2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
42 static const struct super_operations hugetlbfs_ops
;
43 static const struct address_space_operations hugetlbfs_aops
;
44 const struct file_operations hugetlbfs_file_operations
;
45 static const struct inode_operations hugetlbfs_dir_inode_operations
;
46 static const struct inode_operations hugetlbfs_inode_operations
;
48 enum hugetlbfs_size_type
{ NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
50 struct hugetlbfs_fs_context
{
51 struct hstate
*hstate
;
52 unsigned long long max_size_opt
;
53 unsigned long long min_size_opt
;
57 enum hugetlbfs_size_type max_val_type
;
58 enum hugetlbfs_size_type min_val_type
;
64 int sysctl_hugetlb_shm_group
;
76 static const struct fs_parameter_spec hugetlb_fs_parameters
[] = {
77 fsparam_u32 ("gid", Opt_gid
),
78 fsparam_string("min_size", Opt_min_size
),
79 fsparam_u32 ("mode", Opt_mode
),
80 fsparam_string("nr_inodes", Opt_nr_inodes
),
81 fsparam_string("pagesize", Opt_pagesize
),
82 fsparam_string("size", Opt_size
),
83 fsparam_u32 ("uid", Opt_uid
),
88 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
89 struct inode
*inode
, pgoff_t index
)
91 vma
->vm_policy
= mpol_shared_policy_lookup(&HUGETLBFS_I(inode
)->policy
,
95 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
97 mpol_cond_put(vma
->vm_policy
);
100 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
101 struct inode
*inode
, pgoff_t index
)
105 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
110 static void huge_pagevec_release(struct pagevec
*pvec
)
114 for (i
= 0; i
< pagevec_count(pvec
); ++i
)
115 put_page(pvec
->pages
[i
]);
117 pagevec_reinit(pvec
);
121 * Mask used when checking the page offset value passed in via system
122 * calls. This value will be converted to a loff_t which is signed.
123 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
124 * value. The extra bit (- 1 in the shift value) is to take the sign
127 #define PGOFF_LOFFT_MAX \
128 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
132 struct inode
*inode
= file_inode(file
);
135 struct hstate
*h
= hstate_file(file
);
138 * vma address alignment (but not the pgoff alignment) has
139 * already been checked by prepare_hugepage_range. If you add
140 * any error returns here, do so after setting VM_HUGETLB, so
141 * is_vm_hugetlb_page tests below unmap_region go the right
142 * way when do_mmap_pgoff unwinds (may be important on powerpc
145 vma
->vm_flags
|= VM_HUGETLB
| VM_DONTEXPAND
;
146 vma
->vm_ops
= &hugetlb_vm_ops
;
149 * page based offset in vm_pgoff could be sufficiently large to
150 * overflow a loff_t when converted to byte offset. This can
151 * only happen on architectures where sizeof(loff_t) ==
152 * sizeof(unsigned long). So, only check in those instances.
154 if (sizeof(unsigned long) == sizeof(loff_t
)) {
155 if (vma
->vm_pgoff
& PGOFF_LOFFT_MAX
)
159 /* must be huge page aligned */
160 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
163 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
164 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
165 /* check for overflow */
173 if (hugetlb_reserve_pages(inode
,
174 vma
->vm_pgoff
>> huge_page_order(h
),
175 len
>> huge_page_shift(h
), vma
,
180 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
181 i_size_write(inode
, len
);
189 * Called under down_write(mmap_sem).
192 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
194 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
195 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
197 struct mm_struct
*mm
= current
->mm
;
198 struct vm_area_struct
*vma
;
199 struct hstate
*h
= hstate_file(file
);
200 struct vm_unmapped_area_info info
;
202 if (len
& ~huge_page_mask(h
))
207 if (flags
& MAP_FIXED
) {
208 if (prepare_hugepage_range(file
, addr
, len
))
214 addr
= ALIGN(addr
, huge_page_size(h
));
215 vma
= find_vma(mm
, addr
);
216 if (TASK_SIZE
- len
>= addr
&&
217 (!vma
|| addr
+ len
<= vm_start_gap(vma
)))
223 info
.low_limit
= TASK_UNMAPPED_BASE
;
224 info
.high_limit
= TASK_SIZE
;
225 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
226 info
.align_offset
= 0;
227 return vm_unmapped_area(&info
);
232 hugetlbfs_read_actor(struct page
*page
, unsigned long offset
,
233 struct iov_iter
*to
, unsigned long size
)
238 /* Find which 4k chunk and offset with in that chunk */
239 i
= offset
>> PAGE_SHIFT
;
240 offset
= offset
& ~PAGE_MASK
;
244 chunksize
= PAGE_SIZE
;
247 if (chunksize
> size
)
249 n
= copy_page_to_iter(&page
[i
], offset
, chunksize
, to
);
261 * Support for read() - Find the page attached to f_mapping and copy out the
262 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
263 * since it has PAGE_SIZE assumptions.
