Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / fs / fuse / file.c
blobe3afceecaa6b1abfee4a59405b4c8da415a3cac8
1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
9 #include "fuse_i.h"
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 struct fuse_page_desc **desc)
25 struct page **pages;
27 pages = kzalloc(npages * (sizeof(struct page *) +
28 sizeof(struct fuse_page_desc)), flags);
29 *desc = (void *) (pages + npages);
31 return pages;
34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 int opcode, struct fuse_open_out *outargp)
37 struct fuse_open_in inarg;
38 FUSE_ARGS(args);
40 memset(&inarg, 0, sizeof(inarg));
41 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 if (!fc->atomic_o_trunc)
43 inarg.flags &= ~O_TRUNC;
44 args.opcode = opcode;
45 args.nodeid = nodeid;
46 args.in_numargs = 1;
47 args.in_args[0].size = sizeof(inarg);
48 args.in_args[0].value = &inarg;
49 args.out_numargs = 1;
50 args.out_args[0].size = sizeof(*outargp);
51 args.out_args[0].value = outargp;
53 return fuse_simple_request(fc, &args);
56 struct fuse_release_args {
57 struct fuse_args args;
58 struct fuse_release_in inarg;
59 struct inode *inode;
62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
64 struct fuse_file *ff;
66 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
67 if (unlikely(!ff))
68 return NULL;
70 ff->fc = fc;
71 ff->release_args = kzalloc(sizeof(*ff->release_args),
72 GFP_KERNEL_ACCOUNT);
73 if (!ff->release_args) {
74 kfree(ff);
75 return NULL;
78 INIT_LIST_HEAD(&ff->write_entry);
79 mutex_init(&ff->readdir.lock);
80 refcount_set(&ff->count, 1);
81 RB_CLEAR_NODE(&ff->polled_node);
82 init_waitqueue_head(&ff->poll_wait);
84 ff->kh = atomic64_inc_return(&fc->khctr);
86 return ff;
89 void fuse_file_free(struct fuse_file *ff)
91 kfree(ff->release_args);
92 mutex_destroy(&ff->readdir.lock);
93 kfree(ff);
96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 refcount_inc(&ff->count);
99 return ff;
102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
103 int error)
105 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107 iput(ra->inode);
108 kfree(ra);
111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 if (refcount_dec_and_test(&ff->count)) {
114 struct fuse_args *args = &ff->release_args->args;
116 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 /* Do nothing when client does not implement 'open' */
118 fuse_release_end(ff->fc, args, 0);
119 } else if (sync) {
120 fuse_simple_request(ff->fc, args);
121 fuse_release_end(ff->fc, args, 0);
122 } else {
123 args->end = fuse_release_end;
124 if (fuse_simple_background(ff->fc, args,
125 GFP_KERNEL | __GFP_NOFAIL))
126 fuse_release_end(ff->fc, args, -ENOTCONN);
128 kfree(ff);
132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
133 bool isdir)
135 struct fuse_file *ff;
136 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
138 ff = fuse_file_alloc(fc);
139 if (!ff)
140 return -ENOMEM;
142 ff->fh = 0;
143 /* Default for no-open */
144 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 if (isdir ? !fc->no_opendir : !fc->no_open) {
146 struct fuse_open_out outarg;
147 int err;
149 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
150 if (!err) {
151 ff->fh = outarg.fh;
152 ff->open_flags = outarg.open_flags;
154 } else if (err != -ENOSYS) {
155 fuse_file_free(ff);
156 return err;
157 } else {
158 if (isdir)
159 fc->no_opendir = 1;
160 else
161 fc->no_open = 1;
165 if (isdir)
166 ff->open_flags &= ~FOPEN_DIRECT_IO;
168 ff->nodeid = nodeid;
169 file->private_data = ff;
171 return 0;
173 EXPORT_SYMBOL_GPL(fuse_do_open);
175 static void fuse_link_write_file(struct file *file)
177 struct inode *inode = file_inode(file);
178 struct fuse_inode *fi = get_fuse_inode(inode);
179 struct fuse_file *ff = file->private_data;
181 * file may be written through mmap, so chain it onto the
182 * inodes's write_file list
184 spin_lock(&fi->lock);
185 if (list_empty(&ff->write_entry))
186 list_add(&ff->write_entry, &fi->write_files);
187 spin_unlock(&fi->lock);
190 void fuse_finish_open(struct inode *inode, struct file *file)
192 struct fuse_file *ff = file->private_data;
193 struct fuse_conn *fc = get_fuse_conn(inode);
195 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 invalidate_inode_pages2(inode->i_mapping);
197 if (ff->open_flags & FOPEN_STREAM)
198 stream_open(inode, file);
199 else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 nonseekable_open(inode, file);
201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 struct fuse_inode *fi = get_fuse_inode(inode);
204 spin_lock(&fi->lock);
205 fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 i_size_write(inode, 0);
207 spin_unlock(&fi->lock);
208 fuse_invalidate_attr(inode);
209 if (fc->writeback_cache)
210 file_update_time(file);
212 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 fuse_link_write_file(file);
216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
218 struct fuse_conn *fc = get_fuse_conn(inode);
219 int err;
220 bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
221 fc->atomic_o_trunc &&
222 fc->writeback_cache;
224 err = generic_file_open(inode, file);
225 if (err)
226 return err;
228 if (is_wb_truncate) {
229 inode_lock(inode);
230 fuse_set_nowrite(inode);
233 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
235 if (!err)
236 fuse_finish_open(inode, file);
238 if (is_wb_truncate) {
239 fuse_release_nowrite(inode);
240 inode_unlock(inode);
243 return err;
246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
247 int flags, int opcode)
249 struct fuse_conn *fc = ff->fc;
250 struct fuse_release_args *ra = ff->release_args;
252 /* Inode is NULL on error path of fuse_create_open() */
253 if (likely(fi)) {
254 spin_lock(&fi->lock);
255 list_del(&ff->write_entry);
256 spin_unlock(&fi->lock);
258 spin_lock(&fc->lock);
259 if (!RB_EMPTY_NODE(&ff->polled_node))
260 rb_erase(&ff->polled_node, &fc->polled_files);
261 spin_unlock(&fc->lock);
263 wake_up_interruptible_all(&ff->poll_wait);
265 ra->inarg.fh = ff->fh;
266 ra->inarg.flags = flags;
267 ra->args.in_numargs = 1;
268 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
269 ra->args.in_args[0].value = &ra->inarg;
270 ra->args.opcode = opcode;
271 ra->args.nodeid = ff->nodeid;
272 ra->args.force = true;
273 ra->args.nocreds = true;
276 void fuse_release_common(struct file *file, bool isdir)
278 struct fuse_inode *fi = get_fuse_inode(file_inode(file));
279 struct fuse_file *ff = file->private_data;
280 struct fuse_release_args *ra = ff->release_args;
281 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
283 fuse_prepare_release(fi, ff, file->f_flags, opcode);
285 if (ff->flock) {
286 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
288 (fl_owner_t) file);
290 /* Hold inode until release is finished */
291 ra->inode = igrab(file_inode(file));
294 * Normally this will send the RELEASE request, however if
295 * some asynchronous READ or WRITE requests are outstanding,
296 * the sending will be delayed.
298 * Make the release synchronous if this is a fuseblk mount,
299 * synchronous RELEASE is allowed (and desirable) in this case
300 * because the server can be trusted not to screw up.
302 fuse_file_put(ff, ff->fc->destroy, isdir);
305 static int fuse_open(struct inode *inode, struct file *file)
307 return fuse_open_common(inode, file, false);
310 static int fuse_release(struct inode *inode, struct file *file)
312 struct fuse_conn *fc = get_fuse_conn(inode);
314 /* see fuse_vma_close() for !writeback_cache case */
315 if (fc->writeback_cache)
316 write_inode_now(inode, 1);
318 fuse_release_common(file, false);
320 /* return value is ignored by VFS */
321 return 0;
324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
326 WARN_ON(refcount_read(&ff->count) > 1);
327 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
329 * iput(NULL) is a no-op and since the refcount is 1 and everything's
330 * synchronous, we are fine with not doing igrab() here"
332 fuse_file_put(ff, true, false);
334 EXPORT_SYMBOL_GPL(fuse_sync_release);
337 * Scramble the ID space with XTEA, so that the value of the files_struct
338 * pointer is not exposed to userspace.
340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
342 u32 *k = fc->scramble_key;
343 u64 v = (unsigned long) id;
344 u32 v0 = v;
345 u32 v1 = v >> 32;
346 u32 sum = 0;
347 int i;
349 for (i = 0; i < 32; i++) {
350 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
351 sum += 0x9E3779B9;
352 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
355 return (u64) v0 + ((u64) v1 << 32);
358 struct fuse_writepage_args {
359 struct fuse_io_args ia;
360 struct list_head writepages_entry;
361 struct list_head queue_entry;
362 struct fuse_writepage_args *next;
363 struct inode *inode;
366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
367 pgoff_t idx_from, pgoff_t idx_to)
369 struct fuse_writepage_args *wpa;
371 list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
372 pgoff_t curr_index;
374 WARN_ON(get_fuse_inode(wpa->inode) != fi);
375 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
376 if (idx_from < curr_index + wpa->ia.ap.num_pages &&
377 curr_index <= idx_to) {
378 return wpa;
381 return NULL;
385 * Check if any page in a range is under writeback
387 * This is currently done by walking the list of writepage requests
388 * for the inode, which can be pretty inefficient.
390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
391 pgoff_t idx_to)
393 struct fuse_inode *fi = get_fuse_inode(inode);
394 bool found;
396 spin_lock(&fi->lock);
397 found = fuse_find_writeback(fi, idx_from, idx_to);
398 spin_unlock(&fi->lock);
400 return found;
403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
405 return fuse_range_is_writeback(inode, index, index);
409 * Wait for page writeback to be completed.
411 * Since fuse doesn't rely on the VM writeback tracking, this has to
412 * use some other means.
414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
416 struct fuse_inode *fi = get_fuse_inode(inode);
418 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
422 * Wait for all pending writepages on the inode to finish.
424 * This is currently done by blocking further writes with FUSE_NOWRITE
425 * and waiting for all sent writes to complete.
427 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
428 * could conflict with truncation.
430 static void fuse_sync_writes(struct inode *inode)
432 fuse_set_nowrite(inode);
433 fuse_release_nowrite(inode);
436 static int fuse_flush(struct file *file, fl_owner_t id)
438 struct inode *inode = file_inode(file);
439 struct fuse_conn *fc = get_fuse_conn(inode);
440 struct fuse_file *ff = file->private_data;
441 struct fuse_flush_in inarg;
442 FUSE_ARGS(args);
443 int err;
445 if (is_bad_inode(inode))
446 return -EIO;
448 if (fc->no_flush)
449 return 0;
451 err = write_inode_now(inode, 1);
452 if (err)
453 return err;
455 inode_lock(inode);
456 fuse_sync_writes(inode);
457 inode_unlock(inode);
459 err = filemap_check_errors(file->f_mapping);
460 if (err)
461 return err;
463 memset(&inarg, 0, sizeof(inarg));
464 inarg.fh = ff->fh;
465 inarg.lock_owner = fuse_lock_owner_id(fc, id);
466 args.opcode = FUSE_FLUSH;
467 args.nodeid = get_node_id(inode);
468 args.in_numargs = 1;
469 args.in_args[0].size = sizeof(inarg);
470 args.in_args[0].value = &inarg;
471 args.force = true;
473 err = fuse_simple_request(fc, &args);
474 if (err == -ENOSYS) {
475 fc->no_flush = 1;
476 err = 0;
478 return err;
481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
482 int datasync, int opcode)
484 struct inode *inode = file->f_mapping->host;
485 struct fuse_conn *fc = get_fuse_conn(inode);
486 struct fuse_file *ff = file->private_data;
487 FUSE_ARGS(args);
488 struct fuse_fsync_in inarg;
490 memset(&inarg, 0, sizeof(inarg));
491 inarg.fh = ff->fh;
492 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
493 args.opcode = opcode;
494 args.nodeid = get_node_id(inode);
495 args.in_numargs = 1;
496 args.in_args[0].size = sizeof(inarg);
497 args.in_args[0].value = &inarg;
498 return fuse_simple_request(fc, &args);
501 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
502 int datasync)
504 struct inode *inode = file->f_mapping->host;
505 struct fuse_conn *fc = get_fuse_conn(inode);
506 int err;
508 if (is_bad_inode(inode))
509 return -EIO;
511 inode_lock(inode);
514 * Start writeback against all dirty pages of the inode, then
515 * wait for all outstanding writes, before sending the FSYNC
516 * request.
