Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / fs / f2fs / segment.c
blobb7a9421472a79436f8e1feddec718dc2c1a23a05
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
33 static unsigned long __reverse_ulong(unsigned char *str)
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
45 return tmp;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word)
54 int num = 0;
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
103 if (offset >= size)
104 return size;
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
109 while (1) {
110 if (*p == 0)
111 goto pass;
113 tmp = __reverse_ulong((unsigned char *)p);
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
139 if (offset >= size)
140 return size;
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
149 tmp = __reverse_ulong((unsigned char *)p);
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
175 if (f2fs_lfs_mode(sbi))
176 return false;
177 if (sbi->gc_mode == GC_URGENT)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 struct inmem_pages *new;
190 f2fs_trace_pid(page);
192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
196 /* add atomic page indices to the list */
197 new->page = page;
198 INIT_LIST_HEAD(&new->list);
200 /* increase reference count with clean state */
201 get_page(page);
202 mutex_lock(&F2FS_I(inode)->inmem_lock);
203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 mutex_unlock(&F2FS_I(inode)->inmem_lock);
207 trace_f2fs_register_inmem_page(page, INMEM);
210 static int __revoke_inmem_pages(struct inode *inode,
211 struct list_head *head, bool drop, bool recover,
212 bool trylock)
214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 struct inmem_pages *cur, *tmp;
216 int err = 0;
218 list_for_each_entry_safe(cur, tmp, head, list) {
219 struct page *page = cur->page;
221 if (drop)
222 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
224 if (trylock) {
226 * to avoid deadlock in between page lock and
227 * inmem_lock.
229 if (!trylock_page(page))
230 continue;
231 } else {
232 lock_page(page);
235 f2fs_wait_on_page_writeback(page, DATA, true, true);
237 if (recover) {
238 struct dnode_of_data dn;
239 struct node_info ni;
241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243 set_new_dnode(&dn, inode, NULL, NULL, 0);
244 err = f2fs_get_dnode_of_data(&dn, page->index,
245 LOOKUP_NODE);
246 if (err) {
247 if (err == -ENOMEM) {
248 congestion_wait(BLK_RW_ASYNC,
249 DEFAULT_IO_TIMEOUT);
250 cond_resched();
251 goto retry;
253 err = -EAGAIN;
254 goto next;
257 err = f2fs_get_node_info(sbi, dn.nid, &ni);
258 if (err) {
259 f2fs_put_dnode(&dn);
260 return err;
263 if (cur->old_addr == NEW_ADDR) {
264 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266 } else
267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268 cur->old_addr, ni.version, true, true);
269 f2fs_put_dnode(&dn);
271 next:
272 /* we don't need to invalidate this in the sccessful status */
273 if (drop || recover) {
274 ClearPageUptodate(page);
275 clear_cold_data(page);
277 f2fs_clear_page_private(page);
278 f2fs_put_page(page, 1);
280 list_del(&cur->list);
281 kmem_cache_free(inmem_entry_slab, cur);
282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
284 return err;
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 struct inode *inode;
291 struct f2fs_inode_info *fi;
292 unsigned int count = sbi->atomic_files;
293 unsigned int looped = 0;
294 next:
295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 if (list_empty(head)) {
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 return;
300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 inode = igrab(&fi->vfs_inode);
302 if (inode)
303 list_move_tail(&fi->inmem_ilist, head);
304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
306 if (inode) {
307 if (gc_failure) {
308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 goto skip;
311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 f2fs_drop_inmem_pages(inode);
313 skip:
314 iput(inode);
316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 cond_resched();
318 if (gc_failure) {
319 if (++looped >= count)
320 return;
322 goto next;
325 void f2fs_drop_inmem_pages(struct inode *inode)
327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 struct f2fs_inode_info *fi = F2FS_I(inode);
330 while (!list_empty(&fi->inmem_pages)) {
331 mutex_lock(&fi->inmem_lock);
332 __revoke_inmem_pages(inode, &fi->inmem_pages,
333 true, false, true);
334 mutex_unlock(&fi->inmem_lock);
337 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340 if (!list_empty(&fi->inmem_ilist))
341 list_del_init(&fi->inmem_ilist);
342 if (f2fs_is_atomic_file(inode)) {
343 clear_inode_flag(inode, FI_ATOMIC_FILE);
344 sbi->atomic_files--;
346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
351 struct f2fs_inode_info *fi = F2FS_I(inode);
352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353 struct list_head *head = &fi->inmem_pages;
354 struct inmem_pages *cur = NULL;
356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
358 mutex_lock(&fi->inmem_lock);
359 list_for_each_entry(cur, head, list) {
360 if (cur->page == page)
361 break;
364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365 list_del(&cur->list);
366 mutex_unlock(&fi->inmem_lock);
368 dec_page_count(sbi, F2FS_INMEM_PAGES);
369 kmem_cache_free(inmem_entry_slab, cur);
371 ClearPageUptodate(page);
372 f2fs_clear_page_private(page);
373 f2fs_put_page(page, 0);
375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 struct f2fs_inode_info *fi = F2FS_I(inode);
382 struct inmem_pages *cur, *tmp;
383 struct f2fs_io_info fio = {
384 .sbi = sbi,
385 .ino = inode->i_ino,
386 .type = DATA,
387 .op = REQ_OP_WRITE,
388 .op_flags = REQ_SYNC | REQ_PRIO,
389 .io_type = FS_DATA_IO,
391 struct list_head revoke_list;
392 bool submit_bio = false;
393 int err = 0;
395 INIT_LIST_HEAD(&revoke_list);
397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398 struct page *page = cur->page;
400 lock_page(page);
401 if (page->mapping == inode->i_mapping) {
402 trace_f2fs_commit_inmem_page(page, INMEM);
404 f2fs_wait_on_page_writeback(page, DATA, true, true);
406 set_page_dirty(page);
407 if (clear_page_dirty_for_io(page)) {
408 inode_dec_dirty_pages(inode);
409 f2fs_remove_dirty_inode(inode);
411 retry:
412 fio.page = page;
413 fio.old_blkaddr = NULL_ADDR;
414 fio.encrypted_page = NULL;
415 fio.need_lock = LOCK_DONE;
416 err = f2fs_do_write_data_page(&fio);
417 if (err) {
418 if (err == -ENOMEM) {
419 congestion_wait(BLK_RW_ASYNC,
420 DEFAULT_IO_TIMEOUT);
421 cond_resched();
422 goto retry;
424 unlock_page(page);
425 break;
427 /* record old blkaddr for revoking */
428 cur->old_addr = fio.old_blkaddr;
429 submit_bio = true;
431 unlock_page(page);
432 list_move_tail(&cur->list, &revoke_list);
435 if (submit_bio)
436 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
438 if (err) {
440 * try to revoke all committed pages, but still we could fail
441 * due to no memory or other reason, if that happened, EAGAIN
442 * will be returned, which means in such case, transaction is
443 * already not integrity, caller should use journal to do the
444 * recovery or rewrite & commit last transaction. For other
445 * error number, revoking was done by filesystem itself.
447 err = __revoke_inmem_pages(inode, &revoke_list,
448 false, true, false);
450 /* drop all uncommitted pages */
451 __revoke_inmem_pages(inode, &fi->inmem_pages,
452 true, false, false);
453 } else {
454 __revoke_inmem_pages(inode, &revoke_list,
455 false, false, false);
458 return err;
461 int f2fs_commit_inmem_pages(struct inode *inode)
463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464 struct f2fs_inode_info *fi = F2FS_I(inode);
465 int err;
467 f2fs_balance_fs(sbi, true);
469 down_write(&fi->i_gc_rwsem[WRITE]);
471 f2fs_lock_op(sbi);
472 set_inode_flag(inode, FI_ATOMIC_COMMIT);
474 mutex_lock(&fi->inmem_lock);
475 err = __f2fs_commit_inmem_pages(inode);
476 mutex_unlock(&fi->inmem_lock);
478 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
480 f2fs_unlock_op(sbi);
481 up_write(&fi->i_gc_rwsem[WRITE]);
483 return err;
487 * This function balances dirty node and dentry pages.
488 * In addition, it controls garbage collection.
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
492 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494 f2fs_stop_checkpoint(sbi, false);
497 /* balance_fs_bg is able to be pending */
498 if (need && excess_cached_nats(sbi))
499 f2fs_balance_fs_bg(sbi, false);
501 if (!f2fs_is_checkpoint_ready(sbi))
502 return;
505 * We should do GC or end up with checkpoint, if there are so many dirty
506 * dir/node pages without enough free segments.
508 if (has_not_enough_free_secs(sbi, 0, 0)) {
509 down_write(&sbi->gc_lock);
510 f2fs_gc(sbi, false, false, NULL_SEGNO);
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
516 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517 return;
519 /* try to shrink extent cache when there is no enough memory */
520 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
523 /* check the # of cached NAT entries */
524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
527 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529 else
530 f2fs_build_free_nids(sbi, false, false);
532 if (!is_idle(sbi, REQ_TIME) &&
533 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
534 return;
536 /* checkpoint is the only way to shrink partial cached entries */
537 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
538 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
539 excess_prefree_segs(sbi) ||
540 excess_dirty_nats(sbi) ||
541 excess_dirty_nodes(sbi) ||
542 f2fs_time_over(sbi, CP_TIME)) {
543 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
544 struct blk_plug plug;
546 mutex_lock(&sbi->flush_lock);
548 blk_start_plug(&plug);
549 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
550 blk_finish_plug(&plug);
552 mutex_unlock(&sbi->flush_lock);
554 f2fs_sync_fs(sbi->sb, true);
555 stat_inc_bg_cp_count(sbi->stat_info);
559 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
560 struct block_device *bdev)
562 struct bio *bio;
563 int ret;
565 bio = f2fs_bio_alloc(sbi, 0, false);
566 if (!bio)
567 return -ENOMEM;
569 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
570 bio_set_dev(bio, bdev);
571 ret = submit_bio_wait(bio);
572 bio_put(bio);
574 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
575 test_opt(sbi, FLUSH_MERGE), ret);
576 return ret;
579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
581 int ret = 0;
582 int i;
584 if (!f2fs_is_multi_device(sbi))
585 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
587 for (i = 0; i < sbi->s_ndevs; i++) {
588 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
589 continue;
590 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
591 if (ret)
592 break;
594 return ret;
597 static int issue_flush_thread(void *data)
599 struct f2fs_sb_info *sbi = data;
600 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
601 wait_queue_head_t *q = &fcc->flush_wait_queue;
602 repeat:
603 if (kthread_should_stop())
604 return 0;
606 sb_start_intwrite(sbi->sb);
608 if (!llist_empty(&fcc->issue_list)) {
609 struct flush_cmd *cmd, *next;
610 int ret;
612 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
613 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
615 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
617 ret = submit_flush_wait(sbi, cmd->ino);
618 atomic_inc(&fcc->issued_flush);
620 llist_for_each_entry_safe(cmd, next,
621 fcc->dispatch_list, llnode) {
622 cmd->ret = ret;
623 complete(&cmd->wait);
625 fcc->dispatch_list = NULL;
628 sb_end_intwrite(sbi->sb);
630 wait_event_interruptible(*q,
631 kthread_should_stop() || !llist_empty(&fcc->issue_list));
632 goto repeat;
635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
637 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
638 struct flush_cmd cmd;
639 int ret;
641 if (test_opt(sbi, NOBARRIER))
642 return 0;
644 if (!test_opt(sbi, FLUSH_MERGE)) {
645 atomic_inc(&fcc->queued_flush);
646 ret = submit_flush_wait(sbi, ino);
647 atomic_dec(&fcc->queued_flush);
648 atomic_inc(&fcc->issued_flush);
649 return ret;
652 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
653 f2fs_is_multi_device(sbi)) {
654 ret = submit_flush_wait(sbi, ino);
655 atomic_dec(&fcc->queued_flush);
657 atomic_inc(&fcc->issued_flush);
658 return ret;
661 cmd.ino = ino;
662 init_completion(&cmd.wait);
664 llist_add(&cmd.llnode, &fcc->issue_list);
666 /* update issue_list before we wake up issue_flush thread */
667 smp_mb();
669 if (waitqueue_active(&fcc->flush_wait_queue))
670 wake_up(&fcc->flush_wait_queue);
672 if (fcc->f2fs_issue_flush) {
673 wait_for_completion(&cmd.wait);
674 atomic_dec(&fcc->queued_flush);
675 } else {
676 struct llist_node *list;
678 list = llist_del_all(&fcc->issue_list);
679 if (!list) {
680 wait_for_completion(&cmd.wait);
681 atomic_dec(&fcc->queued_flush);
682 } else {
683 struct flush_cmd *tmp, *next;
685 ret = submit_flush_wait(sbi, ino);
687 llist_for_each_entry_safe(tmp, next, list, llnode) {
688 if (tmp == &cmd) {
689 cmd.ret = ret;
690 atomic_dec(&fcc->queued_flush);
691 continue;
693 tmp->ret = ret;
694 complete(&tmp->wait);
699 return cmd.ret;
702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
704 dev_t dev = sbi->sb->s_bdev->bd_dev;
705 struct flush_cmd_control *fcc;
706 int err = 0;
708 if (SM_I(sbi)->fcc_info) {
709 fcc = SM_I(sbi)->fcc_info;
710 if (fcc->f2fs_issue_flush)
711 return err;
712 goto init_thread;
715 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
716 if (!fcc)
717 return -ENOMEM;
718 atomic_set(&fcc->issued_flush, 0);
719 atomic_set(&fcc->queued_flush, 0);
720 init_waitqueue_head(&fcc->flush_wait_queue);
721 init_llist_head(&fcc->issue_list);
722 SM_I(sbi)->fcc_info = fcc;
723 if (!test_opt(sbi, FLUSH_MERGE))
724 return err;
726 init_thread:
727 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
728 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
729 if (IS_ERR(fcc->f2fs_issue_flush)) {
730 err = PTR_ERR(fcc->f2fs_issue_flush);
731 kvfree(fcc);
732 SM_I(sbi)->fcc_info = NULL;
733 return err;
736 return err;
739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
741 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
743 if (fcc && fcc->f2fs_issue_flush) {
744 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
746 fcc->f2fs_issue_flush = NULL;
747 kthread_stop(flush_thread);
749 if (free) {
750 kvfree(fcc);
751 SM_I(sbi)->fcc_info = NULL;
755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
757 int ret = 0, i;
759 if (!f2fs_is_multi_device(sbi))
760 return 0;
762 for (i = 1; i < sbi->s_ndevs; i++) {
763 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
764 continue;
765 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
766 if (ret)
767 break;
769 spin_lock(&sbi->dev_lock);
770 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
771 spin_unlock(&sbi->dev_lock);
774 return ret;
777 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778 enum dirty_type dirty_type)
780 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
782 /* need not be added */
783 if (IS_CURSEG(sbi, segno))
784 return;
786 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787 dirty_i->nr_dirty[dirty_type]++;
789 if (dirty_type == DIRTY) {
790 struct seg_entry *sentry = get_seg_entry(sbi, segno);
791 enum dirty_type t = sentry->type;
793 if (unlikely(t >= DIRTY)) {
794 f2fs_bug_on(sbi, 1);
795 return;
797 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
798 dirty_i->nr_dirty[t]++;
802 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
803 enum dirty_type dirty_type)
805 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
807 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
808 dirty_i->nr_dirty[dirty_type]--;
810 if (dirty_type == DIRTY) {
811 struct seg_entry *sentry = get_seg_entry(sbi, segno);
812 enum dirty_type t = sentry->type;
814 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
815 dirty_i->nr_dirty[t]--;
817 if (get_valid_blocks(sbi, segno, true) == 0) {
818 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
819 dirty_i->victim_secmap);
820 #ifdef CONFIG_F2FS_CHECK_FS
821 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
822 #endif
828 * Should not occur error such as -ENOMEM.
