Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / fs / jbd2 / journal.c
blobe4944436e733d01611504502455d24147fa1f2ce
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
99 static int jbd2_journal_create_slab(size_t slab_size);
101 #ifdef CONFIG_JBD2_DEBUG
102 void __jbd2_debug(int level, const char *file, const char *func,
103 unsigned int line, const char *fmt, ...)
105 struct va_format vaf;
106 va_list args;
108 if (level > jbd2_journal_enable_debug)
109 return;
110 va_start(args, fmt);
111 vaf.fmt = fmt;
112 vaf.va = &args;
113 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
114 va_end(args);
116 EXPORT_SYMBOL(__jbd2_debug);
117 #endif
119 /* Checksumming functions */
120 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
122 if (!jbd2_journal_has_csum_v2or3_feature(j))
123 return 1;
125 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
130 __u32 csum;
131 __be32 old_csum;
133 old_csum = sb->s_checksum;
134 sb->s_checksum = 0;
135 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
136 sb->s_checksum = old_csum;
138 return cpu_to_be32(csum);
142 * Helper function used to manage commit timeouts
145 static void commit_timeout(struct timer_list *t)
147 journal_t *journal = from_timer(journal, t, j_commit_timer);
149 wake_up_process(journal->j_task);
153 * kjournald2: The main thread function used to manage a logging device
154 * journal.
156 * This kernel thread is responsible for two things:
158 * 1) COMMIT: Every so often we need to commit the current state of the
159 * filesystem to disk. The journal thread is responsible for writing
160 * all of the metadata buffers to disk.
162 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
163 * of the data in that part of the log has been rewritten elsewhere on
164 * the disk. Flushing these old buffers to reclaim space in the log is
165 * known as checkpointing, and this thread is responsible for that job.
168 static int kjournald2(void *arg)
170 journal_t *journal = arg;
171 transaction_t *transaction;
174 * Set up an interval timer which can be used to trigger a commit wakeup
175 * after the commit interval expires
177 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
179 set_freezable();
181 /* Record that the journal thread is running */
182 journal->j_task = current;
183 wake_up(&journal->j_wait_done_commit);
186 * Make sure that no allocations from this kernel thread will ever
187 * recurse to the fs layer because we are responsible for the
188 * transaction commit and any fs involvement might get stuck waiting for
189 * the trasn. commit.
191 memalloc_nofs_save();
194 * And now, wait forever for commit wakeup events.
196 write_lock(&journal->j_state_lock);
198 loop:
199 if (journal->j_flags & JBD2_UNMOUNT)
200 goto end_loop;
202 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
203 journal->j_commit_sequence, journal->j_commit_request);
205 if (journal->j_commit_sequence != journal->j_commit_request) {
206 jbd_debug(1, "OK, requests differ\n");
207 write_unlock(&journal->j_state_lock);
208 del_timer_sync(&journal->j_commit_timer);
209 jbd2_journal_commit_transaction(journal);
210 write_lock(&journal->j_state_lock);
211 goto loop;
214 wake_up(&journal->j_wait_done_commit);
215 if (freezing(current)) {
217 * The simpler the better. Flushing journal isn't a
218 * good idea, because that depends on threads that may
219 * be already stopped.
221 jbd_debug(1, "Now suspending kjournald2\n");
222 write_unlock(&journal->j_state_lock);
223 try_to_freeze();
224 write_lock(&journal->j_state_lock);
225 } else {
227 * We assume on resume that commits are already there,
228 * so we don't sleep
230 DEFINE_WAIT(wait);
231 int should_sleep = 1;
233 prepare_to_wait(&journal->j_wait_commit, &wait,
234 TASK_INTERRUPTIBLE);
235 if (journal->j_commit_sequence != journal->j_commit_request)
236 should_sleep = 0;
237 transaction = journal->j_running_transaction;
238 if (transaction && time_after_eq(jiffies,
239 transaction->t_expires))
240 should_sleep = 0;
241 if (journal->j_flags & JBD2_UNMOUNT)
242 should_sleep = 0;
243 if (should_sleep) {
244 write_unlock(&journal->j_state_lock);
245 schedule();
246 write_lock(&journal->j_state_lock);
248 finish_wait(&journal->j_wait_commit, &wait);
251 jbd_debug(1, "kjournald2 wakes\n");
254 * Were we woken up by a commit wakeup event?
256 transaction = journal->j_running_transaction;
257 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
258 journal->j_commit_request = transaction->t_tid;
259 jbd_debug(1, "woke because of timeout\n");
261 goto loop;
263 end_loop:
264 del_timer_sync(&journal->j_commit_timer);
265 journal->j_task = NULL;
266 wake_up(&journal->j_wait_done_commit);
267 jbd_debug(1, "Journal thread exiting.\n");
268 write_unlock(&journal->j_state_lock);
269 return 0;
272 static int jbd2_journal_start_thread(journal_t *journal)
274 struct task_struct *t;
276 t = kthread_run(kjournald2, journal, "jbd2/%s",
277 journal->j_devname);
278 if (IS_ERR(t))
279 return PTR_ERR(t);
281 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
282 return 0;
285 static void journal_kill_thread(journal_t *journal)
287 write_lock(&journal->j_state_lock);
288 journal->j_flags |= JBD2_UNMOUNT;
290 while (journal->j_task) {
291 write_unlock(&journal->j_state_lock);
292 wake_up(&journal->j_wait_commit);
293 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
294 write_lock(&journal->j_state_lock);
296 write_unlock(&journal->j_state_lock);
300 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302 * Writes a metadata buffer to a given disk block. The actual IO is not
303 * performed but a new buffer_head is constructed which labels the data
304 * to be written with the correct destination disk block.
306 * Any magic-number escaping which needs to be done will cause a
307 * copy-out here. If the buffer happens to start with the
308 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
309 * magic number is only written to the log for descripter blocks. In
310 * this case, we copy the data and replace the first word with 0, and we
311 * return a result code which indicates that this buffer needs to be
312 * marked as an escaped buffer in the corresponding log descriptor
313 * block. The missing word can then be restored when the block is read
314 * during recovery.
316 * If the source buffer has already been modified by a new transaction
317 * since we took the last commit snapshot, we use the frozen copy of
318 * that data for IO. If we end up using the existing buffer_head's data
319 * for the write, then we have to make sure nobody modifies it while the
320 * IO is in progress. do_get_write_access() handles this.
322 * The function returns a pointer to the buffer_head to be used for IO.
325 * Return value:
326 * <0: Error
327 * >=0: Finished OK
329 * On success:
330 * Bit 0 set == escape performed on the data
331 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
335 struct journal_head *jh_in,
336 struct buffer_head **bh_out,
337 sector_t blocknr)
339 int need_copy_out = 0;
340 int done_copy_out = 0;
341 int do_escape = 0;
342 char *mapped_data;
343 struct buffer_head *new_bh;
344 struct page *new_page;
345 unsigned int new_offset;
346 struct buffer_head *bh_in = jh2bh(jh_in);
347 journal_t *journal = transaction->t_journal;
350 * The buffer really shouldn't be locked: only the current committing
351 * transaction is allowed to write it, so nobody else is allowed
352 * to do any IO.
354 * akpm: except if we're journalling data, and write() output is
355 * also part of a shared mapping, and another thread has
356 * decided to launch a writepage() against this buffer.
358 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
360 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
362 /* keep subsequent assertions sane */
363 atomic_set(&new_bh->b_count, 1);
365 spin_lock(&jh_in->b_state_lock);
366 repeat:
368 * If a new transaction has already done a buffer copy-out, then
369 * we use that version of the data for the commit.
371 if (jh_in->b_frozen_data) {
372 done_copy_out = 1;
373 new_page = virt_to_page(jh_in->b_frozen_data);
374 new_offset = offset_in_page(jh_in->b_frozen_data);
375 } else {
376 new_page = jh2bh(jh_in)->b_page;
377 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
380 mapped_data = kmap_atomic(new_page);
382 * Fire data frozen trigger if data already wasn't frozen. Do this
383 * before checking for escaping, as the trigger may modify the magic
384 * offset. If a copy-out happens afterwards, it will have the correct
385 * data in the buffer.
387 if (!done_copy_out)
388 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
389 jh_in->b_triggers);
392 * Check for escaping
394 if (*((__be32 *)(mapped_data + new_offset)) ==
395 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
396 need_copy_out = 1;
397 do_escape = 1;
399 kunmap_atomic(mapped_data);
402 * Do we need to do a data copy?
404 if (need_copy_out && !done_copy_out) {
405 char *tmp;
407 spin_unlock(&jh_in->b_state_lock);
408 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
409 if (!tmp) {
410 brelse(new_bh);
411 return -ENOMEM;
413 spin_lock(&jh_in->b_state_lock);
414 if (jh_in->b_frozen_data) {
415 jbd2_free(tmp, bh_in->b_size);
416 goto repeat;
419 jh_in->b_frozen_data = tmp;
420 mapped_data = kmap_atomic(new_page);
421 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
422 kunmap_atomic(mapped_data);
424 new_page = virt_to_page(tmp);
425 new_offset = offset_in_page(tmp);
426 done_copy_out = 1;
429 * This isn't strictly necessary, as we're using frozen
430 * data for the escaping, but it keeps consistency with
431 * b_frozen_data usage.
433 jh_in->b_frozen_triggers = jh_in->b_triggers;
437 * Did we need to do an escaping? Now we've done all the
438 * copying, we can finally do so.