265 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
267 struct file
*file
= iocb
->ki_filp
;
268 struct hstate
*h
= hstate_file(file
);
269 struct address_space
*mapping
= file
->f_mapping
;
270 struct inode
*inode
= mapping
->host
;
271 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
272 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
273 unsigned long end_index
;
277 while (iov_iter_count(to
)) {
281 /* nr is the maximum number of bytes to copy from this page */
282 nr
= huge_page_size(h
);
283 isize
= i_size_read(inode
);
286 end_index
= (isize
- 1) >> huge_page_shift(h
);
287 if (index
> end_index
)
289 if (index
== end_index
) {
290 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
297 page
= find_lock_page(mapping
, index
);
298 if (unlikely(page
== NULL
)) {
300 * We have a HOLE, zero out the user-buffer for the
301 * length of the hole or request.
303 copied
= iov_iter_zero(nr
, to
);
308 * We have the page, copy it to user space buffer.
310 copied
= hugetlbfs_read_actor(page
, offset
, to
, nr
);
315 if (copied
!= nr
&& iov_iter_count(to
)) {
320 index
+= offset
>> huge_page_shift(h
);
321 offset
&= ~huge_page_mask(h
);
323 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
327 static int hugetlbfs_write_begin(struct file
*file
,
328 struct address_space
*mapping
,
329 loff_t pos
, unsigned len
, unsigned flags
,
330 struct page
**pagep
, void **fsdata
)
335 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
336 loff_t pos
, unsigned len
, unsigned copied
,
337 struct page
*page
, void *fsdata
)
343 static void remove_huge_page(struct page
*page
)
345 ClearPageDirty(page
);
346 ClearPageUptodate(page
);
347 delete_from_page_cache(page
);
351 hugetlb_vmdelete_list(struct rb_root_cached
*root
, pgoff_t start
, pgoff_t end
)
353 struct vm_area_struct
*vma
;
356 * end == 0 indicates that the entire range after
357 * start should be unmapped.
359 vma_interval_tree_foreach(vma
, root
, start
, end
? end
: ULONG_MAX
) {
360 unsigned long v_offset
;
364 * Can the expression below overflow on 32-bit arches?
365 * No, because the interval tree returns us only those vmas
366 * which overlap the truncated area starting at pgoff,
367 * and no vma on a 32-bit arch can span beyond the 4GB.
369 if (vma
->vm_pgoff
< start
)
370 v_offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
377 v_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
)
379 if (v_end
> vma
->vm_end
)
383 unmap_hugepage_range(vma
, vma
->vm_start
+ v_offset
, v_end
,
389 * remove_inode_hugepages handles two distinct cases: truncation and hole
390 * punch. There are subtle differences in operation for each case.
392 * truncation is indicated by end of range being LLONG_MAX
393 * In this case, we first scan the range and release found pages.
394 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
395 * maps and global counts. Page faults can not race with truncation
396 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents
397 * page faults in the truncated range by checking i_size. i_size is
398 * modified while holding i_mmap_rwsem.
399 * hole punch is indicated if end is not LLONG_MAX
400 * In the hole punch case we scan the range and release found pages.
401 * Only when releasing a page is the associated region/reserv map
402 * deleted. The region/reserv map for ranges without associated
403 * pages are not modified. Page faults can race with hole punch.
404 * This is indicated if we find a mapped page.
405 * Note: If the passed end of range value is beyond the end of file, but
406 * not LLONG_MAX this routine still performs a hole punch operation.
408 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
411 struct hstate
*h
= hstate_inode(inode
);
412 struct address_space
*mapping
= &inode
->i_data
;
413 const pgoff_t start
= lstart
>> huge_page_shift(h
);
414 const pgoff_t end
= lend
>> huge_page_shift(h
);
415 struct vm_area_struct pseudo_vma
;
419 bool truncate_op
= (lend
== LLONG_MAX
);
421 vma_init(&pseudo_vma
, current
->mm
);
422 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
427 * When no more pages are found, we are done.
429 if (!pagevec_lookup_range(&pvec
, mapping
, &next
, end
- 1))
432 for (i
= 0; i
< pagevec_count(&pvec
); ++i
) {
433 struct page
*page
= pvec
.pages
[i
];
437 hash
= hugetlb_fault_mutex_hash(mapping
, index
);
440 * Only need to hold the fault mutex in the
441 * hole punch case. This prevents races with
442 * page faults. Races are not possible in the
443 * case of truncation.