829 * Adding dirty entry into seglist is not critical operation.
830 * If a given segment is one of current working segments, it won't be added.
832 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
834 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
835 unsigned short valid_blocks, ckpt_valid_blocks;
837 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
838 return;
840 mutex_lock(&dirty_i->seglist_lock);
842 valid_blocks = get_valid_blocks(sbi, segno, false);
843 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
845 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
846 ckpt_valid_blocks == sbi->blocks_per_seg)) {
847 __locate_dirty_segment(sbi, segno, PRE);
848 __remove_dirty_segment(sbi, segno, DIRTY);
849 } else if (valid_blocks < sbi->blocks_per_seg) {
850 __locate_dirty_segment(sbi, segno, DIRTY);
851 } else {
852 /* Recovery routine with SSR needs this */
853 __remove_dirty_segment(sbi, segno, DIRTY);
856 mutex_unlock(&dirty_i->seglist_lock);
859 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
860 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
862 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
863 unsigned int segno;
865 mutex_lock(&dirty_i->seglist_lock);
866 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
867 if (get_valid_blocks(sbi, segno, false))
868 continue;
869 if (IS_CURSEG(sbi, segno))
870 continue;
871 __locate_dirty_segment(sbi, segno, PRE);
872 __remove_dirty_segment(sbi, segno, DIRTY);
874 mutex_unlock(&dirty_i->seglist_lock);
877 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
879 int ovp_hole_segs =
880 (overprovision_segments(sbi) - reserved_segments(sbi));
881 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
882 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
883 block_t holes[2] = {0, 0}; /* DATA and NODE */
884 block_t unusable;
885 struct seg_entry *se;
886 unsigned int segno;
888 mutex_lock(&dirty_i->seglist_lock);
889 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
890 se = get_seg_entry(sbi, segno);
891 if (IS_NODESEG(se->type))
892 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
893 else
894 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
896 mutex_unlock(&dirty_i->seglist_lock);
898 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
899 if (unusable > ovp_holes)
900 return unusable - ovp_holes;
901 return 0;
904 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
906 int ovp_hole_segs =
907 (overprovision_segments(sbi) - reserved_segments(sbi));
908 if (unusable > F2FS_OPTION(sbi).unusable_cap)
909 return -EAGAIN;
910 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
911 dirty_segments(sbi) > ovp_hole_segs)
912 return -EAGAIN;
913 return 0;
916 /* This is only used by SBI_CP_DISABLED */
917 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
919 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
920 unsigned int segno = 0;
922 mutex_lock(&dirty_i->seglist_lock);
923 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
924 if (get_valid_blocks(sbi, segno, false))
925 continue;
926 if (get_ckpt_valid_blocks(sbi, segno))
927 continue;
928 mutex_unlock(&dirty_i->seglist_lock);
929 return segno;
931 mutex_unlock(&dirty_i->seglist_lock);
932 return NULL_SEGNO;
935 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
936 struct block_device *bdev, block_t lstart,
937 block_t start, block_t len)
939 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
940 struct list_head *pend_list;
941 struct discard_cmd *dc;
943 f2fs_bug_on(sbi, !len);
945 pend_list = &dcc->pend_list[plist_idx(len)];
947 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
948 INIT_LIST_HEAD(&dc->list);
949 dc->bdev = bdev;
950 dc->lstart = lstart;
951 dc->start = start;
952 dc->len = len;
953 dc->ref = 0;
954 dc->state = D_PREP;
955 dc->queued = 0;
956 dc->error = 0;
957 init_completion(&dc->wait);
958 list_add_tail(&dc->list, pend_list);
959 spin_lock_init(&dc->lock);
960 dc->bio_ref = 0;
961 atomic_inc(&dcc->discard_cmd_cnt);
962 dcc->undiscard_blks += len;
964 return dc;
967 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
968 struct block_device *bdev, block_t lstart,
969 block_t start, block_t len,
970 struct rb_node *parent, struct rb_node **p,
971 bool leftmost)
973 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
974 struct discard_cmd *dc;
976 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
978 rb_link_node(&dc->rb_node, parent, p);
979 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
981 return dc;
984 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
985 struct discard_cmd *dc)
987 if (dc->state == D_DONE)
988 atomic_sub(dc->queued, &dcc->queued_discard);
990 list_del(&dc->list);
991 rb_erase_cached(&dc->rb_node, &dcc->root);
992 dcc->undiscard_blks -= dc->len;
994 kmem_cache_free(discard_cmd_slab, dc);
996 atomic_dec(&dcc->discard_cmd_cnt);
999 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1000 struct discard_cmd *dc)
1002 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1003 unsigned long flags;
1005 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1007 spin_lock_irqsave(&dc->lock, flags);
1008 if (dc->bio_ref) {
1009 spin_unlock_irqrestore(&dc->lock, flags);
1010 return;
1012 spin_unlock_irqrestore(&dc->lock, flags);
1014 f2fs_bug_on(sbi, dc->ref);
1016 if (dc->error == -EOPNOTSUPP)
1017 dc->error = 0;
1019 if (dc->error)
1020 printk_ratelimited(
1021 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1022 KERN_INFO, sbi->sb->s_id,
1023 dc->lstart, dc->start, dc->len, dc->error);
1024 __detach_discard_cmd(dcc, dc);
1027 static void f2fs_submit_discard_endio(struct bio *bio)
1029 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1030 unsigned long flags;
1032 dc->error = blk_status_to_errno(bio->bi_status);
1034 spin_lock_irqsave(&dc->lock, flags);
1035 dc->bio_ref--;
1036 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1037 dc->state = D_DONE;
1038 complete_all(&dc->wait);
1040 spin_unlock_irqrestore(&dc->lock, flags);
1041 bio_put(bio);
1044 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1045 block_t start, block_t end)
1047 #ifdef CONFIG_F2FS_CHECK_FS
1048 struct seg_entry *sentry;
1049 unsigned int segno;
1050 block_t blk = start;
1051 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1052 unsigned long *map;
1054 while (blk < end) {
1055 segno = GET_SEGNO(sbi, blk);
1056 sentry = get_seg_entry(sbi, segno);
1057 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1059 if (end < START_BLOCK(sbi, segno + 1))
1060 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1061 else
1062 size = max_blocks;
1063 map = (unsigned long *)(sentry->cur_valid_map);
1064 offset = __find_rev_next_bit(map, size, offset);
1065 f2fs_bug_on(sbi, offset != size);
1066 blk = START_BLOCK(sbi, segno + 1);
1068 #endif
1071 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1072 struct discard_policy *dpolicy,
1073 int discard_type, unsigned int granularity)
1075 /* common policy */
1076 dpolicy->type = discard_type;
1077 dpolicy->sync = true;
1078 dpolicy->ordered = false;
1079 dpolicy->granularity = granularity;
1081 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1082 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1083 dpolicy->timeout = false;
1085 if (discard_type == DPOLICY_BG) {
1086 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1087 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1088 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1089 dpolicy->io_aware = true;
1090 dpolicy->sync = false;
1091 dpolicy->ordered = true;
1092 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1093 dpolicy->granularity = 1;
1094 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1096 } else if (discard_type == DPOLICY_FORCE) {
1097 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1098 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1099 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1100 dpolicy->io_aware = false;
1101 } else if (discard_type == DPOLICY_FSTRIM) {
1102 dpolicy->io_aware = false;
1103 } else if (discard_type == DPOLICY_UMOUNT) {
1104 dpolicy->max_requests = UINT_MAX;
1105 dpolicy->io_aware = false;
1106 /* we need to issue all to keep CP_TRIMMED_FLAG */
1107 dpolicy->granularity = 1;
1108 dpolicy->timeout = true;
1112 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1113 struct block_device *bdev, block_t lstart,
1114 block_t start, block_t len);
1115 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1116 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1117 struct discard_policy *dpolicy,
1118 struct discard_cmd *dc,
1119 unsigned int *issued)
1121 struct block_device *bdev = dc->bdev;
1122 struct request_queue *q = bdev_get_queue(bdev);
1123 unsigned int max_discard_blocks =
1124 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1125 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1126 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1127 &(dcc->fstrim_list) : &(dcc->wait_list);
1128 int flag = dpolicy->sync ? REQ_SYNC : 0;
1129 block_t lstart, start, len, total_len;
1130 int err = 0;
1132 if (dc->state != D_PREP)
1133 return 0;
1135 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1136 return 0;
1138 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1140 lstart = dc->lstart;
1141 start = dc->start;
1142 len = dc->len;
1143 total_len = len;
1145 dc->len = 0;
1147 while (total_len && *issued < dpolicy->max_requests && !err) {
1148 struct bio *bio = NULL;
1149 unsigned long flags;
1150 bool last = true;
1152 if (len > max_discard_blocks) {
1153 len = max_discard_blocks;
1154 last = false;
1157 (*issued)++;
1158 if (*issued == dpolicy->max_requests)
1159 last = true;
1161 dc->len += len;
1163 if (time_to_inject(sbi, FAULT_DISCARD)) {
1164 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1165 err = -EIO;
1166 goto submit;
1168 err = __blkdev_issue_discard(bdev,
1169 SECTOR_FROM_BLOCK(start),
1170 SECTOR_FROM_BLOCK(len),
1171 GFP_NOFS, 0, &bio);
1172 submit:
1173 if (err) {
1174 spin_lock_irqsave(&dc->lock, flags);
1175 if (dc->state == D_PARTIAL)
1176 dc->state = D_SUBMIT;
1177 spin_unlock_irqrestore(&dc->lock, flags);
1179 break;
1182 f2fs_bug_on(sbi, !bio);
1185 * should keep before submission to avoid D_DONE
1186 * right away
1188 spin_lock_irqsave(&dc->lock, flags);
1189 if (last)
1190 dc->state = D_SUBMIT;
1191 else
1192 dc->state = D_PARTIAL;
1193 dc->bio_ref++;
1194 spin_unlock_irqrestore(&dc->lock, flags);
1196 atomic_inc(&dcc->queued_discard);
1197 dc->queued++;
1198 list_move_tail(&dc->list, wait_list);
1200 /* sanity check on discard range */
1201 __check_sit_bitmap(sbi, lstart, lstart + len);
1203 bio->bi_private = dc;
1204 bio->bi_end_io = f2fs_submit_discard_endio;
1205 bio->bi_opf |= flag;
1206 submit_bio(bio);
1208 atomic_inc(&dcc->issued_discard);
1210 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1212 lstart += len;
1213 start += len;
1214 total_len -= len;
1215 len = total_len;
1218 if (!err && len)
1219 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1220 return err;
1223 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1224 struct block_device *bdev, block_t lstart,
1225 block_t start, block_t len,
1226 struct rb_node **insert_p,
1227 struct rb_node *insert_parent)
1229 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1230 struct rb_node **p;
1231 struct rb_node *parent = NULL;
1232 struct discard_cmd *dc = NULL;
1233 bool leftmost = true;
1235 if (insert_p && insert_parent) {
1236 parent = insert_parent;
1237 p = insert_p;
1238 goto do_insert;
1241 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1242 lstart, &leftmost);
1243 do_insert:
1244 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1245 p, leftmost);
1246 if (!dc)
1247 return NULL;
1249 return dc;
1252 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1253 struct discard_cmd *dc)
1255 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1258 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1259 struct discard_cmd *dc, block_t blkaddr)
1261 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1262 struct discard_info di = dc->di;
1263 bool modified = false;
1265 if (dc->state == D_DONE || dc->len == 1) {
1266 __remove_discard_cmd(sbi, dc);
1267 return;
1270 dcc->undiscard_blks -= di.len;
1272 if (blkaddr > di.lstart) {
1273 dc->len = blkaddr - dc->lstart;
1274 dcc->undiscard_blks += dc->len;
1275 __relocate_discard_cmd(dcc, dc);
1276 modified = true;
1279 if (blkaddr < di.lstart + di.len - 1) {
1280 if (modified) {
1281 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1282 di.start + blkaddr + 1 - di.lstart,
1283 di.lstart + di.len - 1 - blkaddr,
1284 NULL, NULL);
1285 } else {
1286 dc->lstart++;
1287 dc->len--;
1288 dc->start++;
1289 dcc->undiscard_blks += dc->len;
1290 __relocate_discard_cmd(dcc, dc);
1295 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1296 struct block_device *bdev, block_t lstart,
1297 block_t start, block_t len)
1299 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1300 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1301 struct discard_cmd *dc;
1302 struct discard_info di = {0};
1303 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1304 struct request_queue *q = bdev_get_queue(bdev);
1305 unsigned int max_discard_blocks =
1306 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1307 block_t end = lstart + len;
1309 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1310 NULL, lstart,
1311 (struct rb_entry **)&prev_dc,
1312 (struct rb_entry **)&next_dc,
1313 &insert_p, &insert_parent, true, NULL);
1314 if (dc)
1315 prev_dc = dc;
1317 if (!prev_dc) {
1318 di.lstart = lstart;
1319 di.len = next_dc ? next_dc->lstart - lstart : len;
1320 di.len = min(di.len, len);
1321 di.start = start;
1324 while (1) {
1325 struct rb_node *node;
1326 bool merged = false;
1327 struct discard_cmd *tdc = NULL;
1329 if (prev_dc) {
1330 di.lstart = prev_dc->lstart + prev_dc->len;
1331 if (di.lstart < lstart)
1332 di.lstart = lstart;
1333 if (di.lstart >= end)
1334 break;
1336 if (!next_dc || next_dc->lstart > end)
1337 di.len = end - di.lstart;
1338 else
1339 di.len = next_dc->lstart - di.lstart;
1340 di.start = start + di.lstart - lstart;
1343 if (!di.len)
1344 goto next;
1346 if (prev_dc && prev_dc->state == D_PREP &&
1347 prev_dc->bdev == bdev &&
1348 __is_discard_back_mergeable(&di, &prev_dc->di,
1349 max_discard_blocks)) {
1350 prev_dc->di.len += di.len;
1351 dcc->undiscard_blks += di.len;
1352 __relocate_discard_cmd(dcc, prev_dc);
1353 di = prev_dc->di;
1354 tdc = prev_dc;
1355 merged = true;
1358 if (next_dc && next_dc->state == D_PREP &&
1359 next_dc->bdev == bdev &&
1360 __is_discard_front_mergeable(&di, &next_dc->di,
1361 max_discard_blocks)) {
1362 next_dc->di.lstart = di.lstart;
1363 next_dc->di.len += di.len;
1364 next_dc->di.start = di.start;
1365 dcc->undiscard_blks += di.len;
1366 __relocate_discard_cmd(dcc, next_dc);
1367 if (tdc)
1368 __remove_discard_cmd(sbi, tdc);
1369 merged = true;
1372 if (!merged) {
1373 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1374 di.len, NULL, NULL);
1376 next:
1377 prev_dc = next_dc;
1378 if (!prev_dc)
1379 break;
1381 node = rb_next(&prev_dc->rb_node);
1382 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1386 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1387 struct block_device *bdev, block_t blkstart, block_t blklen)
1389 block_t lblkstart = blkstart;
1391 if (!f2fs_bdev_support_discard(bdev))
1392 return 0;
1394 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1396 if (f2fs_is_multi_device(sbi)) {
1397 int devi = f2fs_target_device_index(sbi, blkstart);
1399 blkstart -= FDEV(devi).start_blk;
1401 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1402 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1403 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1404 return 0;
1407 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1408 struct discard_policy *dpolicy)
1410 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1411 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1412 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1413 struct discard_cmd *dc;
1414 struct blk_plug plug;
1415 unsigned int pos = dcc->next_pos;
1416 unsigned int issued = 0;
1417 bool io_interrupted = false;
1419 mutex_lock(&dcc->cmd_lock);
1420 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1421 NULL, pos,
1422 (struct rb_entry **)&prev_dc,
1423 (struct rb_entry **)&next_dc,
1424 &insert_p, &insert_parent, true, NULL);
1425 if (!dc)
1426 dc = next_dc;
1428 blk_start_plug(&plug);
1430 while (dc) {
1431 struct rb_node *node;
1432 int err = 0;
1434 if (dc->state != D_PREP)
1435 goto next;
1437 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1438 io_interrupted = true;
1439 break;
1442 dcc->next_pos = dc->lstart + dc->len;
1443 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1445 if (issued >= dpolicy->max_requests)
1446 break;
1447 next:
1448 node = rb_next(&dc->rb_node);
1449 if (err)
1450 __remove_discard_cmd(sbi, dc);
1451 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1454 blk_finish_plug(&plug);
