 blkoff
= curseg_blkoff(sbi
, i
);
3669 for (j
= 0; j
< blkoff
; j
++) {
3671 page
= f2fs_grab_meta_page(sbi
, blkaddr
++);
3672 kaddr
= (unsigned char *)page_address(page
);
3673 memset(kaddr
, 0, PAGE_SIZE
);
3676 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
3677 *summary
= seg_i
->sum_blk
->entries
[j
];
3678 written_size
+= SUMMARY_SIZE
;
3680 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
3684 set_page_dirty(page
);
3685 f2fs_put_page(page
, 1);
3690 set_page_dirty(page
);
3691 f2fs_put_page(page
, 1);
3695 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
3696 block_t blkaddr
, int type
)
3699 if (IS_DATASEG(type
))
3700 end
= type
+ NR_CURSEG_DATA_TYPE
;
3702 end
= type
+ NR_CURSEG_NODE_TYPE
;
3704 for (i
= type
; i
< end
; i
++)
3705 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
3708 void f2fs_write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
3710 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
))
3711 write_compacted_summaries(sbi
, start_blk
);
3713 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
3716 void f2fs_write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
3718 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
3721 int f2fs_lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
3722 unsigned int val
, int alloc
)
3726 if (type
== NAT_JOURNAL
) {
3727 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
3728 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
3731 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
3732 return update_nats_in_cursum(journal
, 1);
3733 } else if (type
== SIT_JOURNAL
) {
3734 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
3735 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
3737 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
3738 return update_sits_in_cursum(journal
, 1);
3743 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
3746 return f2fs_get_meta_page_nofail(sbi
, current_sit_addr(sbi
, segno
));
3749 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
3752 struct sit_info
*sit_i
= SIT_I(sbi
);
3754 pgoff_t src_off
, dst_off
;
3756 src_off
= current_sit_addr(sbi
, start
);
3757 dst_off
= next_sit_addr(sbi
, src_off
);
3759 page
= f2fs_grab_meta_page(sbi
, dst_off
);
3760 seg_info_to_sit_page(sbi
, page
, start
);
3762 set_page_dirty(page
);
3763 set_to_next_sit(sit_i
, start
);
3768 static struct sit_entry_set
*grab_sit_entry_set(void)
3770 struct sit_entry_set
*ses
=
3771 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
3774 INIT_LIST_HEAD(&ses
->set_list
);
3778 static void release_sit_entry_set(struct sit_entry_set
*ses
)
3780 list_del(&ses
->set_list
);
3781 kmem_cache_free(sit_entry_set_slab
, ses
);
3784 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
3785 struct list_head
*head
)
3787 struct sit_entry_set
*next
= ses
;
3789 if (list_is_last(&ses
->set_list
, head
))
3792 list_for_each_entry_continue(next
, head
, set_list
)
3793 if (ses
->entry_cnt
<= next
->entry_cnt
)
3796 list_move_tail(&ses
->set_list
, &next
->set_list
);
3799 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
3801 struct sit_entry_set
*ses
;
3802 unsigned int start_segno
= START_SEGNO(segno
);
3804 list_for_each_entry(ses
, head
, set_list
) {
3805 if (ses
->start_segno
== start_segno
) {
3807 adjust_sit_entry_set(ses
, head
);
3812 ses
= grab_sit_entry_set();
3814 ses
->start_segno
= start_segno
;
3816 list_add(&ses
->set_list
, head
);
3819 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
3821 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
3822 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
3823 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
3826 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
3827 add_sit_entry(segno
, set_list
);
3830 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
3832 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3833 struct f2fs_journal
*journal
= curseg
->journal
;
3836 down_write(&curseg
->journal_rwsem
);
3837 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
3841 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
3842 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
3845 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
3847 update_sits_in_cursum(journal
, -i
);
3848 up_write(&curseg
->journal_rwsem
);
3852 * CP calls this function, which flushes SIT entries including sit_journal,
3853 * and moves prefree segs to free segs.
3855 void f2fs_flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
3857 struct sit_info
*sit_i
= SIT_I(sbi
);
3858 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
3859 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3860 struct f2fs_journal
*journal
= curseg
->journal
;
3861 struct sit_entry_set
*ses
, *tmp
;
3862 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
3863 bool to_journal
= !is_sbi_flag_set(sbi
, SBI_IS_RESIZEFS
);
3864 struct seg_entry
*se
;
3866 down_write(&sit_i
->sentry_lock
);
3868 if (!sit_i
->dirty_sentries
)
3872 * add and account sit entries of dirty bitmap in sit entry
3875 add_sits_in_set(sbi
);
3878 * if there are no enough space in journal to store dirty sit
3879 * entries, remove all entries from journal and add and account
3880 * them in sit entry set.