445 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
449 * If page is mapped, it was faulted in after being
450 * unmapped in caller. Unmap (again) now after taking
451 * the fault mutex. The mutex will prevent faults
452 * until we finish removing the page.
454 * This race can only happen in the hole punch case.
455 * Getting here in a truncate operation is a bug.
457 if (unlikely(page_mapped(page
))) {
460 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
461 i_mmap_lock_write(mapping
);
462 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
463 hugetlb_vmdelete_list(&mapping
->i_mmap
,
464 index
* pages_per_huge_page(h
),
465 (index
+ 1) * pages_per_huge_page(h
));
466 i_mmap_unlock_write(mapping
);
471 * We must free the huge page and remove from page
472 * cache (remove_huge_page) BEFORE removing the
473 * region/reserve map (hugetlb_unreserve_pages). In
474 * rare out of memory conditions, removal of the
475 * region/reserve map could fail. Correspondingly,
476 * the subpool and global reserve usage count can need
479 VM_BUG_ON(PagePrivate(page
));
480 remove_huge_page(page
);
483 if (unlikely(hugetlb_unreserve_pages(inode
,
484 index
, index
+ 1, 1)))
485 hugetlb_fix_reserve_counts(inode
);
490 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
492 huge_pagevec_release(&pvec
);
497 (void)hugetlb_unreserve_pages(inode
, start
, LONG_MAX
, freed
);
500 static void hugetlbfs_evict_inode(struct inode
*inode
)
502 struct resv_map
*resv_map
;
504 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
507 * Get the resv_map from the address space embedded in the inode.
508 * This is the address space which points to any resv_map allocated
509 * at inode creation time. If this is a device special inode,
510 * i_mapping may not point to the original address space.
512 resv_map
= (struct resv_map
*)(&inode
->i_data
)->private_data
;
513 /* Only regular and link inodes have associated reserve maps */
515 resv_map_release(&resv_map
->refs
);
519 static int hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
522 struct address_space
*mapping
= inode
->i_mapping
;
523 struct hstate
*h
= hstate_inode(inode
);
525 BUG_ON(offset
& ~huge_page_mask(h
));
526 pgoff
= offset
>> PAGE_SHIFT
;
528 i_mmap_lock_write(mapping
);
529 i_size_write(inode
, offset
);
530 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
531 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0);
532 i_mmap_unlock_write(mapping
);
533 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
537 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
539 struct hstate
*h
= hstate_inode(inode
);
540 loff_t hpage_size
= huge_page_size(h
);
541 loff_t hole_start
, hole_end
;
544 * For hole punch round up the beginning offset of the hole and
545 * round down the end.
547 hole_start
= round_up(offset
, hpage_size
);
548 hole_end
= round_down(offset
+ len
, hpage_size
);
550 if (hole_end
> hole_start
) {
551 struct address_space
*mapping
= inode
->i_mapping
;
552 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
556 /* protected by i_mutex */
557 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
)) {
562 i_mmap_lock_write(mapping
);
563 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
564 hugetlb_vmdelete_list(&mapping
->i_mmap
,
565 hole_start
>> PAGE_SHIFT
,
566 hole_end
>> PAGE_SHIFT
);
567 i_mmap_unlock_write(mapping
);
568 remove_inode_hugepages(inode
, hole_start
, hole_end
);
575 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
578 struct inode
*inode
= file_inode(file
);
579 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
580 struct address_space
*mapping
= inode
->i_mapping
;
581 struct hstate
*h
= hstate_inode(inode
);
582 struct vm_area_struct pseudo_vma
;
583 struct mm_struct
*mm
= current
->mm
;
584 loff_t hpage_size
= huge_page_size(h
);
585 unsigned long hpage_shift
= huge_page_shift(h
);
586 pgoff_t start
, index
, end
;
590 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
593 if (mode
& FALLOC_FL_PUNCH_HOLE
)
594 return hugetlbfs_punch_hole(inode
, offset
, len
);
597 * Default preallocate case.
598 * For this range, start is rounded down and end is rounded up
599 * as well as being converted to page offsets.
601 start
= offset
>> hpage_shift
;
602 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
606 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
607 error
= inode_newsize_ok(inode
, offset
+ len
);
611 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
617 * Initialize a pseudo vma as this is required by the huge page
618 * allocation routines. If NUMA is configured, use page index
619 * as input to create an allocation policy.