1456 if (!dc)
1457 dcc->next_pos = 0;
1459 mutex_unlock(&dcc->cmd_lock);
1461 if (!issued && io_interrupted)
1462 issued = -1;
1464 return issued;
1467 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1468 struct discard_policy *dpolicy)
1470 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1471 struct list_head *pend_list;
1472 struct discard_cmd *dc, *tmp;
1473 struct blk_plug plug;
1474 int i, issued = 0;
1475 bool io_interrupted = false;
1477 if (dpolicy->timeout)
1478 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1480 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1481 if (dpolicy->timeout &&
1482 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1483 break;
1485 if (i + 1 < dpolicy->granularity)
1486 break;
1488 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1489 return __issue_discard_cmd_orderly(sbi, dpolicy);
1491 pend_list = &dcc->pend_list[i];
1493 mutex_lock(&dcc->cmd_lock);
1494 if (list_empty(pend_list))
1495 goto next;
1496 if (unlikely(dcc->rbtree_check))
1497 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1498 &dcc->root));
1499 blk_start_plug(&plug);
1500 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1501 f2fs_bug_on(sbi, dc->state != D_PREP);
1503 if (dpolicy->timeout &&
1504 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1505 break;
1507 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1508 !is_idle(sbi, DISCARD_TIME)) {
1509 io_interrupted = true;
1510 break;
1513 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1515 if (issued >= dpolicy->max_requests)
1516 break;
1518 blk_finish_plug(&plug);
1519 next:
1520 mutex_unlock(&dcc->cmd_lock);
1522 if (issued >= dpolicy->max_requests || io_interrupted)
1523 break;
1526 if (!issued && io_interrupted)
1527 issued = -1;
1529 return issued;
1532 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1534 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1535 struct list_head *pend_list;
1536 struct discard_cmd *dc, *tmp;
1537 int i;
1538 bool dropped = false;
1540 mutex_lock(&dcc->cmd_lock);
1541 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1542 pend_list = &dcc->pend_list[i];
1543 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1544 f2fs_bug_on(sbi, dc->state != D_PREP);
1545 __remove_discard_cmd(sbi, dc);
1546 dropped = true;
1549 mutex_unlock(&dcc->cmd_lock);
1551 return dropped;
1554 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1556 __drop_discard_cmd(sbi);
1559 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1560 struct discard_cmd *dc)
1562 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1563 unsigned int len = 0;
1565 wait_for_completion_io(&dc->wait);
1566 mutex_lock(&dcc->cmd_lock);
1567 f2fs_bug_on(sbi, dc->state != D_DONE);
1568 dc->ref--;
1569 if (!dc->ref) {
1570 if (!dc->error)
1571 len = dc->len;
1572 __remove_discard_cmd(sbi, dc);
1574 mutex_unlock(&dcc->cmd_lock);
1576 return len;
1579 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1580 struct discard_policy *dpolicy,
1581 block_t start, block_t end)
1583 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1584 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1585 &(dcc->fstrim_list) : &(dcc->wait_list);
1586 struct discard_cmd *dc, *tmp;
1587 bool need_wait;
1588 unsigned int trimmed = 0;
1590 next:
1591 need_wait = false;
1593 mutex_lock(&dcc->cmd_lock);
1594 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1595 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1596 continue;
1597 if (dc->len < dpolicy->granularity)
1598 continue;
1599 if (dc->state == D_DONE && !dc->ref) {
1600 wait_for_completion_io(&dc->wait);
1601 if (!dc->error)
1602 trimmed += dc->len;
1603 __remove_discard_cmd(sbi, dc);
1604 } else {
1605 dc->ref++;
1606 need_wait = true;
1607 break;
1610 mutex_unlock(&dcc->cmd_lock);
1612 if (need_wait) {
1613 trimmed += __wait_one_discard_bio(sbi, dc);
1614 goto next;
1617 return trimmed;
1620 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1621 struct discard_policy *dpolicy)
1623 struct discard_policy dp;
1624 unsigned int discard_blks;
1626 if (dpolicy)
1627 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1629 /* wait all */
1630 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1631 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1632 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1633 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1635 return discard_blks;
1638 /* This should be covered by global mutex, &sit_i->sentry_lock */
1639 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1641 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1642 struct discard_cmd *dc;
1643 bool need_wait = false;
1645 mutex_lock(&dcc->cmd_lock);
1646 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1647 NULL, blkaddr);
1648 if (dc) {
1649 if (dc->state == D_PREP) {
1650 __punch_discard_cmd(sbi, dc, blkaddr);
1651 } else {
1652 dc->ref++;
1653 need_wait = true;
1656 mutex_unlock(&dcc->cmd_lock);
1658 if (need_wait)
1659 __wait_one_discard_bio(sbi, dc);
1662 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1664 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1666 if (dcc && dcc->f2fs_issue_discard) {
1667 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1669 dcc->f2fs_issue_discard = NULL;
1670 kthread_stop(discard_thread);
1674 /* This comes from f2fs_put_super */
1675 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1677 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1678 struct discard_policy dpolicy;
1679 bool dropped;
1681 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1682 dcc->discard_granularity);
1683 __issue_discard_cmd(sbi, &dpolicy);
1684 dropped = __drop_discard_cmd(sbi);
1686 /* just to make sure there is no pending discard commands */
1687 __wait_all_discard_cmd(sbi, NULL);
1689 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1690 return dropped;
1693 static int issue_discard_thread(void *data)
1695 struct f2fs_sb_info *sbi = data;
1696 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 wait_queue_head_t *q = &dcc->discard_wait_queue;
1698 struct discard_policy dpolicy;
1699 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1700 int issued;
1702 set_freezable();
1704 do {
1705 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1706 dcc->discard_granularity);
1708 wait_event_interruptible_timeout(*q,
1709 kthread_should_stop() || freezing(current) ||
1710 dcc->discard_wake,
1711 msecs_to_jiffies(wait_ms));
1713 if (dcc->discard_wake)
1714 dcc->discard_wake = 0;
1716 /* clean up pending candidates before going to sleep */
1717 if (atomic_read(&dcc->queued_discard))
1718 __wait_all_discard_cmd(sbi, NULL);
1720 if (try_to_freeze())
1721 continue;
1722 if (f2fs_readonly(sbi->sb))
1723 continue;
1724 if (kthread_should_stop())
1725 return 0;
1726 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1727 wait_ms = dpolicy.max_interval;
1728 continue;
1731 if (sbi->gc_mode == GC_URGENT)
1732 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1734 sb_start_intwrite(sbi->sb);
1736 issued = __issue_discard_cmd(sbi, &dpolicy);
1737 if (issued > 0) {
1738 __wait_all_discard_cmd(sbi, &dpolicy);
1739 wait_ms = dpolicy.min_interval;
1740 } else if (issued == -1){
1741 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1742 if (!wait_ms)
1743 wait_ms = dpolicy.mid_interval;
1744 } else {
1745 wait_ms = dpolicy.max_interval;
1748 sb_end_intwrite(sbi->sb);
1750 } while (!kthread_should_stop());
1751 return 0;
1754 #ifdef CONFIG_BLK_DEV_ZONED
1755 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1756 struct block_device *bdev, block_t blkstart, block_t blklen)
1758 sector_t sector, nr_sects;
1759 block_t lblkstart = blkstart;
1760 int devi = 0;
1762 if (f2fs_is_multi_device(sbi)) {
1763 devi = f2fs_target_device_index(sbi, blkstart);
1764 if (blkstart < FDEV(devi).start_blk ||
1765 blkstart > FDEV(devi).end_blk) {
1766 f2fs_err(sbi, "Invalid block %x", blkstart);
1767 return -EIO;
1769 blkstart -= FDEV(devi).start_blk;
1772 /* For sequential zones, reset the zone write pointer */
1773 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1774 sector = SECTOR_FROM_BLOCK(blkstart);
1775 nr_sects = SECTOR_FROM_BLOCK(blklen);
1777 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1778 nr_sects != bdev_zone_sectors(bdev)) {
1779 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1780 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1781 blkstart, blklen);
1782 return -EIO;
1784 trace_f2fs_issue_reset_zone(bdev, blkstart);
1785 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1786 sector, nr_sects, GFP_NOFS);
1789 /* For conventional zones, use regular discard if supported */
1790 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1792 #endif
1794 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1795 struct block_device *bdev, block_t blkstart, block_t blklen)
1797 #ifdef CONFIG_BLK_DEV_ZONED
1798 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1799 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1800 #endif
1801 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1804 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1805 block_t blkstart, block_t blklen)
1807 sector_t start = blkstart, len = 0;
1808 struct block_device *bdev;
1809 struct seg_entry *se;
1810 unsigned int offset;
1811 block_t i;
1812 int err = 0;
1814 bdev = f2fs_target_device(sbi, blkstart, NULL);
1816 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1817 if (i != start) {
1818 struct block_device *bdev2 =
1819 f2fs_target_device(sbi, i, NULL);
1821 if (bdev2 != bdev) {
1822 err = __issue_discard_async(sbi, bdev,
1823 start, len);
1824 if (err)
1825 return err;
1826 bdev = bdev2;
1827 start = i;
1828 len = 0;
1832 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1833 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1835 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1836 sbi->discard_blks--;
1839 if (len)
1840 err = __issue_discard_async(sbi, bdev, start, len);
1841 return err;
1844 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1845 bool check_only)
1847 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1848 int max_blocks = sbi->blocks_per_seg;
1849 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1850 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1851 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1852 unsigned long *discard_map = (unsigned long *)se->discard_map;
1853 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1854 unsigned int start = 0, end = -1;
1855 bool force = (cpc->reason & CP_DISCARD);
1856 struct discard_entry *de = NULL;
1857 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1858 int i;
1860 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1861 return false;
1863 if (!force) {
1864 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1865 SM_I(sbi)->dcc_info->nr_discards >=
1866 SM_I(sbi)->dcc_info->max_discards)
1867 return false;
1870 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1871 for (i = 0; i < entries; i++)
1872 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1873 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1875 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1876 SM_I(sbi)->dcc_info->max_discards) {
1877 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1878 if (start >= max_blocks)
1879 break;
1881 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1882 if (force && start && end != max_blocks
1883 && (end - start) < cpc->trim_minlen)
1884 continue;
1886 if (check_only)
1887 return true;
1889 if (!de) {
1890 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1891 GFP_F2FS_ZERO);
1892 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1893 list_add_tail(&de->list, head);
1896 for (i = start; i < end; i++)
1897 __set_bit_le(i, (void *)de->discard_map);
1899 SM_I(sbi)->dcc_info->nr_discards += end - start;
1901 return false;
1904 static void release_discard_addr(struct discard_entry *entry)
1906 list_del(&entry->list);
1907 kmem_cache_free(discard_entry_slab, entry);
1910 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1912 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1913 struct discard_entry *entry, *this;
1915 /* drop caches */
1916 list_for_each_entry_safe(entry, this, head, list)
1917 release_discard_addr(entry);
1921 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1923 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1925 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1926 unsigned int segno;
1928 mutex_lock(&dirty_i->seglist_lock);
1929 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1930 __set_test_and_free(sbi, segno);
1931 mutex_unlock(&dirty_i->seglist_lock);
1934 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1935 struct cp_control *cpc)
1937 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1938 struct list_head *head = &dcc->entry_list;
1939 struct discard_entry *entry, *this;
1940 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1941 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1942 unsigned int start = 0, end = -1;
1943 unsigned int secno, start_segno;
1944 bool force = (cpc->reason & CP_DISCARD);
1945 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1947 mutex_lock(&dirty_i->seglist_lock);
1949 while (1) {
1950 int i;
1952 if (need_align && end != -1)
1953 end--;
1954 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1955 if (start >= MAIN_SEGS(sbi))
1956 break;
1957 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1958 start + 1);
1960 if (need_align) {
1961 start = rounddown(start, sbi->segs_per_sec);
1962 end = roundup(end, sbi->segs_per_sec);
1965 for (i = start; i < end; i++) {
1966 if (test_and_clear_bit(i, prefree_map))
1967 dirty_i->nr_dirty[PRE]--;
1970 if (!f2fs_realtime_discard_enable(sbi))
1971 continue;
1973 if (force && start >= cpc->trim_start &&
1974 (end - 1) <= cpc->trim_end)
1975 continue;
1977 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1978 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1979 (end - start) << sbi->log_blocks_per_seg);
1980 continue;
1982 next:
1983 secno = GET_SEC_FROM_SEG(sbi, start);
1984 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1985 if (!IS_CURSEC(sbi, secno) &&
1986 !get_valid_blocks(sbi, start, true))
1987 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1988 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1990 start = start_segno + sbi->segs_per_sec;
1991 if (start < end)
1992 goto next;
1993 else
1994 end = start - 1;
1996 mutex_unlock(&dirty_i->seglist_lock);
1998 /* send small discards */
1999 list_for_each_entry_safe(entry, this, head, list) {
2000 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2001 bool is_valid = test_bit_le(0, entry->discard_map);
2003 find_next:
2004 if (is_valid) {
2005 next_pos = find_next_zero_bit_le(entry->discard_map,
2006 sbi->blocks_per_seg, cur_pos);
2007 len = next_pos - cur_pos;
2009 if (f2fs_sb_has_blkzoned(sbi) ||
2010 (force && len < cpc->trim_minlen))
2011 goto skip;
2013 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2014 len);
2015 total_len += len;
2016 } else {
2017 next_pos = find_next_bit_le(entry->discard_map,
2018 sbi->blocks_per_seg, cur_pos);
2020 skip:
2021 cur_pos = next_pos;
2022 is_valid = !is_valid;
2024 if (cur_pos < sbi->blocks_per_seg)
2025 goto find_next;
2027 release_discard_addr(entry);
2028 dcc->nr_discards -= total_len;
2031 wake_up_discard_thread(sbi, false);
2034 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2036 dev_t dev = sbi->sb->s_bdev->bd_dev;
2037 struct discard_cmd_control *dcc;
2038 int err = 0, i;
2040 if (SM_I(sbi)->dcc_info) {
2041 dcc = SM_I(sbi)->dcc_info;
2042 goto init_thread;
2045 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2046 if (!dcc)
2047 return -ENOMEM;
2049 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2050 INIT_LIST_HEAD(&dcc->entry_list);
2051 for (i = 0; i < MAX_PLIST_NUM; i++)
2052 INIT_LIST_HEAD(&dcc->pend_list[i]);
2053 INIT_LIST_HEAD(&dcc->wait_list);
2054 INIT_LIST_HEAD(&dcc->fstrim_list);
2055 mutex_init(&dcc->cmd_lock);
2056 atomic_set(&dcc->issued_discard, 0);
2057 atomic_set(&dcc->queued_discard, 0);
2058 atomic_set(&dcc->discard_cmd_cnt, 0);
2059 dcc->nr_discards = 0;
2060 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2061 dcc->undiscard_blks = 0;
2062 dcc->next_pos = 0;
2063 dcc->root = RB_ROOT_CACHED;
2064 dcc->rbtree_check = false;
2066 init_waitqueue_head(&dcc->discard_wait_queue);
2067 SM_I(sbi)->dcc_info = dcc;
2068 init_thread:
2069 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2070 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2071 if (IS_ERR(dcc->f2fs_issue_discard)) {
2072 err = PTR_ERR(dcc->f2fs_issue_discard);
2073 kvfree(dcc);
2074 SM_I(sbi)->dcc_info = NULL;
2075 return err;
2078 return err;
2081 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2083 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2085 if (!dcc)
2086 return;
2088 f2fs_stop_discard_thread(sbi);
2091 * Recovery can cache discard commands, so in error path of
2092 * fill_super(), it needs to give a chance to handle them.