440 if (do_escape) {
441 mapped_data = kmap_atomic(new_page);
442 *((unsigned int *)(mapped_data + new_offset)) = 0;
443 kunmap_atomic(mapped_data);
446 set_bh_page(new_bh, new_page, new_offset);
447 new_bh->b_size = bh_in->b_size;
448 new_bh->b_bdev = journal->j_dev;
449 new_bh->b_blocknr = blocknr;
450 new_bh->b_private = bh_in;
451 set_buffer_mapped(new_bh);
452 set_buffer_dirty(new_bh);
454 *bh_out = new_bh;
457 * The to-be-written buffer needs to get moved to the io queue,
458 * and the original buffer whose contents we are shadowing or
459 * copying is moved to the transaction's shadow queue.
461 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
462 spin_lock(&journal->j_list_lock);
463 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
464 spin_unlock(&journal->j_list_lock);
465 set_buffer_shadow(bh_in);
466 spin_unlock(&jh_in->b_state_lock);
468 return do_escape | (done_copy_out << 1);
472 * Allocation code for the journal file. Manage the space left in the
473 * journal, so that we can begin checkpointing when appropriate.
477 * Called with j_state_lock locked for writing.
478 * Returns true if a transaction commit was started.
480 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 /* Return if the txn has already requested to be committed */
483 if (journal->j_commit_request == target)
484 return 0;
487 * The only transaction we can possibly wait upon is the
488 * currently running transaction (if it exists). Otherwise,
489 * the target tid must be an old one.
491 if (journal->j_running_transaction &&
492 journal->j_running_transaction->t_tid == target) {
494 * We want a new commit: OK, mark the request and wakeup the
495 * commit thread. We do _not_ do the commit ourselves.
498 journal->j_commit_request = target;
499 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
500 journal->j_commit_request,
501 journal->j_commit_sequence);
502 journal->j_running_transaction->t_requested = jiffies;
503 wake_up(&journal->j_wait_commit);
504 return 1;
505 } else if (!tid_geq(journal->j_commit_request, target))
506 /* This should never happen, but if it does, preserve
507 the evidence before kjournald goes into a loop and
508 increments j_commit_sequence beyond all recognition. */
509 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
510 journal->j_commit_request,
511 journal->j_commit_sequence,
512 target, journal->j_running_transaction ?
513 journal->j_running_transaction->t_tid : 0);
514 return 0;
517 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
519 int ret;
521 write_lock(&journal->j_state_lock);
522 ret = __jbd2_log_start_commit(journal, tid);
523 write_unlock(&journal->j_state_lock);
524 return ret;
528 * Force and wait any uncommitted transactions. We can only force the running
529 * transaction if we don't have an active handle, otherwise, we will deadlock.
530 * Returns: <0 in case of error,
531 * 0 if nothing to commit,
532 * 1 if transaction was successfully committed.
534 static int __jbd2_journal_force_commit(journal_t *journal)
536 transaction_t *transaction = NULL;
537 tid_t tid;
538 int need_to_start = 0, ret = 0;
540 read_lock(&journal->j_state_lock);
541 if (journal->j_running_transaction && !current->journal_info) {
542 transaction = journal->j_running_transaction;
543 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
544 need_to_start = 1;
545 } else if (journal->j_committing_transaction)
546 transaction = journal->j_committing_transaction;
548 if (!transaction) {
549 /* Nothing to commit */
550 read_unlock(&journal->j_state_lock);
551 return 0;
553 tid = transaction->t_tid;
554 read_unlock(&journal->j_state_lock);
555 if (need_to_start)
556 jbd2_log_start_commit(journal, tid);
557 ret = jbd2_log_wait_commit(journal, tid);
558 if (!ret)
559 ret = 1;
561 return ret;
565 * Force and wait upon a commit if the calling process is not within
566 * transaction. This is used for forcing out undo-protected data which contains
567 * bitmaps, when the fs is running out of space.
569 * @journal: journal to force
570 * Returns true if progress was made.
572 int jbd2_journal_force_commit_nested(journal_t *journal)
574 int ret;
576 ret = __jbd2_journal_force_commit(journal);
577 return ret > 0;
581 * int journal_force_commit() - force any uncommitted transactions
582 * @journal: journal to force
584 * Caller want unconditional commit. We can only force the running transaction
585 * if we don't have an active handle, otherwise, we will deadlock.
587 int jbd2_journal_force_commit(journal_t *journal)
589 int ret;
591 J_ASSERT(!current->journal_info);
592 ret = __jbd2_journal_force_commit(journal);
593 if (ret > 0)
594 ret = 0;
595 return ret;
599 * Start a commit of the current running transaction (if any). Returns true
600 * if a transaction is going to be committed (or is currently already
601 * committing), and fills its tid in at *ptid
603 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
605 int ret = 0;
607 write_lock(&journal->j_state_lock);
608 if (journal->j_running_transaction) {
609 tid_t tid = journal->j_running_transaction->t_tid;
611 __jbd2_log_start_commit(journal, tid);
612 /* There's a running transaction and we've just made sure
613 * it's commit has been scheduled. */
614 if (ptid)
615 *ptid = tid;
616 ret = 1;
617 } else if (journal->j_committing_transaction) {
619 * If commit has been started, then we have to wait for
620 * completion of that transaction.
622 if (ptid)
623 *ptid = journal->j_committing_transaction->t_tid;
624 ret = 1;
626 write_unlock(&journal->j_state_lock);
627 return ret;
631 * Return 1 if a given transaction has not yet sent barrier request
632 * connected with a transaction commit. If 0 is returned, transaction
633 * may or may not have sent the barrier. Used to avoid sending barrier
634 * twice in common cases.
636 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
638 int ret = 0;
639 transaction_t *commit_trans;
641 if (!(journal->j_flags & JBD2_BARRIER))
642 return 0;
643 read_lock(&journal->j_state_lock);
644 /* Transaction already committed? */
645 if (tid_geq(journal->j_commit_sequence, tid))
646 goto out;
647 commit_trans = journal->j_committing_transaction;
648 if (!commit_trans || commit_trans->t_tid != tid) {
649 ret = 1;
650 goto out;
653 * Transaction is being committed and we already proceeded to
654 * submitting a flush to fs partition?
656 if (journal->j_fs_dev != journal->j_dev) {
657 if (!commit_trans->t_need_data_flush ||
658 commit_trans->t_state >= T_COMMIT_DFLUSH)
659 goto out;
660 } else {
661 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
662 goto out;
664 ret = 1;
665 out:
666 read_unlock(&journal->j_state_lock);
667 return ret;
669 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
672 * Wait for a specified commit to complete.
673 * The caller may not hold the journal lock.
675 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
677 int err = 0;
679 read_lock(&journal->j_state_lock);
680 #ifdef CONFIG_PROVE_LOCKING
682 * Some callers make sure transaction is already committing and in that
683 * case we cannot block on open handles anymore. So don't warn in that
684 * case.
686 if (tid_gt(tid, journal->j_commit_sequence) &&
687 (!journal->j_committing_transaction ||
688 journal->j_committing_transaction->t_tid != tid)) {
689 read_unlock(&journal->j_state_lock);
690 jbd2_might_wait_for_commit(journal);
691 read_lock(&journal->j_state_lock);
693 #endif
694 #ifdef CONFIG_JBD2_DEBUG
695 if (!tid_geq(journal->j_commit_request, tid)) {
696 printk(KERN_ERR
697 "%s: error: j_commit_request=%u, tid=%u\n",
698 __func__, journal->j_commit_request, tid);
700 #endif
701 while (tid_gt(tid, journal->j_commit_sequence)) {
702 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
703 tid, journal->j_commit_sequence);
704 read_unlock(&journal->j_state_lock);
705 wake_up(&journal->j_wait_commit);
706 wait_event(journal->j_wait_done_commit,
707 !tid_gt(tid, journal->j_commit_sequence));
708 read_lock(&journal->j_state_lock);
710 read_unlock(&journal->j_state_lock);
712 if (unlikely(is_journal_aborted(journal)))
713 err = -EIO;
714 return err;
717 /* Return 1 when transaction with given tid has already committed. */
718 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
720 int ret = 1;
722 read_lock(&journal->j_state_lock);
723 if (journal->j_running_transaction &&
724 journal->j_running_transaction->t_tid == tid)
725 ret = 0;
726 if (journal->j_committing_transaction &&
727 journal->j_committing_transaction->t_tid == tid)
728 ret = 0;
729 read_unlock(&journal->j_state_lock);
730 return ret;
732 EXPORT_SYMBOL(jbd2_transaction_committed);
735 * When this function returns the transaction corresponding to tid
736 * will be completed. If the transaction has currently running, start
737 * committing that transaction before waiting for it to complete. If
738 * the transaction id is stale, it is by definition already completed,
739 * so just return SUCCESS.