3882 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
) ||
3884 remove_sits_in_journal(sbi
);
3887 * there are two steps to flush sit entries:
3888 * #1, flush sit entries to journal in current cold data summary block.
3889 * #2, flush sit entries to sit page.
3891 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
3892 struct page
*page
= NULL
;
3893 struct f2fs_sit_block
*raw_sit
= NULL
;
3894 unsigned int start_segno
= ses
->start_segno
;
3895 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
3896 (unsigned long)MAIN_SEGS(sbi
));
3897 unsigned int segno
= start_segno
;
3900 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
3904 down_write(&curseg
->journal_rwsem
);
3906 page
= get_next_sit_page(sbi
, start_segno
);
3907 raw_sit
= page_address(page
);
3910 /* flush dirty sit entries in region of current sit set */
3911 for_each_set_bit_from(segno
, bitmap
, end
) {
3912 int offset
, sit_offset
;
3914 se
= get_seg_entry(sbi
, segno
);
3915 #ifdef CONFIG_F2FS_CHECK_FS
3916 if (memcmp(se
->cur_valid_map
, se
->cur_valid_map_mir
,
3917 SIT_VBLOCK_MAP_SIZE
))
3918 f2fs_bug_on(sbi
, 1);
3921 /* add discard candidates */
3922 if (!(cpc
->reason
& CP_DISCARD
)) {
3923 cpc
->trim_start
= segno
;
3924 add_discard_addrs(sbi
, cpc
, false);
3928 offset
= f2fs_lookup_journal_in_cursum(journal
,
3929 SIT_JOURNAL
, segno
, 1);
3930 f2fs_bug_on(sbi
, offset
< 0);
3931 segno_in_journal(journal
, offset
) =
3933 seg_info_to_raw_sit(se
,
3934 &sit_in_journal(journal
, offset
));
3935 check_block_count(sbi
, segno
,
3936 &sit_in_journal(journal
, offset
));
3938 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
3939 seg_info_to_raw_sit(se
,
3940 &raw_sit
->entries
[sit_offset
]);
3941 check_block_count(sbi
, segno
,
3942 &raw_sit
->entries
[sit_offset
]);
3945 __clear_bit(segno
, bitmap
);
3946 sit_i
->dirty_sentries
--;
3951 up_write(&curseg
->journal_rwsem
);
3953 f2fs_put_page(page
, 1);
3955 f2fs_bug_on(sbi
, ses
->entry_cnt
);
3956 release_sit_entry_set(ses
);
3959 f2fs_bug_on(sbi
, !list_empty(head
));
3960 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
3962 if (cpc
->reason
& CP_DISCARD
) {
3963 __u64 trim_start
= cpc
->trim_start
;
3965 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
3966 add_discard_addrs(sbi
, cpc
, false);
3968 cpc
->trim_start
= trim_start
;
3970 up_write(&sit_i
->sentry_lock
);
3972 set_prefree_as_free_segments(sbi
);
3975 static int build_sit_info(struct f2fs_sb_info
*sbi
)
3977 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
3978 struct sit_info
*sit_i
;
3979 unsigned int sit_segs
, start
;
3980 char *src_bitmap
, *bitmap
;
3981 unsigned int bitmap_size
, main_bitmap_size
, sit_bitmap_size
;
3983 /* allocate memory for SIT information */
3984 sit_i
= f2fs_kzalloc(sbi
, sizeof(struct sit_info
), GFP_KERNEL
);
3988 SM_I(sbi
)->sit_info
= sit_i
;
3991 f2fs_kvzalloc(sbi
, array_size(sizeof(struct seg_entry
),
3994 if (!sit_i
->sentries
)
3997 main_bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
3998 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(sbi
, main_bitmap_size
,
4000 if (!sit_i
->dirty_sentries_bitmap
)
4003 #ifdef CONFIG_F2FS_CHECK_FS
4004 bitmap_size
= MAIN_SEGS(sbi
) * SIT_VBLOCK_MAP_SIZE
* 4;
4006 bitmap_size
= MAIN_SEGS(sbi
) * SIT_VBLOCK_MAP_SIZE
* 3;
4008 sit_i
->bitmap
= f2fs_kvzalloc(sbi
, bitmap_size
, GFP_KERNEL
);
4012 bitmap
= sit_i
->bitmap
;
4014 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
4015 sit_i
->sentries
[start
].cur_valid_map
= bitmap
;
4016 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4018 sit_i
->sentries
[start
].ckpt_valid_map
= bitmap
;
4019 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4021 #ifdef CONFIG_F2FS_CHECK_FS