2094 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2095 f2fs_issue_discard_timeout(sbi);
2097 kvfree(dcc);
2098 SM_I(sbi)->dcc_info = NULL;
2101 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2103 struct sit_info *sit_i = SIT_I(sbi);
2105 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2106 sit_i->dirty_sentries++;
2107 return false;
2110 return true;
2113 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2114 unsigned int segno, int modified)
2116 struct seg_entry *se = get_seg_entry(sbi, segno);
2117 se->type = type;
2118 if (modified)
2119 __mark_sit_entry_dirty(sbi, segno);
2122 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2124 struct seg_entry *se;
2125 unsigned int segno, offset;
2126 long int new_vblocks;
2127 bool exist;
2128 #ifdef CONFIG_F2FS_CHECK_FS
2129 bool mir_exist;
2130 #endif
2132 segno = GET_SEGNO(sbi, blkaddr);
2134 se = get_seg_entry(sbi, segno);
2135 new_vblocks = se->valid_blocks + del;
2136 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2138 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2139 (new_vblocks > sbi->blocks_per_seg)));
2141 se->valid_blocks = new_vblocks;
2142 se->mtime = get_mtime(sbi, false);
2143 if (se->mtime > SIT_I(sbi)->max_mtime)
2144 SIT_I(sbi)->max_mtime = se->mtime;
2146 /* Update valid block bitmap */
2147 if (del > 0) {
2148 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2149 #ifdef CONFIG_F2FS_CHECK_FS
2150 mir_exist = f2fs_test_and_set_bit(offset,
2151 se->cur_valid_map_mir);
2152 if (unlikely(exist != mir_exist)) {
2153 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2154 blkaddr, exist);
2155 f2fs_bug_on(sbi, 1);
2157 #endif
2158 if (unlikely(exist)) {
2159 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2160 blkaddr);
2161 f2fs_bug_on(sbi, 1);
2162 se->valid_blocks--;
2163 del = 0;
2166 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2167 sbi->discard_blks--;
2170 * SSR should never reuse block which is checkpointed
2171 * or newly invalidated.
2173 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2174 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2175 se->ckpt_valid_blocks++;
2177 } else {
2178 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2179 #ifdef CONFIG_F2FS_CHECK_FS
2180 mir_exist = f2fs_test_and_clear_bit(offset,
2181 se->cur_valid_map_mir);
2182 if (unlikely(exist != mir_exist)) {
2183 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2184 blkaddr, exist);
2185 f2fs_bug_on(sbi, 1);
2187 #endif
2188 if (unlikely(!exist)) {
2189 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2190 blkaddr);
2191 f2fs_bug_on(sbi, 1);
2192 se->valid_blocks++;
2193 del = 0;
2194 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2196 * If checkpoints are off, we must not reuse data that
2197 * was used in the previous checkpoint. If it was used
2198 * before, we must track that to know how much space we
2199 * really have.
2201 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2202 spin_lock(&sbi->stat_lock);
2203 sbi->unusable_block_count++;
2204 spin_unlock(&sbi->stat_lock);
2208 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2209 sbi->discard_blks++;
2211 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2212 se->ckpt_valid_blocks += del;
2214 __mark_sit_entry_dirty(sbi, segno);
2216 /* update total number of valid blocks to be written in ckpt area */
2217 SIT_I(sbi)->written_valid_blocks += del;
2219 if (__is_large_section(sbi))
2220 get_sec_entry(sbi, segno)->valid_blocks += del;
2223 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2225 unsigned int segno = GET_SEGNO(sbi, addr);
2226 struct sit_info *sit_i = SIT_I(sbi);
2228 f2fs_bug_on(sbi, addr == NULL_ADDR);
2229 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2230 return;
2232 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2234 /* add it into sit main buffer */
2235 down_write(&sit_i->sentry_lock);
2237 update_sit_entry(sbi, addr, -1);
2239 /* add it into dirty seglist */
2240 locate_dirty_segment(sbi, segno);
2242 up_write(&sit_i->sentry_lock);
2245 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2247 struct sit_info *sit_i = SIT_I(sbi);
2248 unsigned int segno, offset;
2249 struct seg_entry *se;
2250 bool is_cp = false;
2252 if (!__is_valid_data_blkaddr(blkaddr))
2253 return true;
2255 down_read(&sit_i->sentry_lock);
2257 segno = GET_SEGNO(sbi, blkaddr);
2258 se = get_seg_entry(sbi, segno);
2259 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2261 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2262 is_cp = true;
2264 up_read(&sit_i->sentry_lock);
2266 return is_cp;
2270 * This function should be resided under the curseg_mutex lock
2272 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2273 struct f2fs_summary *sum)
2275 struct curseg_info *curseg = CURSEG_I(sbi, type);
2276 void *addr = curseg->sum_blk;
2277 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2278 memcpy(addr, sum, sizeof(struct f2fs_summary));
2282 * Calculate the number of current summary pages for writing
2284 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2286 int valid_sum_count = 0;
2287 int i, sum_in_page;
2289 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2290 if (sbi->ckpt->alloc_type[i] == SSR)
2291 valid_sum_count += sbi->blocks_per_seg;
2292 else {
2293 if (for_ra)
2294 valid_sum_count += le16_to_cpu(
2295 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2296 else
2297 valid_sum_count += curseg_blkoff(sbi, i);
2301 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2302 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2303 if (valid_sum_count <= sum_in_page)
2304 return 1;
2305 else if ((valid_sum_count - sum_in_page) <=
2306 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2307 return 2;
2308 return 3;
2312 * Caller should put this summary page
2314 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2316 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2319 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2320 void *src, block_t blk_addr)
2322 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2324 memcpy(page_address(page), src, PAGE_SIZE);
2325 set_page_dirty(page);
2326 f2fs_put_page(page, 1);
2329 static void write_sum_page(struct f2fs_sb_info *sbi,
2330 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2332 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2335 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2336 int type, block_t blk_addr)
2338 struct curseg_info *curseg = CURSEG_I(sbi, type);
2339 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2340 struct f2fs_summary_block *src = curseg->sum_blk;
2341 struct f2fs_summary_block *dst;
2343 dst = (struct f2fs_summary_block *)page_address(page);
2344 memset(dst, 0, PAGE_SIZE);
2346 mutex_lock(&curseg->curseg_mutex);
2348 down_read(&curseg->journal_rwsem);
2349 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2350 up_read(&curseg->journal_rwsem);
2352 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2353 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2355 mutex_unlock(&curseg->curseg_mutex);
2357 set_page_dirty(page);
2358 f2fs_put_page(page, 1);
2361 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2363 struct curseg_info *curseg = CURSEG_I(sbi, type);
2364 unsigned int segno = curseg->segno + 1;
2365 struct free_segmap_info *free_i = FREE_I(sbi);
2367 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2368 return !test_bit(segno, free_i->free_segmap);
2369 return 0;
2373 * Find a new segment from the free segments bitmap to right order
2374 * This function should be returned with success, otherwise BUG
2376 static void get_new_segment(struct f2fs_sb_info *sbi,
2377 unsigned int *newseg, bool new_sec, int dir)
2379 struct free_segmap_info *free_i = FREE_I(sbi);
2380 unsigned int segno, secno, zoneno;
2381 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2382 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2383 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2384 unsigned int left_start = hint;
2385 bool init = true;
2386 int go_left = 0;
2387 int i;
2389 spin_lock(&free_i->segmap_lock);
2391 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2392 segno = find_next_zero_bit(free_i->free_segmap,
2393 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2394 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2395 goto got_it;
2397 find_other_zone:
2398 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2399 if (secno >= MAIN_SECS(sbi)) {
2400 if (dir == ALLOC_RIGHT) {
2401 secno = find_next_zero_bit(free_i->free_secmap,
2402 MAIN_SECS(sbi), 0);
2403 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2404 } else {
2405 go_left = 1;
2406 left_start = hint - 1;
2409 if (go_left == 0)
2410 goto skip_left;
2412 while (test_bit(left_start, free_i->free_secmap)) {
2413 if (left_start > 0) {
2414 left_start--;
2415 continue;
2417 left_start = find_next_zero_bit(free_i->free_secmap,
2418 MAIN_SECS(sbi), 0);
2419 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2420 break;
2422 secno = left_start;
2423 skip_left:
2424 segno = GET_SEG_FROM_SEC(sbi, secno);
2425 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2427 /* give up on finding another zone */
2428 if (!init)
2429 goto got_it;
2430 if (sbi->secs_per_zone == 1)
2431 goto got_it;
2432 if (zoneno == old_zoneno)
2433 goto got_it;
2434 if (dir == ALLOC_LEFT) {
2435 if (!go_left && zoneno + 1 >= total_zones)
2436 goto got_it;
2437 if (go_left && zoneno == 0)
2438 goto got_it;
2440 for (i = 0; i < NR_CURSEG_TYPE; i++)
2441 if (CURSEG_I(sbi, i)->zone == zoneno)
2442 break;
2444 if (i < NR_CURSEG_TYPE) {
2445 /* zone is in user, try another */
2446 if (go_left)
2447 hint = zoneno * sbi->secs_per_zone - 1;
2448 else if (zoneno + 1 >= total_zones)
2449 hint = 0;
2450 else
2451 hint = (zoneno + 1) * sbi->secs_per_zone;
2452 init = false;
2453 goto find_other_zone;
2455 got_it:
2456 /* set it as dirty segment in free segmap */
2457 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2458 __set_inuse(sbi, segno);
2459 *newseg = segno;
2460 spin_unlock(&free_i->segmap_lock);
2463 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2465 struct curseg_info *curseg = CURSEG_I(sbi, type);
2466 struct summary_footer *sum_footer;
2468 curseg->segno = curseg->next_segno;
2469 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2470 curseg->next_blkoff = 0;
2471 curseg->next_segno = NULL_SEGNO;
2473 sum_footer = &(curseg->sum_blk->footer);
2474 memset(sum_footer, 0, sizeof(struct summary_footer));
2475 if (IS_DATASEG(type))
2476 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2477 if (IS_NODESEG(type))
2478 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2479 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2482 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2484 /* if segs_per_sec is large than 1, we need to keep original policy. */
2485 if (__is_large_section(sbi))
2486 return CURSEG_I(sbi, type)->segno;
2488 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2489 return 0;
2491 if (test_opt(sbi, NOHEAP) &&
2492 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2493 return 0;
2495 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2496 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2498 /* find segments from 0 to reuse freed segments */
2499 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2500 return 0;
2502 return CURSEG_I(sbi, type)->segno;
2506 * Allocate a current working segment.
2507 * This function always allocates a free segment in LFS manner.