741 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
743 int need_to_wait = 1;
745 read_lock(&journal->j_state_lock);
746 if (journal->j_running_transaction &&
747 journal->j_running_transaction->t_tid == tid) {
748 if (journal->j_commit_request != tid) {
749 /* transaction not yet started, so request it */
750 read_unlock(&journal->j_state_lock);
751 jbd2_log_start_commit(journal, tid);
752 goto wait_commit;
754 } else if (!(journal->j_committing_transaction &&
755 journal->j_committing_transaction->t_tid == tid))
756 need_to_wait = 0;
757 read_unlock(&journal->j_state_lock);
758 if (!need_to_wait)
759 return 0;
760 wait_commit:
761 return jbd2_log_wait_commit(journal, tid);
763 EXPORT_SYMBOL(jbd2_complete_transaction);
766 * Log buffer allocation routines:
769 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
771 unsigned long blocknr;
773 write_lock(&journal->j_state_lock);
774 J_ASSERT(journal->j_free > 1);
776 blocknr = journal->j_head;
777 journal->j_head++;
778 journal->j_free--;
779 if (journal->j_head == journal->j_last)
780 journal->j_head = journal->j_first;
781 write_unlock(&journal->j_state_lock);
782 return jbd2_journal_bmap(journal, blocknr, retp);
786 * Conversion of logical to physical block numbers for the journal
788 * On external journals the journal blocks are identity-mapped, so
789 * this is a no-op. If needed, we can use j_blk_offset - everything is
790 * ready.
792 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
793 unsigned long long *retp)
795 int err = 0;
796 unsigned long long ret;
797 sector_t block = 0;
799 if (journal->j_inode) {
800 block = blocknr;
801 ret = bmap(journal->j_inode, &block);
803 if (ret || !block) {
804 printk(KERN_ALERT "%s: journal block not found "
805 "at offset %lu on %s\n",
806 __func__, blocknr, journal->j_devname);
807 err = -EIO;
808 jbd2_journal_abort(journal, err);
809 } else {
810 *retp = block;
813 } else {
814 *retp = blocknr; /* +journal->j_blk_offset */
816 return err;
820 * We play buffer_head aliasing tricks to write data/metadata blocks to
821 * the journal without copying their contents, but for journal
822 * descriptor blocks we do need to generate bona fide buffers.
824 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
825 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
826 * But we don't bother doing that, so there will be coherency problems with
827 * mmaps of blockdevs which hold live JBD-controlled filesystems.
829 struct buffer_head *
830 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
832 journal_t *journal = transaction->t_journal;
833 struct buffer_head *bh;
834 unsigned long long blocknr;
835 journal_header_t *header;
836 int err;
838 err = jbd2_journal_next_log_block(journal, &blocknr);
840 if (err)
841 return NULL;
843 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
844 if (!bh)
845 return NULL;
846 atomic_dec(&transaction->t_outstanding_credits);
847 lock_buffer(bh);
848 memset(bh->b_data, 0, journal->j_blocksize);
849 header = (journal_header_t *)bh->b_data;
850 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
851 header->h_blocktype = cpu_to_be32(type);
852 header->h_sequence = cpu_to_be32(transaction->t_tid);
853 set_buffer_uptodate(bh);
854 unlock_buffer(bh);
855 BUFFER_TRACE(bh, "return this buffer");
856 return bh;
859 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
861 struct jbd2_journal_block_tail *tail;
862 __u32 csum;
864 if (!jbd2_journal_has_csum_v2or3(j))
865 return;
867 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
868 sizeof(struct jbd2_journal_block_tail));
869 tail->t_checksum = 0;
870 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
871 tail->t_checksum = cpu_to_be32(csum);
875 * Return tid of the oldest transaction in the journal and block in the journal
876 * where the transaction starts.
878 * If the journal is now empty, return which will be the next transaction ID
879 * we will write and where will that transaction start.
881 * The return value is 0 if journal tail cannot be pushed any further, 1 if
882 * it can.
884 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
885 unsigned long *block)
887 transaction_t *transaction;
888 int ret;
890 read_lock(&journal->j_state_lock);
891 spin_lock(&journal->j_list_lock);
892 transaction = journal->j_checkpoint_transactions;
893 if (transaction) {
894 *tid = transaction->t_tid;
895 *block = transaction->t_log_start;
896 } else if ((transaction = journal->j_committing_transaction) != NULL) {
897 *tid = transaction->t_tid;
898 *block = transaction->t_log_start;
899 } else if ((transaction = journal->j_running_transaction) != NULL) {
900 *tid = transaction->t_tid;
901 *block = journal->j_head;
902 } else {
903 *tid = journal->j_transaction_sequence;
904 *block = journal->j_head;
906 ret = tid_gt(*tid, journal->j_tail_sequence);
907 spin_unlock(&journal->j_list_lock);
908 read_unlock(&journal->j_state_lock);
910 return ret;
914 * Update information in journal structure and in on disk journal superblock
915 * about log tail. This function does not check whether information passed in
916 * really pushes log tail further. It's responsibility of the caller to make
917 * sure provided log tail information is valid (e.g. by holding
918 * j_checkpoint_mutex all the time between computing log tail and calling this
919 * function as is the case with jbd2_cleanup_journal_tail()).
921 * Requires j_checkpoint_mutex
923 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
925 unsigned long freed;
926 int ret;
928 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
931 * We cannot afford for write to remain in drive's caches since as
932 * soon as we update j_tail, next transaction can start reusing journal
933 * space and if we lose sb update during power failure we'd replay
934 * old transaction with possibly newly overwritten data.
936 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
937 REQ_SYNC | REQ_FUA);
938 if (ret)
939 goto out;
941 write_lock(&journal->j_state_lock);
942 freed = block - journal->j_tail;
943 if (block < journal->j_tail)
944 freed += journal->j_last - journal->j_first;
946 trace_jbd2_update_log_tail(journal, tid, block, freed);
947 jbd_debug(1,
948 "Cleaning journal tail from %u to %u (offset %lu), "
949 "freeing %lu\n",
950 journal->j_tail_sequence, tid, block, freed);
952 journal->j_free += freed;
953 journal->j_tail_sequence = tid;
954 journal->j_tail = block;
955 write_unlock(&journal->j_state_lock);
957 out:
958 return ret;
962 * This is a variation of __jbd2_update_log_tail which checks for validity of
963 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
964 * with other threads updating log tail.
966 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
968 mutex_lock_io(&journal->j_checkpoint_mutex);
969 if (tid_gt(tid, journal->j_tail_sequence))
970 __jbd2_update_log_tail(journal, tid, block);
971 mutex_unlock(&journal->j_checkpoint_mutex);
974 struct jbd2_stats_proc_session {
975 journal_t *journal;
976 struct transaction_stats_s *stats;
977 int start;
978 int max;
981 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
983 return *pos ? NULL : SEQ_START_TOKEN;
986 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
988 (*pos)++;
989 return NULL;
992 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
994 struct jbd2_stats_proc_session *s = seq->private;
996 if (v != SEQ_START_TOKEN)
997 return 0;
998 seq_printf(seq, "%lu transactions (%lu requested), "
999 "each up to %u blocks\n",
1000 s->stats->ts_tid, s->stats->ts_requested,
1001 s->journal->j_max_transaction_buffers);
1002 if (s->stats->ts_tid == 0)
1003 return 0;
1004 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1005 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1006 seq_printf(seq, " %ums request delay\n",
1007 (s->stats->ts_requested == 0) ? 0 :
1008 jiffies_to_msecs(s->stats->run.rs_request_delay /
1009 s->stats->ts_requested));
1010 seq_printf(seq, " %ums running transaction\n",
1011 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1012 seq_printf(seq, " %ums transaction was being locked\n",
1013 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1014 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1015 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1016 seq_printf(seq, " %ums logging transaction\n",
1017 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1018 seq_printf(seq, " %lluus average transaction commit time\n",
1019 div_u64(s->journal->j_average_commit_time, 1000));
1020 seq_printf(seq, " %lu handles per transaction\n",
1021 s->stats->run.rs_handle_count / s->stats->ts_tid);
1022 seq_printf(seq, " %lu blocks per transaction\n",
1023 s->stats->run.rs_blocks / s->stats->ts_tid);
1024 seq_printf(seq, " %lu logged blocks per transaction\n",
1025 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1026 return 0;
1029 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1033 static const struct seq_operations jbd2_seq_info_ops = {
1034 .start = jbd2_seq_info_start,
1035 .next = jbd2_seq_info_next,
1036 .stop = jbd2_seq_info_stop,
1037 .show = jbd2_seq_info_show,
1040 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1042 journal_t *journal = PDE_DATA(inode);
1043 struct jbd2_stats_proc_session *s;
1044 int rc, size;
1046 s = kmalloc(sizeof(*s), GFP_KERNEL);
1047 if (s == NULL)
1048 return -ENOMEM;
1049 size = sizeof(struct transaction_stats_s);
1050 s->stats = kmalloc(size, GFP_KERNEL);
1051 if (s->stats == NULL) {
1052 kfree(s);
1053 return -ENOMEM;
1055 spin_lock(&journal->j_history_lock);
1056 memcpy(s->stats, &journal->j_stats, size);
1057 s->journal = journal;
1058 spin_unlock(&journal->j_history_lock);
1060 rc = seq_open(file, &jbd2_seq_info_ops);
1061 if (rc == 0) {
1062 struct seq_file *m = file->private_data;
1063 m->private = s;
1064 } else {
1065 kfree(s->stats);
1066 kfree(s);
1068 return rc;
1072 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1074 struct seq_file *seq = file->private_data;
1075 struct jbd2_stats_proc_session *s = seq->private;
1076 kfree(s->stats);
1077 kfree(s);
1078 return seq_release(inode, file);
1081 static const struct proc_ops jbd2_info_proc_ops = {
1082 .proc_open = jbd2_seq_info_open,
1083 .proc_read = seq_read,
1084 .proc_lseek = seq_lseek,
1085 .proc_release = jbd2_seq_info_release,