518 err = file_write_and_wait_range(file, start, end);
519 if (err)
520 goto out;
522 fuse_sync_writes(inode);
525 * Due to implementation of fuse writeback
526 * file_write_and_wait_range() does not catch errors.
527 * We have to do this directly after fuse_sync_writes()
529 err = file_check_and_advance_wb_err(file);
530 if (err)
531 goto out;
533 err = sync_inode_metadata(inode, 1);
534 if (err)
535 goto out;
537 if (fc->no_fsync)
538 goto out;
540 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
541 if (err == -ENOSYS) {
542 fc->no_fsync = 1;
543 err = 0;
545 out:
546 inode_unlock(inode);
548 return err;
551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
552 size_t count, int opcode)
554 struct fuse_file *ff = file->private_data;
555 struct fuse_args *args = &ia->ap.args;
557 ia->read.in.fh = ff->fh;
558 ia->read.in.offset = pos;
559 ia->read.in.size = count;
560 ia->read.in.flags = file->f_flags;
561 args->opcode = opcode;
562 args->nodeid = ff->nodeid;
563 args->in_numargs = 1;
564 args->in_args[0].size = sizeof(ia->read.in);
565 args->in_args[0].value = &ia->read.in;
566 args->out_argvar = true;
567 args->out_numargs = 1;
568 args->out_args[0].size = count;
571 static void fuse_release_user_pages(struct fuse_args_pages *ap,
572 bool should_dirty)
574 unsigned int i;
576 for (i = 0; i < ap->num_pages; i++) {
577 if (should_dirty)
578 set_page_dirty_lock(ap->pages[i]);
579 put_page(ap->pages[i]);
583 static void fuse_io_release(struct kref *kref)
585 kfree(container_of(kref, struct fuse_io_priv, refcnt));
588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
590 if (io->err)
591 return io->err;
593 if (io->bytes >= 0 && io->write)
594 return -EIO;
596 return io->bytes < 0 ? io->size : io->bytes;
600 * In case of short read, the caller sets 'pos' to the position of
601 * actual end of fuse request in IO request. Otherwise, if bytes_requested
602 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
604 * An example:
605 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
606 * both submitted asynchronously. The first of them was ACKed by userspace as
607 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
608 * second request was ACKed as short, e.g. only 1K was read, resulting in
609 * pos == 33K.
611 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
612 * will be equal to the length of the longest contiguous fragment of
613 * transferred data starting from the beginning of IO request.
615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
617 int left;
619 spin_lock(&io->lock);
620 if (err)
621 io->err = io->err ? : err;
622 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
623 io->bytes = pos;
625 left = --io->reqs;
626 if (!left && io->blocking)
627 complete(io->done);
628 spin_unlock(&io->lock);
630 if (!left && !io->blocking) {
631 ssize_t res = fuse_get_res_by_io(io);
633 if (res >= 0) {
634 struct inode *inode = file_inode(io->iocb->ki_filp);
635 struct fuse_conn *fc = get_fuse_conn(inode);
636 struct fuse_inode *fi = get_fuse_inode(inode);
638 spin_lock(&fi->lock);
639 fi->attr_version = atomic64_inc_return(&fc->attr_version);
640 spin_unlock(&fi->lock);
643 io->iocb->ki_complete(io->iocb, res, 0);
646 kref_put(&io->refcnt, fuse_io_release);
649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
650 unsigned int npages)
652 struct fuse_io_args *ia;
654 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
655 if (ia) {
656 ia->io = io;
657 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
658 &ia->ap.descs);
659 if (!ia->ap.pages) {
660 kfree(ia);
661 ia = NULL;
664 return ia;
667 static void fuse_io_free(struct fuse_io_args *ia)
669 kfree(ia->ap.pages);
670 kfree(ia);
673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
674 int err)
676 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
677 struct fuse_io_priv *io = ia->io;
678 ssize_t pos = -1;
680 fuse_release_user_pages(&ia->ap, io->should_dirty);
682 if (err) {
683 /* Nothing */
684 } else if (io->write) {
685 if (ia->write.out.size > ia->write.in.size) {
686 err = -EIO;
687 } else if (ia->write.in.size != ia->write.out.size) {
688 pos = ia->write.in.offset - io->offset +
689 ia->write.out.size;
691 } else {
692 u32 outsize = args->out_args[0].size;
694 if (ia->read.in.size != outsize)
695 pos = ia->read.in.offset - io->offset + outsize;
698 fuse_aio_complete(io, err, pos);
699 fuse_io_free(ia);
702 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
703 struct fuse_io_args *ia, size_t num_bytes)
705 ssize_t err;
706 struct fuse_io_priv *io = ia->io;
708 spin_lock(&io->lock);
709 kref_get(&io->refcnt);
710 io->size += num_bytes;
711 io->reqs++;
712 spin_unlock(&io->lock);
714 ia->ap.args.end = fuse_aio_complete_req;
715 ia->ap.args.may_block = io->should_dirty;
716 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
717 if (err)
718 fuse_aio_complete_req(fc, &ia->ap.args, err);
720 return num_bytes;
723 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
724 fl_owner_t owner)
726 struct file *file = ia->io->iocb->ki_filp;
727 struct fuse_file *ff = file->private_data;
728 struct fuse_conn *fc = ff->fc;
730 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
731 if (owner != NULL) {
732 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
733 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
736 if (ia->io->async)
737 return fuse_async_req_send(fc, ia, count);
739 return fuse_simple_request(fc, &ia->ap.args);
742 static void fuse_read_update_size(struct inode *inode, loff_t size,
743 u64 attr_ver)
745 struct fuse_conn *fc = get_fuse_conn(inode);
746 struct fuse_inode *fi = get_fuse_inode(inode);
748 spin_lock(&fi->lock);
749 if (attr_ver == fi->attr_version && size < inode->i_size &&
750 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
751 fi->attr_version = atomic64_inc_return(&fc->attr_version);
752 i_size_write(inode, size);
754 spin_unlock(&fi->lock);
757 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
758 struct fuse_args_pages *ap)
760 struct fuse_conn *fc = get_fuse_conn(inode);
762 if (fc->writeback_cache) {
764 * A hole in a file. Some data after the hole are in page cache,
765 * but have not reached the client fs yet. So, the hole is not
766 * present there.
768 int i;
769 int start_idx = num_read >> PAGE_SHIFT;
770 size_t off = num_read & (PAGE_SIZE - 1);
772 for (i = start_idx; i < ap->num_pages; i++) {
773 zero_user_segment(ap->pages[i], off, PAGE_SIZE);
774 off = 0;
776 } else {
777 loff_t pos = page_offset(ap->pages[0]) + num_read;
778 fuse_read_update_size(inode, pos, attr_ver);
782 static int fuse_do_readpage(struct file *file, struct page *page)
784 struct inode *inode = page->mapping->host;
785 struct fuse_conn *fc = get_fuse_conn(inode);
786 loff_t pos = page_offset(page);
787 struct fuse_page_desc desc = { .length = PAGE_SIZE };
788 struct fuse_io_args ia = {
789 .ap.args.page_zeroing = true,
790 .ap.args.out_pages = true,
791 .ap.num_pages = 1,
792 .ap.pages = &page,
793 .ap.descs = &desc,
795 ssize_t res;
796 u64 attr_ver;
799 * Page writeback can extend beyond the lifetime of the
800 * page-cache page, so make sure we read a properly synced
801 * page.
803 fuse_wait_on_page_writeback(inode, page->index);
805 attr_ver = fuse_get_attr_version(fc);
807 /* Don't overflow end offset */
808 if (pos + (desc.length - 1) == LLONG_MAX)
809 desc.length--;
811 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
812 res = fuse_simple_request(fc, &ia.ap.args);
813 if (res < 0)
814 return res;
816 * Short read means EOF. If file size is larger, truncate it
818 if (res < desc.length)
819 fuse_short_read(inode, attr_ver, res, &ia.ap);
821 SetPageUptodate(page);
823 return 0;
826 static int fuse_readpage(struct file *file, struct page *page)
828 struct inode *inode = page->mapping->host;
829 int err;
831 err = -EIO;
832 if (is_bad_inode(inode))
833 goto out;
835 err = fuse_do_readpage(file, page);
836 fuse_invalidate_atime(inode);
837 out:
838 unlock_page(page);
839 return err;
842 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
843 int err)
845 int i;
846 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
847 struct fuse_args_pages *ap = &ia->ap;
848 size_t count = ia->read.in.size;
849 size_t num_read = args->out_args[0].size;
850 struct address_space *mapping = NULL;
852 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
853 mapping = ap->pages[i]->mapping;
855 if (mapping) {
856 struct inode *inode = mapping->host;
859 * Short read means EOF. If file size is larger, truncate it
861 if (!err && num_read < count)
862 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
864 fuse_invalidate_atime(inode);
867 for (i = 0; i < ap->num_pages; i++) {
868 struct page *page = ap->pages[i];
870 if (!err)
871 SetPageUptodate(page);
872 else
873 SetPageError(page);
874 unlock_page(page);
875 put_page(page);
877 if (ia->ff)
878 fuse_file_put(ia->ff, false, false);
880 fuse_io_free(ia);
883 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
885 struct fuse_file *ff = file->private_data;
886 struct fuse_conn *fc = ff->fc;
887 struct fuse_args_pages *ap = &ia->ap;
888 loff_t pos = page_offset(ap->pages[0]);
889 size_t count = ap->num_pages << PAGE_SHIFT;
890 ssize_t res;
891 int err;
893 ap->args.out_pages = true;
894 ap->args.page_zeroing = true;
895 ap->args.page_replace = true;
897 /* Don't overflow end offset */
898 if (pos + (count - 1) == LLONG_MAX) {
899 count--;
900 ap->descs[ap->num_pages - 1].length--;
902 WARN_ON((loff_t) (pos + count) < 0);
904 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
905 ia->read.attr_ver = fuse_get_attr_version(fc);
906 if (fc->async_read) {
907 ia->ff = fuse_file_get(ff);
908 ap->args.end = fuse_readpages_end;
909 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
910 if (!err)
911 return;
912 } else {
913 res = fuse_simple_request(fc, &ap->args);
914 err = res < 0 ? res : 0;
916 fuse_readpages_end(fc, &ap->args, err);
919 struct fuse_fill_data {
920 struct fuse_io_args *ia;
921 struct file *file;
922 struct inode *inode;
923 unsigned int nr_pages;
924 unsigned int max_pages;
927 static int fuse_readpages_fill(void *_data, struct page *page)
929 struct fuse_fill_data *data = _data;
930 struct fuse_io_args *ia = data->ia;
931 struct fuse_args_pages *ap = &ia->ap;
932 struct inode *inode = data->inode;
933 struct fuse_conn *fc = get_fuse_conn(inode);
935 fuse_wait_on_page_writeback(inode, page->index);
937 if (ap->num_pages &&
938 (ap->num_pages == fc->max_pages ||
939 (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
940 ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
941 data->max_pages = min_t(unsigned int, data->nr_pages,
942 fc->max_pages);
943 fuse_send_readpages(ia, data->file);
944 data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
945 if (!ia) {
946 unlock_page(page);
947 return -ENOMEM;
949 ap = &ia->ap;
952 if (WARN_ON(ap->num_pages >= data->max_pages)) {
953 unlock_page(page);
954 fuse_io_free(ia);
955 return -EIO;
958 get_page(page);
959 ap->pages[ap->num_pages] = page;
960 ap->descs[ap->num_pages].length = PAGE_SIZE;
961 ap->num_pages++;
962 data->nr_pages--;
963 return 0;
966 static int fuse_readpages(struct file *file, struct address_space *mapping,
967 struct list_head *pages, unsigned nr_pages)
969 struct inode *inode = mapping->host;
970 struct fuse_conn *fc = get_fuse_conn(inode);
971 struct fuse_fill_data data;
972 int err;
974 err = -EIO;
975 if (is_bad_inode(inode))
976 goto out;
978 data.file = file;
979 data.inode = inode;
980 data.nr_pages = nr_pages;
981 data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
983 data.ia = fuse_io_alloc(NULL, data.max_pages);
984 err = -ENOMEM;
985 if (!data.ia)
986 goto out;
988 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
989 if (!err) {
990 if (data.ia->ap.num_pages)
991 fuse_send_readpages(data.ia, file);
992 else
993 fuse_io_free(data.ia);
995 out:
996 return err;
999 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1001 struct inode *inode = iocb->ki_filp->f_mapping->host;
1002 struct fuse_conn *fc = get_fuse_conn(inode);
1005 * In auto invalidate mode, always update attributes on read.