2509 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2511 struct curseg_info *curseg = CURSEG_I(sbi, type);
2512 unsigned int segno = curseg->segno;
2513 int dir = ALLOC_LEFT;
2515 write_sum_page(sbi, curseg->sum_blk,
2516 GET_SUM_BLOCK(sbi, segno));
2517 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2518 dir = ALLOC_RIGHT;
2520 if (test_opt(sbi, NOHEAP))
2521 dir = ALLOC_RIGHT;
2523 segno = __get_next_segno(sbi, type);
2524 get_new_segment(sbi, &segno, new_sec, dir);
2525 curseg->next_segno = segno;
2526 reset_curseg(sbi, type, 1);
2527 curseg->alloc_type = LFS;
2530 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2531 struct curseg_info *seg, block_t start)
2533 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2534 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2535 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2536 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2537 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2538 int i, pos;
2540 for (i = 0; i < entries; i++)
2541 target_map[i] = ckpt_map[i] | cur_map[i];
2543 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2545 seg->next_blkoff = pos;
2549 * If a segment is written by LFS manner, next block offset is just obtained
2550 * by increasing the current block offset. However, if a segment is written by
2551 * SSR manner, next block offset obtained by calling __next_free_blkoff
2553 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2554 struct curseg_info *seg)
2556 if (seg->alloc_type == SSR)
2557 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2558 else
2559 seg->next_blkoff++;
2563 * This function always allocates a used segment(from dirty seglist) by SSR
2564 * manner, so it should recover the existing segment information of valid blocks
2566 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2568 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2569 struct curseg_info *curseg = CURSEG_I(sbi, type);
2570 unsigned int new_segno = curseg->next_segno;
2571 struct f2fs_summary_block *sum_node;
2572 struct page *sum_page;
2574 write_sum_page(sbi, curseg->sum_blk,
2575 GET_SUM_BLOCK(sbi, curseg->segno));
2576 __set_test_and_inuse(sbi, new_segno);
2578 mutex_lock(&dirty_i->seglist_lock);
2579 __remove_dirty_segment(sbi, new_segno, PRE);
2580 __remove_dirty_segment(sbi, new_segno, DIRTY);
2581 mutex_unlock(&dirty_i->seglist_lock);
2583 reset_curseg(sbi, type, 1);
2584 curseg->alloc_type = SSR;
2585 __next_free_blkoff(sbi, curseg, 0);
2587 sum_page = f2fs_get_sum_page(sbi, new_segno);
2588 f2fs_bug_on(sbi, IS_ERR(sum_page));
2589 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2590 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2591 f2fs_put_page(sum_page, 1);
2594 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2596 struct curseg_info *curseg = CURSEG_I(sbi, type);
2597 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2598 unsigned segno = NULL_SEGNO;
2599 int i, cnt;
2600 bool reversed = false;
2602 /* f2fs_need_SSR() already forces to do this */
2603 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2604 curseg->next_segno = segno;
2605 return 1;
2608 /* For node segments, let's do SSR more intensively */
2609 if (IS_NODESEG(type)) {
2610 if (type >= CURSEG_WARM_NODE) {
2611 reversed = true;
2612 i = CURSEG_COLD_NODE;
2613 } else {
2614 i = CURSEG_HOT_NODE;
2616 cnt = NR_CURSEG_NODE_TYPE;
2617 } else {
2618 if (type >= CURSEG_WARM_DATA) {
2619 reversed = true;
2620 i = CURSEG_COLD_DATA;
2621 } else {
2622 i = CURSEG_HOT_DATA;
2624 cnt = NR_CURSEG_DATA_TYPE;
2627 for (; cnt-- > 0; reversed ? i-- : i++) {
2628 if (i == type)
2629 continue;
2630 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2631 curseg->next_segno = segno;
2632 return 1;
2636 /* find valid_blocks=0 in dirty list */
2637 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2638 segno = get_free_segment(sbi);
2639 if (segno != NULL_SEGNO) {
2640 curseg->next_segno = segno;
2641 return 1;
2644 return 0;
2648 * flush out current segment and replace it with new segment
2649 * This function should be returned with success, otherwise BUG
2651 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2652 int type, bool force)
2654 struct curseg_info *curseg = CURSEG_I(sbi, type);
2656 if (force)
2657 new_curseg(sbi, type, true);
2658 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2659 type == CURSEG_WARM_NODE)
2660 new_curseg(sbi, type, false);
2661 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2662 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2663 new_curseg(sbi, type, false);
2664 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2665 change_curseg(sbi, type);
2666 else
2667 new_curseg(sbi, type, false);
2669 stat_inc_seg_type(sbi, curseg);
2672 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2673 unsigned int start, unsigned int end)
2675 struct curseg_info *curseg = CURSEG_I(sbi, type);
2676 unsigned int segno;
2678 down_read(&SM_I(sbi)->curseg_lock);
2679 mutex_lock(&curseg->curseg_mutex);
2680 down_write(&SIT_I(sbi)->sentry_lock);
2682 segno = CURSEG_I(sbi, type)->segno;
2683 if (segno < start || segno > end)
2684 goto unlock;
2686 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2687 change_curseg(sbi, type);
2688 else
2689 new_curseg(sbi, type, true);
2691 stat_inc_seg_type(sbi, curseg);
2693 locate_dirty_segment(sbi, segno);
2694 unlock:
2695 up_write(&SIT_I(sbi)->sentry_lock);
2697 if (segno != curseg->segno)
2698 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2699 type, segno, curseg->segno);
2701 mutex_unlock(&curseg->curseg_mutex);
2702 up_read(&SM_I(sbi)->curseg_lock);
2705 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type)
2707 struct curseg_info *curseg;
2708 unsigned int old_segno;
2709 int i;
2711 down_write(&SIT_I(sbi)->sentry_lock);
2713 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2714 if (type != NO_CHECK_TYPE && i != type)
2715 continue;
2717 curseg = CURSEG_I(sbi, i);
2718 if (type == NO_CHECK_TYPE || curseg->next_blkoff ||
2719 get_valid_blocks(sbi, curseg->segno, false) ||
2720 get_ckpt_valid_blocks(sbi, curseg->segno)) {
2721 old_segno = curseg->segno;
2722 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2723 locate_dirty_segment(sbi, old_segno);
2727 up_write(&SIT_I(sbi)->sentry_lock);
2730 static const struct segment_allocation default_salloc_ops = {
2731 .allocate_segment = allocate_segment_by_default,
2734 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2735 struct cp_control *cpc)
2737 __u64 trim_start = cpc->trim_start;
2738 bool has_candidate = false;
2740 down_write(&SIT_I(sbi)->sentry_lock);
2741 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2742 if (add_discard_addrs(sbi, cpc, true)) {
2743 has_candidate = true;
2744 break;
2747 up_write(&SIT_I(sbi)->sentry_lock);
2749 cpc->trim_start = trim_start;
2750 return has_candidate;
2753 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2754 struct discard_policy *dpolicy,
2755 unsigned int start, unsigned int end)
2757 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2758 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2759 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2760 struct discard_cmd *dc;
2761 struct blk_plug plug;
2762 int issued;
2763 unsigned int trimmed = 0;
2765 next:
2766 issued = 0;
2768 mutex_lock(&dcc->cmd_lock);
2769 if (unlikely(dcc->rbtree_check))
2770 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2771 &dcc->root));
2773 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2774 NULL, start,
2775 (struct rb_entry **)&prev_dc,
2776 (struct rb_entry **)&next_dc,
2777 &insert_p, &insert_parent, true, NULL);
2778 if (!dc)
2779 dc = next_dc;
2781 blk_start_plug(&plug);
2783 while (dc && dc->lstart <= end) {
2784 struct rb_node *node;
2785 int err = 0;
2787 if (dc->len < dpolicy->granularity)
2788 goto skip;
2790 if (dc->state != D_PREP) {
2791 list_move_tail(&dc->list, &dcc->fstrim_list);
2792 goto skip;
2795 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2797 if (issued >= dpolicy->max_requests) {
2798 start = dc->lstart + dc->len;
2800 if (err)
2801 __remove_discard_cmd(sbi, dc);
2803 blk_finish_plug(&plug);
2804 mutex_unlock(&dcc->cmd_lock);
2805 trimmed += __wait_all_discard_cmd(sbi, NULL);
2806 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2807 goto next;
2809 skip:
2810 node = rb_next(&dc->rb_node);
2811 if (err)
2812 __remove_discard_cmd(sbi, dc);
2813 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2815 if (fatal_signal_pending(current))
2816 break;
2819 blk_finish_plug(&plug);
2820 mutex_unlock(&dcc->cmd_lock);
2822 return trimmed;
2825 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2827 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2828 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2829 unsigned int start_segno, end_segno;
2830 block_t start_block, end_block;
2831 struct cp_control cpc;
2832 struct discard_policy dpolicy;
2833 unsigned long long trimmed = 0;
2834 int err = 0;
2835 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2837 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2838 return -EINVAL;
2840 if (end < MAIN_BLKADDR(sbi))
2841 goto out;
2843 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2844 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2845 return -EFSCORRUPTED;
2848 /* start/end segment number in main_area */
2849 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2850 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2851 GET_SEGNO(sbi, end);
2852 if (need_align) {
2853 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2854 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2857 cpc.reason = CP_DISCARD;
2858 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2859 cpc.trim_start = start_segno;
2860 cpc.trim_end = end_segno;
2862 if (sbi->discard_blks == 0)
2863 goto out;
2865 down_write(&sbi->gc_lock);
2866 err = f2fs_write_checkpoint(sbi, &cpc);
2867 up_write(&sbi->gc_lock);
2868 if (err)
2869 goto out;
2872 * We filed discard candidates, but actually we don't need to wait for
2873 * all of them, since they'll be issued in idle time along with runtime
2874 * discard option. User configuration looks like using runtime discard
2875 * or periodic fstrim instead of it.
2877 if (f2fs_realtime_discard_enable(sbi))
2878 goto out;
2880 start_block = START_BLOCK(sbi, start_segno);
2881 end_block = START_BLOCK(sbi, end_segno + 1);
2883 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2884 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2885 start_block, end_block);
2887 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2888 start_block, end_block);
2889 out:
2890 if (!err)
2891 range->len = F2FS_BLK_TO_BYTES(trimmed);
2892 return err;
2895 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2897 struct curseg_info *curseg = CURSEG_I(sbi, type);
2898 if (curseg->next_blkoff < sbi->blocks_per_seg)
2899 return true;
2900 return false;
2903 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2905 switch (hint) {
2906 case WRITE_LIFE_SHORT:
2907 return CURSEG_HOT_DATA;
2908 case WRITE_LIFE_EXTREME:
2909 return CURSEG_COLD_DATA;
2910 default:
2911 return CURSEG_WARM_DATA;
2915 /* This returns write hints for each segment type. This hints will be
2916 * passed down to block layer. There are mapping tables which depend on
2917 * the mount option 'whint_mode'.
2919 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2921 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2923 * User F2FS Block
2924 * ---- ---- -----
2925 * META WRITE_LIFE_NOT_SET
2926 * HOT_NODE "
2927 * WARM_NODE "
2928 * COLD_NODE "
2929 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2930 * extension list " "
2932 * -- buffered io
2933 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2934 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2935 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2936 * WRITE_LIFE_NONE " "
2937 * WRITE_LIFE_MEDIUM " "
2938 * WRITE_LIFE_LONG " "
2940 * -- direct io
2941 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2942 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2943 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2944 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2945 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2946 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2948 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2950 * User F2FS Block
2951 * ---- ---- -----
2952 * META WRITE_LIFE_MEDIUM;
2953 * HOT_NODE WRITE_LIFE_NOT_SET
2954 * WARM_NODE "
2955 * COLD_NODE WRITE_LIFE_NONE
2956 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2957 * extension list " "
2959 * -- buffered io
2960 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2961 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2962 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2963 * WRITE_LIFE_NONE " "
2964 * WRITE_LIFE_MEDIUM " "
2965 * WRITE_LIFE_LONG " "
2967 * -- direct io
2968 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2969 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2970 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2971 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2972 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2973 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2976 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2977 enum page_type type, enum temp_type temp)
2979 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2980 if (type == DATA) {
2981 if (temp == WARM)
2982 return WRITE_LIFE_NOT_SET;
2983 else if (temp == HOT)
2984 return WRITE_LIFE_SHORT;
2985 else if (temp == COLD)
2986 return WRITE_LIFE_EXTREME;
2987 } else {
2988 return WRITE_LIFE_NOT_SET;
2990 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2991 if (type == DATA) {
2992 if (temp == WARM)
2993 return WRITE_LIFE_LONG;
2994 else if (temp == HOT)
2995 return WRITE_LIFE_SHORT;
2996 else if (temp == COLD)
2997 return WRITE_LIFE_EXTREME;
2998 } else if (type == NODE) {
2999 if (temp == WARM || temp == HOT)
3000 return WRITE_LIFE_NOT_SET;
3001 else if (temp == COLD)
3002 return WRITE_LIFE_NONE;
3003 } else if (type == META) {
3004 return WRITE_LIFE_MEDIUM;
3007 return WRITE_LIFE_NOT_SET;
3010 static int __get_segment_type_2(struct f2fs_io_info *fio)
3012 if (fio->type == DATA)
3013 return CURSEG_HOT_DATA;
3014 else
3015 return CURSEG_HOT_NODE;
3018 static int __get_segment_type_4(struct f2fs_io_info *fio)
3020 if (fio->type == DATA) {
3021 struct inode *inode = fio->page->mapping->host;
3023 if (S_ISDIR(inode->i_mode))
3024 return CURSEG_HOT_DATA;
3025 else
3026 return CURSEG_COLD_DATA;
3027 } else {
3028 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3029 return CURSEG_WARM_NODE;
3030 else
3031 return CURSEG_COLD_NODE;
3035 static int __get_segment_type_6(struct f2fs_io_info *fio)
3037 if (fio->type == DATA) {
3038 struct inode *inode = fio->page->mapping->host;
3040 if (is_cold_data(fio->page) || file_is_cold(inode) ||
3041 f2fs_compressed_file(inode))
3042 return CURSEG_COLD_DATA;
3043 if (file_is_hot(inode) ||
3044 is_inode_flag_set(inode, FI_HOT_DATA) ||
3045 f2fs_is_atomic_file(inode) ||
3046 f2fs_is_volatile_file(inode))
3047 return CURSEG_HOT_DATA;
3048 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3049 } else {
3050 if (IS_DNODE(fio->page))
3051 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3052 CURSEG_HOT_NODE;
3053 return CURSEG_COLD_NODE;
3057 static int __get_segment_type(struct f2fs_io_info *fio)
3059 int type = 0;
3061 switch (F2FS_OPTION(fio->sbi).active_logs) {
3062 case 2:
3063 type = __get_segment_type_2(fio);
3064 break;
3065 case 4:
3066 type = __get_segment_type_4(fio);
3067 break;
3068 case 6:
3069 type = __get_segment_type_6(fio);
3070 break;
3071 default:
3072 f2fs_bug_on(fio->sbi, true);
3075 if (IS_HOT(type))
3076 fio->temp = HOT;
3077 else if (IS_WARM(type))
3078 fio->temp = WARM;
3079 else
3080 fio->temp = COLD;
3081 return type;
3084 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3085 block_t old_blkaddr, block_t *new_blkaddr,
3086 struct f2fs_summary *sum, int type,
3087 struct f2fs_io_info *fio, bool add_list)
3089 struct sit_info *sit_i = SIT_I(sbi);
3090 struct curseg_info *curseg = CURSEG_I(sbi, type);
3091 bool put_pin_sem = false;
3093 if (type == CURSEG_COLD_DATA) {
3094 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3095 if (down_read_trylock(&sbi->pin_sem)) {
3096 put_pin_sem = true;
3097 } else {
3098 type = CURSEG_WARM_DATA;
3099 curseg = CURSEG_I(sbi, type);
3101 } else if (type == CURSEG_COLD_DATA_PINNED) {
3102 type = CURSEG_COLD_DATA;
3105 down_read(&SM_I(sbi)->curseg_lock);
3107 mutex_lock(&curseg->curseg_mutex);
3108 down_write(&sit_i->sentry_lock);
3110 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3112 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3115 * __add_sum_entry should be resided under the curseg_mutex
3116 * because, this function updates a summary entry in the
3117 * current summary block.