621 vma_init(&pseudo_vma
, mm
);
622 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
623 pseudo_vma
.vm_file
= file
;
625 for (index
= start
; index
< end
; index
++) {
627 * This is supposed to be the vaddr where the page is being
628 * faulted in, but we have no vaddr here.
632 int avoid_reserve
= 0;
637 * fallocate(2) manpage permits EINTR; we may have been
638 * interrupted because we are using up too much memory.
640 if (signal_pending(current
)) {
645 /* Set numa allocation policy based on index */
646 hugetlb_set_vma_policy(&pseudo_vma
, inode
, index
);
648 /* addr is the offset within the file (zero based) */
649 addr
= index
* hpage_size
;
652 * fault mutex taken here, protects against fault path
653 * and hole punch. inode_lock previously taken protects
654 * against truncation.
656 hash
= hugetlb_fault_mutex_hash(mapping
, index
);
657 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
659 /* See if already present in mapping to avoid alloc/free */
660 page
= find_get_page(mapping
, index
);
663 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
664 hugetlb_drop_vma_policy(&pseudo_vma
);
668 /* Allocate page and add to page cache */
669 page
= alloc_huge_page(&pseudo_vma
, addr
, avoid_reserve
);
670 hugetlb_drop_vma_policy(&pseudo_vma
);
672 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
673 error
= PTR_ERR(page
);
676 clear_huge_page(page
, addr
, pages_per_huge_page(h
));
677 __SetPageUptodate(page
);
678 error
= huge_add_to_page_cache(page
, mapping
, index
);
679 if (unlikely(error
)) {
681 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
685 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
688 * unlock_page because locked by add_to_page_cache()
689 * page_put due to reference from alloc_huge_page()
695 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
696 i_size_write(inode
, offset
+ len
);
697 inode
->i_ctime
= current_time(inode
);
703 static int hugetlbfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
705 struct inode
*inode
= d_inode(dentry
);
706 struct hstate
*h
= hstate_inode(inode
);
708 unsigned int ia_valid
= attr
->ia_valid
;
709 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
713 error
= setattr_prepare(dentry
, attr
);
717 if (ia_valid
& ATTR_SIZE
) {
718 loff_t oldsize
= inode
->i_size
;
719 loff_t newsize
= attr
->ia_size
;
721 if (newsize
& ~huge_page_mask(h
))
723 /* protected by i_mutex */
724 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
725 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
727 error
= hugetlb_vmtruncate(inode
, newsize
);
732 setattr_copy(inode
, attr
);
733 mark_inode_dirty(inode
);
737 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
738 struct hugetlbfs_fs_context
*ctx
)
742 inode
= new_inode(sb
);
744 inode
->i_ino
= get_next_ino();
745 inode
->i_mode
= S_IFDIR
| ctx
->mode
;
746 inode
->i_uid
= ctx
->uid
;
747 inode
->i_gid
= ctx
->gid
;
748 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
749 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
750 inode
->i_fop
= &simple_dir_operations
;
751 /* directory inodes start off with i_nlink == 2 (for "." entry) */
753 lockdep_annotate_inode_mutex_key(inode
);
759 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
760 * be taken from reclaim -- unlike regular filesystems. This needs an
761 * annotation because huge_pmd_share() does an allocation under hugetlb's
764 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
766 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
768 umode_t mode
, dev_t dev
)
771 struct resv_map
*resv_map
= NULL
;
774 * Reserve maps are only needed for inodes that can have associated
777 if (S_ISREG(mode
) || S_ISLNK(mode
)) {
778 resv_map
= resv_map_alloc();
783 inode
= new_inode(sb
);
785 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
787 inode
->i_ino
= get_next_ino();
788 inode_init_owner(inode
, dir
, mode
);
789 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
790 &hugetlbfs_i_mmap_rwsem_key
);
791 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
792 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
793 inode
->i_mapping
->private_data
= resv_map
;
794 info
->seals
= F_SEAL_SEAL
;
795 switch (mode
& S_IFMT
) {
797 init_special_inode(inode
, mode
, dev
);
800 inode
->i_op
= &hugetlbfs_inode_operations
;
801 inode
->i_fop
= &hugetlbfs_file_operations
;
804 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
805 inode
->i_fop
= &simple_dir_operations
;
807 /* directory inodes start off with i_nlink == 2 (for "." entry) */
811 inode
->i_op
= &page_symlink_inode_operations
;
812 inode_nohighmem(inode
);
815 lockdep_annotate_inode_mutex_key(inode
);
818 kref_put(&resv_map
->refs
, resv_map_release
);
825 * File creation. Allocate an inode, and we're done..