1006 * Otherwise, only update if we attempt to read past EOF (to ensure
1007 * i_size is up to date).
1009 if (fc->auto_inval_data ||
1010 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1011 int err;
1012 err = fuse_update_attributes(inode, iocb->ki_filp);
1013 if (err)
1014 return err;
1017 return generic_file_read_iter(iocb, to);
1020 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1021 loff_t pos, size_t count)
1023 struct fuse_args *args = &ia->ap.args;
1025 ia->write.in.fh = ff->fh;
1026 ia->write.in.offset = pos;
1027 ia->write.in.size = count;
1028 args->opcode = FUSE_WRITE;
1029 args->nodeid = ff->nodeid;
1030 args->in_numargs = 2;
1031 if (ff->fc->minor < 9)
1032 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1033 else
1034 args->in_args[0].size = sizeof(ia->write.in);
1035 args->in_args[0].value = &ia->write.in;
1036 args->in_args[1].size = count;
1037 args->out_numargs = 1;
1038 args->out_args[0].size = sizeof(ia->write.out);
1039 args->out_args[0].value = &ia->write.out;
1042 static unsigned int fuse_write_flags(struct kiocb *iocb)
1044 unsigned int flags = iocb->ki_filp->f_flags;
1046 if (iocb->ki_flags & IOCB_DSYNC)
1047 flags |= O_DSYNC;
1048 if (iocb->ki_flags & IOCB_SYNC)
1049 flags |= O_SYNC;
1051 return flags;
1054 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1055 size_t count, fl_owner_t owner)
1057 struct kiocb *iocb = ia->io->iocb;
1058 struct file *file = iocb->ki_filp;
1059 struct fuse_file *ff = file->private_data;
1060 struct fuse_conn *fc = ff->fc;
1061 struct fuse_write_in *inarg = &ia->write.in;
1062 ssize_t err;
1064 fuse_write_args_fill(ia, ff, pos, count);
1065 inarg->flags = fuse_write_flags(iocb);
1066 if (owner != NULL) {
1067 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1068 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1071 if (ia->io->async)
1072 return fuse_async_req_send(fc, ia, count);
1074 err = fuse_simple_request(fc, &ia->ap.args);
1075 if (!err && ia->write.out.size > count)
1076 err = -EIO;
1078 return err ?: ia->write.out.size;
1081 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1083 struct fuse_conn *fc = get_fuse_conn(inode);
1084 struct fuse_inode *fi = get_fuse_inode(inode);
1085 bool ret = false;
1087 spin_lock(&fi->lock);
1088 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1089 if (pos > inode->i_size) {
1090 i_size_write(inode, pos);
1091 ret = true;
1093 spin_unlock(&fi->lock);
1095 return ret;
1098 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1099 struct kiocb *iocb, struct inode *inode,
1100 loff_t pos, size_t count)
1102 struct fuse_args_pages *ap = &ia->ap;
1103 struct file *file = iocb->ki_filp;
1104 struct fuse_file *ff = file->private_data;
1105 struct fuse_conn *fc = ff->fc;
1106 unsigned int offset, i;
1107 int err;
1109 for (i = 0; i < ap->num_pages; i++)
1110 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1112 fuse_write_args_fill(ia, ff, pos, count);
1113 ia->write.in.flags = fuse_write_flags(iocb);
1115 err = fuse_simple_request(fc, &ap->args);
1116 if (!err && ia->write.out.size > count)
1117 err = -EIO;
1119 offset = ap->descs[0].offset;
1120 count = ia->write.out.size;
1121 for (i = 0; i < ap->num_pages; i++) {
1122 struct page *page = ap->pages[i];
1124 if (!err && !offset && count >= PAGE_SIZE)
1125 SetPageUptodate(page);
1127 if (count > PAGE_SIZE - offset)
1128 count -= PAGE_SIZE - offset;
1129 else
1130 count = 0;
1131 offset = 0;
1133 unlock_page(page);
1134 put_page(page);
1137 return err;
1140 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1141 struct address_space *mapping,
1142 struct iov_iter *ii, loff_t pos,
1143 unsigned int max_pages)
1145 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1146 unsigned offset = pos & (PAGE_SIZE - 1);
1147 size_t count = 0;
1148 int err;
1150 ap->args.in_pages = true;
1151 ap->descs[0].offset = offset;
1153 do {
1154 size_t tmp;
1155 struct page *page;
1156 pgoff_t index = pos >> PAGE_SHIFT;
1157 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1158 iov_iter_count(ii));
1160 bytes = min_t(size_t, bytes, fc->max_write - count);
1162 again:
1163 err = -EFAULT;
1164 if (iov_iter_fault_in_readable(ii, bytes))
1165 break;
1167 err = -ENOMEM;
1168 page = grab_cache_page_write_begin(mapping, index, 0);
1169 if (!page)
1170 break;
1172 if (mapping_writably_mapped(mapping))
1173 flush_dcache_page(page);
1175 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1176 flush_dcache_page(page);
1178 iov_iter_advance(ii, tmp);
1179 if (!tmp) {
1180 unlock_page(page);
1181 put_page(page);
1182 bytes = min(bytes, iov_iter_single_seg_count(ii));
1183 goto again;
1186 err = 0;
1187 ap->pages[ap->num_pages] = page;
1188 ap->descs[ap->num_pages].length = tmp;
1189 ap->num_pages++;
1191 count += tmp;
1192 pos += tmp;
1193 offset += tmp;
1194 if (offset == PAGE_SIZE)
1195 offset = 0;
1197 if (!fc->big_writes)
1198 break;
1199 } while (iov_iter_count(ii) && count < fc->max_write &&
1200 ap->num_pages < max_pages && offset == 0);
1202 return count > 0 ? count : err;
1205 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1206 unsigned int max_pages)
1208 return min_t(unsigned int,
1209 ((pos + len - 1) >> PAGE_SHIFT) -
1210 (pos >> PAGE_SHIFT) + 1,
1211 max_pages);
1214 static ssize_t fuse_perform_write(struct kiocb *iocb,
1215 struct address_space *mapping,
1216 struct iov_iter *ii, loff_t pos)
1218 struct inode *inode = mapping->host;
1219 struct fuse_conn *fc = get_fuse_conn(inode);
1220 struct fuse_inode *fi = get_fuse_inode(inode);
1221 int err = 0;
1222 ssize_t res = 0;
1224 if (inode->i_size < pos + iov_iter_count(ii))
1225 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1227 do {
1228 ssize_t count;
1229 struct fuse_io_args ia = {};
1230 struct fuse_args_pages *ap = &ia.ap;
1231 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1232 fc->max_pages);
1234 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1235 if (!ap->pages) {
1236 err = -ENOMEM;
1237 break;
1240 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1241 if (count <= 0) {
1242 err = count;
1243 } else {
1244 err = fuse_send_write_pages(&ia, iocb, inode,
1245 pos, count);
1246 if (!err) {
1247 size_t num_written = ia.write.out.size;
1249 res += num_written;
1250 pos += num_written;
1252 /* break out of the loop on short write */
1253 if (num_written != count)
1254 err = -EIO;
1257 kfree(ap->pages);
1258 } while (!err && iov_iter_count(ii));
1260 if (res > 0)
1261 fuse_write_update_size(inode, pos);
1263 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1264 fuse_invalidate_attr(inode);
1266 return res > 0 ? res : err;
1269 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1271 struct file *file = iocb->ki_filp;
1272 struct address_space *mapping = file->f_mapping;
1273 ssize_t written = 0;
1274 ssize_t written_buffered = 0;
1275 struct inode *inode = mapping->host;
1276 ssize_t err;
1277 loff_t endbyte = 0;
1279 if (get_fuse_conn(inode)->writeback_cache) {
1280 /* Update size (EOF optimization) and mode (SUID clearing) */
1281 err = fuse_update_attributes(mapping->host, file);
1282 if (err)
1283 return err;
1285 return generic_file_write_iter(iocb, from);
1288 inode_lock(inode);
1290 /* We can write back this queue in page reclaim */
1291 current->backing_dev_info = inode_to_bdi(inode);
1293 err = generic_write_checks(iocb, from);
1294 if (err <= 0)
1295 goto out;
1297 err = file_remove_privs(file);
1298 if (err)
1299 goto out;
1301 err = file_update_time(file);
1302 if (err)
1303 goto out;
1305 if (iocb->ki_flags & IOCB_DIRECT) {
1306 loff_t pos = iocb->ki_pos;
1307 written = generic_file_direct_write(iocb, from);
1308 if (written < 0 || !iov_iter_count(from))
1309 goto out;
1311 pos += written;
1313 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1314 if (written_buffered < 0) {
1315 err = written_buffered;
1316 goto out;
1318 endbyte = pos + written_buffered - 1;
1320 err = filemap_write_and_wait_range(file->f_mapping, pos,
1321 endbyte);
1322 if (err)
1323 goto out;
1325 invalidate_mapping_pages(file->f_mapping,
1326 pos >> PAGE_SHIFT,
1327 endbyte >> PAGE_SHIFT);
1329 written += written_buffered;
1330 iocb->ki_pos = pos + written_buffered;
1331 } else {
1332 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1333 if (written >= 0)
1334 iocb->ki_pos += written;
1336 out:
1337 current->backing_dev_info = NULL;
1338 inode_unlock(inode);
1339 if (written > 0)
1340 written = generic_write_sync(iocb, written);
1342 return written ? written : err;
1345 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1346 unsigned int index,
1347 unsigned int nr_pages)
1349 int i;
1351 for (i = index; i < index + nr_pages; i++)
1352 descs[i].length = PAGE_SIZE - descs[i].offset;
1355 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1357 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1360 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1361 size_t max_size)
1363 return min(iov_iter_single_seg_count(ii), max_size);
1366 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1367 size_t *nbytesp, int write,
1368 unsigned int max_pages)
1370 size_t nbytes = 0; /* # bytes already packed in req */
1371 ssize_t ret = 0;
1373 /* Special case for kernel I/O: can copy directly into the buffer */
1374 if (iov_iter_is_kvec(ii)) {
1375 unsigned long user_addr = fuse_get_user_addr(ii);
1376 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1378 if (write)
1379 ap->args.in_args[1].value = (void *) user_addr;
1380 else
1381 ap->args.out_args[0].value = (void *) user_addr;
1383 iov_iter_advance(ii, frag_size);
1384 *nbytesp = frag_size;
1385 return 0;
1388 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1389 unsigned npages;