3119 __add_sum_entry(sbi, type, sum);
3121 __refresh_next_blkoff(sbi, curseg);
3123 stat_inc_block_count(sbi, curseg);
3126 * SIT information should be updated before segment allocation,
3127 * since SSR needs latest valid block information.
3129 update_sit_entry(sbi, *new_blkaddr, 1);
3130 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3131 update_sit_entry(sbi, old_blkaddr, -1);
3133 if (!__has_curseg_space(sbi, type))
3134 sit_i->s_ops->allocate_segment(sbi, type, false);
3137 * segment dirty status should be updated after segment allocation,
3138 * so we just need to update status only one time after previous
3139 * segment being closed.
3141 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3142 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3144 up_write(&sit_i->sentry_lock);
3146 if (page && IS_NODESEG(type)) {
3147 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3149 f2fs_inode_chksum_set(sbi, page);
3152 if (F2FS_IO_ALIGNED(sbi))
3153 fio->retry = false;
3155 if (add_list) {
3156 struct f2fs_bio_info *io;
3158 INIT_LIST_HEAD(&fio->list);
3159 fio->in_list = true;
3160 io = sbi->write_io[fio->type] + fio->temp;
3161 spin_lock(&io->io_lock);
3162 list_add_tail(&fio->list, &io->io_list);
3163 spin_unlock(&io->io_lock);
3166 mutex_unlock(&curseg->curseg_mutex);
3168 up_read(&SM_I(sbi)->curseg_lock);
3170 if (put_pin_sem)
3171 up_read(&sbi->pin_sem);
3174 static void update_device_state(struct f2fs_io_info *fio)
3176 struct f2fs_sb_info *sbi = fio->sbi;
3177 unsigned int devidx;
3179 if (!f2fs_is_multi_device(sbi))
3180 return;
3182 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3184 /* update device state for fsync */
3185 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3187 /* update device state for checkpoint */
3188 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3189 spin_lock(&sbi->dev_lock);
3190 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3191 spin_unlock(&sbi->dev_lock);
3195 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3197 int type = __get_segment_type(fio);
3198 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3200 if (keep_order)
3201 down_read(&fio->sbi->io_order_lock);
3202 reallocate:
3203 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3204 &fio->new_blkaddr, sum, type, fio, true);
3205 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3206 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3207 fio->old_blkaddr, fio->old_blkaddr);
3209 /* writeout dirty page into bdev */
3210 f2fs_submit_page_write(fio);
3211 if (fio->retry) {
3212 fio->old_blkaddr = fio->new_blkaddr;
3213 goto reallocate;
3216 update_device_state(fio);
3218 if (keep_order)
3219 up_read(&fio->sbi->io_order_lock);
3222 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3223 enum iostat_type io_type)
3225 struct f2fs_io_info fio = {
3226 .sbi = sbi,
3227 .type = META,
3228 .temp = HOT,
3229 .op = REQ_OP_WRITE,
3230 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3231 .old_blkaddr = page->index,
3232 .new_blkaddr = page->index,
3233 .page = page,
3234 .encrypted_page = NULL,
3235 .in_list = false,
3238 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3239 fio.op_flags &= ~REQ_META;
3241 set_page_writeback(page);
3242 ClearPageError(page);
3243 f2fs_submit_page_write(&fio);
3245 stat_inc_meta_count(sbi, page->index);
3246 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3249 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3251 struct f2fs_summary sum;
3253 set_summary(&sum, nid, 0, 0);
3254 do_write_page(&sum, fio);
3256 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3259 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3260 struct f2fs_io_info *fio)
3262 struct f2fs_sb_info *sbi = fio->sbi;
3263 struct f2fs_summary sum;
3265 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3266 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3267 do_write_page(&sum, fio);
3268 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3270 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3273 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3275 int err;
3276 struct f2fs_sb_info *sbi = fio->sbi;
3277 unsigned int segno;
3279 fio->new_blkaddr = fio->old_blkaddr;
3280 /* i/o temperature is needed for passing down write hints */
3281 __get_segment_type(fio);
3283 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3285 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3286 set_sbi_flag(sbi, SBI_NEED_FSCK);
3287 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3288 __func__, segno);
3289 return -EFSCORRUPTED;
3292 stat_inc_inplace_blocks(fio->sbi);
3294 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3295 err = f2fs_merge_page_bio(fio);
3296 else
3297 err = f2fs_submit_page_bio(fio);
3298 if (!err) {
3299 update_device_state(fio);
3300 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3303 return err;
3306 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3307 unsigned int segno)
3309 int i;
3311 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3312 if (CURSEG_I(sbi, i)->segno == segno)
3313 break;
3315 return i;
3318 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3319 block_t old_blkaddr, block_t new_blkaddr,
3320 bool recover_curseg, bool recover_newaddr)
3322 struct sit_info *sit_i = SIT_I(sbi);
3323 struct curseg_info *curseg;
3324 unsigned int segno, old_cursegno;
3325 struct seg_entry *se;
3326 int type;
3327 unsigned short old_blkoff;
3329 segno = GET_SEGNO(sbi, new_blkaddr);
3330 se = get_seg_entry(sbi, segno);
3331 type = se->type;
3333 down_write(&SM_I(sbi)->curseg_lock);
3335 if (!recover_curseg) {
3336 /* for recovery flow */
3337 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3338 if (old_blkaddr == NULL_ADDR)
3339 type = CURSEG_COLD_DATA;
3340 else
3341 type = CURSEG_WARM_DATA;
3343 } else {
3344 if (IS_CURSEG(sbi, segno)) {
3345 /* se->type is volatile as SSR allocation */
3346 type = __f2fs_get_curseg(sbi, segno);
3347 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3348 } else {
3349 type = CURSEG_WARM_DATA;
3353 f2fs_bug_on(sbi, !IS_DATASEG(type));
3354 curseg = CURSEG_I(sbi, type);
3356 mutex_lock(&curseg->curseg_mutex);
3357 down_write(&sit_i->sentry_lock);
3359 old_cursegno = curseg->segno;
3360 old_blkoff = curseg->next_blkoff;
3362 /* change the current segment */
3363 if (segno != curseg->segno) {
3364 curseg->next_segno = segno;
3365 change_curseg(sbi, type);
3368 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3369 __add_sum_entry(sbi, type, sum);
3371 if (!recover_curseg || recover_newaddr)
3372 update_sit_entry(sbi, new_blkaddr, 1);
3373 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3374 invalidate_mapping_pages(META_MAPPING(sbi),
3375 old_blkaddr, old_blkaddr);
3376 update_sit_entry(sbi, old_blkaddr, -1);
3379 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3380 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3382 locate_dirty_segment(sbi, old_cursegno);
3384 if (recover_curseg) {
3385 if (old_cursegno != curseg->segno) {
3386 curseg->next_segno = old_cursegno;
3387 change_curseg(sbi, type);
3389 curseg->next_blkoff = old_blkoff;
3392 up_write(&sit_i->sentry_lock);
3393 mutex_unlock(&curseg->curseg_mutex);
3394 up_write(&SM_I(sbi)->curseg_lock);
3397 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3398 block_t old_addr, block_t new_addr,
3399 unsigned char version, bool recover_curseg,
3400 bool recover_newaddr)
3402 struct f2fs_summary sum;
3404 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3406 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3407 recover_curseg, recover_newaddr);
3409 f2fs_update_data_blkaddr(dn, new_addr);
3412 void f2fs_wait_on_page_writeback(struct page *page,
3413 enum page_type type, bool ordered, bool locked)
3415 if (PageWriteback(page)) {
3416 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3418 /* submit cached LFS IO */
3419 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3420 /* sbumit cached IPU IO */
3421 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3422 if (ordered) {
3423 wait_on_page_writeback(page);
3424 f2fs_bug_on(sbi, locked && PageWriteback(page));
3425 } else {
3426 wait_for_stable_page(page);
3431 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3433 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3434 struct page *cpage;
3436 if (!f2fs_post_read_required(inode))
3437 return;
3439 if (!__is_valid_data_blkaddr(blkaddr))
3440 return;
3442 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3443 if (cpage) {
3444 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3445 f2fs_put_page(cpage, 1);
3449 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3450 block_t len)
3452 block_t i;
3454 for (i = 0; i < len; i++)
3455 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3458 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3460 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3461 struct curseg_info *seg_i;
3462 unsigned char *kaddr;
3463 struct page *page;
3464 block_t start;
3465 int i, j, offset;
3467 start = start_sum_block(sbi);
3469 page = f2fs_get_meta_page(sbi, start++);
3470 if (IS_ERR(page))
3471 return PTR_ERR(page);
3472 kaddr = (unsigned char *)page_address(page);
3474 /* Step 1: restore nat cache */
3475 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3476 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3478 /* Step 2: restore sit cache */
3479 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3480 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3481 offset = 2 * SUM_JOURNAL_SIZE;
3483 /* Step 3: restore summary entries */
3484 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3485 unsigned short blk_off;
3486 unsigned int segno;
3488 seg_i = CURSEG_I(sbi, i);
3489 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3490 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3491 seg_i->next_segno = segno;
3492 reset_curseg(sbi, i, 0);
3493 seg_i->alloc_type = ckpt->alloc_type[i];
3494 seg_i->next_blkoff = blk_off;
3496 if (seg_i->alloc_type == SSR)
3497 blk_off = sbi->blocks_per_seg;
3499 for (j = 0; j < blk_off; j++) {
3500 struct f2fs_summary *s;
3501 s = (struct f2fs_summary *)(kaddr + offset);
3502 seg_i->sum_blk->entries[j] = *s;
3503 offset += SUMMARY_SIZE;
3504 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3505 SUM_FOOTER_SIZE)
3506 continue;
3508 f2fs_put_page(page, 1);
3509 page = NULL;
3511 page = f2fs_get_meta_page(sbi, start++);
3512 if (IS_ERR(page))
3513 return PTR_ERR(page);
3514 kaddr = (unsigned char *)page_address(page);
3515 offset = 0;
3518 f2fs_put_page(page, 1);
3519 return 0;
3522 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3524 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3525 struct f2fs_summary_block *sum;
3526 struct curseg_info *curseg;
3527 struct page *new;
3528 unsigned short blk_off;
3529 unsigned int segno = 0;
3530 block_t blk_addr = 0;
3531 int err = 0;
3533 /* get segment number and block addr */
3534 if (IS_DATASEG(type)) {
3535 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3536 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3537 CURSEG_HOT_DATA]);
3538 if (__exist_node_summaries(sbi))
3539 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3540 else
3541 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3542 } else {
3543 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3544 CURSEG_HOT_NODE]);
3545 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3546 CURSEG_HOT_NODE]);
3547 if (__exist_node_summaries(sbi))
3548 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3549 type - CURSEG_HOT_NODE);
3550 else
3551 blk_addr = GET_SUM_BLOCK(sbi, segno);
3554 new = f2fs_get_meta_page(sbi, blk_addr);
3555 if (IS_ERR(new))
3556 return PTR_ERR(new);
3557 sum = (struct f2fs_summary_block *)page_address(new);
3559 if (IS_NODESEG(type)) {
3560 if (__exist_node_summaries(sbi)) {
3561 struct f2fs_summary *ns = &sum->entries[0];
3562 int i;
3563 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3564 ns->version = 0;
3565 ns->ofs_in_node = 0;
3567 } else {
3568 err = f2fs_restore_node_summary(sbi, segno, sum);
3569 if (err)
3570 goto out;
3574 /* set uncompleted segment to curseg */
3575 curseg = CURSEG_I(sbi, type);
3576 mutex_lock(&curseg->curseg_mutex);
3578 /* update journal info */
3579 down_write(&curseg->journal_rwsem);
3580 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3581 up_write(&curseg->journal_rwsem);
3583 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3584 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3585 curseg->next_segno = segno;
3586 reset_curseg(sbi, type, 0);
3587 curseg->alloc_type = ckpt->alloc_type[type];
3588 curseg->next_blkoff = blk_off;
3589 mutex_unlock(&curseg->curseg_mutex);
3590 out:
3591 f2fs_put_page(new, 1);
3592 return err;
3595 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3597 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3598 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3599 int type = CURSEG_HOT_DATA;
3600 int err;
3602 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3603 int npages = f2fs_npages_for_summary_flush(sbi, true);
3605 if (npages >= 2)
3606 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3607 META_CP, true);
3609 /* restore for compacted data summary */
3610 err = read_compacted_summaries(sbi);
3611 if (err)
3612 return err;
3613 type = CURSEG_HOT_NODE;
3616 if (__exist_node_summaries(sbi))
3617 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3618 NR_CURSEG_TYPE - type, META_CP, true);
3620 for (; type <= CURSEG_COLD_NODE; type++) {
3621 err = read_normal_summaries(sbi, type);
3622 if (err)
3623 return err;
3626 /* sanity check for summary blocks */
3627 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3628 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3629 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3630 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3631 return -EINVAL;
3634 return 0;
3637 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3639 struct page *page;
3640 unsigned char *kaddr;
3641 struct f2fs_summary *summary;
3642 struct curseg_info *seg_i;
3643 int written_size = 0;
3644 int i, j;
3646 page = f2fs_grab_meta_page(sbi, blkaddr++);
3647 kaddr = (unsigned char *)page_address(page);
3648 memset(kaddr, 0, PAGE_SIZE);
3650 /* Step 1: write nat cache */
3651 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3652 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3653 written_size += SUM_JOURNAL_SIZE;
3655 /* Step 2: write sit cache */
3656 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3657 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3658 written_size += SUM_JOURNAL_SIZE;
3660 /* Step 3: write summary entries */
3661 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3662 unsigned short blkoff;
3663 seg_i = CURSEG_I(sbi, i);
3664 if (sbi->ckpt->alloc_type[i] == SSR)
3665 blkoff = sbi->blocks_per_seg;
3666 else
3667 blkoff = curseg_blkoff(sbi, i);
3669 for (j = 0; j < blkoff; j++) {
3670 if (!page) {
3671 page = f2fs_grab_meta_page(sbi, blkaddr++);
3672 kaddr = (unsigned char *)page_address(page);
3673 memset(kaddr, 0, PAGE_SIZE);
3674 written_size = 0;
3676 summary = (struct f2fs_summary *)(kaddr + written_size);
3677 *summary = seg_i->sum_blk->entries[j];
3678 written_size += SUMMARY_SIZE;
3680 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3681 SUM_FOOTER_SIZE)
3682 continue;
3684 set_page_dirty(page);
3685 f2fs_put_page(page, 1);
3686 page = NULL;
3689 if (page) {
3690 set_page_dirty(page);
3691 f2fs_put_page(page, 1);
3695 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3696 block_t blkaddr, int type)
3698 int i, end;
3699 if (IS_DATASEG(type))
3700 end = type + NR_CURSEG_DATA_TYPE;
3701 else
3702 end = type + NR_CURSEG_NODE_TYPE;
3704 for (i = type; i < end; i++)
3705 write_current_sum_page(sbi, i, blkaddr + (i - type));
3708 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3710 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3711 write_compacted_summaries(sbi, start_blk);
3712 else
3713 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3716 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3718 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3721 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3722 unsigned int val, int alloc)
3724 int i;
3726 if (type == NAT_JOURNAL) {
3727 for (i = 0; i < nats_in_cursum(journal); i++) {
3728 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3729 return i;
3731 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3732 return update_nats_in_cursum(journal, 1);
3733 } else if (type == SIT_JOURNAL) {
3734 for (i = 0; i < sits_in_cursum(journal); i++)
3735 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3736 return i;
3737 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3738 return update_sits_in_cursum(journal, 1);
3740 return -1;
3743 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3744 unsigned int segno)
3746 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3749 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3750 unsigned int start)
3752 struct sit_info *sit_i = SIT_I(sbi);
3753 struct page *page;
3754 pgoff_t src_off, dst_off;
3756 src_off = current_sit_addr(sbi, start);
3757 dst_off = next_sit_addr(sbi, src_off);
3759 page = f2fs_grab_meta_page(sbi, dst_off);
3760 seg_info_to_sit_page(sbi, page, start);
3762 set_page_dirty(page);
3763 set_to_next_sit(sit_i, start);
3765 return page;
3768 static struct sit_entry_set *grab_sit_entry_set(void)
3770 struct sit_entry_set *ses =
3771 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3773 ses->entry_cnt = 0;
3774 INIT_LIST_HEAD(&ses->set_list);
3775 return ses;
3778 static void release_sit_entry_set(struct sit_entry_set *ses)
3780 list_del(&ses->set_list);
3781 kmem_cache_free(sit_entry_set_slab, ses);
3784 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3785 struct list_head *head)
3787 struct sit_entry_set *next = ses;
3789 if (list_is_last(&ses->set_list, head))
3790 return;
3792 list_for_each_entry_continue(next, head, set_list)
3793 if (ses->entry_cnt <= next->entry_cnt)
3794 break;
3796 list_move_tail(&ses->set_list, &next->set_list);
3799 static void add_sit_entry(unsigned int segno, struct list_head *head)
3801 struct sit_entry_set *ses;
3802 unsigned int start_segno = START_SEGNO(segno);
3804 list_for_each_entry(ses, head, set_list) {
3805 if (ses->start_segno == start_segno) {
3806 ses->entry_cnt++;
3807 adjust_sit_entry_set(ses, head);
3808 return;
3812 ses = grab_sit_entry_set();
3814 ses->start_segno = start_segno;
3815 ses->entry_cnt++;
3816 list_add(&ses->set_list, head);
3819 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3821 struct f2fs_sm_info *sm_info = SM_I(sbi);
3822 struct list_head *set_list = &sm_info->sit_entry_set;
3823 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3824 unsigned int segno;
3826 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3827 add_sit_entry(segno, set_list);
3830 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3832 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3833 struct f2fs_journal *journal = curseg->journal;
3834 int i;
3836 down_write(&curseg->journal_rwsem);
3837 for (i = 0; i < sits_in_cursum(journal); i++) {
3838 unsigned int segno;
3839 bool dirtied;
3841 segno = le32_to_cpu(segno_in_journal(journal, i));
3842 dirtied = __mark_sit_entry_dirty(sbi, segno);
3844 if (!dirtied)
3845 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3847 update_sits_in_cursum(journal, -i);
3848 up_write(&curseg->journal_rwsem);
3852 * CP calls this function, which flushes SIT entries including sit_journal,
3853 * and moves prefree segs to free segs.