827 static int do_hugetlbfs_mknod(struct inode
*dir
,
828 struct dentry
*dentry
,
836 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, mode
, dev
);
838 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
840 d_tmpfile(dentry
, inode
);
842 d_instantiate(dentry
, inode
);
843 dget(dentry
);/* Extra count - pin the dentry in core */
850 static int hugetlbfs_mknod(struct inode
*dir
,
851 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
853 return do_hugetlbfs_mknod(dir
, dentry
, mode
, dev
, false);
856 static int hugetlbfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
858 int retval
= hugetlbfs_mknod(dir
, dentry
, mode
| S_IFDIR
, 0);
864 static int hugetlbfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, bool excl
)
866 return hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
869 static int hugetlbfs_tmpfile(struct inode
*dir
,
870 struct dentry
*dentry
, umode_t mode
)
872 return do_hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0, true);
875 static int hugetlbfs_symlink(struct inode
*dir
,
876 struct dentry
*dentry
, const char *symname
)
881 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0);
883 int l
= strlen(symname
)+1;
884 error
= page_symlink(inode
, symname
, l
);
886 d_instantiate(dentry
, inode
);
891 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
897 * mark the head page dirty
899 static int hugetlbfs_set_page_dirty(struct page
*page
)
901 struct page
*head
= compound_head(page
);
907 static int hugetlbfs_migrate_page(struct address_space
*mapping
,
908 struct page
*newpage
, struct page
*page
,
909 enum migrate_mode mode
)
913 rc
= migrate_huge_page_move_mapping(mapping
, newpage
, page
);
914 if (rc
!= MIGRATEPAGE_SUCCESS
)
918 * page_private is subpool pointer in hugetlb pages. Transfer to
919 * new page. PagePrivate is not associated with page_private for
920 * hugetlb pages and can not be set here as only page_huge_active
921 * pages can be migrated.
923 if (page_private(page
)) {
924 set_page_private(newpage
, page_private(page
));
925 set_page_private(page
, 0);
928 if (mode
!= MIGRATE_SYNC_NO_COPY
)
929 migrate_page_copy(newpage
, page
);
931 migrate_page_states(newpage
, page
);
933 return MIGRATEPAGE_SUCCESS
;
936 static int hugetlbfs_error_remove_page(struct address_space
*mapping
,
939 struct inode
*inode
= mapping
->host
;
940 pgoff_t index
= page
->index
;
942 remove_huge_page(page
);
943 if (unlikely(hugetlb_unreserve_pages(inode
, index
, index
+ 1, 1)))
944 hugetlb_fix_reserve_counts(inode
);
950 * Display the mount options in /proc/mounts.
952 static int hugetlbfs_show_options(struct seq_file
*m
, struct dentry
*root
)
954 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(root
->d_sb
);
955 struct hugepage_subpool
*spool
= sbinfo
->spool
;
956 unsigned long hpage_size
= huge_page_size(sbinfo
->hstate
);
957 unsigned hpage_shift
= huge_page_shift(sbinfo
->hstate
);
960 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
961 seq_printf(m
, ",uid=%u",
962 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
963 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
964 seq_printf(m
, ",gid=%u",
965 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
966 if (sbinfo
->mode
!= 0755)
967 seq_printf(m
, ",mode=%o", sbinfo
->mode
);
968 if (sbinfo
->max_inodes
!= -1)
969 seq_printf(m
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
973 if (hpage_size
>= 1024) {
977 seq_printf(m
, ",pagesize=%lu%c", hpage_size
, mod
);
979 if (spool
->max_hpages
!= -1)
980 seq_printf(m
, ",size=%llu",
981 (unsigned long long)spool
->max_hpages
<< hpage_shift
);
982 if (spool
->min_hpages
!= -1)
983 seq_printf(m
, ",min_size=%llu",
984 (unsigned long long)spool
->min_hpages
<< hpage_shift
);
989 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
991 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
992 struct hstate
*h
= hstate_inode(d_inode(dentry
));
994 buf
->f_type
= HUGETLBFS_MAGIC
;
995 buf
->f_bsize
= huge_page_size(h
);
997 spin_lock(&sbinfo
->stat_lock
);
998 /* If no limits set, just report 0 for max/free/used
999 * blocks, like simple_statfs() */
1000 if (sbinfo
->spool
) {
1003 spin_lock(&sbinfo
->spool
->lock
);
1004 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
1005 free_pages
= sbinfo
->spool
->max_hpages
1006 - sbinfo