1390 size_t start;
1391 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1392 *nbytesp - nbytes,
1393 max_pages - ap->num_pages,
1394 &start);
1395 if (ret < 0)
1396 break;
1398 iov_iter_advance(ii, ret);
1399 nbytes += ret;
1401 ret += start;
1402 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1404 ap->descs[ap->num_pages].offset = start;
1405 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1407 ap->num_pages += npages;
1408 ap->descs[ap->num_pages - 1].length -=
1409 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1412 if (write)
1413 ap->args.in_pages = true;
1414 else
1415 ap->args.out_pages = true;
1417 *nbytesp = nbytes;
1419 return ret < 0 ? ret : 0;
1422 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1423 loff_t *ppos, int flags)
1425 int write = flags & FUSE_DIO_WRITE;
1426 int cuse = flags & FUSE_DIO_CUSE;
1427 struct file *file = io->iocb->ki_filp;
1428 struct inode *inode = file->f_mapping->host;
1429 struct fuse_file *ff = file->private_data;
1430 struct fuse_conn *fc = ff->fc;
1431 size_t nmax = write ? fc->max_write : fc->max_read;
1432 loff_t pos = *ppos;
1433 size_t count = iov_iter_count(iter);
1434 pgoff_t idx_from = pos >> PAGE_SHIFT;
1435 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1436 ssize_t res = 0;
1437 int err = 0;
1438 struct fuse_io_args *ia;
1439 unsigned int max_pages;
1441 max_pages = iov_iter_npages(iter, fc->max_pages);
1442 ia = fuse_io_alloc(io, max_pages);
1443 if (!ia)
1444 return -ENOMEM;
1446 ia->io = io;
1447 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1448 if (!write)
1449 inode_lock(inode);
1450 fuse_sync_writes(inode);
1451 if (!write)
1452 inode_unlock(inode);
1455 io->should_dirty = !write && iter_is_iovec(iter);
1456 while (count) {
1457 ssize_t nres;
1458 fl_owner_t owner = current->files;
1459 size_t nbytes = min(count, nmax);
1461 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1462 max_pages);
1463 if (err && !nbytes)
1464 break;
1466 if (write) {
1467 if (!capable(CAP_FSETID))
1468 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1470 nres = fuse_send_write(ia, pos, nbytes, owner);
1471 } else {
1472 nres = fuse_send_read(ia, pos, nbytes, owner);
1475 if (!io->async || nres < 0) {
1476 fuse_release_user_pages(&ia->ap, io->should_dirty);
1477 fuse_io_free(ia);
1479 ia = NULL;
1480 if (nres < 0) {
1481 iov_iter_revert(iter, nbytes);
1482 err = nres;
1483 break;
1485 WARN_ON(nres > nbytes);
1487 count -= nres;
1488 res += nres;
1489 pos += nres;
1490 if (nres != nbytes) {
1491 iov_iter_revert(iter, nbytes - nres);
1492 break;
1494 if (count) {
1495 max_pages = iov_iter_npages(iter, fc->max_pages);
1496 ia = fuse_io_alloc(io, max_pages);
1497 if (!ia)
1498 break;
1501 if (ia)
1502 fuse_io_free(ia);
1503 if (res > 0)
1504 *ppos = pos;
1506 return res > 0 ? res : err;
1508 EXPORT_SYMBOL_GPL(fuse_direct_io);
1510 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1511 struct iov_iter *iter,
1512 loff_t *ppos)
1514 ssize_t res;
1515 struct inode *inode = file_inode(io->iocb->ki_filp);
1517 res = fuse_direct_io(io, iter, ppos, 0);
1519 fuse_invalidate_atime(inode);
1521 return res;
1524 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1526 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1528 ssize_t res;
1530 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1531 res = fuse_direct_IO(iocb, to);
1532 } else {
1533 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1535 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1538 return res;
1541 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1543 struct inode *inode = file_inode(iocb->ki_filp);
1544 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1545 ssize_t res;
1547 /* Don't allow parallel writes to the same file */
1548 inode_lock(inode);
1549 res = generic_write_checks(iocb, from);
1550 if (res > 0) {
1551 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1552 res = fuse_direct_IO(iocb, from);
1553 } else {
1554 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1555 FUSE_DIO_WRITE);
1558 fuse_invalidate_attr(inode);
1559 if (res > 0)
1560 fuse_write_update_size(inode, iocb->ki_pos);
1561 inode_unlock(inode);
1563 return res;
1566 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1568 struct file *file = iocb->ki_filp;
1569 struct fuse_file *ff = file->private_data;
1571 if (is_bad_inode(file_inode(file)))
1572 return -EIO;
1574 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1575 return fuse_cache_read_iter(iocb, to);
1576 else
1577 return fuse_direct_read_iter(iocb, to);
1580 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1582 struct file *file = iocb->ki_filp;
1583 struct fuse_file *ff = file->private_data;
1585 if (is_bad_inode(file_inode(file)))
1586 return -EIO;
1588 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1589 return fuse_cache_write_iter(iocb, from);
1590 else
1591 return fuse_direct_write_iter(iocb, from);
1594 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1596 struct fuse_args_pages *ap = &wpa->ia.ap;
1597 int i;
1599 for (i = 0; i < ap->num_pages; i++)
1600 __free_page(ap->pages[i]);
1602 if (wpa->ia.ff)
1603 fuse_file_put(wpa->ia.ff, false, false);
1605 kfree(ap->pages);
1606 kfree(wpa);
1609 static void fuse_writepage_finish(struct fuse_conn *fc,
1610 struct fuse_writepage_args *wpa)
1612 struct fuse_args_pages *ap = &wpa->ia.ap;
1613 struct inode *inode = wpa->inode;
1614 struct fuse_inode *fi = get_fuse_inode(inode);
1615 struct backing_dev_info *bdi = inode_to_bdi(inode);
1616 int i;
1618 list_del(&wpa->writepages_entry);
1619 for (i = 0; i < ap->num_pages; i++) {
1620 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1621 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1622 wb_writeout_inc(&bdi->wb);
1624 wake_up(&fi->page_waitq);
1627 /* Called under fi->lock, may release and reacquire it */
1628 static void fuse_send_writepage(struct fuse_conn *fc,
1629 struct fuse_writepage_args *wpa, loff_t size)
1630 __releases(fi->lock)
1631 __acquires(fi->lock)
1633 struct fuse_writepage_args *aux, *next;
1634 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1635 struct fuse_write_in *inarg = &wpa->ia.write.in;
1636 struct fuse_args *args = &wpa->ia.ap.args;
1637 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1638 int err;
1640 fi->writectr++;
1641 if (inarg->offset + data_size <= size) {
1642 inarg->size = data_size;
1643 } else if (inarg->offset < size) {
1644 inarg->size = size - inarg->offset;
1645 } else {
1646 /* Got truncated off completely */
1647 goto out_free;
1650 args->in_args[1].size = inarg->size;
1651 args->force = true;
1652 args->nocreds = true;
1654 err = fuse_simple_background(fc, args, GFP_ATOMIC);
1655 if (err == -ENOMEM) {
1656 spin_unlock(&fi->lock);
1657 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1658 spin_lock(&fi->lock);
1661 /* Fails on broken connection only */
1662 if (unlikely(err))
1663 goto out_free;
1665 return;
1667 out_free:
1668 fi->writectr--;
1669 fuse_writepage_finish(fc, wpa);
1670 spin_unlock(&fi->lock);
1672 /* After fuse_writepage_finish() aux request list is private */
1673 for (aux = wpa->next; aux; aux = next) {
1674 next = aux->next;
1675 aux->next = NULL;
1676 fuse_writepage_free(aux);
1679 fuse_writepage_free(wpa);
1680 spin_lock(&fi->lock);
1684 * If fi->writectr is positive (no truncate or fsync going on) send
1685 * all queued writepage requests.
1687 * Called with fi->lock
1689 void fuse_flush_writepages(struct inode *inode)
1690 __releases(fi->lock)
1691 __acquires(fi->lock)
1693 struct fuse_conn *fc = get_fuse_conn(inode);
1694 struct fuse_inode *fi = get_fuse_inode(inode);
1695 loff_t crop = i_size_read(inode);
1696 struct fuse_writepage_args *wpa;
1698 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1699 wpa = list_entry(fi->queued_writes.next,
1700 struct fuse_writepage_args, queue_entry);
1701 list_del_init(&wpa->queue_entry);
1702 fuse_send_writepage(fc, wpa, crop);
1706 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1707 int error)
1709 struct fuse_writepage_args *wpa =
1710 container_of(args, typeof(*wpa), ia.ap.args);
1711 struct inode *inode = wpa->inode;
1712 struct fuse_inode *fi = get_fuse_inode(inode);
1714 mapping_set_error(inode->i_mapping, error);
1715 spin_lock(&fi->lock);
1716 while (wpa->next) {
1717 struct fuse_conn *fc = get_fuse_conn(inode);
1718 struct fuse_write_in *inarg = &wpa->ia.write.in;
1719 struct fuse_writepage_args *next = wpa->next;
1721 wpa->next = next->next;
1722 next->next = NULL;
1723 next->ia.ff = fuse_file_get(wpa->ia.ff);
1724 list_add(&next->writepages_entry, &fi->writepages);
1727 * Skip fuse_flush_writepages() to make it easy to crop requests
1728 * based on primary request size.
1730 * 1st case (trivial): there are no concurrent activities using
1731 * fuse_set/release_nowrite. Then we're on safe side because
1732 * fuse_flush_writepages() would call fuse_send_writepage()
1733 * anyway.
1735 * 2nd case: someone called fuse_set_nowrite and it is waiting
1736 * now for completion of all in-flight requests. This happens
1737 * rarely and no more than once per page, so this should be
1738 * okay.
1740 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1741 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1742 * that fuse_set_nowrite returned implies that all in-flight
1743 * requests were completed along with all of their secondary
1744 * requests. Further primary requests are blocked by negative
1745 * writectr. Hence there cannot be any in-flight requests and
1746 * no invocations of fuse_writepage_end() while we're in
1747 * fuse_set_nowrite..fuse_release_nowrite section.