4022 sit_i
->sentries
[start
].cur_valid_map_mir
= bitmap
;
4023 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4026 sit_i
->sentries
[start
].discard_map
= bitmap
;
4027 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4030 sit_i
->tmp_map
= f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
4031 if (!sit_i
->tmp_map
)
4034 if (__is_large_section(sbi
)) {
4035 sit_i
->sec_entries
=
4036 f2fs_kvzalloc(sbi
, array_size(sizeof(struct sec_entry
),
4039 if (!sit_i
->sec_entries
)
4043 /* get information related with SIT */
4044 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
4046 /* setup SIT bitmap from ckeckpoint pack */
4047 sit_bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
4048 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
4050 sit_i
->sit_bitmap
= kmemdup(src_bitmap
, sit_bitmap_size
, GFP_KERNEL
);
4051 if (!sit_i
->sit_bitmap
)
4054 #ifdef CONFIG_F2FS_CHECK_FS
4055 sit_i
->sit_bitmap_mir
= kmemdup(src_bitmap
,
4056 sit_bitmap_size
, GFP_KERNEL
);
4057 if (!sit_i
->sit_bitmap_mir
)
4060 sit_i
->invalid_segmap
= f2fs_kvzalloc(sbi
,
4061 main_bitmap_size
, GFP_KERNEL
);
4062 if (!sit_i
->invalid_segmap
)
4066 /* init SIT information */
4067 sit_i
->s_ops
= &default_salloc_ops
;
4069 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
4070 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
4071 sit_i
->written_valid_blocks
= 0;
4072 sit_i
->bitmap_size
= sit_bitmap_size
;
4073 sit_i
->dirty_sentries
= 0;
4074 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
4075 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
4076 sit_i
->mounted_time
= ktime_get_boottime_seconds();
4077 init_rwsem(&sit_i
->sentry_lock
);
4081 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
4083 struct free_segmap_info
*free_i
;
4084 unsigned int bitmap_size
, sec_bitmap_size
;
4086 /* allocate memory for free segmap information */
4087 free_i
= f2fs_kzalloc(sbi
, sizeof(struct free_segmap_info
), GFP_KERNEL
);
4091 SM_I(sbi
)->free_info
= free_i
;
4093 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
4094 free_i
->free_segmap
= f2fs_kvmalloc(sbi
, bitmap_size
, GFP_KERNEL
);
4095 if (!free_i
->free_segmap
)
4098 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
4099 free_i
->free_secmap
= f2fs_kvmalloc(sbi
, sec_bitmap_size
, GFP_KERNEL
);
4100 if (!free_i
->free_secmap
)
4103 /* set all segments as dirty temporarily */
4104 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
4105 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
4107 /* init free segmap information */
4108 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
4109 free_i
->free_segments
= 0;
4110 free_i
->free_sections
= 0;
4111 spin_lock_init(&free_i
->segmap_lock
);
4115 static int build_curseg(struct f2fs_sb_info
*sbi
)
4117 struct curseg_info
*array
;
4120 array
= f2fs_kzalloc(sbi
, array_size(NR_CURSEG_TYPE
, sizeof(*array
)),
4125 SM_I(sbi
)->curseg_array
= array
;
4127 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
4128 mutex_init(&array
[i
].curseg_mutex
);
4129 array
[i
].sum_blk
= f2fs_kzalloc(sbi
, PAGE_SIZE
, GFP_KERNEL
);
4130 if (!array
[i
].sum_blk
)
4132 init_rwsem(&array
[i
].journal_rwsem
);
4133 array
[i
].journal
= f2fs_kzalloc(sbi
,
4134 sizeof(struct f2fs_journal
), GFP_KERNEL
);
4135 if (!array
[i
].journal
)
4137 array
[i
].segno
= NULL_SEGNO
;
4138 array
[i
].next_blkoff
= 0;
4140 return restore_curseg_summaries(sbi
);
4143 static int build_sit_entries(struct f2fs_sb_info
*sbi
)
4145 struct sit_info
*sit_i
= SIT_I(sbi
);
4146 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
4147 struct f2fs_journal
*journal
= curseg
->journal
;
4148 struct seg_entry
*se
;