1088 static struct proc_dir_entry *proc_jbd2_stats;
1090 static void jbd2_stats_proc_init(journal_t *journal)
1092 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1093 if (journal->j_proc_entry) {
1094 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1095 &jbd2_info_proc_ops, journal);
1099 static void jbd2_stats_proc_exit(journal_t *journal)
1101 remove_proc_entry("info", journal->j_proc_entry);
1102 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1105 /* Minimum size of descriptor tag */
1106 static int jbd2_min_tag_size(void)
1109 * Tag with 32-bit block numbers does not use last four bytes of the
1110 * structure
1112 return sizeof(journal_block_tag_t) - 4;
1116 * Management for journal control blocks: functions to create and
1117 * destroy journal_t structures, and to initialise and read existing
1118 * journal blocks from disk. */
1120 /* First: create and setup a journal_t object in memory. We initialise
1121 * very few fields yet: that has to wait until we have created the
1122 * journal structures from from scratch, or loaded them from disk. */
1124 static journal_t *journal_init_common(struct block_device *bdev,
1125 struct block_device *fs_dev,
1126 unsigned long long start, int len, int blocksize)
1128 static struct lock_class_key jbd2_trans_commit_key;
1129 journal_t *journal;
1130 int err;
1131 struct buffer_head *bh;
1132 int n;
1134 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1135 if (!journal)
1136 return NULL;
1138 init_waitqueue_head(&journal->j_wait_transaction_locked);
1139 init_waitqueue_head(&journal->j_wait_done_commit);
1140 init_waitqueue_head(&journal->j_wait_commit);
1141 init_waitqueue_head(&journal->j_wait_updates);
1142 init_waitqueue_head(&journal->j_wait_reserved);
1143 mutex_init(&journal->j_abort_mutex);
1144 mutex_init(&journal->j_barrier);
1145 mutex_init(&journal->j_checkpoint_mutex);
1146 spin_lock_init(&journal->j_revoke_lock);
1147 spin_lock_init(&journal->j_list_lock);
1148 rwlock_init(&journal->j_state_lock);
1150 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1151 journal->j_min_batch_time = 0;
1152 journal->j_max_batch_time = 15000; /* 15ms */
1153 atomic_set(&journal->j_reserved_credits, 0);
1155 /* The journal is marked for error until we succeed with recovery! */
1156 journal->j_flags = JBD2_ABORT;
1158 /* Set up a default-sized revoke table for the new mount. */
1159 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1160 if (err)
1161 goto err_cleanup;
1163 spin_lock_init(&journal->j_history_lock);
1165 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1166 &jbd2_trans_commit_key, 0);
1168 /* journal descriptor can store up to n blocks -bzzz */
1169 journal->j_blocksize = blocksize;
1170 journal->j_dev = bdev;
1171 journal->j_fs_dev = fs_dev;
1172 journal->j_blk_offset = start;
1173 journal->j_maxlen = len;
1174 /* We need enough buffers to write out full descriptor block. */
1175 n = journal->j_blocksize / jbd2_min_tag_size();
1176 journal->j_wbufsize = n;
1177 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1178 GFP_KERNEL);
1179 if (!journal->j_wbuf)
1180 goto err_cleanup;
1182 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1183 if (!bh) {
1184 pr_err("%s: Cannot get buffer for journal superblock\n",
1185 __func__);
1186 goto err_cleanup;
1188 journal->j_sb_buffer = bh;
1189 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1191 return journal;
1193 err_cleanup:
1194 kfree(journal->j_wbuf);
1195 jbd2_journal_destroy_revoke(journal);
1196 kfree(journal);
1197 return NULL;
1200 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1202 * Create a journal structure assigned some fixed set of disk blocks to
1203 * the journal. We don't actually touch those disk blocks yet, but we
1204 * need to set up all of the mapping information to tell the journaling
1205 * system where the journal blocks are.
1210 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1211 * @bdev: Block device on which to create the journal
1212 * @fs_dev: Device which hold journalled filesystem for this journal.
1213 * @start: Block nr Start of journal.
1214 * @len: Length of the journal in blocks.
1215 * @blocksize: blocksize of journalling device
1217 * Returns: a newly created journal_t *
1219 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1220 * range of blocks on an arbitrary block device.
1223 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1224 struct block_device *fs_dev,
1225 unsigned long long start, int len, int blocksize)
1227 journal_t *journal;
1229 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1230 if (!journal)
1231 return NULL;
1233 bdevname(journal->j_dev, journal->j_devname);
1234 strreplace(journal->j_devname, '/', '!');
1235 jbd2_stats_proc_init(journal);
1237 return journal;
1241 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1242 * @inode: An inode to create the journal in
1244 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1245 * the journal. The inode must exist already, must support bmap() and
1246 * must have all data blocks preallocated.
1248 journal_t *jbd2_journal_init_inode(struct inode *inode)
1250 journal_t *journal;
1251 sector_t blocknr;
1252 char *p;
1253 int err = 0;
1255 blocknr = 0;
1256 err = bmap(inode, &blocknr);
1258 if (err || !blocknr) {
1259 pr_err("%s: Cannot locate journal superblock\n",
1260 __func__);
1261 return NULL;
1264 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1265 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1266 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1268 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1269 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1270 inode->i_sb->s_blocksize);
1271 if (!journal)
1272 return NULL;
1274 journal->j_inode = inode;
1275 bdevname(journal->j_dev, journal->j_devname);
1276 p = strreplace(journal->j_devname, '/', '!');
1277 sprintf(p, "-%lu", journal->j_inode->i_ino);
1278 jbd2_stats_proc_init(journal);
1280 return journal;
1284 * If the journal init or create aborts, we need to mark the journal
1285 * superblock as being NULL to prevent the journal destroy from writing
1286 * back a bogus superblock.
1288 static void journal_fail_superblock (journal_t *journal)
1290 struct buffer_head *bh = journal->j_sb_buffer;
1291 brelse(bh);
1292 journal->j_sb_buffer = NULL;
1296 * Given a journal_t structure, initialise the various fields for
1297 * startup of a new journaling session. We use this both when creating
1298 * a journal, and after recovering an old journal to reset it for
1299 * subsequent use.
1302 static int journal_reset(journal_t *journal)
1304 journal_superblock_t *sb = journal->j_superblock;
1305 unsigned long long first, last;
1307 first = be32_to_cpu(sb->s_first);
1308 last = be32_to_cpu(sb->s_maxlen);
1309 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1310 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1311 first, last);
1312 journal_fail_superblock(journal);
1313 return -EINVAL;
1316 journal->j_first = first;
1317 journal->j_last = last;
1319 journal->j_head = first;
1320 journal->j_tail = first;
1321 journal->j_free = last - first;
1323 journal->j_tail_sequence = journal->j_transaction_sequence;
1324 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1325 journal->j_commit_request = journal->j_commit_sequence;
1327 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1330 * As a special case, if the on-disk copy is already marked as needing
1331 * no recovery (s_start == 0), then we can safely defer the superblock
1332 * update until the next commit by setting JBD2_FLUSHED. This avoids
1333 * attempting a write to a potential-readonly device.
1335 if (sb->s_start == 0) {
1336 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1337 "(start %ld, seq %u, errno %d)\n",
1338 journal->j_tail, journal->j_tail_sequence,
1339 journal->j_errno);
1340 journal->j_flags |= JBD2_FLUSHED;
1341 } else {
1342 /* Lock here to make assertions happy... */
1343 mutex_lock_io(&journal->j_checkpoint_mutex);
1345 * Update log tail information. We use REQ_FUA since new
1346 * transaction will start reusing journal space and so we
1347 * must make sure information about current log tail is on
1348 * disk before that.
1350 jbd2_journal_update_sb_log_tail(journal,
1351 journal->j_tail_sequence,
1352 journal->j_tail,
1353 REQ_SYNC | REQ_FUA);
1354 mutex_unlock(&journal->j_checkpoint_mutex);
1356 return jbd2_journal_start_thread(journal);
1360 * This function expects that the caller will have locked the journal
1361 * buffer head, and will return with it unlocked
1363 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1365 struct buffer_head *bh = journal->j_sb_buffer;
1366 journal_superblock_t *sb = journal->j_superblock;
1367 int ret;
1369 /* Buffer got discarded which means block device got invalidated */
1370 if (!buffer_mapped(bh))
1371 return -EIO;
1373 trace_jbd2_write_superblock(journal, write_flags);
1374 if (!(journal->j_flags & JBD2_BARRIER))
1375 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1376 if (buffer_write_io_error(bh)) {
1378 * Oh, dear. A previous attempt to write the journal
1379 * superblock failed. This could happen because the
1380 * USB device was yanked out. Or it could happen to
1381 * be a transient write error and maybe the block will
1382 * be remapped. Nothing we can do but to retry the
1383 * write and hope for the best.
1385 printk(KERN_ERR "JBD2: previous I/O error detected "
1386 "for journal superblock update for %s.\n",
1387 journal->j_devname);
1388 clear_buffer_write_io_error(bh);
1389 set_buffer_uptodate(bh);
1391 if (jbd2_journal_has_csum_v2or3(journal))
1392 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1393 get_bh(bh);
1394 bh->b_end_io = end_buffer_write_sync;
1395 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1396 wait_on_buffer(bh);
1397 if (buffer_write_io_error(bh)) {
1398 clear_buffer_write_io_error(bh);
1399 set_buffer_uptodate(bh);
1400 ret = -EIO;
1402 if (ret) {
1403 printk(KERN_ERR "JBD2: Error %d detected when updating "
1404 "journal superblock for %s.\n", ret,
1405 journal->j_devname);
1406 if (!is_journal_aborted(journal))
1407 jbd2_journal_abort(journal, ret);
1410 return ret;
1414 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1415 * @journal: The journal to update.