->spool
->used_hpages
;
1007 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
1008 spin_unlock(&sbinfo
->spool
->lock
);
1009 buf
->f_files
= sbinfo
->max_inodes
;
1010 buf
->f_ffree
= sbinfo
->free_inodes
;
1012 spin_unlock(&sbinfo
->stat_lock
);
1014 buf
->f_namelen
= NAME_MAX
;
1018 static void hugetlbfs_put_super(struct super_block
*sb
)
1020 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
1023 sb
->s_fs_info
= NULL
;
1026 hugepage_put_subpool(sbi
->spool
);
1032 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1034 if (sbinfo
->free_inodes
>= 0) {
1035 spin_lock(&sbinfo
->stat_lock
);
1036 if (unlikely(!sbinfo
->free_inodes
)) {
1037 spin_unlock(&sbinfo
->stat_lock
);
1040 sbinfo
->free_inodes
--;
1041 spin_unlock(&sbinfo
->stat_lock
);
1047 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1049 if (sbinfo
->free_inodes
>= 0) {
1050 spin_lock(&sbinfo
->stat_lock
);
1051 sbinfo
->free_inodes
++;
1052 spin_unlock(&sbinfo
->stat_lock
);
1057 static struct kmem_cache
*hugetlbfs_inode_cachep
;
1059 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
1061 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
1062 struct hugetlbfs_inode_info
*p
;
1064 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
1066 p
= kmem_cache_alloc(hugetlbfs_inode_cachep
, GFP_KERNEL
);
1068 hugetlbfs_inc_free_inodes(sbinfo
);
1073 * Any time after allocation, hugetlbfs_destroy_inode can be called
1074 * for the inode. mpol_free_shared_policy is unconditionally called
1075 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1076 * in case of a quick call to destroy.
1078 * Note that the policy is initialized even if we are creating a
1079 * private inode. This simplifies hugetlbfs_destroy_inode.
1081 mpol_shared_policy_init(&p
->policy
, NULL
);
1083 return &p
->vfs_inode
;
1086 static void hugetlbfs_free_inode(struct inode
*inode
)
1088 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
1091 static void hugetlbfs_destroy_inode(struct inode
*inode
)
1093 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
1094 mpol_free_shared_policy(&HUGETLBFS_I(inode
)->policy
);
1097 static const struct address_space_operations hugetlbfs_aops
= {
1098 .write_begin
= hugetlbfs_write_begin
,
1099 .write_end
= hugetlbfs_write_end
,
1100 .set_page_dirty
= hugetlbfs_set_page_dirty
,
1101 .migratepage
= hugetlbfs_migrate_page
,
1102 .error_remove_page
= hugetlbfs_error_remove_page
,
1106 static void init_once(void *foo
)
1108 struct hugetlbfs_inode_info
*ei
= (struct hugetlbfs_inode_info
*)foo
;
1110 inode_init_once(&ei
->vfs_inode
);
1113 const struct file_operations hugetlbfs_file_operations
= {
1114 .read_iter
= hugetlbfs_read_iter
,
1115 .mmap
= hugetlbfs_file_mmap
,
1116 .fsync
= noop_fsync
,
1117 .get_unmapped_area
= hugetlb_get_unmapped_area
,
1118 .llseek
= default_llseek
,
1119 .fallocate
= hugetlbfs_fallocate
,
1122 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
1123 .create
= hugetlbfs_create
,
1124 .lookup
= simple_lookup
,
1125 .link
= simple_link
,
1126 .unlink
= simple_unlink
,
1127 .symlink
= hugetlbfs_symlink
,
1128 .mkdir
= hugetlbfs_mkdir
,
1129 .rmdir
= simple_rmdir
,
1130 .mknod
= hugetlbfs_mknod
,
1131 .rename
= simple_rename
,
1132 .setattr
= hugetlbfs_setattr
,
1133 .tmpfile
= hugetlbfs_tmpfile
,
1136 static const struct inode_operations hugetlbfs_inode_operations
= {
1137 .setattr
= hugetlbfs_setattr
,
1140 static const struct super_operations hugetlbfs_ops
= {
1141 .alloc_inode
= hugetlbfs_alloc_inode
,
1142 .free_inode
= hugetlbfs_free_inode
,
1143 .destroy_inode
= hugetlbfs_destroy_inode
,
1144 .evict_inode
= hugetlbfs_evict_inode
,
1145 .statfs
= hugetlbfs_statfs
,
1146 .put_super
= hugetlbfs_put_super
,
1147 .show_options
= hugetlbfs_show_options
,
1151 * Convert size option passed from command line to number of huge pages
1152 * in the pool specified by hstate. Size option could be in bytes
1153 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1156 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1157 enum hugetlbfs_size_type val_type
)
1159 if (val_type
== NO_SIZE
)
1162 if (val_type
== SIZE_PERCENT
) {
1163 size_opt
<<= huge_page_shift(h
);
1164 size_opt
*= h
->max_huge_pages
;
1165 do_div(size_opt
, 100);
1168 size_opt
>>= huge_page_shift(h
);
1173 * Parse one mount parameter.