4149 struct f2fs_sit_entry sit
;
4150 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
4151 unsigned int i
, start
, end
;
4152 unsigned int readed
, start_blk
= 0;
4154 block_t total_node_blocks
= 0;
4157 readed
= f2fs_ra_meta_pages(sbi
, start_blk
, BIO_MAX_PAGES
,
4160 start
= start_blk
* sit_i
->sents_per_block
;
4161 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
4163 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
4164 struct f2fs_sit_block
*sit_blk
;
4167 se
= &sit_i
->sentries
[start
];
4168 page
= get_current_sit_page(sbi
, start
);
4170 return PTR_ERR(page
);
4171 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
4172 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
4173 f2fs_put_page(page
, 1);
4175 err
= check_block_count(sbi
, start
, &sit
);
4178 seg_info_from_raw_sit(se
, &sit
);
4179 if (IS_NODESEG(se
->type
))
4180 total_node_blocks
+= se
->valid_blocks
;
4182 /* build discard map only one time */
4183 if (is_set_ckpt_flags(sbi
, CP_TRIMMED_FLAG
)) {
4184 memset(se
->discard_map
, 0xff,
4185 SIT_VBLOCK_MAP_SIZE
);
4187 memcpy(se
->discard_map
,
4189 SIT_VBLOCK_MAP_SIZE
);
4190 sbi
->discard_blks
+=
4191 sbi
->blocks_per_seg
-
4195 if (__is_large_section(sbi
))
4196 get_sec_entry(sbi
, start
)->valid_blocks
+=
4199 start_blk
+= readed
;
4200 } while (start_blk
< sit_blk_cnt
);
4202 down_read(&curseg
->journal_rwsem
);
4203 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
4204 unsigned int old_valid_blocks
;
4206 start
= le32_to_cpu(segno_in_journal(journal
, i
));
4207 if (start
>= MAIN_SEGS(sbi
)) {
4208 f2fs_err(sbi
, "Wrong journal entry on segno %u",
4210 err
= -EFSCORRUPTED
;
4214 se
= &sit_i
->sentries
[start
];
4215 sit
= sit_in_journal(journal
, i
);
4217 old_valid_blocks
= se
->valid_blocks
;
4218 if (IS_NODESEG(se
->type
))
4219 total_node_blocks
-= old_valid_blocks
;
4221 err
= check_block_count(sbi
, start
, &sit
);
4224 seg_info_from_raw_sit(se
, &sit
);
4225 if (IS_NODESEG(se
->type
))
4226 total_node_blocks
+= se
->valid_blocks
;
4228 if (is_set_ckpt_flags(sbi
, CP_TRIMMED_FLAG
)) {
4229 memset(se
->discard_map
, 0xff, SIT_VBLOCK_MAP_SIZE
);
4231 memcpy(se
->discard_map
, se
->cur_valid_map
,
4232 SIT_VBLOCK_MAP_SIZE
);
4233 sbi
->discard_blks
+= old_valid_blocks
;
4234 sbi
->discard_blks
-= se
->valid_blocks
;
4237 if (__is_large_section(sbi
)) {
4238 get_sec_entry(sbi
, start
)->valid_blocks
+=
4240 get_sec_entry(sbi
, start
)->valid_blocks
-=
4244 up_read(&curseg
->journal_rwsem
);
4246 if (!err
&& total_node_blocks
!= valid_node_count(sbi
)) {
4247 f2fs_err(sbi
, "SIT is corrupted node# %u vs %u",
4248 total_node_blocks
, valid_node_count(sbi
));
4249 err
= -EFSCORRUPTED
;
4255 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
4260 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
4261 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
4262 if (!sentry
->valid_blocks
)
4263 __set_free(sbi
, start
);
4265 SIT_I(sbi
)->written_valid_blocks
+=
4266 sentry
->valid_blocks
;
4269 /* set use the current segments */
4270 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
4271 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
4272 __set_test_and_inuse(sbi
, curseg_t
->segno
);
4276 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
4278 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4279 struct free_segmap_info
*free_i
= FREE_I(sbi
);
4280 unsigned int segno
= 0, offset
= 0;
4281 unsigned short valid_blocks
;
4284 /* find dirty segment based on free segmap */
4285 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
4286 if (segno
>= MAIN_SEGS(sbi
))
4289 valid_blocks
= get_valid_blocks(sbi
, segno
, false);
4290 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