1749 fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1751 fi->writectr--;
1752 fuse_writepage_finish(fc, wpa);
1753 spin_unlock(&fi->lock);
1754 fuse_writepage_free(wpa);
1757 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1758 struct fuse_inode *fi)
1760 struct fuse_file *ff = NULL;
1762 spin_lock(&fi->lock);
1763 if (!list_empty(&fi->write_files)) {
1764 ff = list_entry(fi->write_files.next, struct fuse_file,
1765 write_entry);
1766 fuse_file_get(ff);
1768 spin_unlock(&fi->lock);
1770 return ff;
1773 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1774 struct fuse_inode *fi)
1776 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1777 WARN_ON(!ff);
1778 return ff;
1781 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1783 struct fuse_conn *fc = get_fuse_conn(inode);
1784 struct fuse_inode *fi = get_fuse_inode(inode);
1785 struct fuse_file *ff;
1786 int err;
1788 ff = __fuse_write_file_get(fc, fi);
1789 err = fuse_flush_times(inode, ff);
1790 if (ff)
1791 fuse_file_put(ff, false, false);
1793 return err;
1796 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1798 struct fuse_writepage_args *wpa;
1799 struct fuse_args_pages *ap;
1801 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1802 if (wpa) {
1803 ap = &wpa->ia.ap;
1804 ap->num_pages = 0;
1805 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1806 if (!ap->pages) {
1807 kfree(wpa);
1808 wpa = NULL;
1811 return wpa;
1815 static int fuse_writepage_locked(struct page *page)
1817 struct address_space *mapping = page->mapping;
1818 struct inode *inode = mapping->host;
1819 struct fuse_conn *fc = get_fuse_conn(inode);
1820 struct fuse_inode *fi = get_fuse_inode(inode);
1821 struct fuse_writepage_args *wpa;
1822 struct fuse_args_pages *ap;
1823 struct page *tmp_page;
1824 int error = -ENOMEM;
1826 set_page_writeback(page);
1828 wpa = fuse_writepage_args_alloc();
1829 if (!wpa)
1830 goto err;
1831 ap = &wpa->ia.ap;
1833 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1834 if (!tmp_page)
1835 goto err_free;
1837 error = -EIO;
1838 wpa->ia.ff = fuse_write_file_get(fc, fi);
1839 if (!wpa->ia.ff)
1840 goto err_nofile;
1842 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1844 copy_highpage(tmp_page, page);
1845 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1846 wpa->next = NULL;
1847 ap->args.in_pages = true;
1848 ap->num_pages = 1;
1849 ap->pages[0] = tmp_page;
1850 ap->descs[0].offset = 0;
1851 ap->descs[0].length = PAGE_SIZE;
1852 ap->args.end = fuse_writepage_end;
1853 wpa->inode = inode;
1855 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1856 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1858 spin_lock(&fi->lock);
1859 list_add(&wpa->writepages_entry, &fi->writepages);
1860 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1861 fuse_flush_writepages(inode);
1862 spin_unlock(&fi->lock);
1864 end_page_writeback(page);
1866 return 0;
1868 err_nofile:
1869 __free_page(tmp_page);
1870 err_free:
1871 kfree(wpa);
1872 err:
1873 mapping_set_error(page->mapping, error);
1874 end_page_writeback(page);
1875 return error;
1878 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1880 int err;
1882 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1884 * ->writepages() should be called for sync() and friends. We
1885 * should only get here on direct reclaim and then we are
1886 * allowed to skip a page which is already in flight
1888 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1890 redirty_page_for_writepage(wbc, page);
1891 unlock_page(page);
1892 return 0;
1895 err = fuse_writepage_locked(page);
1896 unlock_page(page);
1898 return err;
1901 struct fuse_fill_wb_data {
1902 struct fuse_writepage_args *wpa;
1903 struct fuse_file *ff;
1904 struct inode *inode;
1905 struct page **orig_pages;
1906 unsigned int max_pages;
1909 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1911 struct fuse_args_pages *ap = &data->wpa->ia.ap;
1912 struct fuse_conn *fc = get_fuse_conn(data->inode);
1913 struct page **pages;
1914 struct fuse_page_desc *descs;
1915 unsigned int npages = min_t(unsigned int,
1916 max_t(unsigned int, data->max_pages * 2,
1917 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1918 fc->max_pages);
1919 WARN_ON(npages <= data->max_pages);
1921 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1922 if (!pages)
1923 return false;
1925 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1926 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1927 kfree(ap->pages);
1928 ap->pages = pages;
1929 ap->descs = descs;
1930 data->max_pages = npages;
1932 return true;
1935 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1937 struct fuse_writepage_args *wpa = data->wpa;
1938 struct inode *inode = data->inode;
1939 struct fuse_inode *fi = get_fuse_inode(inode);
1940 int num_pages = wpa->ia.ap.num_pages;
1941 int i;
1943 wpa->ia.ff = fuse_file_get(data->ff);
1944 spin_lock(&fi->lock);
1945 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1946 fuse_flush_writepages(inode);
1947 spin_unlock(&fi->lock);
1949 for (i = 0; i < num_pages; i++)
1950 end_page_writeback(data->orig_pages[i]);
1954 * First recheck under fi->lock if the offending offset is still under
1955 * writeback. If yes, then iterate auxiliary write requests, to see if there's
1956 * one already added for a page at this offset. If there's none, then insert
1957 * this new request onto the auxiliary list, otherwise reuse the existing one by
1958 * copying the new page contents over to the old temporary page.
1960 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1961 struct page *page)
1963 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1964 struct fuse_writepage_args *tmp;
1965 struct fuse_writepage_args *old_wpa;
1966 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1968 WARN_ON(new_ap->num_pages != 0);
1970 spin_lock(&fi->lock);
1971 list_del(&new_wpa->writepages_entry);
1972 old_wpa = fuse_find_writeback(fi, page->index, page->index);
1973 if (!old_wpa) {
1974 list_add(&new_wpa->writepages_entry, &fi->writepages);
1975 spin_unlock(&fi->lock);
1976 return false;
1979 new_ap->num_pages = 1;
1980 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1981 pgoff_t curr_index;
1983 WARN_ON(tmp->inode != new_wpa->inode);
1984 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1985 if (curr_index == page->index) {
1986 WARN_ON(tmp->ia.ap.num_pages != 1);
1987 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1988 break;
1992 if (!tmp) {
1993 new_wpa->next = old_wpa->next;
1994 old_wpa->next = new_wpa;
1997 spin_unlock(&fi->lock);
1999 if (tmp) {
2000 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2002 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2003 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2004 wb_writeout_inc(&bdi->wb);
2005 fuse_writepage_free(new_wpa);
2008 return true;
2011 static int fuse_writepages_fill(struct page *page,
2012 struct writeback_control *wbc, void *_data)
2014 struct fuse_fill_wb_data *data = _data;
2015 struct fuse_writepage_args *wpa = data->wpa;
2016 struct fuse_args_pages *ap = &wpa->ia.ap;
2017 struct inode *inode = data->inode;
2018 struct fuse_inode *fi = get_fuse_inode(inode);
2019 struct fuse_conn *fc = get_fuse_conn(inode);
2020 struct page *tmp_page;
2021 bool is_writeback;
2022 int err;
2024 if (!data->ff) {
2025 err = -EIO;
2026 data->ff = fuse_write_file_get(fc, fi);
2027 if (!data->ff)
2028 goto out_unlock;
2032 * Being under writeback is unlikely but possible. For example direct
2033 * read to an mmaped fuse file will set the page dirty twice; once when
2034 * the pages are faulted with get_user_pages(), and then after the read
2035 * completed.
2037 is_writeback = fuse_page_is_writeback(inode, page->index);
2039 if (wpa && ap->num_pages &&
2040 (is_writeback || ap->num_pages == fc->max_pages ||
2041 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2042 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2043 fuse_writepages_send(data);
2044 data->wpa = NULL;
2045 } else if (wpa && ap->num_pages == data->max_pages) {
2046 if (!fuse_pages_realloc(data)) {
2047 fuse_writepages_send(data);
2048 data->wpa = NULL;
2052 err = -ENOMEM;
2053 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2054 if (!tmp_page)
2055 goto out_unlock;
2058 * The page must not be redirtied until the writeout is completed
2059 * (i.e. userspace has sent a reply to the write request). Otherwise
2060 * there could be more than one temporary page instance for each real
2061 * page.
2063 * This is ensured by holding the page lock in page_mkwrite() while
2064 * checking fuse_page_is_writeback(). We already hold the page lock
2065 * since clear_page_dirty_for_io() and keep it held until we add the
2066 * request to the fi->writepages list and increment ap->num_pages.
2067 * After this fuse_page_is_writeback() will indicate that the page is
2068 * under writeback, so we can release the page lock.
2070 if (data->wpa == NULL) {
2071 err = -ENOMEM;
2072 wpa = fuse_writepage_args_alloc();
2073 if (!wpa) {
2074 __free_page(tmp_page);
2075 goto out_unlock;
2077 data->max_pages = 1;
2079 ap = &wpa->ia.ap;
2080 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2081 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2082 wpa->next = NULL;
2083 ap->args.in_pages = true;
2084 ap->args.end = fuse_writepage_end;
2085 ap->num_pages = 0;
2086 wpa->inode = inode;
2088 spin_lock(&fi->lock);
2089 list_add(&wpa->writepages_entry, &fi->writepages);
2090 spin_unlock(&fi->lock);
2092 data->wpa = wpa;
2094 set_page_writeback(page);
2096 copy_highpage(tmp_page, page);
2097 ap->pages[ap->num_pages] = tmp_page;
2098 ap->descs[ap->num_pages].offset = 0;
2099 ap->descs[ap->num_pages].length = PAGE_SIZE;
2101 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2102 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2104 err = 0;
2105 if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2106 end_page_writeback(page);
2107 data->wpa = NULL;
2108 goto out_unlock;
2110 data->orig_pages[ap->num_pages] = page;
2113 * Protected by fi->lock against concurrent access by
2114 * fuse_page_is_writeback().
2116 spin_lock(&fi->lock);
2117 ap->num_pages++;
2118 spin_unlock(&fi->lock);
2120 out_unlock:
2121 unlock_page(page);
2123 return err;
2126 static int fuse_writepages(struct address_space *mapping,
2127 struct writeback_control *wbc)
2129 struct inode *inode = mapping->host;
2130 struct fuse_conn *fc = get_fuse_conn(inode);
2131 struct fuse_fill_wb_data data;
2132 int err;
2134 err = -EIO;
2135 if (is_bad_inode(inode))
2136 goto out;
2138 data.inode = inode;
2139 data.wpa = NULL;
2140 data.ff = NULL;
2142 err = -ENOMEM;
2143 data.orig_pages = kcalloc(fc->max_pages,
2144 sizeof(struct page *),
2145 GFP_NOFS);
2146 if (!data.orig_pages)
2147 goto out;
2149 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2150 if (data.wpa) {
2151 /* Ignore errors if we can write at least one page */
2152 WARN_ON(!data.wpa->ia.ap.num_pages);
2153 fuse_writepages_send(&data);
2154 err = 0;
2156 if (data.ff)
2157 fuse_file_put(data.ff, false, false);
2159 kfree(data.orig_pages);
2160 out:
2161 return err;
2165 * It's worthy to make sure that space is reserved on disk for the write,
2166 * but how to implement it without killing performance need more thinking.