1416 * @tail_tid: TID of the new transaction at the tail of the log
1417 * @tail_block: The first block of the transaction at the tail of the log
1418 * @write_op: With which operation should we write the journal sb
1420 * Update a journal's superblock information about log tail and write it to
1421 * disk, waiting for the IO to complete.
1423 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1424 unsigned long tail_block, int write_op)
1426 journal_superblock_t *sb = journal->j_superblock;
1427 int ret;
1429 if (is_journal_aborted(journal))
1430 return -EIO;
1432 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1433 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1434 tail_block, tail_tid);
1436 lock_buffer(journal->j_sb_buffer);
1437 sb->s_sequence = cpu_to_be32(tail_tid);
1438 sb->s_start = cpu_to_be32(tail_block);
1440 ret = jbd2_write_superblock(journal, write_op);
1441 if (ret)
1442 goto out;
1444 /* Log is no longer empty */
1445 write_lock(&journal->j_state_lock);
1446 WARN_ON(!sb->s_sequence);
1447 journal->j_flags &= ~JBD2_FLUSHED;
1448 write_unlock(&journal->j_state_lock);
1450 out:
1451 return ret;
1455 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1456 * @journal: The journal to update.
1457 * @write_op: With which operation should we write the journal sb
1459 * Update a journal's dynamic superblock fields to show that journal is empty.
1460 * Write updated superblock to disk waiting for IO to complete.
1462 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1464 journal_superblock_t *sb = journal->j_superblock;
1466 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1467 lock_buffer(journal->j_sb_buffer);
1468 if (sb->s_start == 0) { /* Is it already empty? */
1469 unlock_buffer(journal->j_sb_buffer);
1470 return;
1473 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1474 journal->j_tail_sequence);
1476 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1477 sb->s_start = cpu_to_be32(0);
1479 jbd2_write_superblock(journal, write_op);
1481 /* Log is no longer empty */
1482 write_lock(&journal->j_state_lock);
1483 journal->j_flags |= JBD2_FLUSHED;
1484 write_unlock(&journal->j_state_lock);
1489 * jbd2_journal_update_sb_errno() - Update error in the journal.
1490 * @journal: The journal to update.
1492 * Update a journal's errno. Write updated superblock to disk waiting for IO
1493 * to complete.
1495 void jbd2_journal_update_sb_errno(journal_t *journal)
1497 journal_superblock_t *sb = journal->j_superblock;
1498 int errcode;
1500 lock_buffer(journal->j_sb_buffer);
1501 errcode = journal->j_errno;
1502 if (errcode == -ESHUTDOWN)
1503 errcode = 0;
1504 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1505 sb->s_errno = cpu_to_be32(errcode);
1507 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1509 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1511 static int journal_revoke_records_per_block(journal_t *journal)
1513 int record_size;
1514 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1516 if (jbd2_has_feature_64bit(journal))
1517 record_size = 8;
1518 else
1519 record_size = 4;
1521 if (jbd2_journal_has_csum_v2or3(journal))
1522 space -= sizeof(struct jbd2_journal_block_tail);
1523 return space / record_size;
1527 * Read the superblock for a given journal, performing initial
1528 * validation of the format.
1530 static int journal_get_superblock(journal_t *journal)
1532 struct buffer_head *bh;
1533 journal_superblock_t *sb;
1534 int err = -EIO;
1536 bh = journal->j_sb_buffer;
1538 J_ASSERT(bh != NULL);
1539 if (!buffer_uptodate(bh)) {
1540 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1541 wait_on_buffer(bh);
1542 if (!buffer_uptodate(bh)) {
1543 printk(KERN_ERR
1544 "JBD2: IO error reading journal superblock\n");
1545 goto out;
1549 if (buffer_verified(bh))
1550 return 0;
1552 sb = journal->j_superblock;
1554 err = -EINVAL;
1556 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1557 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1558 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1559 goto out;
1562 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1563 case JBD2_SUPERBLOCK_V1:
1564 journal->j_format_version = 1;
1565 break;
1566 case JBD2_SUPERBLOCK_V2:
1567 journal->j_format_version = 2;
1568 break;
1569 default:
1570 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1571 goto out;
1574 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1575 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1576 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1577 printk(KERN_WARNING "JBD2: journal file too short\n");
1578 goto out;
1581 if (be32_to_cpu(sb->s_first) == 0 ||
1582 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1583 printk(KERN_WARNING
1584 "JBD2: Invalid start block of journal: %u\n",
1585 be32_to_cpu(sb->s_first));
1586 goto out;
1589 if (jbd2_has_feature_csum2(journal) &&
1590 jbd2_has_feature_csum3(journal)) {
1591 /* Can't have checksum v2 and v3 at the same time! */
1592 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1593 "at the same time!\n");
1594 goto out;
1597 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1598 jbd2_has_feature_checksum(journal)) {
1599 /* Can't have checksum v1 and v2 on at the same time! */
1600 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1601 "at the same time!\n");
1602 goto out;
1605 if (!jbd2_verify_csum_type(journal, sb)) {
1606 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1607 goto out;
1610 /* Load the checksum driver */
1611 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1612 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1613 if (IS_ERR(journal->j_chksum_driver)) {
1614 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1615 err = PTR_ERR(journal->j_chksum_driver);
1616 journal->j_chksum_driver = NULL;
1617 goto out;
1621 if (jbd2_journal_has_csum_v2or3(journal)) {
1622 /* Check superblock checksum */
1623 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1624 printk(KERN_ERR "JBD2: journal checksum error\n");
1625 err = -EFSBADCRC;
1626 goto out;
1629 /* Precompute checksum seed for all metadata */
1630 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1631 sizeof(sb->s_uuid));
1634 journal->j_revoke_records_per_block =
1635 journal_revoke_records_per_block(journal);
1636 set_buffer_verified(bh);
1638 return 0;
1640 out:
1641 journal_fail_superblock(journal);
1642 return err;
1646 * Load the on-disk journal superblock and read the key fields into the
1647 * journal_t.
1650 static int load_superblock(journal_t *journal)
1652 int err;
1653 journal_superblock_t *sb;
1655 err = journal_get_superblock(journal);
1656 if (err)
1657 return err;
1659 sb = journal->j_superblock;
1661 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1662 journal->j_tail = be32_to_cpu(sb->s_start);
1663 journal->j_first = be32_to_cpu(sb->s_first);
1664 journal->j_last = be32_to_cpu(sb->s_maxlen);
1665 journal->j_errno = be32_to_cpu(sb->s_errno);
1667 return 0;
1672 * int jbd2_journal_load() - Read journal from disk.
1673 * @journal: Journal to act on.
1675 * Given a journal_t structure which tells us which disk blocks contain
1676 * a journal, read the journal from disk to initialise the in-memory
1677 * structures.
1679 int jbd2_journal_load(journal_t *journal)
1681 int err;
1682 journal_superblock_t *sb;
1684 err = load_superblock(journal);
1685 if (err)
1686 return err;
1688 sb = journal->j_superblock;
1689 /* If this is a V2 superblock, then we have to check the
1690 * features flags on it. */
1692 if (journal->j_format_version >= 2) {
1693 if ((sb->s_feature_ro_compat &
1694 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1695 (sb->s_feature_incompat &
1696 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1697 printk(KERN_WARNING
1698 "JBD2: Unrecognised features on journal\n");
1699 return -EINVAL;
1704 * Create a slab for this blocksize
1706 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1707 if (err)
1708 return err;
1710 /* Let the recovery code check whether it needs to recover any
1711 * data from the journal. */
1712 if (jbd2_journal_recover(journal))
1713 goto recovery_error;
1715 if (journal->j_failed_commit) {
1716 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1717 "is corrupt.\n", journal->j_failed_commit,
1718 journal->j_devname);
1719 return -EFSCORRUPTED;
1722 * clear JBD2_ABORT flag initialized in journal_init_common
1723 * here to update log tail information with the newest seq.
1725 journal->j_flags &= ~JBD2_ABORT;
1727 /* OK, we've finished with the dynamic journal bits:
1728 * reinitialise the dynamic contents of the superblock in memory
1729 * and reset them on disk. */
1730 if (journal_reset(journal))
1731 goto recovery_error;
1733 journal->j_flags |= JBD2_LOADED;
1734 return 0;
1736 recovery_error:
1737 printk(KERN_WARNING "JBD2: recovery failed\n");
1738 return -EIO;
1742 * void jbd2_journal_destroy() - Release a journal_t structure.
1743 * @journal: Journal to act on.
1745 * Release a journal_t structure once it is no longer in use by the
1746 * journaled object.
1747 * Return <0 if we couldn't clean up the journal.
