1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file contains functions for finding LEBs for various purposes e.g.
13 * garbage collection. In general, lprops category heaps and lists are used
14 * for fast access, falling back on scanning the LPT as a last resort.
17 #include <linux/sort.h>
21 * struct scan_data - data provided to scan callback functions
22 * @min_space: minimum number of bytes for which to scan
23 * @pick_free: whether it is OK to scan for empty LEBs
24 * @lnum: LEB number found is returned here
25 * @exclude_index: whether to exclude index LEBs
35 * valuable - determine whether LEB properties are valuable.
36 * @c: the UBIFS file-system description object
37 * @lprops: LEB properties
39 * This function return %1 if the LEB properties should be added to the LEB
40 * properties tree in memory. Otherwise %0 is returned.
42 static int valuable(struct ubifs_info
*c
, const struct ubifs_lprops
*lprops
)
44 int n
, cat
= lprops
->flags
& LPROPS_CAT_MASK
;
45 struct ubifs_lpt_heap
*heap
;
49 case LPROPS_DIRTY_IDX
:
51 heap
= &c
->lpt_heap
[cat
- 1];
52 if (heap
->cnt
< heap
->max_cnt
)
54 if (lprops
->free
+ lprops
->dirty
>= c
->dark_wm
)
58 n
= c
->lst
.empty_lebs
+ c
->freeable_cnt
-
59 c
->lst
.taken_empty_lebs
;
72 * scan_for_dirty_cb - dirty space scan callback.
73 * @c: the UBIFS file-system description object
74 * @lprops: LEB properties to scan
75 * @in_tree: whether the LEB properties are in main memory
76 * @data: information passed to and from the caller of the scan
78 * This function returns a code that indicates whether the scan should continue
79 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
80 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
83 static int scan_for_dirty_cb(struct ubifs_info
*c
,
84 const struct ubifs_lprops
*lprops
, int in_tree
,
85 struct scan_data
*data
)
87 int ret
= LPT_SCAN_CONTINUE
;
89 /* Exclude LEBs that are currently in use */
90 if (lprops
->flags
& LPROPS_TAKEN
)
91 return LPT_SCAN_CONTINUE
;
92 /* Determine whether to add these LEB properties to the tree */
93 if (!in_tree
&& valuable(c
, lprops
))
95 /* Exclude LEBs with too little space */
96 if (lprops
->free
+ lprops
->dirty
< data
->min_space
)
98 /* If specified, exclude index LEBs */
99 if (data
->exclude_index
&& lprops
->flags
& LPROPS_INDEX
)
101 /* If specified, exclude empty or freeable LEBs */
102 if (lprops
->free
+ lprops
->dirty
== c
->leb_size
) {
103 if (!data
->pick_free
)
105 /* Exclude LEBs with too little dirty space (unless it is empty) */
106 } else if (lprops
->dirty
< c
->dead_wm
)
108 /* Finally we found space */
109 data
->lnum
= lprops
->lnum
;
110 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
114 * scan_for_dirty - find a data LEB with free space.
115 * @c: the UBIFS file-system description object
116 * @min_space: minimum amount free plus dirty space the returned LEB has to
118 * @pick_free: if it is OK to return a free or freeable LEB
119 * @exclude_index: whether to exclude index LEBs
121 * This function returns a pointer to the LEB properties found or a negative
124 static const struct ubifs_lprops
*scan_for_dirty(struct ubifs_info
*c
,
125 int min_space
, int pick_free
,
128 const struct ubifs_lprops
*lprops
;
129 struct ubifs_lpt_heap
*heap
;
130 struct scan_data data
;
133 /* There may be an LEB with enough dirty space on the free heap */
134 heap
= &c
->lpt_heap
[LPROPS_FREE
- 1];
135 for (i
= 0; i
< heap
->cnt
; i
++) {
136 lprops
= heap
->arr
[i
];
137 if (lprops
->free
+ lprops
->dirty
< min_space
)
139 if (lprops
->dirty
< c
->dead_wm
)
144 * A LEB may have fallen off of the bottom of the dirty heap, and ended
145 * up as uncategorized even though it has enough dirty space for us now,
146 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
147 * can end up as uncategorized because they are kept on lists not
148 * finite-sized heaps.