4292 if (valid_blocks
> sbi
->blocks_per_seg
) {
4293 f2fs_bug_on(sbi
, 1);
4296 mutex_lock(&dirty_i
->seglist_lock
);
4297 __locate_dirty_segment(sbi
, segno
, DIRTY
);
4298 mutex_unlock(&dirty_i
->seglist_lock
);
4302 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
4304 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4305 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
4307 dirty_i
->victim_secmap
= f2fs_kvzalloc(sbi
, bitmap_size
, GFP_KERNEL
);
4308 if (!dirty_i
->victim_secmap
)
4313 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
4315 struct dirty_seglist_info
*dirty_i
;
4316 unsigned int bitmap_size
, i
;
4318 /* allocate memory for dirty segments list information */
4319 dirty_i
= f2fs_kzalloc(sbi
, sizeof(struct dirty_seglist_info
),
4324 SM_I(sbi
)->dirty_info
= dirty_i
;
4325 mutex_init(&dirty_i
->seglist_lock
);
4327 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
4329 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
4330 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(sbi
, bitmap_size
,
4332 if (!dirty_i
->dirty_segmap
[i
])
4336 init_dirty_segmap(sbi
);
4337 return init_victim_secmap(sbi
);
4340 static int sanity_check_curseg(struct f2fs_sb_info
*sbi
)
4345 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4346 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4348 for (i
= 0; i
< NO_CHECK_TYPE
; i
++) {
4349 struct curseg_info
*curseg
= CURSEG_I(sbi
, i
);
4350 struct seg_entry
*se
= get_seg_entry(sbi
, curseg
->segno
);
4351 unsigned int blkofs
= curseg
->next_blkoff
;
4353 if (f2fs_test_bit(blkofs
, se
->cur_valid_map
))
4356 if (curseg
->alloc_type
== SSR
)
4359 for (blkofs
+= 1; blkofs
< sbi
->blocks_per_seg
; blkofs
++) {
4360 if (!f2fs_test_bit(blkofs
, se
->cur_valid_map
))
4364 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4365 i
, curseg
->segno
, curseg
->alloc_type
,
4366 curseg
->next_blkoff
, blkofs
);
4367 return -EFSCORRUPTED
;
4373 #ifdef CONFIG_BLK_DEV_ZONED
4375 static int check_zone_write_pointer(struct f2fs_sb_info
*sbi
,
4376 struct f2fs_dev_info
*fdev
,
4377 struct blk_zone
*zone
)
4379 unsigned int wp_segno
, wp_blkoff
, zone_secno
, zone_segno
, segno
;
4380 block_t zone_block
, wp_block
, last_valid_block
;
4381 unsigned int log_sectors_per_block
= sbi
->log_blocksize
- SECTOR_SHIFT
;
4383 struct seg_entry
*se
;
4385 if (zone
->type
!= BLK_ZONE_TYPE_SEQWRITE_REQ
)
4388 wp_block
= fdev
->start_blk
+ (zone
->wp
>> log_sectors_per_block
);
4389 wp_segno
= GET_SEGNO(sbi
, wp_block
);
4390 wp_blkoff
= wp_block
- START_BLOCK(sbi
, wp_segno
);
4391 zone_block
= fdev
->start_blk
+ (zone
->start
>> log_sectors_per_block
);
4392 zone_segno
= GET_SEGNO(sbi
, zone_block
);
4393 zone_secno
= GET_SEC_FROM_SEG(sbi
, zone_segno
);
4395 if (zone_segno
>= MAIN_SEGS(sbi
))
4399 * Skip check of zones cursegs point to, since
4400 * fix_curseg_write_pointer() checks them.
4402 for (i
= 0; i
< NO_CHECK_TYPE
; i
++)
4403 if (zone_secno
== GET_SEC_FROM_SEG(sbi
,
4404 CURSEG_I(sbi
, i
)->segno
))
4408 * Get last valid block of the zone.
4410 last_valid_block
= zone_block
- 1;
4411 for (s
= sbi
->segs_per_sec
- 1; s
>= 0; s
--) {
4412 segno
= zone_segno
+ s
;
4413 se
= get_seg_entry(sbi
, segno
);
4414 for (b
= sbi
->blocks_per_seg
- 1; b
>= 0; b
--)
4415 if (f2fs_test_bit(b
, se
->cur_valid_map
)) {
4416 last_valid_block
= START_BLOCK(sbi
, segno
) + b
;
4419 if (last_valid_block
>= zone_block
)
4424 * If last valid block is beyond the write pointer, report the
4425 * inconsistency. This inconsistency does not cause write error
4426 * because the zone will not be selected for write operation until
4427 * it get discarded. Just report it.