2168 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2169 loff_t pos, unsigned len, unsigned flags,
2170 struct page **pagep, void **fsdata)
2172 pgoff_t index = pos >> PAGE_SHIFT;
2173 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2174 struct page *page;
2175 loff_t fsize;
2176 int err = -ENOMEM;
2178 WARN_ON(!fc->writeback_cache);
2180 page = grab_cache_page_write_begin(mapping, index, flags);
2181 if (!page)
2182 goto error;
2184 fuse_wait_on_page_writeback(mapping->host, page->index);
2186 if (PageUptodate(page) || len == PAGE_SIZE)
2187 goto success;
2189 * Check if the start this page comes after the end of file, in which
2190 * case the readpage can be optimized away.
2192 fsize = i_size_read(mapping->host);
2193 if (fsize <= (pos & PAGE_MASK)) {
2194 size_t off = pos & ~PAGE_MASK;
2195 if (off)
2196 zero_user_segment(page, 0, off);
2197 goto success;
2199 err = fuse_do_readpage(file, page);
2200 if (err)
2201 goto cleanup;
2202 success:
2203 *pagep = page;
2204 return 0;
2206 cleanup:
2207 unlock_page(page);
2208 put_page(page);
2209 error:
2210 return err;
2213 static int fuse_write_end(struct file *file, struct address_space *mapping,
2214 loff_t pos, unsigned len, unsigned copied,
2215 struct page *page, void *fsdata)
2217 struct inode *inode = page->mapping->host;
2219 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2220 if (!copied)
2221 goto unlock;
2223 if (!PageUptodate(page)) {
2224 /* Zero any unwritten bytes at the end of the page */
2225 size_t endoff = (pos + copied) & ~PAGE_MASK;
2226 if (endoff)
2227 zero_user_segment(page, endoff, PAGE_SIZE);
2228 SetPageUptodate(page);
2231 fuse_write_update_size(inode, pos + copied);
2232 set_page_dirty(page);
2234 unlock:
2235 unlock_page(page);
2236 put_page(page);
2238 return copied;
2241 static int fuse_launder_page(struct page *page)
2243 int err = 0;
2244 if (clear_page_dirty_for_io(page)) {
2245 struct inode *inode = page->mapping->host;
2246 err = fuse_writepage_locked(page);
2247 if (!err)
2248 fuse_wait_on_page_writeback(inode, page->index);
2250 return err;
2254 * Write back dirty pages now, because there may not be any suitable
2255 * open files later
2257 static void fuse_vma_close(struct vm_area_struct *vma)
2259 filemap_write_and_wait(vma->vm_file->f_mapping);
2263 * Wait for writeback against this page to complete before allowing it
2264 * to be marked dirty again, and hence written back again, possibly
2265 * before the previous writepage completed.
2267 * Block here, instead of in ->writepage(), so that the userspace fs
2268 * can only block processes actually operating on the filesystem.
2270 * Otherwise unprivileged userspace fs would be able to block
2271 * unrelated:
2273 * - page migration
2274 * - sync(2)
2275 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2277 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2279 struct page *page = vmf->page;
2280 struct inode *inode = file_inode(vmf->vma->vm_file);
2282 file_update_time(vmf->vma->vm_file);
2283 lock_page(page);
2284 if (page->mapping != inode->i_mapping) {
2285 unlock_page(page);
2286 return VM_FAULT_NOPAGE;
2289 fuse_wait_on_page_writeback(inode, page->index);
2290 return VM_FAULT_LOCKED;
2293 static const struct vm_operations_struct fuse_file_vm_ops = {
2294 .close = fuse_vma_close,
2295 .fault = filemap_fault,
2296 .map_pages = filemap_map_pages,
2297 .page_mkwrite = fuse_page_mkwrite,
2300 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2302 struct fuse_file *ff = file->private_data;
2304 if (ff->open_flags & FOPEN_DIRECT_IO) {
2305 /* Can't provide the coherency needed for MAP_SHARED */
2306 if (vma->vm_flags & VM_MAYSHARE)
2307 return -ENODEV;
2309 invalidate_inode_pages2(file->f_mapping);
2311 return generic_file_mmap(file, vma);
2314 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2315 fuse_link_write_file(file);
2317 file_accessed(file);
2318 vma->vm_ops = &fuse_file_vm_ops;
2319 return 0;
2322 static int convert_fuse_file_lock(struct fuse_conn *fc,
2323 const struct fuse_file_lock *ffl,
2324 struct file_lock *fl)
2326 switch (ffl->type) {
2327 case F_UNLCK:
2328 break;
2330 case F_RDLCK:
2331 case F_WRLCK:
2332 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2333 ffl->end < ffl->start)
2334 return -EIO;
2336 fl->fl_start = ffl->start;
2337 fl->fl_end = ffl->end;
2340 * Convert pid into init's pid namespace. The locks API will
2341 * translate it into the caller's pid namespace.
2343 rcu_read_lock();
2344 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2345 rcu_read_unlock();
2346 break;
2348 default:
2349 return -EIO;
2351 fl->fl_type = ffl->type;
2352 return 0;
2355 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2356 const struct file_lock *fl, int opcode, pid_t pid,
2357 int flock, struct fuse_lk_in *inarg)
2359 struct inode *inode = file_inode(file);
2360 struct fuse_conn *fc = get_fuse_conn(inode);
2361 struct fuse_file *ff = file->private_data;
2363 memset(inarg, 0, sizeof(*inarg));
2364 inarg->fh = ff->fh;
2365 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2366 inarg->lk.start = fl->fl_start;
2367 inarg->lk.end = fl->fl_end;
2368 inarg->lk.type = fl->fl_type;
2369 inarg->lk.pid = pid;
2370 if (flock)
2371 inarg->lk_flags |= FUSE_LK_FLOCK;
2372 args->opcode = opcode;
2373 args->nodeid = get_node_id(inode);
2374 args->in_numargs = 1;
2375 args->in_args[0].size = sizeof(*inarg);
2376 args->in_args[0].value = inarg;
2379 static int fuse_getlk(struct file *file, struct file_lock *fl)
2381 struct inode *inode = file_inode(file);
2382 struct fuse_conn *fc = get_fuse_conn(inode);
2383 FUSE_ARGS(args);
2384 struct fuse_lk_in inarg;
2385 struct fuse_lk_out outarg;
2386 int err;
2388 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2389 args.out_numargs = 1;
2390 args.out_args[0].size = sizeof(outarg);
2391 args.out_args[0].value = &outarg;
2392 err = fuse_simple_request(fc, &args);
2393 if (!err)
2394 err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2396 return err;
2399 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2401 struct inode *inode = file_inode(file);
2402 struct fuse_conn *fc = get_fuse_conn(inode);
2403 FUSE_ARGS(args);
2404 struct fuse_lk_in inarg;
2405 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2406 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2407 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2408 int err;
2410 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2411 /* NLM needs asynchronous locks, which we don't support yet */
2412 return -ENOLCK;
2415 /* Unlock on close is handled by the flush method */
2416 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2417 return 0;
2419 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2420 err = fuse_simple_request(fc, &args);
2422 /* locking is restartable */
2423 if (err == -EINTR)
2424 err = -ERESTARTSYS;
2426 return err;
2429 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2431 struct inode *inode = file_inode(file);
2432 struct fuse_conn *fc = get_fuse_conn(inode);
2433 int err;
2435 if (cmd == F_CANCELLK) {
2436 err = 0;
2437 } else if (cmd == F_GETLK) {
2438 if (fc->no_lock) {
2439 posix_test_lock(file, fl);
2440 err = 0;
2441 } else
2442 err = fuse_getlk(file, fl);
2443 } else {
2444 if (fc->no_lock)
2445 err = posix_lock_file(file, fl, NULL);
2446 else
2447 err = fuse_setlk(file, fl, 0);
2449 return err;
2452 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2454 struct inode *inode = file_inode(file);
2455 struct fuse_conn *fc = get_fuse_conn(inode);
2456 int err;
2458 if (fc->no_flock) {
2459 err = locks_lock_file_wait(file, fl);
2460 } else {
2461 struct fuse_file *ff = file->private_data;
2463 /* emulate flock with POSIX locks */
2464 ff->flock = true;
2465 err = fuse_setlk(file, fl, 1);
2468 return err;
2471 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2473 struct inode *inode = mapping->host;
2474 struct fuse_conn *fc = get_fuse_conn(inode);
2475 FUSE_ARGS(args);
2476 struct fuse_bmap_in inarg;
2477 struct fuse_bmap_out outarg;
2478 int err;
2480 if (!inode->i_sb->s_bdev || fc->no_bmap)
2481 return 0;
2483 memset(&inarg, 0, sizeof(inarg));
2484 inarg.block = block;
2485 inarg.blocksize = inode->i_sb->s_blocksize;
2486 args.opcode = FUSE_BMAP;
2487 args.nodeid = get_node_id(inode);
2488 args.in_numargs = 1;
2489 args.in_args[0].size = sizeof(inarg);
2490 args.in_args[0].value = &inarg;
2491 args.out_numargs = 1;
2492 args.out_args[0].size = sizeof(outarg);
2493 args.out_args[0].value = &outarg;
2494 err = fuse_simple_request(fc, &args);
2495 if (err == -ENOSYS)
2496 fc->no_bmap = 1;
2498 return err ? 0 : outarg.block;
2501 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2503 struct inode *inode = file->f_mapping->host;
2504 struct fuse_conn *fc = get_fuse_conn(inode);
2505 struct fuse_file *ff = file->private_data;
2506 FUSE_ARGS(args);
2507 struct fuse_lseek_in inarg = {
2508 .fh = ff->fh,
2509 .offset = offset,
2510 .whence = whence
2512 struct fuse_lseek_out outarg;
2513 int err;
2515 if (fc->no_lseek)
2516 goto fallback;
2518 args.opcode = FUSE_LSEEK;
2519 args.nodeid = ff->nodeid;
2520 args.in_numargs = 1;
2521 args.in_args[0].size = sizeof(inarg);
2522 args.in_args[0].value = &inarg;
2523 args.out_numargs = 1;
2524 args.out_args[0].size = sizeof(outarg);
2525 args.out_args[0].value = &outarg;
2526 err = fuse_simple_request(fc, &args);
2527 if (err) {
2528 if (err == -ENOSYS) {
2529 fc->no_lseek = 1;
2530 goto fallback;
2532 return err;
2535 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2537 fallback:
2538 err = fuse_update_attributes(inode, file);
2539 if (!err)
2540 return generic_file_llseek(file, offset, whence);
2541 else
2542 return err;
2545 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2547 loff_t retval;
2548 struct inode *inode = file_inode(file);
2550 switch (whence) {
2551 case SEEK_SET:
2552 case SEEK_CUR:
2553 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2554 retval = generic_file_llseek(file, offset, whence);
2555 break;
2556 case SEEK_END:
2557 inode_lock(inode);
2558 retval = fuse_update_attributes(inode, file);
2559 if (!retval)
2560 retval = generic_file_llseek(file, offset, whence);
2561 inode_unlock(inode);
2562 break;
2563 case SEEK_HOLE:
2564 case SEEK_DATA:
2565 inode_lock(inode);
2566 retval = fuse_lseek(file, offset, whence);
2567 inode_unlock(inode);
2568 break;
2569 default:
2570 retval = -EINVAL;
2573 return retval;
2577 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2578 * ABI was defined to be 'struct iovec' which is different on 32bit
2579 * and 64bit. Fortunately we can determine which structure the server
2580 * used from the size of the reply.