150 list_for_each_entry(lprops
, &c
->uncat_list
, list
) {
151 if (lprops
->flags
& LPROPS_TAKEN
)
153 if (lprops
->free
+ lprops
->dirty
< min_space
)
155 if (exclude_index
&& (lprops
->flags
& LPROPS_INDEX
))
157 if (lprops
->dirty
< c
->dead_wm
)
161 /* We have looked everywhere in main memory, now scan the flash */
162 if (c
->pnodes_have
>= c
->pnode_cnt
)
163 /* All pnodes are in memory, so skip scan */
164 return ERR_PTR(-ENOSPC
);
165 data
.min_space
= min_space
;
166 data
.pick_free
= pick_free
;
168 data
.exclude_index
= exclude_index
;
169 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
170 (ubifs_lpt_scan_callback
)scan_for_dirty_cb
,
174 ubifs_assert(c
, data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
175 c
->lscan_lnum
= data
.lnum
;
176 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
179 ubifs_assert(c
, lprops
->lnum
== data
.lnum
);
180 ubifs_assert(c
, lprops
->free
+ lprops
->dirty
>= min_space
);
181 ubifs_assert(c
, lprops
->dirty
>= c
->dead_wm
||
183 lprops
->free
+ lprops
->dirty
== c
->leb_size
));
184 ubifs_assert(c
, !(lprops
->flags
& LPROPS_TAKEN
));
185 ubifs_assert(c
, !exclude_index
|| !(lprops
->flags
& LPROPS_INDEX
));
190 * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector.
191 * @c: the UBIFS file-system description object
192 * @ret_lp: LEB properties are returned here on exit
193 * @min_space: minimum amount free plus dirty space the returned LEB has to
195 * @pick_free: controls whether it is OK to pick empty or index LEBs
197 * This function tries to find a dirty logical eraseblock which has at least
198 * @min_space free and dirty space. It prefers to take an LEB from the dirty or
199 * dirty index heap, and it falls-back to LPT scanning if the heaps are empty
200 * or do not have an LEB which satisfies the @min_space criteria.
202 * Note, LEBs which have less than dead watermark of free + dirty space are
203 * never picked by this function.
205 * The additional @pick_free argument controls if this function has to return a
206 * free or freeable LEB if one is present. For example, GC must to set it to %1,
207 * when called from the journal space reservation function, because the
208 * appearance of free space may coincide with the loss of enough dirty space
209 * for GC to succeed anyway.
211 * In contrast, if the Garbage Collector is called from budgeting, it should
212 * just make free space, not return LEBs which are already free or freeable.
214 * In addition @pick_free is set to %2 by the recovery process in order to
215 * recover gc_lnum in which case an index LEB must not be returned.
217 * This function returns zero and the LEB properties of found dirty LEB in case
218 * of success, %-ENOSPC if no dirty LEB was found and a negative error code in
219 * case of other failures. The returned LEB is marked as "taken".
221 int ubifs_find_dirty_leb(struct ubifs_info
*c
, struct ubifs_lprops
*ret_lp
,
222 int min_space
, int pick_free
)
224 int err
= 0, sum
, exclude_index
= pick_free
== 2 ? 1 : 0;
225 const struct ubifs_lprops
*lp
= NULL
, *idx_lp
= NULL
;
226 struct ubifs_lpt_heap
*heap
, *idx_heap
;
231 int lebs
, rsvd_idx_lebs
= 0;
233 spin_lock(&c
->space_lock
);
234 lebs
= c
->lst
.empty_lebs
+ c
->idx_gc_cnt
;
235 lebs
+= c
->freeable_cnt
- c
->lst
.taken_empty_lebs
;
238 * Note, the index may consume more LEBs than have been reserved
239 * for it. It is OK because it might be consolidated by GC.
240 * But if the index takes fewer LEBs than it is reserved for it,
241 * this function must avoid picking those reserved LEBs.
243 if (c
->bi
.min_idx_lebs
>= c
->lst
.idx_lebs
) {
244 rsvd_idx_lebs
= c
->bi
.min_idx_lebs
- c
->lst
.idx_lebs
;
247 spin_unlock(&c
->space_lock
);
249 /* Check if there are enough free LEBs for the index */
250 if (rsvd_idx_lebs
< lebs
) {
251 /* OK, try to find an empty LEB */
252 lp
= ubifs_fast_find_empty(c
);
256 /* Or a freeable LEB */
257 lp
= ubifs_fast_find_freeable(c
);
262 * We cannot pick free/freeable LEBs in the below code.
266 spin_lock(&c
->space_lock
);
267 exclude_index
= (c
->bi
.min_idx_lebs
>= c
->lst
.idx_lebs
);
268 spin_unlock(&c
->space_lock
);
271 /* Look on the dirty and dirty index heaps */
272 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
273 idx_heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
275 if (idx_heap
->cnt
&& !exclude_index
) {
276 idx_lp
= idx_heap
->arr
[0];
277 sum
= idx_lp
->free
+ idx_lp
->dirty
;
279 * Since we reserve thrice as much space for the index than it
280 * actually takes, it does not make sense to pick indexing LEBs
281 * with less than, say, half LEB of dirty space. May be half is
282 * not the optimal boundary - this should be tested and
283 * checked. This boundary should determine how much we use
284 * in-the-gaps to consolidate the index comparing to how much
285 * we use garbage collector to consolidate it. The "half"
286 * criteria just feels to be fine.