4429 if (last_valid_block
>= wp_block
) {
4430 f2fs_notice(sbi
, "Valid block beyond write pointer: "
4431 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4432 GET_SEGNO(sbi
, last_valid_block
),
4433 GET_BLKOFF_FROM_SEG0(sbi
, last_valid_block
),
4434 wp_segno
, wp_blkoff
);
4439 * If there is no valid block in the zone and if write pointer is
4440 * not at zone start, reset the write pointer.
4442 if (last_valid_block
+ 1 == zone_block
&& zone
->wp
!= zone
->start
) {
4444 "Zone without valid block has non-zero write "
4445 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4446 wp_segno
, wp_blkoff
);
4447 ret
= __f2fs_issue_discard_zone(sbi
, fdev
->bdev
, zone_block
,
4448 zone
->len
>> log_sectors_per_block
);
4450 f2fs_err(sbi
, "Discard zone failed: %s (errno=%d)",
4459 static struct f2fs_dev_info
*get_target_zoned_dev(struct f2fs_sb_info
*sbi
,
4460 block_t zone_blkaddr
)
4464 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
4465 if (!bdev_is_zoned(FDEV(i
).bdev
))
4467 if (sbi
->s_ndevs
== 1 || (FDEV(i
).start_blk
<= zone_blkaddr
&&
4468 zone_blkaddr
<= FDEV(i
).end_blk
))
4475 static int report_one_zone_cb(struct blk_zone
*zone
, unsigned int idx
,
4477 memcpy(data
, zone
, sizeof(struct blk_zone
));
4481 static int fix_curseg_write_pointer(struct f2fs_sb_info
*sbi
, int type
)
4483 struct curseg_info
*cs
= CURSEG_I(sbi
, type
);
4484 struct f2fs_dev_info
*zbd
;
4485 struct blk_zone zone
;
4486 unsigned int cs_section
, wp_segno
, wp_blkoff
, wp_sector_off
;
4487 block_t cs_zone_block
, wp_block
;
4488 unsigned int log_sectors_per_block
= sbi
->log_blocksize
- SECTOR_SHIFT
;
4489 sector_t zone_sector
;
4492 cs_section
= GET_SEC_FROM_SEG(sbi
, cs
->segno
);
4493 cs_zone_block
= START_BLOCK(sbi
, GET_SEG_FROM_SEC(sbi
, cs_section
));
4495 zbd
= get_target_zoned_dev(sbi
, cs_zone_block
);
4499 /* report zone for the sector the curseg points to */
4500 zone_sector
= (sector_t
)(cs_zone_block
- zbd
->start_blk
)
4501 << log_sectors_per_block
;
4502 err
= blkdev_report_zones(zbd
->bdev
, zone_sector
, 1,
4503 report_one_zone_cb
, &zone
);
4505 f2fs_err(sbi
, "Report zone failed: %s errno=(%d)",
4510 if (zone
.type
!= BLK_ZONE_TYPE_SEQWRITE_REQ
)
4513 wp_block
= zbd
->start_blk
+ (zone
.wp
>> log_sectors_per_block
);
4514 wp_segno
= GET_SEGNO(sbi
, wp_block
);
4515 wp_blkoff
= wp_block
- START_BLOCK(sbi
, wp_segno
);
4516 wp_sector_off
= zone
.wp
& GENMASK(log_sectors_per_block
- 1, 0);
4518 if (cs
->segno
== wp_segno
&& cs
->next_blkoff
== wp_blkoff
&&
4522 f2fs_notice(sbi
, "Unaligned curseg[%d] with write pointer: "
4523 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4524 type
, cs
->segno
, cs
->next_blkoff
, wp_segno
, wp_blkoff
);
4526 f2fs_notice(sbi
, "Assign new section to curseg[%d]: "
4527 "curseg[0x%x,0x%x]", type
, cs
->segno
, cs
->next_blkoff
);
4528 allocate_segment_by_default(sbi
, type
, true);
4530 /* check consistency of the zone curseg pointed to */
4531 if (check_zone_write_pointer(sbi
, zbd
, &zone
))
4534 /* check newly assigned zone */
4535 cs_section
= GET_SEC_FROM_SEG(sbi
, cs
->segno
);
4536 cs_zone_block
= START_BLOCK(sbi
, GET_SEG_FROM_SEC(sbi
, cs_section
));
4538 zbd
= get_target_zoned_dev(sbi
, cs_zone_block
);
4542 zone_sector
= (sector_t
)(cs_zone_block
- zbd
->start_blk
)
4543 << log_sectors_per_block
;
4544 err
= blkdev_report_zones(zbd
->bdev
, zone_sector
, 1,
4545 report_one_zone_cb
, &zone
);
4547 f2fs_err(sbi
, "Report zone failed: %s errno=(%d)",
4552 if (zone
.type
!= BLK_ZONE_TYPE_SEQWRITE_REQ
)
4555 if (zone
.wp
!= zone
.start
) {
4557 "New zone for curseg[%d] is not yet discarded. "