2582 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2583 size_t transferred, unsigned count,
2584 bool is_compat)
2586 #ifdef CONFIG_COMPAT
2587 if (count * sizeof(struct compat_iovec) == transferred) {
2588 struct compat_iovec *ciov = src;
2589 unsigned i;
2592 * With this interface a 32bit server cannot support
2593 * non-compat (i.e. ones coming from 64bit apps) ioctl
2594 * requests
2596 if (!is_compat)
2597 return -EINVAL;
2599 for (i = 0; i < count; i++) {
2600 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2601 dst[i].iov_len = ciov[i].iov_len;
2603 return 0;
2605 #endif
2607 if (count * sizeof(struct iovec) != transferred)
2608 return -EIO;
2610 memcpy(dst, src, transferred);
2611 return 0;
2614 /* Make sure iov_length() won't overflow */
2615 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2616 size_t count)
2618 size_t n;
2619 u32 max = fc->max_pages << PAGE_SHIFT;
2621 for (n = 0; n < count; n++, iov++) {
2622 if (iov->iov_len > (size_t) max)
2623 return -ENOMEM;
2624 max -= iov->iov_len;
2626 return 0;
2629 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2630 void *src, size_t transferred, unsigned count,
2631 bool is_compat)
2633 unsigned i;
2634 struct fuse_ioctl_iovec *fiov = src;
2636 if (fc->minor < 16) {
2637 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2638 count, is_compat);
2641 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2642 return -EIO;
2644 for (i = 0; i < count; i++) {
2645 /* Did the server supply an inappropriate value? */
2646 if (fiov[i].base != (unsigned long) fiov[i].base ||
2647 fiov[i].len != (unsigned long) fiov[i].len)
2648 return -EIO;
2650 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2651 dst[i].iov_len = (size_t) fiov[i].len;
2653 #ifdef CONFIG_COMPAT
2654 if (is_compat &&
2655 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2656 (compat_size_t) dst[i].iov_len != fiov[i].len))
2657 return -EIO;
2658 #endif
2661 return 0;
2666 * For ioctls, there is no generic way to determine how much memory
2667 * needs to be read and/or written. Furthermore, ioctls are allowed
2668 * to dereference the passed pointer, so the parameter requires deep
2669 * copying but FUSE has no idea whatsoever about what to copy in or
2670 * out.
2672 * This is solved by allowing FUSE server to retry ioctl with
2673 * necessary in/out iovecs. Let's assume the ioctl implementation
2674 * needs to read in the following structure.
2676 * struct a {
2677 * char *buf;
2678 * size_t buflen;
2681 * On the first callout to FUSE server, inarg->in_size and
2682 * inarg->out_size will be NULL; then, the server completes the ioctl
2683 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2684 * the actual iov array to
2686 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2688 * which tells FUSE to copy in the requested area and retry the ioctl.
2689 * On the second round, the server has access to the structure and
2690 * from that it can tell what to look for next, so on the invocation,
2691 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2693 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2694 * { .iov_base = a.buf, .iov_len = a.buflen } }
2696 * FUSE will copy both struct a and the pointed buffer from the
2697 * process doing the ioctl and retry ioctl with both struct a and the
2698 * buffer.
2700 * This time, FUSE server has everything it needs and completes ioctl
2701 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2703 * Copying data out works the same way.
2705 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2706 * automatically initializes in and out iovs by decoding @cmd with
2707 * _IOC_* macros and the server is not allowed to request RETRY. This
2708 * limits ioctl data transfers to well-formed ioctls and is the forced
2709 * behavior for all FUSE servers.
2711 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2712 unsigned int flags)
2714 struct fuse_file *ff = file->private_data;
2715 struct fuse_conn *fc = ff->fc;
2716 struct fuse_ioctl_in inarg = {
2717 .fh = ff->fh,
2718 .cmd = cmd,
2719 .arg = arg,
2720 .flags = flags
2722 struct fuse_ioctl_out outarg;
2723 struct iovec *iov_page = NULL;
2724 struct iovec *in_iov = NULL, *out_iov = NULL;
2725 unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2726 size_t in_size, out_size, c;
2727 ssize_t transferred;
2728 int err, i;
2729 struct iov_iter ii;
2730 struct fuse_args_pages ap = {};
2732 #if BITS_PER_LONG == 32
2733 inarg.flags |= FUSE_IOCTL_32BIT;
2734 #else
2735 if (flags & FUSE_IOCTL_COMPAT) {
2736 inarg.flags |= FUSE_IOCTL_32BIT;
2737 #ifdef CONFIG_X86_X32
2738 if (in_x32_syscall())
2739 inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2740 #endif
2742 #endif
2744 /* assume all the iovs returned by client always fits in a page */
2745 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2747 err = -ENOMEM;
2748 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2749 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2750 if (!ap.pages || !iov_page)
2751 goto out;
2753 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2756 * If restricted, initialize IO parameters as encoded in @cmd.
2757 * RETRY from server is not allowed.
2759 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2760 struct iovec *iov = iov_page;
2762 iov->iov_base = (void __user *)arg;
2763 iov->iov_len = _IOC_SIZE(cmd);
2765 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2766 in_iov = iov;
2767 in_iovs = 1;
2770 if (_IOC_DIR(cmd) & _IOC_READ) {
2771 out_iov = iov;
2772 out_iovs = 1;
2776 retry:
2777 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2778 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2781 * Out data can be used either for actual out data or iovs,
2782 * make sure there always is at least one page.
2784 out_size = max_t(size_t, out_size, PAGE_SIZE);
2785 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2787 /* make sure there are enough buffer pages and init request with them */
2788 err = -ENOMEM;
2789 if (max_pages > fc->max_pages)
2790 goto out;
2791 while (ap.num_pages < max_pages) {
2792 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2793 if (!ap.pages[ap.num_pages])
2794 goto out;
2795 ap.num_pages++;
2799 /* okay, let's send it to the client */
2800 ap.args.opcode = FUSE_IOCTL;
2801 ap.args.nodeid = ff->nodeid;
2802 ap.args.in_numargs = 1;
2803 ap.args.in_args[0].size = sizeof(inarg);
2804 ap.args.in_args[0].value = &inarg;
2805 if (in_size) {
2806 ap.args.in_numargs++;
2807 ap.args.in_args[1].size = in_size;
2808 ap.args.in_pages = true;
2810 err = -EFAULT;
2811 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2812 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2813 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2814 if (c != PAGE_SIZE && iov_iter_count(&ii))
2815 goto out;
2819 ap.args.out_numargs = 2;
2820 ap.args.out_args[0].size = sizeof(outarg);
2821 ap.args.out_args[0].value = &outarg;
2822 ap.args.out_args[1].size = out_size;
2823 ap.args.out_pages = true;
2824 ap.args.out_argvar = true;
2826 transferred = fuse_simple_request(fc, &ap.args);
2827 err = transferred;
2828 if (transferred < 0)
2829 goto out;
2831 /* did it ask for retry? */
2832 if (outarg.flags & FUSE_IOCTL_RETRY) {
2833 void *vaddr;
2835 /* no retry if in restricted mode */
2836 err = -EIO;
2837 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2838 goto out;
2840 in_iovs = outarg.in_iovs;
2841 out_iovs = outarg.out_iovs;
2844 * Make sure things are in boundary, separate checks
2845 * are to protect against overflow.
2847 err = -ENOMEM;
2848 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2849 out_iovs > FUSE_IOCTL_MAX_IOV ||
2850 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2851 goto out;
2853 vaddr = kmap_atomic(ap.pages[0]);
2854 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2855 transferred, in_iovs + out_iovs,
2856 (flags & FUSE_IOCTL_COMPAT) != 0);
2857 kunmap_atomic(vaddr);
2858 if (err)
2859 goto out;
2861 in_iov = iov_page;
2862 out_iov = in_iov + in_iovs;
2864 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2865 if (err)
2866 goto out;
2868 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2869 if (err)
2870 goto out;
2872 goto retry;
2875 err = -EIO;
2876 if (transferred > inarg.out_size)
2877 goto out;
2879 err = -EFAULT;
2880 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2881 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2882 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2883 if (c != PAGE_SIZE && iov_iter_count(&ii))
2884 goto out;
2886 err = 0;
2887 out:
2888 free_page((unsigned long) iov_page);
2889 while (ap.num_pages)
2890 __free_page(ap.pages[--ap.num_pages]);
2891 kfree(ap.pages);
2893 return err ? err : outarg.result;
2895 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2897 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2898 unsigned long arg, unsigned int flags)
2900 struct inode *inode = file_inode(file);
2901 struct fuse_conn *fc = get_fuse_conn(inode);
2903 if (!fuse_allow_current_process(fc))
2904 return -EACCES;
2906 if (is_bad_inode(inode))
2907 return -EIO;
2909 return fuse_do_ioctl(file, cmd, arg, flags);
2912 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2913 unsigned long arg)
2915 return fuse_ioctl_common(file, cmd, arg, 0);
2918 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2919 unsigned long arg)
2921 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2925 * All files which have been polled are linked to RB tree
2926 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2927 * find the matching one.
2929 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2930 struct rb_node **parent_out)
2932 struct rb_node **link = &fc->polled_files.rb_node;
2933 struct rb_node *last = NULL;
2935 while (*link) {
2936 struct fuse_file *ff;
2938 last = *link;
2939 ff = rb_entry(last, struct fuse_file, polled_node);
2941 if (kh < ff->kh)
2942 link = &last->rb_left;
2943 else if (kh > ff->kh)
2944 link = &last->rb_right;
2945 else
2946 return link;
2949 if (parent_out)
2950 *parent_out = last;
2951 return link;
2955 * The file is about to be polled. Make sure it's on the polled_files
2956 * RB tree. Note that files once added to the polled_files tree are
2957 * not removed before the file is released. This is because a file
2958 * polled once is likely to be polled again.
2960 static void fuse_register_polled_file(struct fuse_conn *fc,
2961 struct fuse_file *ff)
2963 spin_lock(&fc->lock);
2964 if (RB_EMPTY_NODE(&ff->polled_node)) {
2965 struct rb_node **link, *uninitialized_var(parent);
2967 link = fuse_find_polled_node(fc, ff->kh, &parent);
2968 BUG_ON(*link);
2969 rb_link_node(&ff->polled_node, parent, link);
2970 rb_insert_color(&ff->polled_node, &fc->polled_files);
2972 spin_unlock(&fc->lock);
2975 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2977 struct fuse_file *ff = file->private_data;
2978 struct fuse_conn *fc = ff->fc;
2979 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2980 struct fuse_poll_out outarg;
2981 FUSE_ARGS(args);
2982 int err;
2984 if (fc->no_poll)
2985 return DEFAULT_POLLMASK;
2987 poll_wait(file, &ff->poll_wait, wait);
2988 inarg.events = mangle_poll(poll_requested_events(wait));
2991 * Ask for notification iff there's someone waiting for it.
2992 * The client may ignore the flag and always notify.
2994 if (waitqueue_active(&ff->poll_wait)) {
2995 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2996 fuse_register_polled_file(fc, ff);
2999 args.opcode = FUSE_POLL;
3000 args.nodeid = ff->nodeid;
3001 args.in_numargs = 1;
3002 args.in_args[0].size = sizeof(inarg);
3003 args.in_args[0].value = &inarg;
3004 args.out_numargs = 1;
3005 args.out_args[0].size = sizeof(outarg);
3006 args.out_args[0].value = &outarg;
3007 err = fuse_simple_request(fc, &args);
3009 if (!err)
3010 return demangle_poll(outarg.revents);
3011 if (err == -ENOSYS) {
3012 fc->no_poll = 1;
3013 return DEFAULT_POLLMASK;
3015 return EPOLLERR;
3017 EXPORT_SYMBOL_GPL(fuse_file_poll);
3020 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3021 * wakes up the poll waiters.