1749 int jbd2_journal_destroy(journal_t *journal)
1751 int err = 0;
1753 /* Wait for the commit thread to wake up and die. */
1754 journal_kill_thread(journal);
1756 /* Force a final log commit */
1757 if (journal->j_running_transaction)
1758 jbd2_journal_commit_transaction(journal);
1760 /* Force any old transactions to disk */
1762 /* Totally anal locking here... */
1763 spin_lock(&journal->j_list_lock);
1764 while (journal->j_checkpoint_transactions != NULL) {
1765 spin_unlock(&journal->j_list_lock);
1766 mutex_lock_io(&journal->j_checkpoint_mutex);
1767 err = jbd2_log_do_checkpoint(journal);
1768 mutex_unlock(&journal->j_checkpoint_mutex);
1770 * If checkpointing failed, just free the buffers to avoid
1771 * looping forever
1773 if (err) {
1774 jbd2_journal_destroy_checkpoint(journal);
1775 spin_lock(&journal->j_list_lock);
1776 break;
1778 spin_lock(&journal->j_list_lock);
1781 J_ASSERT(journal->j_running_transaction == NULL);
1782 J_ASSERT(journal->j_committing_transaction == NULL);
1783 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1784 spin_unlock(&journal->j_list_lock);
1786 if (journal->j_sb_buffer) {
1787 if (!is_journal_aborted(journal)) {
1788 mutex_lock_io(&journal->j_checkpoint_mutex);
1790 write_lock(&journal->j_state_lock);
1791 journal->j_tail_sequence =
1792 ++journal->j_transaction_sequence;
1793 write_unlock(&journal->j_state_lock);
1795 jbd2_mark_journal_empty(journal,
1796 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1797 mutex_unlock(&journal->j_checkpoint_mutex);
1798 } else
1799 err = -EIO;
1800 brelse(journal->j_sb_buffer);
1803 if (journal->j_proc_entry)
1804 jbd2_stats_proc_exit(journal);
1805 iput(journal->j_inode);
1806 if (journal->j_revoke)
1807 jbd2_journal_destroy_revoke(journal);
1808 if (journal->j_chksum_driver)
1809 crypto_free_shash(journal->j_chksum_driver);
1810 kfree(journal->j_wbuf);
1811 kfree(journal);
1813 return err;
1818 *int jbd2_journal_check_used_features () - Check if features specified are used.
1819 * @journal: Journal to check.
1820 * @compat: bitmask of compatible features
1821 * @ro: bitmask of features that force read-only mount
1822 * @incompat: bitmask of incompatible features
1824 * Check whether the journal uses all of a given set of
1825 * features. Return true (non-zero) if it does.
1828 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1829 unsigned long ro, unsigned long incompat)
1831 journal_superblock_t *sb;
1833 if (!compat && !ro && !incompat)
1834 return 1;
1835 /* Load journal superblock if it is not loaded yet. */
1836 if (journal->j_format_version == 0 &&
1837 journal_get_superblock(journal) != 0)
1838 return 0;
1839 if (journal->j_format_version == 1)
1840 return 0;
1842 sb = journal->j_superblock;
1844 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1845 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1846 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1847 return 1;
1849 return 0;
1853 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1854 * @journal: Journal to check.
1855 * @compat: bitmask of compatible features
1856 * @ro: bitmask of features that force read-only mount
1857 * @incompat: bitmask of incompatible features
1859 * Check whether the journaling code supports the use of
1860 * all of a given set of features on this journal. Return true
1861 * (non-zero) if it can. */
1863 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1864 unsigned long ro, unsigned long incompat)
1866 if (!compat && !ro && !incompat)
1867 return 1;
1869 /* We can support any known requested features iff the
1870 * superblock is in version 2. Otherwise we fail to support any
1871 * extended sb features. */
1873 if (journal->j_format_version != 2)
1874 return 0;
1876 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1877 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1878 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1879 return 1;
1881 return 0;
1885 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1886 * @journal: Journal to act on.
1887 * @compat: bitmask of compatible features
1888 * @ro: bitmask of features that force read-only mount
1889 * @incompat: bitmask of incompatible features
1891 * Mark a given journal feature as present on the
1892 * superblock. Returns true if the requested features could be set.
1896 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1897 unsigned long ro, unsigned long incompat)
1899 #define INCOMPAT_FEATURE_ON(f) \
1900 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1901 #define COMPAT_FEATURE_ON(f) \
1902 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1903 journal_superblock_t *sb;
1905 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1906 return 1;
1908 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1909 return 0;
1911 /* If enabling v2 checksums, turn on v3 instead */
1912 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1913 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1914 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1917 /* Asking for checksumming v3 and v1? Only give them v3. */
1918 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1919 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1920 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1922 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1923 compat, ro, incompat);
1925 sb = journal->j_superblock;
1927 /* Load the checksum driver if necessary */
1928 if ((journal->j_chksum_driver == NULL) &&
1929 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1930 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1931 if (IS_ERR(journal->j_chksum_driver)) {
1932 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1933 journal->j_chksum_driver = NULL;
1934 return 0;
1936 /* Precompute checksum seed for all metadata */
1937 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1938 sizeof(sb->s_uuid));
1941 lock_buffer(journal->j_sb_buffer);
1943 /* If enabling v3 checksums, update superblock */
1944 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1945 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1946 sb->s_feature_compat &=
1947 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1950 /* If enabling v1 checksums, downgrade superblock */
1951 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1952 sb->s_feature_incompat &=
1953 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1954 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1956 sb->s_feature_compat |= cpu_to_be32(compat);
1957 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1958 sb->s_feature_incompat |= cpu_to_be32(incompat);
1959 unlock_buffer(journal->j_sb_buffer);
1960 journal->j_revoke_records_per_block =
1961 journal_revoke_records_per_block(journal);
1963 return 1;
1964 #undef COMPAT_FEATURE_ON
1965 #undef INCOMPAT_FEATURE_ON
1969 * jbd2_journal_clear_features () - Clear a given journal feature in the
1970 * superblock
1971 * @journal: Journal to act on.
1972 * @compat: bitmask of compatible features
1973 * @ro: bitmask of features that force read-only mount
1974 * @incompat: bitmask of incompatible features
1976 * Clear a given journal feature as present on the
1977 * superblock.
1979 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1980 unsigned long ro, unsigned long incompat)
1982 journal_superblock_t *sb;
1984 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1985 compat, ro, incompat);
1987 sb = journal->j_superblock;
1989 sb->s_feature_compat &= ~cpu_to_be32(compat);
1990 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1991 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1992 journal->j_revoke_records_per_block =
1993 journal_revoke_records_per_block(journal);
1995 EXPORT_SYMBOL(jbd2_journal_clear_features);
1998 * int jbd2_journal_flush () - Flush journal
1999 * @journal: Journal to act on.
2001 * Flush all data for a given journal to disk and empty the journal.
2002 * Filesystems can use this when remounting readonly to ensure that
2003 * recovery does not need to happen on remount.
2006 int jbd2_journal_flush(journal_t *journal)
2008 int err = 0;
2009 transaction_t *transaction = NULL;
2011 write_lock(&journal->j_state_lock);
2013 /* Force everything buffered to the log... */
2014 if (journal->j_running_transaction) {
2015 transaction = journal->j_running_transaction;
2016 __jbd2_log_start_commit(journal, transaction->t_tid);
2017 } else if (journal->j_committing_transaction)
2018 transaction = journal->j_committing_transaction;
2020 /* Wait for the log commit to complete... */
2021 if (transaction) {
2022 tid_t tid = transaction->t_tid;
2024 write_unlock(&journal->j_state_lock);
2025 jbd2_log_wait_commit(journal, tid);
2026 } else {
2027 write_unlock(&journal->j_state_lock);
2030 /* ...and flush everything in the log out to disk. */
2031 spin_lock(&journal->j_list_lock);
2032 while (!err && journal->j_checkpoint_transactions != NULL) {
2033 spin_unlock(&journal->j_list_lock);
2034 mutex_lock_io(&journal->j_checkpoint_mutex);
2035 err = jbd2_log_do_checkpoint(journal);
2036 mutex_unlock(&journal->j_checkpoint_mutex);
2037 spin_lock(&journal->j_list_lock);
2039 spin_unlock(&journal->j_list_lock);
2041 if (is_journal_aborted(journal))
2042 return -EIO;
2044 mutex_lock_io(&journal->j_checkpoint_mutex);
2045 if (!err) {
2046 err = jbd2_cleanup_journal_tail(journal);
2047 if (err < 0) {
2048 mutex_unlock(&journal->j_checkpoint_mutex);
2049 goto out;
2051 err = 0;
2054 /* Finally, mark the journal as really needing no recovery.
2055 * This sets s_start==0 in the underlying superblock, which is
2056 * the magic code for a fully-recovered superblock. Any future
2057 * commits of data to the journal will restore the current
2058 * s_start value. */
2059 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2060 mutex_unlock(&journal->j_checkpoint_mutex);
2061 write_lock(&journal->j_state_lock);
2062 J_ASSERT(!journal->j_running_transaction);
2063 J_ASSERT(!journal->j_committing_transaction);
2064 J_ASSERT(!journal->j_checkpoint_transactions);
2065 J_ASSERT(journal->j_head == journal->j_tail);
2066 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2067 write_unlock(&journal->j_state_lock);
2068 out:
2069 return err;
2073 * int jbd2_journal_wipe() - Wipe journal contents
2074 * @journal: Journal to act on.
2075 * @write: flag (see below)
2077 * Wipe out all of the contents of a journal, safely. This will produce
2078 * a warning if the journal contains any valid recovery information.
2079 * Must be called between journal_init_*() and jbd2_journal_load().
2081 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2082 * we merely suppress recovery.