1175 static int hugetlbfs_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1177 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1178 struct fs_parse_result result
;
1183 opt
= fs_parse(fc
, hugetlb_fs_parameters
, param
, &result
);
1189 ctx
->uid
= make_kuid(current_user_ns(), result
.uint_32
);
1190 if (!uid_valid(ctx
->uid
))
1195 ctx
->gid
= make_kgid(current_user_ns(), result
.uint_32
);
1196 if (!gid_valid(ctx
->gid
))
1201 ctx
->mode
= result
.uint_32
& 01777U;
1205 /* memparse() will accept a K/M/G without a digit */
1206 if (!isdigit(param
->string
[0]))
1208 ctx
->max_size_opt
= memparse(param
->string
, &rest
);
1209 ctx
->max_val_type
= SIZE_STD
;
1211 ctx
->max_val_type
= SIZE_PERCENT
;
1215 /* memparse() will accept a K/M/G without a digit */
1216 if (!isdigit(param
->string
[0]))
1218 ctx
->nr_inodes
= memparse(param
->string
, &rest
);
1222 ps
= memparse(param
->string
, &rest
);
1223 ctx
->hstate
= size_to_hstate(ps
);
1225 pr_err("Unsupported page size %lu MB\n", ps
>> 20);
1231 /* memparse() will accept a K/M/G without a digit */
1232 if (!isdigit(param
->string
[0]))
1234 ctx
->min_size_opt
= memparse(param
->string
, &rest
);
1235 ctx
->min_val_type
= SIZE_STD
;
1237 ctx
->min_val_type
= SIZE_PERCENT
;
1245 return invalfc(fc
, "Bad value '%s' for mount option '%s'\n",
1246 param
->string
, param
->key
);
1250 * Validate the parsed options.
1252 static int hugetlbfs_validate(struct fs_context
*fc
)
1254 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1257 * Use huge page pool size (in hstate) to convert the size
1258 * options to number of huge pages. If NO_SIZE, -1 is returned.
1260 ctx
->max_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1263 ctx
->min_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1268 * If max_size was specified, then min_size must be smaller
1270 if (ctx
->max_val_type
> NO_SIZE
&&
1271 ctx
->min_hpages
> ctx
->max_hpages
) {
1272 pr_err("Minimum size can not be greater than maximum size\n");
1280 hugetlbfs_fill_super(struct super_block
*sb
, struct fs_context
*fc
)
1282 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1283 struct hugetlbfs_sb_info
*sbinfo
;
1285 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1288 sb
->s_fs_info
= sbinfo
;
1289 spin_lock_init(&sbinfo
->stat_lock
);
1290 sbinfo
->hstate
= ctx
->hstate
;
1291 sbinfo
->max_inodes
= ctx
->nr_inodes
;
1292 sbinfo
->free_inodes
= ctx
->nr_inodes
;
1293 sbinfo
->spool
= NULL
;
1294 sbinfo
->uid
= ctx
->uid
;
1295 sbinfo
->gid
= ctx
->gid
;
1296 sbinfo
->mode
= ctx
->mode
;
1299 * Allocate and initialize subpool if maximum or minimum size is
1300 * specified. Any needed reservations (for minimim size) are taken
1301 * taken when the subpool is created.