3855 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3857 struct sit_info *sit_i = SIT_I(sbi);
3858 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3859 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3860 struct f2fs_journal *journal = curseg->journal;
3861 struct sit_entry_set *ses, *tmp;
3862 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3863 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3864 struct seg_entry *se;
3866 down_write(&sit_i->sentry_lock);
3868 if (!sit_i->dirty_sentries)
3869 goto out;
3872 * add and account sit entries of dirty bitmap in sit entry
3873 * set temporarily
3875 add_sits_in_set(sbi);
3878 * if there are no enough space in journal to store dirty sit
3879 * entries, remove all entries from journal and add and account
3880 * them in sit entry set.
3882 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3883 !to_journal)
3884 remove_sits_in_journal(sbi);
3887 * there are two steps to flush sit entries:
3888 * #1, flush sit entries to journal in current cold data summary block.
3889 * #2, flush sit entries to sit page.
3891 list_for_each_entry_safe(ses, tmp, head, set_list) {
3892 struct page *page = NULL;
3893 struct f2fs_sit_block *raw_sit = NULL;
3894 unsigned int start_segno = ses->start_segno;
3895 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3896 (unsigned long)MAIN_SEGS(sbi));
3897 unsigned int segno = start_segno;
3899 if (to_journal &&
3900 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3901 to_journal = false;
3903 if (to_journal) {
3904 down_write(&curseg->journal_rwsem);
3905 } else {
3906 page = get_next_sit_page(sbi, start_segno);
3907 raw_sit = page_address(page);
3910 /* flush dirty sit entries in region of current sit set */
3911 for_each_set_bit_from(segno, bitmap, end) {
3912 int offset, sit_offset;
3914 se = get_seg_entry(sbi, segno);
3915 #ifdef CONFIG_F2FS_CHECK_FS
3916 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3917 SIT_VBLOCK_MAP_SIZE))
3918 f2fs_bug_on(sbi, 1);
3919 #endif
3921 /* add discard candidates */
3922 if (!(cpc->reason & CP_DISCARD)) {
3923 cpc->trim_start = segno;
3924 add_discard_addrs(sbi, cpc, false);
3927 if (to_journal) {
3928 offset = f2fs_lookup_journal_in_cursum(journal,
3929 SIT_JOURNAL, segno, 1);
3930 f2fs_bug_on(sbi, offset < 0);
3931 segno_in_journal(journal, offset) =
3932 cpu_to_le32(segno);
3933 seg_info_to_raw_sit(se,
3934 &sit_in_journal(journal, offset));
3935 check_block_count(sbi, segno,
3936 &sit_in_journal(journal, offset));
3937 } else {
3938 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3939 seg_info_to_raw_sit(se,
3940 &raw_sit->entries[sit_offset]);
3941 check_block_count(sbi, segno,
3942 &raw_sit->entries[sit_offset]);
3945 __clear_bit(segno, bitmap);
3946 sit_i->dirty_sentries--;
3947 ses->entry_cnt--;
3950 if (to_journal)
3951 up_write(&curseg->journal_rwsem);
3952 else
3953 f2fs_put_page(page, 1);
3955 f2fs_bug_on(sbi, ses->entry_cnt);
3956 release_sit_entry_set(ses);
3959 f2fs_bug_on(sbi, !list_empty(head));
3960 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3961 out:
3962 if (cpc->reason & CP_DISCARD) {
3963 __u64 trim_start = cpc->trim_start;
3965 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3966 add_discard_addrs(sbi, cpc, false);
3968 cpc->trim_start = trim_start;
3970 up_write(&sit_i->sentry_lock);
3972 set_prefree_as_free_segments(sbi);
3975 static int build_sit_info(struct f2fs_sb_info *sbi)
3977 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3978 struct sit_info *sit_i;
3979 unsigned int sit_segs, start;
3980 char *src_bitmap, *bitmap;
3981 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3983 /* allocate memory for SIT information */
3984 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3985 if (!sit_i)
3986 return -ENOMEM;
3988 SM_I(sbi)->sit_info = sit_i;
3990 sit_i->sentries =
3991 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3992 MAIN_SEGS(sbi)),
3993 GFP_KERNEL);
3994 if (!sit_i->sentries)
3995 return -ENOMEM;
3997 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3998 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3999 GFP_KERNEL);
4000 if (!sit_i->dirty_sentries_bitmap)
4001 return -ENOMEM;
4003 #ifdef CONFIG_F2FS_CHECK_FS
4004 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4005 #else
4006 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4007 #endif
4008 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4009 if (!sit_i->bitmap)
4010 return -ENOMEM;
4012 bitmap = sit_i->bitmap;
4014 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4015 sit_i->sentries[start].cur_valid_map = bitmap;
4016 bitmap += SIT_VBLOCK_MAP_SIZE;
4018 sit_i->sentries[start].ckpt_valid_map = bitmap;
4019 bitmap += SIT_VBLOCK_MAP_SIZE;
4021 #ifdef CONFIG_F2FS_CHECK_FS
4022 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4023 bitmap += SIT_VBLOCK_MAP_SIZE;
4024 #endif
4026 sit_i->sentries[start].discard_map = bitmap;
4027 bitmap += SIT_VBLOCK_MAP_SIZE;
4030 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4031 if (!sit_i->tmp_map)
4032 return -ENOMEM;
4034 if (__is_large_section(sbi)) {
4035 sit_i->sec_entries =
4036 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4037 MAIN_SECS(sbi)),
4038 GFP_KERNEL);
4039 if (!sit_i->sec_entries)
4040 return -ENOMEM;
4043 /* get information related with SIT */
4044 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4046 /* setup SIT bitmap from ckeckpoint pack */
4047 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4048 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4050 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4051 if (!sit_i->sit_bitmap)
4052 return -ENOMEM;
4054 #ifdef CONFIG_F2FS_CHECK_FS
4055 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4056 sit_bitmap_size, GFP_KERNEL);
4057 if (!sit_i->sit_bitmap_mir)
4058 return -ENOMEM;
4060 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4061 main_bitmap_size, GFP_KERNEL);
4062 if (!sit_i->invalid_segmap)
4063 return -ENOMEM;
4064 #endif
4066 /* init SIT information */
4067 sit_i->s_ops = &default_salloc_ops;
4069 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4070 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4071 sit_i->written_valid_blocks = 0;
4072 sit_i->bitmap_size = sit_bitmap_size;
4073 sit_i->dirty_sentries = 0;
4074 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4075 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4076 sit_i->mounted_time = ktime_get_boottime_seconds();
4077 init_rwsem(&sit_i->sentry_lock);
4078 return 0;
4081 static int build_free_segmap(struct f2fs_sb_info *sbi)
4083 struct free_segmap_info *free_i;
4084 unsigned int bitmap_size, sec_bitmap_size;
4086 /* allocate memory for free segmap information */
4087 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4088 if (!free_i)
4089 return -ENOMEM;
4091 SM_I(sbi)->free_info = free_i;
4093 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4094 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4095 if (!free_i->free_segmap)
4096 return -ENOMEM;
4098 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4099 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4100 if (!free_i->free_secmap)
4101 return -ENOMEM;
4103 /* set all segments as dirty temporarily */
4104 memset(free_i->free_segmap, 0xff, bitmap_size);
4105 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4107 /* init free segmap information */
4108 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4109 free_i->free_segments = 0;
4110 free_i->free_sections = 0;
4111 spin_lock_init(&free_i->segmap_lock);
4112 return 0;
4115 static int build_curseg(struct f2fs_sb_info *sbi)
4117 struct curseg_info *array;
4118 int i;
4120 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4121 GFP_KERNEL);
4122 if (!array)
4123 return -ENOMEM;
4125 SM_I(sbi)->curseg_array = array;
4127 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4128 mutex_init(&array[i].curseg_mutex);
4129 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4130 if (!array[i].sum_blk)
4131 return -ENOMEM;
4132 init_rwsem(&array[i].journal_rwsem);
4133 array[i].journal = f2fs_kzalloc(sbi,
4134 sizeof(struct f2fs_journal), GFP_KERNEL);
4135 if (!array[i].journal)
4136 return -ENOMEM;
4137 array[i].segno = NULL_SEGNO;
4138 array[i].next_blkoff = 0;
4140 return restore_curseg_summaries(sbi);
4143 static int build_sit_entries(struct f2fs_sb_info *sbi)
4145 struct sit_info *sit_i = SIT_I(sbi);
4146 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4147 struct f2fs_journal *journal = curseg->journal;
4148 struct seg_entry *se;
4149 struct f2fs_sit_entry sit;
4150 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4151 unsigned int i, start, end;
4152 unsigned int readed, start_blk = 0;
4153 int err = 0;
4154 block_t total_node_blocks = 0;
4156 do {
4157 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4158 META_SIT, true);
4160 start = start_blk * sit_i->sents_per_block;
4161 end = (start_blk + readed) * sit_i->sents_per_block;
4163 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4164 struct f2fs_sit_block *sit_blk;
4165 struct page *page;
4167 se = &sit_i->sentries[start];
4168 page = get_current_sit_page(sbi, start);
4169 if (IS_ERR(page))
4170 return PTR_ERR(page);
4171 sit_blk = (struct f2fs_sit_block *)page_address(page);
4172 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4173 f2fs_put_page(page, 1);
4175 err = check_block_count(sbi, start, &sit);
4176 if (err)
4177 return err;
4178 seg_info_from_raw_sit(se, &sit);
4179 if (IS_NODESEG(se->type))
4180 total_node_blocks += se->valid_blocks;
4182 /* build discard map only one time */
4183 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4184 memset(se->discard_map, 0xff,
4185 SIT_VBLOCK_MAP_SIZE);
4186 } else {
4187 memcpy(se->discard_map,
4188 se->cur_valid_map,
4189 SIT_VBLOCK_MAP_SIZE);
4190 sbi->discard_blks +=
4191 sbi->blocks_per_seg -
4192 se->valid_blocks;
4195 if (__is_large_section(sbi))
4196 get_sec_entry(sbi, start)->valid_blocks +=
4197 se->valid_blocks;
4199 start_blk += readed;
4200 } while (start_blk < sit_blk_cnt);
4202 down_read(&curseg->journal_rwsem);
4203 for (i = 0; i < sits_in_cursum(journal); i++) {
4204 unsigned int old_valid_blocks;
4206 start = le32_to_cpu(segno_in_journal(journal, i));
4207 if (start >= MAIN_SEGS(sbi)) {
4208 f2fs_err(sbi, "Wrong journal entry on segno %u",
4209 start);
4210 err = -EFSCORRUPTED;
4211 break;
4214 se = &sit_i->sentries[start];
4215 sit = sit_in_journal(journal, i);
4217 old_valid_blocks = se->valid_blocks;
4218 if (IS_NODESEG(se->type))
4219 total_node_blocks -= old_valid_blocks;
4221 err = check_block_count(sbi, start, &sit);
4222 if (err)
4223 break;
4224 seg_info_from_raw_sit(se, &sit);
4225 if (IS_NODESEG(se->type))
4226 total_node_blocks += se->valid_blocks;
4228 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4229 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4230 } else {
4231 memcpy(se->discard_map, se->cur_valid_map,
4232 SIT_VBLOCK_MAP_SIZE);
4233 sbi->discard_blks += old_valid_blocks;
4234 sbi->discard_blks -= se->valid_blocks;
4237 if (__is_large_section(sbi)) {
4238 get_sec_entry(sbi, start)->valid_blocks +=
4239 se->valid_blocks;
4240 get_sec_entry(sbi, start)->valid_blocks -=
4241 old_valid_blocks;
4244 up_read(&curseg->journal_rwsem);
4246 if (!err && total_node_blocks != valid_node_count(sbi)) {
4247 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4248 total_node_blocks, valid_node_count(sbi));
4249 err = -EFSCORRUPTED;
4252 return err;
4255 static void init_free_segmap(struct f2fs_sb_info *sbi)
4257 unsigned int start;
4258 int type;
4260 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4261 struct seg_entry *sentry = get_seg_entry(sbi, start);
4262 if (!sentry->valid_blocks)
4263 __set_free(sbi, start);
4264 else
4265 SIT_I(sbi)->written_valid_blocks +=
4266 sentry->valid_blocks;
4269 /* set use the current segments */
4270 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4271 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4272 __set_test_and_inuse(sbi, curseg_t->segno);
4276 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4278 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4279 struct free_segmap_info *free_i = FREE_I(sbi);
4280 unsigned int segno = 0, offset = 0;
4281 unsigned short valid_blocks;
4283 while (1) {
4284 /* find dirty segment based on free segmap */
4285 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4286 if (segno >= MAIN_SEGS(sbi))
4287 break;
4288 offset = segno + 1;
4289 valid_blocks = get_valid_blocks(sbi, segno, false);
4290 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4291 continue;
4292 if (valid_blocks > sbi->blocks_per_seg) {
4293 f2fs_bug_on(sbi, 1);
4294 continue;
4296 mutex_lock(&dirty_i->seglist_lock);
4297 __locate_dirty_segment(sbi, segno, DIRTY);
4298 mutex_unlock(&dirty_i->seglist_lock);
4302 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4304 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4305 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4307 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4308 if (!dirty_i->victim_secmap)
4309 return -ENOMEM;
4310 return 0;
4313 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4315 struct dirty_seglist_info *dirty_i;
4316 unsigned int bitmap_size, i;
4318 /* allocate memory for dirty segments list information */
4319 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4320 GFP_KERNEL);
4321 if (!dirty_i)
4322 return -ENOMEM;
4324 SM_I(sbi)->dirty_info = dirty_i;
4325 mutex_init(&dirty_i->seglist_lock);
4327 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4329 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4330 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4331 GFP_KERNEL);
4332 if (!dirty_i->dirty_segmap[i])
4333 return -ENOMEM;
4336 init_dirty_segmap(sbi);
4337 return init_victim_secmap(sbi);
4340 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4342 int i;
4345 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4346 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4348 for (i = 0; i < NO_CHECK_TYPE; i++) {
4349 struct curseg_info *curseg = CURSEG_I(sbi, i);
4350 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4351 unsigned int blkofs = curseg->next_blkoff;
4353 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4354 goto out;
4356 if (curseg->alloc_type == SSR)
4357 continue;
4359 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4360 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4361 continue;
4362 out:
4363 f2fs_err(sbi,
4364 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4365 i, curseg->segno, curseg->alloc_type,
4366 curseg->next_blkoff, blkofs);
4367 return -EFSCORRUPTED;
4370 return 0;
4373 #ifdef CONFIG_BLK_DEV_ZONED
4375 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4376 struct f2fs_dev_info *fdev,
4377 struct blk_zone *zone)
4379 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4380 block_t zone_block, wp_block, last_valid_block;
4381 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4382 int i, s, b, ret;
4383 struct seg_entry *se;
4385 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4386 return 0;
4388 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4389 wp_segno = GET_SEGNO(sbi, wp_block);
4390 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4391 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4392 zone_segno = GET_SEGNO(sbi, zone_block);
4393 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4395 if (zone_segno >= MAIN_SEGS(sbi))
4396 return 0;
4399 * Skip check of zones cursegs point to, since
4400 * fix_curseg_write_pointer() checks them.