3023 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3024 struct fuse_notify_poll_wakeup_out *outarg)
3026 u64 kh = outarg->kh;
3027 struct rb_node **link;
3029 spin_lock(&fc->lock);
3031 link = fuse_find_polled_node(fc, kh, NULL);
3032 if (*link) {
3033 struct fuse_file *ff;
3035 ff = rb_entry(*link, struct fuse_file, polled_node);
3036 wake_up_interruptible_sync(&ff->poll_wait);
3039 spin_unlock(&fc->lock);
3040 return 0;
3043 static void fuse_do_truncate(struct file *file)
3045 struct inode *inode = file->f_mapping->host;
3046 struct iattr attr;
3048 attr.ia_valid = ATTR_SIZE;
3049 attr.ia_size = i_size_read(inode);
3051 attr.ia_file = file;
3052 attr.ia_valid |= ATTR_FILE;
3054 fuse_do_setattr(file_dentry(file), &attr, file);
3057 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3059 return round_up(off, fc->max_pages << PAGE_SHIFT);
3062 static ssize_t
3063 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3065 DECLARE_COMPLETION_ONSTACK(wait);
3066 ssize_t ret = 0;
3067 struct file *file = iocb->ki_filp;
3068 struct fuse_file *ff = file->private_data;
3069 bool async_dio = ff->fc->async_dio;
3070 loff_t pos = 0;
3071 struct inode *inode;
3072 loff_t i_size;
3073 size_t count = iov_iter_count(iter);
3074 loff_t offset = iocb->ki_pos;
3075 struct fuse_io_priv *io;
3077 pos = offset;
3078 inode = file->f_mapping->host;
3079 i_size = i_size_read(inode);
3081 if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3082 return 0;
3084 /* optimization for short read */
3085 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3086 if (offset >= i_size)
3087 return 0;
3088 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3089 count = iov_iter_count(iter);
3092 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3093 if (!io)
3094 return -ENOMEM;
3095 spin_lock_init(&io->lock);
3096 kref_init(&io->refcnt);
3097 io->reqs = 1;
3098 io->bytes = -1;
3099 io->size = 0;
3100 io->offset = offset;
3101 io->write = (iov_iter_rw(iter) == WRITE);
3102 io->err = 0;
3104 * By default, we want to optimize all I/Os with async request
3105 * submission to the client filesystem if supported.
3107 io->async = async_dio;
3108 io->iocb = iocb;
3109 io->blocking = is_sync_kiocb(iocb);
3112 * We cannot asynchronously extend the size of a file.
3113 * In such case the aio will behave exactly like sync io.
3115 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3116 io->blocking = true;
3118 if (io->async && io->blocking) {
3120 * Additional reference to keep io around after
3121 * calling fuse_aio_complete()
3123 kref_get(&io->refcnt);
3124 io->done = &wait;
3127 if (iov_iter_rw(iter) == WRITE) {
3128 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3129 fuse_invalidate_attr(inode);
3130 } else {
3131 ret = __fuse_direct_read(io, iter, &pos);
3134 if (io->async) {
3135 bool blocking = io->blocking;
3137 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3139 /* we have a non-extending, async request, so return */
3140 if (!blocking)
3141 return -EIOCBQUEUED;
3143 wait_for_completion(&wait);
3144 ret = fuse_get_res_by_io(io);
3147 kref_put(&io->refcnt, fuse_io_release);
3149 if (iov_iter_rw(iter) == WRITE) {
3150 if (ret > 0)
3151 fuse_write_update_size(inode, pos);
3152 else if (ret < 0 && offset + count > i_size)
3153 fuse_do_truncate(file);
3156 return ret;
3159 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3161 int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3163 if (!err)
3164 fuse_sync_writes(inode);
3166 return err;
3169 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3170 loff_t length)
3172 struct fuse_file *ff = file->private_data;
3173 struct inode *inode = file_inode(file);
3174 struct fuse_inode *fi = get_fuse_inode(inode);
3175 struct fuse_conn *fc = ff->fc;
3176 FUSE_ARGS(args);
3177 struct fuse_fallocate_in inarg = {
3178 .fh = ff->fh,
3179 .offset = offset,
3180 .length = length,
3181 .mode = mode
3183 int err;
3184 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3185 (mode & FALLOC_FL_PUNCH_HOLE);
3187 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3188 return -EOPNOTSUPP;
3190 if (fc->no_fallocate)
3191 return -EOPNOTSUPP;
3193 if (lock_inode) {
3194 inode_lock(inode);
3195 if (mode & FALLOC_FL_PUNCH_HOLE) {
3196 loff_t endbyte = offset + length - 1;
3198 err = fuse_writeback_range(inode, offset, endbyte);
3199 if (err)
3200 goto out;
3204 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3205 offset + length > i_size_read(inode)) {
3206 err = inode_newsize_ok(inode, offset + length);
3207 if (err)
3208 goto out;
3211 if (!(mode & FALLOC_FL_KEEP_SIZE))
3212 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3214 args.opcode = FUSE_FALLOCATE;
3215 args.nodeid = ff->nodeid;
3216 args.in_numargs = 1;
3217 args.in_args[0].size = sizeof(inarg);
3218 args.in_args[0].value = &inarg;
3219 err = fuse_simple_request(fc, &args);
3220 if (err == -ENOSYS) {
3221 fc->no_fallocate = 1;
3222 err = -EOPNOTSUPP;
3224 if (err)
3225 goto out;
3227 /* we could have extended the file */
3228 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3229 bool changed = fuse_write_update_size(inode, offset + length);
3231 if (changed && fc->writeback_cache)
3232 file_update_time(file);
3235 if (mode & FALLOC_FL_PUNCH_HOLE)
3236 truncate_pagecache_range(inode, offset, offset + length - 1);
3238 fuse_invalidate_attr(inode);
3240 out:
3241 if (!(mode & FALLOC_FL_KEEP_SIZE))
3242 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3244 if (lock_inode)
3245 inode_unlock(inode);
3247 return err;
3250 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3251 struct file *file_out, loff_t pos_out,
3252 size_t len, unsigned int flags)
3254 struct fuse_file *ff_in = file_in->private_data;
3255 struct fuse_file *ff_out = file_out->private_data;
3256 struct inode *inode_in = file_inode(file_in);
3257 struct inode *inode_out = file_inode(file_out);
3258 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3259 struct fuse_conn *fc = ff_in->fc;
3260 FUSE_ARGS(args);
3261 struct fuse_copy_file_range_in inarg = {
3262 .fh_in = ff_in->fh,
3263 .off_in = pos_in,
3264 .nodeid_out = ff_out->nodeid,
3265 .fh_out = ff_out->fh,
3266 .off_out = pos_out,
3267 .len = len,
3268 .flags = flags
3270 struct fuse_write_out outarg;
3271 ssize_t err;
3272 /* mark unstable when write-back is not used, and file_out gets
3273 * extended */
3274 bool is_unstable = (!fc->writeback_cache) &&
3275 ((pos_out + len) > inode_out->i_size);
3277 if (fc->no_copy_file_range)
3278 return -EOPNOTSUPP;
3280 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3281 return -EXDEV;
3283 inode_lock(inode_in);
3284 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3285 inode_unlock(inode_in);
3286 if (err)
3287 return err;
3289 inode_lock(inode_out);
3291 err = file_modified(file_out);
3292 if (err)
3293 goto out;
3296 * Write out dirty pages in the destination file before sending the COPY
3297 * request to userspace. After the request is completed, truncate off
3298 * pages (including partial ones) from the cache that have been copied,
3299 * since these contain stale data at that point.
3301 * This should be mostly correct, but if the COPY writes to partial
3302 * pages (at the start or end) and the parts not covered by the COPY are
3303 * written through a memory map after calling fuse_writeback_range(),
3304 * then these partial page modifications will be lost on truncation.
3306 * It is unlikely that someone would rely on such mixed style
3307 * modifications. Yet this does give less guarantees than if the
3308 * copying was performed with write(2).
3310 * To fix this a i_mmap_sem style lock could be used to prevent new
3311 * faults while the copy is ongoing.
3313 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3314 if (err)
3315 goto out;
3317 if (is_unstable)
3318 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3320 args.opcode = FUSE_COPY_FILE_RANGE;
3321 args.nodeid = ff_in->nodeid;
3322 args.in_numargs = 1;
3323 args.in_args[0].size = sizeof(inarg);
3324 args.in_args[0].value = &inarg;
3325 args.out_numargs = 1;
3326 args.out_args[0].size = sizeof(outarg);
3327 args.out_args[0].value = &outarg;
3328 err = fuse_simple_request(fc, &args);
3329 if (err == -ENOSYS) {
3330 fc->no_copy_file_range = 1;
3331 err = -EOPNOTSUPP;
3333 if (err)
3334 goto out;
3336 truncate_inode_pages_range(inode_out->i_mapping,
3337 ALIGN_DOWN(pos_out, PAGE_SIZE),
3338 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3340 if (fc->writeback_cache) {
3341 fuse_write_update_size(inode_out, pos_out + outarg.size);
3342 file_update_time(file_out);
3345 fuse_invalidate_attr(inode_out);
3347 err = outarg.size;
3348 out:
3349 if (is_unstable)
3350 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3352 inode_unlock(inode_out);
3353 file_accessed(file_in);
3355 return err;
3358 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3359 struct file *dst_file, loff_t dst_off,
3360 size_t len, unsigned int flags)
3362 ssize_t ret;
3364 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3365 len, flags);
3367 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3368 ret = generic_copy_file_range(src_file, src_off, dst_file,
3369 dst_off, len, flags);
3370 return ret;
3373 static const struct file_operations fuse_file_operations = {
3374 .llseek = fuse_file_llseek,
3375 .read_iter = fuse_file_read_iter,
3376 .write_iter = fuse_file_write_iter,
3377 .mmap = fuse_file_mmap,
3378 .open = fuse_open,
3379 .flush = fuse_flush,
3380 .release = fuse_release,
3381 .fsync = fuse_fsync,
3382 .lock = fuse_file_lock,
3383 .flock = fuse_file_flock,
3384 .splice_read = generic_file_splice_read,
3385 .splice_write = iter_file_splice_write,
3386 .unlocked_ioctl = fuse_file_ioctl,
3387 .compat_ioctl = fuse_file_compat_ioctl,
3388 .poll = fuse_file_poll,
3389 .fallocate = fuse_file_fallocate,
3390 .copy_file_range = fuse_copy_file_range,
3393 static const struct address_space_operations fuse_file_aops = {
3394 .readpage = fuse_readpage,
3395 .writepage = fuse_writepage,
3396 .writepages = fuse_writepages,
3397 .launder_page = fuse_launder_page,
3398 .readpages = fuse_readpages,
3399 .set_page_dirty = __set_page_dirty_nobuffers,
3400 .bmap = fuse_bmap,
3401 .direct_IO = fuse_direct_IO,
3402 .write_begin = fuse_write_begin,
3403 .write_end = fuse_write_end,
3406 void fuse_init_file_inode(struct inode *inode)
3408 struct fuse_inode *fi = get_fuse_inode(inode);
3410 inode->i_fop = &fuse_file_operations;
3411 inode->i_data.a_ops = &fuse_file_aops;
3413 INIT_LIST_HEAD(&fi->write_files);
3414 INIT_LIST_HEAD(&fi->queued_writes);
3415 fi->writectr = 0;
3416 init_waitqueue_head(&fi->page_waitq);
3417 INIT_LIST_HEAD(&fi->writepages);