1303 if (ctx
->max_hpages
!= -1 || ctx
->min_hpages
!= -1) {
1304 sbinfo
->spool
= hugepage_new_subpool(ctx
->hstate
,
1310 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1311 sb
->s_blocksize
= huge_page_size(ctx
->hstate
);
1312 sb
->s_blocksize_bits
= huge_page_shift(ctx
->hstate
);
1313 sb
->s_magic
= HUGETLBFS_MAGIC
;
1314 sb
->s_op
= &hugetlbfs_ops
;
1315 sb
->s_time_gran
= 1;
1316 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, ctx
));
1321 kfree(sbinfo
->spool
);
1326 static int hugetlbfs_get_tree(struct fs_context
*fc
)
1328 int err
= hugetlbfs_validate(fc
);
1331 return get_tree_nodev(fc
, hugetlbfs_fill_super
);
1334 static void hugetlbfs_fs_context_free(struct fs_context
*fc
)
1336 kfree(fc
->fs_private
);
1339 static const struct fs_context_operations hugetlbfs_fs_context_ops
= {
1340 .free
= hugetlbfs_fs_context_free
,
1341 .parse_param
= hugetlbfs_parse_param
,
1342 .get_tree
= hugetlbfs_get_tree
,
1345 static int hugetlbfs_init_fs_context(struct fs_context
*fc
)
1347 struct hugetlbfs_fs_context
*ctx
;
1349 ctx
= kzalloc(sizeof(struct hugetlbfs_fs_context
), GFP_KERNEL
);
1353 ctx
->max_hpages
= -1; /* No limit on size by default */
1354 ctx
->nr_inodes
= -1; /* No limit on number of inodes by default */
1355 ctx
->uid
= current_fsuid();
1356 ctx
->gid
= current_fsgid();
1358 ctx
->hstate
= &default_hstate
;
1359 ctx
->min_hpages
= -1; /* No default minimum size */
1360 ctx
->max_val_type
= NO_SIZE
;
1361 ctx
->min_val_type
= NO_SIZE
;
1362 fc
->fs_private
= ctx
;
1363 fc
->ops
= &hugetlbfs_fs_context_ops
;
1367 static struct file_system_type hugetlbfs_fs_type
= {
1368 .name
= "hugetlbfs",
1369 .init_fs_context
= hugetlbfs_init_fs_context
,
1370 .parameters
= hugetlb_fs_parameters
,
1371 .kill_sb
= kill_litter_super
,
1374 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1376 static int can_do_hugetlb_shm(void)
1379 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1380 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1383 static int get_hstate_idx(int page_size_log
)
1385 struct hstate
*h
= hstate_sizelog(page_size_log
);
1393 * Note that size should be aligned to proper hugepage size in caller side,
1394 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1396 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1397 vm_flags_t acctflag
, struct user_struct
**user
,
1398 int creat_flags
, int page_size_log
)
1400 struct inode
*inode
;
1401 struct vfsmount
*mnt
;
1405 hstate_idx
= get_hstate_idx(page_size_log
);
1407 return ERR_PTR(-ENODEV
);
1410 mnt
= hugetlbfs_vfsmount
[hstate_idx
];
1412 return ERR_PTR(-ENOENT
);
1414 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1415 *user
= current_user();
1416 if (user_shm_lock(size
, *user
)) {
1418 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1419 current
->comm
, current
->pid
);
1420 task_unlock(current
);
1423 return ERR_PTR(-EPERM
);
1427 file
= ERR_PTR(-ENOSPC
);
1428 inode
= hugetlbfs_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0);
1431 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1432 inode
->i_flags
|= S_PRIVATE
;
1434 inode
->i_size
= size
;
1437 if (hugetlb_reserve_pages(inode
, 0,
1438 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1440 file
= ERR_PTR(-ENOMEM
);
1442 file
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
1443 &hugetlbfs_file_operations
);
1450 user_shm_unlock(size
, *user
);
1456 static struct vfsmount
*__init
mount_one_hugetlbfs(struct hstate
*h
)
1458 struct fs_context
*fc
;
1459 struct vfsmount
*mnt
;
1461 fc
= fs_context_for_mount(&hugetlbfs_fs_type
, SB_KERNMOUNT
);
1465 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1471 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1472 1U << (h
->order
+ PAGE_SHIFT
- 10));
1476 static int __init
init_hugetlbfs_fs(void)
1478 struct vfsmount
*mnt
;
1483 if (!hugepages_supported()) {
1484 pr_info("disabling because there are no supported hugepage sizes\n");
1489 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1490 sizeof(struct hugetlbfs_inode_info
),
1491 0, SLAB_ACCOUNT
, init_once
);
1492 if (hugetlbfs_inode_cachep
== NULL
)
1495 error
= register_filesystem(&hugetlbfs_fs_type
);
1499 /* default hstate mount is required */
1500 mnt
= mount_one_hugetlbfs(&hstates
[default_hstate_idx
]);
1502 error
= PTR_ERR(mnt
);
1505 hugetlbfs_vfsmount
[default_hstate_idx
] = mnt
;
1507 /* other hstates are optional */
1509 for_each_hstate(h
) {
1510 if (i
== default_hstate_idx
) {
1515 mnt
= mount_one_hugetlbfs(h
);
1517 hugetlbfs_vfsmount
[i
] = NULL
;
1519 hugetlbfs_vfsmount
[i
] = mnt
;
1526 (void)unregister_filesystem(&hugetlbfs_fs_type
);
1528 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1532 fs_initcall(init_hugetlbfs_fs
)