4402 for (i = 0; i < NO_CHECK_TYPE; i++)
4403 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4404 CURSEG_I(sbi, i)->segno))
4405 return 0;
4408 * Get last valid block of the zone.
4410 last_valid_block = zone_block - 1;
4411 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4412 segno = zone_segno + s;
4413 se = get_seg_entry(sbi, segno);
4414 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4415 if (f2fs_test_bit(b, se->cur_valid_map)) {
4416 last_valid_block = START_BLOCK(sbi, segno) + b;
4417 break;
4419 if (last_valid_block >= zone_block)
4420 break;
4424 * If last valid block is beyond the write pointer, report the
4425 * inconsistency. This inconsistency does not cause write error
4426 * because the zone will not be selected for write operation until
4427 * it get discarded. Just report it.
4429 if (last_valid_block >= wp_block) {
4430 f2fs_notice(sbi, "Valid block beyond write pointer: "
4431 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4432 GET_SEGNO(sbi, last_valid_block),
4433 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4434 wp_segno, wp_blkoff);
4435 return 0;
4439 * If there is no valid block in the zone and if write pointer is
4440 * not at zone start, reset the write pointer.
4442 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4443 f2fs_notice(sbi,
4444 "Zone without valid block has non-zero write "
4445 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4446 wp_segno, wp_blkoff);
4447 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4448 zone->len >> log_sectors_per_block);
4449 if (ret) {
4450 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4451 fdev->path, ret);
4452 return ret;
4456 return 0;
4459 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4460 block_t zone_blkaddr)
4462 int i;
4464 for (i = 0; i < sbi->s_ndevs; i++) {
4465 if (!bdev_is_zoned(FDEV(i).bdev))
4466 continue;
4467 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4468 zone_blkaddr <= FDEV(i).end_blk))
4469 return &FDEV(i);
4472 return NULL;
4475 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4476 void *data) {
4477 memcpy(data, zone, sizeof(struct blk_zone));
4478 return 0;
4481 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4483 struct curseg_info *cs = CURSEG_I(sbi, type);
4484 struct f2fs_dev_info *zbd;
4485 struct blk_zone zone;
4486 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4487 block_t cs_zone_block, wp_block;
4488 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4489 sector_t zone_sector;
4490 int err;
4492 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4493 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4495 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4496 if (!zbd)
4497 return 0;
4499 /* report zone for the sector the curseg points to */
4500 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4501 << log_sectors_per_block;
4502 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4503 report_one_zone_cb, &zone);
4504 if (err != 1) {
4505 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4506 zbd->path, err);
4507 return err;
4510 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4511 return 0;
4513 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4514 wp_segno = GET_SEGNO(sbi, wp_block);
4515 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4516 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4518 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4519 wp_sector_off == 0)
4520 return 0;
4522 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4523 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4524 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4526 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4527 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4528 allocate_segment_by_default(sbi, type, true);
4530 /* check consistency of the zone curseg pointed to */
4531 if (check_zone_write_pointer(sbi, zbd, &zone))
4532 return -EIO;
4534 /* check newly assigned zone */
4535 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4536 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4538 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4539 if (!zbd)
4540 return 0;
4542 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4543 << log_sectors_per_block;
4544 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4545 report_one_zone_cb, &zone);
4546 if (err != 1) {
4547 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4548 zbd->path, err);
4549 return err;
4552 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4553 return 0;
4555 if (zone.wp != zone.start) {
4556 f2fs_notice(sbi,
4557 "New zone for curseg[%d] is not yet discarded. "
4558 "Reset the zone: curseg[0x%x,0x%x]",
4559 type, cs->segno, cs->next_blkoff);
4560 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4561 zone_sector >> log_sectors_per_block,
4562 zone.len >> log_sectors_per_block);
4563 if (err) {
4564 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4565 zbd->path, err);
4566 return err;
4570 return 0;
4573 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4575 int i, ret;
4577 for (i = 0; i < NO_CHECK_TYPE; i++) {
4578 ret = fix_curseg_write_pointer(sbi, i);
4579 if (ret)
4580 return ret;
4583 return 0;
4586 struct check_zone_write_pointer_args {
4587 struct f2fs_sb_info *sbi;
4588 struct f2fs_dev_info *fdev;
4591 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4592 void *data) {
4593 struct check_zone_write_pointer_args *args;
4594 args = (struct check_zone_write_pointer_args *)data;
4596 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4599 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4601 int i, ret;
4602 struct check_zone_write_pointer_args args;
4604 for (i = 0; i < sbi->s_ndevs; i++) {
4605 if (!bdev_is_zoned(FDEV(i).bdev))
4606 continue;
4608 args.sbi = sbi;
4609 args.fdev = &FDEV(i);
4610 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4611 check_zone_write_pointer_cb, &args);
4612 if (ret < 0)
4613 return ret;
4616 return 0;
4618 #else
4619 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4621 return 0;
4624 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4626 return 0;
4628 #endif
4631 * Update min, max modified time for cost-benefit GC algorithm
4633 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4635 struct sit_info *sit_i = SIT_I(sbi);
4636 unsigned int segno;
4638 down_write(&sit_i->sentry_lock);
4640 sit_i->min_mtime = ULLONG_MAX;
4642 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4643 unsigned int i;
4644 unsigned long long mtime = 0;
4646 for (i = 0; i < sbi->segs_per_sec; i++)
4647 mtime += get_seg_entry(sbi, segno + i)->mtime;
4649 mtime = div_u64(mtime, sbi->segs_per_sec);
4651 if (sit_i->min_mtime > mtime)
4652 sit_i->min_mtime = mtime;
4654 sit_i->max_mtime = get_mtime(sbi, false);
4655 up_write(&sit_i->sentry_lock);
4658 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4660 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4661 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4662 struct f2fs_sm_info *sm_info;
4663 int err;
4665 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4666 if (!sm_info)
4667 return -ENOMEM;
4669 /* init sm info */
4670 sbi->sm_info = sm_info;
4671 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4672 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4673 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4674 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4675 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4676 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4677 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4678 sm_info->rec_prefree_segments = sm_info->main_segments *
4679 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4680 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4681 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4683 if (!f2fs_lfs_mode(sbi))
4684 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4685 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4686 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4687 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4688 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4689 sm_info->min_ssr_sections = reserved_sections(sbi);
4691 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4693 init_rwsem(&sm_info->curseg_lock);
4695 if (!f2fs_readonly(sbi->sb)) {
4696 err = f2fs_create_flush_cmd_control(sbi);
4697 if (err)
4698 return err;
4701 err = create_discard_cmd_control(sbi);
4702 if (err)
4703 return err;
4705 err = build_sit_info(sbi);
4706 if (err)
4707 return err;
4708 err = build_free_segmap(sbi);
4709 if (err)
4710 return err;
4711 err = build_curseg(sbi);
4712 if (err)
4713 return err;
4715 /* reinit free segmap based on SIT */
4716 err = build_sit_entries(sbi);
4717 if (err)
4718 return err;
4720 init_free_segmap(sbi);
4721 err = build_dirty_segmap(sbi);
4722 if (err)
4723 return err;
4725 err = sanity_check_curseg(sbi);
4726 if (err)
4727 return err;
4729 init_min_max_mtime(sbi);
4730 return 0;
4733 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4734 enum dirty_type dirty_type)
4736 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4738 mutex_lock(&dirty_i->seglist_lock);
4739 kvfree(dirty_i->dirty_segmap[dirty_type]);
4740 dirty_i->nr_dirty[dirty_type] = 0;
4741 mutex_unlock(&dirty_i->seglist_lock);
4744 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4746 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4747 kvfree(dirty_i->victim_secmap);
4750 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4752 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4753 int i;
4755 if (!dirty_i)
4756 return;
4758 /* discard pre-free/dirty segments list */
4759 for (i = 0; i < NR_DIRTY_TYPE; i++)
4760 discard_dirty_segmap(sbi, i);
4762 destroy_victim_secmap(sbi);
4763 SM_I(sbi)->dirty_info = NULL;
4764 kvfree(dirty_i);
4767 static void destroy_curseg(struct f2fs_sb_info *sbi)
4769 struct curseg_info *array = SM_I(sbi)->curseg_array;
4770 int i;
4772 if (!array)
4773 return;
4774 SM_I(sbi)->curseg_array = NULL;
4775 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4776 kvfree(array[i].sum_blk);
4777 kvfree(array[i].journal);
4779 kvfree(array);
4782 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4784 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4785 if (!free_i)
4786 return;
4787 SM_I(sbi)->free_info = NULL;
4788 kvfree(free_i->free_segmap);
4789 kvfree(free_i->free_secmap);
4790 kvfree(free_i);
4793 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4795 struct sit_info *sit_i = SIT_I(sbi);
4797 if (!sit_i)
4798 return;
4800 if (sit_i->sentries)
4801 kvfree(sit_i->bitmap);
4802 kvfree(sit_i->tmp_map);
4804 kvfree(sit_i->sentries);
4805 kvfree(sit_i->sec_entries);
4806 kvfree(sit_i->dirty_sentries_bitmap);
4808 SM_I(sbi)->sit_info = NULL;
4809 kvfree(sit_i->sit_bitmap);
4810 #ifdef CONFIG_F2FS_CHECK_FS
4811 kvfree(sit_i->sit_bitmap_mir);
4812 kvfree(sit_i->invalid_segmap);
4813 #endif
4814 kvfree(sit_i);
4817 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4819 struct f2fs_sm_info *sm_info = SM_I(sbi);
4821 if (!sm_info)
4822 return;
4823 f2fs_destroy_flush_cmd_control(sbi, true);
4824 destroy_discard_cmd_control(sbi);
4825 destroy_dirty_segmap(sbi);
4826 destroy_curseg(sbi);
4827 destroy_free_segmap(sbi);
4828 destroy_sit_info(sbi);
4829 sbi->sm_info = NULL;
4830 kvfree(sm_info);
4833 int __init f2fs_create_segment_manager_caches(void)
4835 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
4836 sizeof(struct discard_entry));
4837 if (!discard_entry_slab)
4838 goto fail;
4840 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
4841 sizeof(struct discard_cmd));
4842 if (!discard_cmd_slab)
4843 goto destroy_discard_entry;
4845 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
4846 sizeof(struct sit_entry_set));
4847 if (!sit_entry_set_slab)
4848 goto destroy_discard_cmd;
4850 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
4851 sizeof(struct inmem_pages));
4852 if (!inmem_entry_slab)
4853 goto destroy_sit_entry_set;
4854 return 0;
4856 destroy_sit_entry_set:
4857 kmem_cache_destroy(sit_entry_set_slab);
4858 destroy_discard_cmd:
4859 kmem_cache_destroy(discard_cmd_slab);
4860 destroy_discard_entry:
4861 kmem_cache_destroy(discard_entry_slab);
4862 fail:
4863 return -ENOMEM;
4866 void f2fs_destroy_segment_manager_caches(void)
4868 kmem_cache_destroy(sit_entry_set_slab);
4869 kmem_cache_destroy(discard_cmd_slab);
4870 kmem_cache_destroy(discard_entry_slab);
4871 kmem_cache_destroy(inmem_entry_slab);