2085 int jbd2_journal_wipe(journal_t *journal, int write)
2087 int err = 0;
2089 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2091 err = load_superblock(journal);
2092 if (err)
2093 return err;
2095 if (!journal->j_tail)
2096 goto no_recovery;
2098 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2099 write ? "Clearing" : "Ignoring");
2101 err = jbd2_journal_skip_recovery(journal);
2102 if (write) {
2103 /* Lock to make assertions happy... */
2104 mutex_lock_io(&journal->j_checkpoint_mutex);
2105 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2106 mutex_unlock(&journal->j_checkpoint_mutex);
2109 no_recovery:
2110 return err;
2114 * void jbd2_journal_abort () - Shutdown the journal immediately.
2115 * @journal: the journal to shutdown.
2116 * @errno: an error number to record in the journal indicating
2117 * the reason for the shutdown.
2119 * Perform a complete, immediate shutdown of the ENTIRE
2120 * journal (not of a single transaction). This operation cannot be
2121 * undone without closing and reopening the journal.
2123 * The jbd2_journal_abort function is intended to support higher level error
2124 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2125 * mode.
2127 * Journal abort has very specific semantics. Any existing dirty,
2128 * unjournaled buffers in the main filesystem will still be written to
2129 * disk by bdflush, but the journaling mechanism will be suspended
2130 * immediately and no further transaction commits will be honoured.
2132 * Any dirty, journaled buffers will be written back to disk without
2133 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2134 * filesystem, but we _do_ attempt to leave as much data as possible
2135 * behind for fsck to use for cleanup.
2137 * Any attempt to get a new transaction handle on a journal which is in
2138 * ABORT state will just result in an -EROFS error return. A
2139 * jbd2_journal_stop on an existing handle will return -EIO if we have
2140 * entered abort state during the update.
2142 * Recursive transactions are not disturbed by journal abort until the
2143 * final jbd2_journal_stop, which will receive the -EIO error.
2145 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2146 * which will be recorded (if possible) in the journal superblock. This
2147 * allows a client to record failure conditions in the middle of a
2148 * transaction without having to complete the transaction to record the
2149 * failure to disk. ext3_error, for example, now uses this
2150 * functionality.
2154 void jbd2_journal_abort(journal_t *journal, int errno)
2156 transaction_t *transaction;
2159 * Lock the aborting procedure until everything is done, this avoid
2160 * races between filesystem's error handling flow (e.g. ext4_abort()),
2161 * ensure panic after the error info is written into journal's
2162 * superblock.
2164 mutex_lock(&journal->j_abort_mutex);
2166 * ESHUTDOWN always takes precedence because a file system check
2167 * caused by any other journal abort error is not required after
2168 * a shutdown triggered.
2170 write_lock(&journal->j_state_lock);
2171 if (journal->j_flags & JBD2_ABORT) {
2172 int old_errno = journal->j_errno;
2174 write_unlock(&journal->j_state_lock);
2175 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2176 journal->j_errno = errno;
2177 jbd2_journal_update_sb_errno(journal);
2179 mutex_unlock(&journal->j_abort_mutex);
2180 return;
2184 * Mark the abort as occurred and start current running transaction
2185 * to release all journaled buffer.
2187 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2189 journal->j_flags |= JBD2_ABORT;
2190 journal->j_errno = errno;
2191 transaction = journal->j_running_transaction;
2192 if (transaction)
2193 __jbd2_log_start_commit(journal, transaction->t_tid);
2194 write_unlock(&journal->j_state_lock);
2197 * Record errno to the journal super block, so that fsck and jbd2
2198 * layer could realise that a filesystem check is needed.
2200 jbd2_journal_update_sb_errno(journal);
2201 mutex_unlock(&journal->j_abort_mutex);
2205 * int jbd2_journal_errno () - returns the journal's error state.
2206 * @journal: journal to examine.
2208 * This is the errno number set with jbd2_journal_abort(), the last
2209 * time the journal was mounted - if the journal was stopped
2210 * without calling abort this will be 0.
2212 * If the journal has been aborted on this mount time -EROFS will
2213 * be returned.
2215 int jbd2_journal_errno(journal_t *journal)
2217 int err;
2219 read_lock(&journal->j_state_lock);
2220 if (journal->j_flags & JBD2_ABORT)
2221 err = -EROFS;
2222 else
2223 err = journal->j_errno;
2224 read_unlock(&journal->j_state_lock);
2225 return err;
2229 * int jbd2_journal_clear_err () - clears the journal's error state
2230 * @journal: journal to act on.
2232 * An error must be cleared or acked to take a FS out of readonly
2233 * mode.
2235 int jbd2_journal_clear_err(journal_t *journal)
2237 int err = 0;
2239 write_lock(&journal->j_state_lock);
2240 if (journal->j_flags & JBD2_ABORT)
2241 err = -EROFS;
2242 else
2243 journal->j_errno = 0;
2244 write_unlock(&journal->j_state_lock);
2245 return err;
2249 * void jbd2_journal_ack_err() - Ack journal err.
2250 * @journal: journal to act on.
2252 * An error must be cleared or acked to take a FS out of readonly
2253 * mode.
2255 void jbd2_journal_ack_err(journal_t *journal)
2257 write_lock(&journal->j_state_lock);
2258 if (journal->j_errno)
2259 journal->j_flags |= JBD2_ACK_ERR;
2260 write_unlock(&journal->j_state_lock);
2263 int jbd2_journal_blocks_per_page(struct inode *inode)
2265 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2269 * helper functions to deal with 32 or 64bit block numbers.
2271 size_t journal_tag_bytes(journal_t *journal)
2273 size_t sz;
2275 if (jbd2_has_feature_csum3(journal))
2276 return sizeof(journal_block_tag3_t);
2278 sz = sizeof(journal_block_tag_t);
2280 if (jbd2_has_feature_csum2(journal))
2281 sz += sizeof(__u16);
2283 if (jbd2_has_feature_64bit(journal))
2284 return sz;
2285 else
2286 return sz - sizeof(__u32);
2290 * JBD memory management
2292 * These functions are used to allocate block-sized chunks of memory
2293 * used for making copies of buffer_head data. Very often it will be
2294 * page-sized chunks of data, but sometimes it will be in
2295 * sub-page-size chunks. (For example, 16k pages on Power systems
2296 * with a 4k block file system.) For blocks smaller than a page, we
2297 * use a SLAB allocator. There are slab caches for each block size,
2298 * which are allocated at mount time, if necessary, and we only free
2299 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2300 * this reason we don't need to a mutex to protect access to
2301 * jbd2_slab[] allocating or releasing memory; only in
2302 * jbd2_journal_create_slab().
2304 #define JBD2_MAX_SLABS 8
2305 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2307 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2308 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2309 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2313 static void jbd2_journal_destroy_slabs(void)
2315 int i;
2317 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2318 kmem_cache_destroy(jbd2_slab[i]);
2319 jbd2_slab[i] = NULL;
2323 static int jbd2_journal_create_slab(size_t size)
2325 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2326 int i = order_base_2(size) - 10;
2327 size_t slab_size;
2329 if (size == PAGE_SIZE)
2330 return 0;
2332 if (i >= JBD2_MAX_SLABS)
2333 return -EINVAL;
2335 if (unlikely(i < 0))
2336 i = 0;
2337 mutex_lock(&jbd2_slab_create_mutex);
2338 if (jbd2_slab[i]) {
2339 mutex_unlock(&jbd2_slab_create_mutex);
2340 return 0; /* Already created */
2343 slab_size = 1 << (i+10);
2344 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2345 slab_size, 0, NULL);
2346 mutex_unlock(&jbd2_slab_create_mutex);
2347 if (!jbd2_slab[i]) {
2348 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2349 return -ENOMEM;
2351 return 0;
2354 static struct kmem_cache *get_slab(size_t size)
2356 int i = order_base_2(size) - 10;
2358 BUG_ON(i >= JBD2_MAX_SLABS);
2359 if (unlikely(i < 0))
2360 i = 0;
2361 BUG_ON(jbd2_slab[i] == NULL);
2362 return jbd2_slab[i];
2365 void *jbd2_alloc(size_t size, gfp_t flags)
2367 void *ptr;
2369 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2371 if (size < PAGE_SIZE)
2372 ptr = kmem_cache_alloc(get_slab(size), flags);
2373 else
2374 ptr = (void *)__get_free_pages(flags, get_order(size));
2376 /* Check alignment; SLUB has gotten this wrong in the past,
2377 * and this can lead to user data corruption! */
2378 BUG_ON(((unsigned long) ptr) & (size-1));
2380 return ptr;
2383 void jbd2_free(void *ptr, size_t size)
2385 if (size < PAGE_SIZE)
2386 kmem_cache_free(get_slab(size), ptr);
2387 else
2388 free_pages((unsigned long)ptr, get_order(size));
2392 * Journal_head storage management
2394 static struct kmem_cache *jbd2_journal_head_cache;
2395 #ifdef CONFIG_JBD2_DEBUG
2396 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2397 #endif
2399 static int __init jbd2_journal_init_journal_head_cache(void)
2401 J_ASSERT(!jbd2_journal_head_cache);
2402 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2403 sizeof(struct journal_head),
2404 0, /* offset */
2405 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2406 NULL); /* ctor */
2407 if (!jbd2_journal_head_cache) {
2408 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2409 return -ENOMEM;
2411 return 0;
2414 static void jbd2_journal_destroy_journal_head_cache(void)
2416 kmem_cache_destroy(jbd2_journal_head_cache);
2417 jbd2_journal_head_cache = NULL;
2421 * journal_head splicing and dicing
2423 static struct journal_head *journal_alloc_journal_head(void)
2425 struct journal_head *ret;
2427 #ifdef CONFIG_JBD2_DEBUG
2428 atomic_inc(&nr_journal_heads);
2429 #endif
2430 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2431 if (!ret) {
2432 jbd_debug(1, "out of memory for journal_head\n");
2433 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2434 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2435 GFP_NOFS | __GFP_NOFAIL);
2437 if (ret)
2438 spin_lock_init(&ret->b_state_lock);
2439 return ret;
2442 static void journal_free_journal_head(struct journal_head *jh)
2444 #ifdef CONFIG_JBD2_DEBUG
2445 atomic_dec(&nr_journal_heads);
2446 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2447 #endif
2448 kmem_cache_free(jbd2_journal_head_cache, jh);
2452 * A journal_head is attached to a buffer_head whenever JBD has an
2453 * interest in the buffer.