4558 "Reset the zone: curseg[0x%x,0x%x]",
4559 type
, cs
->segno
, cs
->next_blkoff
);
4560 err
= __f2fs_issue_discard_zone(sbi
, zbd
->bdev
,
4561 zone_sector
>> log_sectors_per_block
,
4562 zone
.len
>> log_sectors_per_block
);
4564 f2fs_err(sbi
, "Discard zone failed: %s (errno=%d)",
4573 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info
*sbi
)
4577 for (i
= 0; i
< NO_CHECK_TYPE
; i
++) {
4578 ret
= fix_curseg_write_pointer(sbi
, i
);
4586 struct check_zone_write_pointer_args
{
4587 struct f2fs_sb_info
*sbi
;
4588 struct f2fs_dev_info
*fdev
;
4591 static int check_zone_write_pointer_cb(struct blk_zone
*zone
, unsigned int idx
,
4593 struct check_zone_write_pointer_args
*args
;
4594 args
= (struct check_zone_write_pointer_args
*)data
;
4596 return check_zone_write_pointer(args
->sbi
, args
->fdev
, zone
);
4599 int f2fs_check_write_pointer(struct f2fs_sb_info
*sbi
)
4602 struct check_zone_write_pointer_args args
;
4604 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
4605 if (!bdev_is_zoned(FDEV(i
).bdev
))
4609 args
.fdev
= &FDEV(i
);
4610 ret
= blkdev_report_zones(FDEV(i
).bdev
, 0, BLK_ALL_ZONES
,
4611 check_zone_write_pointer_cb
, &args
);
4619 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info
*sbi
)
4624 int f2fs_check_write_pointer(struct f2fs_sb_info
*sbi
)
4631 * Update min, max modified time for cost-benefit GC algorithm
4633 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
4635 struct sit_info
*sit_i
= SIT_I(sbi
);
4638 down_write(&sit_i
->sentry_lock
);
4640 sit_i
->min_mtime
= ULLONG_MAX
;
4642 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
4644 unsigned long long mtime
= 0;
4646 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
4647 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
4649 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
4651 if (sit_i
->min_mtime
> mtime
)
4652 sit_i
->min_mtime
= mtime
;
4654 sit_i
->max_mtime
= get_mtime(sbi
, false);
4655 up_write(&sit_i
->sentry_lock
);
4658 int f2fs_build_segment_manager(struct f2fs_sb_info
*sbi
)
4660 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
4661 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
4662 struct f2fs_sm_info
*sm_info
;
4665 sm_info
= f2fs_kzalloc(sbi
, sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
4670 sbi
->sm_info
= sm_info
;
4671 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
4672 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
4673 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
4674 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
4675 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
4676 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
4677 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
4678 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
4679 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
4680 if (sm_info
->rec_prefree_segments
> DEF_MAX_RECLAIM_PREFREE_SEGMENTS
)
4681 sm_info
->rec_prefree_segments
= DEF_MAX_RECLAIM_PREFREE_SEGMENTS
;
4683 if (!f2fs_lfs_mode(sbi
))
4684 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
4685 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
4686 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
4687 sm_info
->min_seq_blocks
= sbi
->blocks_per_seg
* sbi
->segs_per_sec
;
4688 sm_info
->min_hot_blocks
= DEF_MIN_HOT_BLOCKS
;
4689 sm_info
->min_ssr_sections
= reserved_sections(sbi
);
4691 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
4693 init_rwsem(&sm_info
->curseg_lock
);
4695 if (!f2fs_readonly(sbi
->sb
)) {
4696 err
= f2fs_create_flush_cmd_control(sbi
);
4701 err
= create_discard_cmd_control(sbi
);
4705 err