2455 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2456 * is set. This bit is tested in core kernel code where we need to take
2457 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2458 * there.
2460 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2462 * When a buffer has its BH_JBD bit set it is immune from being released by
2463 * core kernel code, mainly via ->b_count.
2465 * A journal_head is detached from its buffer_head when the journal_head's
2466 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2467 * transaction (b_cp_transaction) hold their references to b_jcount.
2469 * Various places in the kernel want to attach a journal_head to a buffer_head
2470 * _before_ attaching the journal_head to a transaction. To protect the
2471 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2472 * journal_head's b_jcount refcount by one. The caller must call
2473 * jbd2_journal_put_journal_head() to undo this.
2475 * So the typical usage would be:
2477 * (Attach a journal_head if needed. Increments b_jcount)
2478 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2479 * ...
2480 * (Get another reference for transaction)
2481 * jbd2_journal_grab_journal_head(bh);
2482 * jh->b_transaction = xxx;
2483 * (Put original reference)
2484 * jbd2_journal_put_journal_head(jh);
2488 * Give a buffer_head a journal_head.
2490 * May sleep.
2492 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2494 struct journal_head *jh;
2495 struct journal_head *new_jh = NULL;
2497 repeat:
2498 if (!buffer_jbd(bh))
2499 new_jh = journal_alloc_journal_head();
2501 jbd_lock_bh_journal_head(bh);
2502 if (buffer_jbd(bh)) {
2503 jh = bh2jh(bh);
2504 } else {
2505 J_ASSERT_BH(bh,
2506 (atomic_read(&bh->b_count) > 0) ||
2507 (bh->b_page && bh->b_page->mapping));
2509 if (!new_jh) {
2510 jbd_unlock_bh_journal_head(bh);
2511 goto repeat;
2514 jh = new_jh;
2515 new_jh = NULL; /* We consumed it */
2516 set_buffer_jbd(bh);
2517 bh->b_private = jh;
2518 jh->b_bh = bh;
2519 get_bh(bh);
2520 BUFFER_TRACE(bh, "added journal_head");
2522 jh->b_jcount++;
2523 jbd_unlock_bh_journal_head(bh);
2524 if (new_jh)
2525 journal_free_journal_head(new_jh);
2526 return bh->b_private;
2530 * Grab a ref against this buffer_head's journal_head. If it ended up not
2531 * having a journal_head, return NULL
2533 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2535 struct journal_head *jh = NULL;
2537 jbd_lock_bh_journal_head(bh);
2538 if (buffer_jbd(bh)) {
2539 jh = bh2jh(bh);
2540 jh->b_jcount++;
2542 jbd_unlock_bh_journal_head(bh);
2543 return jh;
2546 static void __journal_remove_journal_head(struct buffer_head *bh)
2548 struct journal_head *jh = bh2jh(bh);
2550 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2551 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2552 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2553 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2554 J_ASSERT_BH(bh, buffer_jbd(bh));
2555 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2556 BUFFER_TRACE(bh, "remove journal_head");
2558 /* Unlink before dropping the lock */
2559 bh->b_private = NULL;
2560 jh->b_bh = NULL; /* debug, really */
2561 clear_buffer_jbd(bh);
2564 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2566 if (jh->b_frozen_data) {
2567 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2568 jbd2_free(jh->b_frozen_data, b_size);
2570 if (jh->b_committed_data) {
2571 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2572 jbd2_free(jh->b_committed_data, b_size);
2574 journal_free_journal_head(jh);
2578 * Drop a reference on the passed journal_head. If it fell to zero then
2579 * release the journal_head from the buffer_head.
2581 void jbd2_journal_put_journal_head(struct journal_head *jh)
2583 struct buffer_head *bh = jh2bh(jh);
2585 jbd_lock_bh_journal_head(bh);
2586 J_ASSERT_JH(jh, jh->b_jcount > 0);
2587 --jh->b_jcount;
2588 if (!jh->b_jcount) {
2589 __journal_remove_journal_head(bh);
2590 jbd_unlock_bh_journal_head(bh);
2591 journal_release_journal_head(jh, bh->b_size);
2592 __brelse(bh);
2593 } else {
2594 jbd_unlock_bh_journal_head(bh);
2599 * Initialize jbd inode head
2601 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2603 jinode->i_transaction = NULL;
2604 jinode->i_next_transaction = NULL;
2605 jinode->i_vfs_inode = inode;
2606 jinode->i_flags = 0;
2607 jinode->i_dirty_start = 0;
2608 jinode->i_dirty_end = 0;
2609 INIT_LIST_HEAD(&jinode->i_list);
2613 * Function to be called before we start removing inode from memory (i.e.,
2614 * clear_inode() is a fine place to be called from). It removes inode from
2615 * transaction's lists.
2617 void jbd2_journal_release_jbd_inode(journal_t *journal,
2618 struct jbd2_inode *jinode)
2620 if (!journal)
2621 return;
2622 restart:
2623 spin_lock(&journal->j_list_lock);
2624 /* Is commit writing out inode - we have to wait */
2625 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2626 wait_queue_head_t *wq;
2627 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2628 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2629 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2630 spin_unlock(&journal->j_list_lock);
2631 schedule();
2632 finish_wait(wq, &wait.wq_entry);
2633 goto restart;
2636 if (jinode->i_transaction) {
2637 list_del(&jinode->i_list);
2638 jinode->i_transaction = NULL;
2640 spin_unlock(&journal->j_list_lock);
2644 #ifdef CONFIG_PROC_FS
2646 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2648 static void __init jbd2_create_jbd_stats_proc_entry(void)
2650 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2653 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2655 if (proc_jbd2_stats)
2656 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2659 #else
2661 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2662 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2664 #endif
2666 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2668 static int __init jbd2_journal_init_inode_cache(void)
2670 J_ASSERT(!jbd2_inode_cache);
2671 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2672 if (!jbd2_inode_cache) {
2673 pr_emerg("JBD2: failed to create inode cache\n");
2674 return -ENOMEM;
2676 return 0;
2679 static int __init jbd2_journal_init_handle_cache(void)
2681 J_ASSERT(!jbd2_handle_cache);
2682 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2683 if (!jbd2_handle_cache) {
2684 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2685 return -ENOMEM;
2687 return 0;
2690 static void jbd2_journal_destroy_inode_cache(void)
2692 kmem_cache_destroy(jbd2_inode_cache);
2693 jbd2_inode_cache = NULL;
2696 static void jbd2_journal_destroy_handle_cache(void)
2698 kmem_cache_destroy(jbd2_handle_cache);
2699 jbd2_handle_cache = NULL;
2703 * Module startup and shutdown
2706 static int __init journal_init_caches(void)
2708 int ret;
2710 ret = jbd2_journal_init_revoke_record_cache();
2711 if (ret == 0)
2712 ret = jbd2_journal_init_revoke_table_cache();
2713 if (ret == 0)
2714 ret = jbd2_journal_init_journal_head_cache();
2715 if (ret == 0)
2716 ret = jbd2_journal_init_handle_cache();
2717 if (ret == 0)
2718 ret = jbd2_journal_init_inode_cache();
2719 if (ret == 0)
2720 ret = jbd2_journal_init_transaction_cache();
2721 return ret;
2724 static void jbd2_journal_destroy_caches(void)
2726 jbd2_journal_destroy_revoke_record_cache();
2727 jbd2_journal_destroy_revoke_table_cache();
2728 jbd2_journal_destroy_journal_head_cache();
2729 jbd2_journal_destroy_handle_cache();
2730 jbd2_journal_destroy_inode_cache();
2731 jbd2_journal_destroy_transaction_cache();
2732 jbd2_journal_destroy_slabs();
2735 static int __init journal_init(void)
2737 int ret;
2739 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2741 ret = journal_init_caches();
2742 if (ret == 0) {
2743 jbd2_create_jbd_stats_proc_entry();
2744 } else {
2745 jbd2_journal_destroy_caches();
2747 return ret;
2750 static void __exit journal_exit(void)
2752 #ifdef CONFIG_JBD2_DEBUG
2753 int n = atomic_read(&nr_journal_heads);
2754 if (n)
2755 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2756 #endif
2757 jbd2_remove_jbd_stats_proc_entry();
2758 jbd2_journal_destroy_caches();
2761 MODULE_LICENSE("GPL");
2762 module_init(journal_init);
2763 module_exit(journal_exit);