= build_sit_info(sbi
);
4708 err
= build_free_segmap(sbi
);
4711 err
= build_curseg(sbi
);
4715 /* reinit free segmap based on SIT */
4716 err
= build_sit_entries(sbi
);
4720 init_free_segmap(sbi
);
4721 err
= build_dirty_segmap(sbi
);
4725 err
= sanity_check_curseg(sbi
);
4729 init_min_max_mtime(sbi
);
4733 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
4734 enum dirty_type dirty_type
)
4736 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4738 mutex_lock(&dirty_i
->seglist_lock
);
4739 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
4740 dirty_i
->nr_dirty
[dirty_type
] = 0;
4741 mutex_unlock(&dirty_i
->seglist_lock
);
4744 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
4746 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4747 kvfree(dirty_i
->victim_secmap
);
4750 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
4752 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4758 /* discard pre-free/dirty segments list */
4759 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
4760 discard_dirty_segmap(sbi
, i
);
4762 destroy_victim_secmap(sbi
);
4763 SM_I(sbi
)->dirty_info
= NULL
;
4767 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
4769 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
4774 SM_I(sbi
)->curseg_array
= NULL
;
4775 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
4776 kvfree(array
[i
].sum_blk
);
4777 kvfree(array
[i
].journal
);
4782 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
4784 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
4787 SM_I(sbi
)->free_info
= NULL
;
4788 kvfree(free_i
->free_segmap
);
4789 kvfree(free_i
->free_secmap
);
4793 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
4795 struct sit_info
*sit_i
= SIT_I(sbi
);
4800 if (sit_i
->sentries
)
4801 kvfree(sit_i
->bitmap
);
4802 kvfree(sit_i
->tmp_map
);
4804 kvfree(sit_i
->sentries
);
4805 kvfree(sit_i
->sec_entries
);
4806 kvfree(sit_i
->dirty_sentries_bitmap
);
4808 SM_I(sbi
)->sit_info
= NULL
;
4809 kvfree(sit_i
->sit_bitmap
);
4810 #ifdef CONFIG_F2FS_CHECK_FS
4811 kvfree(sit_i
->sit_bitmap_mir
);
4812 kvfree(sit_i
->invalid_segmap
);
4817 void f2fs_destroy_segment_manager(struct f2fs_sb_info
*sbi
)
4819 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
4823 f2fs_destroy_flush_cmd_control(sbi
, true);
4824 destroy_discard_cmd_control(sbi
);
4825 destroy_dirty_segmap(sbi
);
4826 destroy_curseg(sbi
);
4827 destroy_free_segmap(sbi
);
4828 destroy_sit_info(sbi
);
4829 sbi
->sm_info
= NULL
;
4833 int __init
f2fs_create_segment_manager_caches(void)
4835 discard_entry_slab
= f2fs_kmem_cache_create("f2fs_discard_entry",
4836 sizeof(struct discard_entry
));
4837 if (!discard_entry_slab
)
4840 discard_cmd_slab
= f2fs_kmem_cache_create("f2fs_discard_cmd",
4841 sizeof(struct discard_cmd
));
4842 if (!discard_cmd_slab
)
4843 goto destroy_discard_entry
;
4845 sit_entry_set_slab
= f2fs_kmem_cache_create("f2fs_sit_entry_set",
4846 sizeof(struct sit_entry_set
));
4847 if (!sit_entry_set_slab
)
4848 goto destroy_discard_cmd
;
4850 inmem_entry_slab
= f2fs_kmem_cache_create("f2fs_inmem_page_entry",
4851 sizeof(struct inmem_pages
));
4852 if (!inmem_entry_slab
)
4853 goto destroy_sit_entry_set
;
4856 destroy_sit_entry_set
:
4857 kmem_cache_destroy(sit_entry_set_slab
);
4858 destroy_discard_cmd
:
4859 kmem_cache_destroy(discard_cmd_slab
);
4860 destroy_discard_entry
:
4861 kmem_cache_destroy(discard_entry_slab
);
4866 void f2fs_destroy_segment_manager_caches(void)
4868 kmem_cache_destroy(sit_entry_set_slab
);
4869 kmem_cache_destroy(discard_cmd_slab
);
4870 kmem_cache_destroy(discard_entry_slab
);
4871 kmem_cache_destroy(inmem_entry_slab
);