288 if (sum
< min_space
|| sum
< c
->half_leb_size
)
294 if (lp
->dirty
+ lp
->free
< min_space
)
298 /* Pick the LEB with most space */
300 if (idx_lp
->free
+ idx_lp
->dirty
>= lp
->free
+ lp
->dirty
)
302 } else if (idx_lp
&& !lp
)
306 ubifs_assert(c
, lp
->free
+ lp
->dirty
>= c
->dead_wm
);
310 /* Did not find a dirty LEB on the dirty heaps, have to scan */
311 dbg_find("scanning LPT for a dirty LEB");
312 lp
= scan_for_dirty(c
, min_space
, pick_free
, exclude_index
);
317 ubifs_assert(c
, lp
->dirty
>= c
->dead_wm
||
318 (pick_free
&& lp
->free
+ lp
->dirty
== c
->leb_size
));
321 dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
322 lp
->lnum
, lp
->free
, lp
->dirty
, lp
->flags
);
324 lp
= ubifs_change_lp(c
, lp
, LPROPS_NC
, LPROPS_NC
,
325 lp
->flags
| LPROPS_TAKEN
, 0);
331 memcpy(ret_lp
, lp
, sizeof(struct ubifs_lprops
));
334 ubifs_release_lprops(c
);
339 * scan_for_free_cb - free space scan callback.
340 * @c: the UBIFS file-system description object
341 * @lprops: LEB properties to scan
342 * @in_tree: whether the LEB properties are in main memory
343 * @data: information passed to and from the caller of the scan
345 * This function returns a code that indicates whether the scan should continue
346 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
347 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
350 static int scan_for_free_cb(struct ubifs_info
*c
,
351 const struct ubifs_lprops
*lprops
, int in_tree
,
352 struct scan_data
*data
)
354 int ret
= LPT_SCAN_CONTINUE
;
356 /* Exclude LEBs that are currently in use */
357 if (lprops
->flags
& LPROPS_TAKEN
)
358 return LPT_SCAN_CONTINUE
;
359 /* Determine whether to add these LEB properties to the tree */
360 if (!in_tree
&& valuable(c
, lprops
))
362 /* Exclude index LEBs */
363 if (lprops
->flags
& LPROPS_INDEX
)
365 /* Exclude LEBs with too little space */
366 if (lprops
->free
< data
->min_space
)
368 /* If specified, exclude empty LEBs */
369 if (!data
->pick_free
&& lprops
->free
== c
->leb_size
)
372 * LEBs that have only free and dirty space must not be allocated
373 * because they may have been unmapped already or they may have data
374 * that is obsolete only because of nodes that are still sitting in a
377 if (lprops
->free
+ lprops
->dirty
== c
->leb_size
&& lprops
->dirty
> 0)
379 /* Finally we found space */
380 data
->lnum
= lprops
->lnum
;
381 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
385 * do_find_free_space - find a data LEB with free space.
386 * @c: the UBIFS file-system description object
387 * @min_space: minimum amount of free space required
388 * @pick_free: whether it is OK to scan for empty LEBs
389 * @squeeze: whether to try to find space in a non-empty LEB first
391 * This function returns a pointer to the LEB properties found or a negative
395 const struct ubifs_lprops
*do_find_free_space(struct ubifs_info
*c
,
396 int min_space
, int pick_free
,
399 const struct ubifs_lprops
*lprops
;
400 struct ubifs_lpt_heap
*heap
;
401 struct scan_data data
;
405 lprops
= ubifs_fast_find_free(c
);
406 if (lprops
&& lprops
->free
>= min_space
)
410 lprops
= ubifs_fast_find_empty(c
);
415 lprops
= ubifs_fast_find_free(c
);
416 if (lprops
&& lprops
->free
>= min_space
)
419 /* There may be an LEB with enough free space on the dirty heap */
420 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
421 for (i
= 0; i
< heap
->cnt
; i
++) {
422 lprops
= heap
->arr
[i
];
423 if (lprops
->free
>= min_space
)
427 * A LEB may have fallen off of the bottom of the free heap, and ended
428 * up as uncategorized even though it has enough free space for us now,
429 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
430 * can end up as uncategorized because they are kept on lists not
431 * finite-sized heaps.
433 list_for_each_entry(lprops
, &c
->uncat_list
, list
) {
434 if (lprops
->flags
& LPROPS_TAKEN
)
436 if (lprops
->flags
& LPROPS_INDEX
)
438 if (lprops
->free
>= min_space
)
441 /* We have looked everywhere in main memory, now scan the flash */
442 if (c
->pnodes_have
>= c
->pnode_cnt
)
443 /* All pnodes are in memory, so skip scan */
444 return ERR_PTR(-ENOSPC
);
445 data
.min_space
= min_space
;
446 data
.pick_free
= pick_free
;
448 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
449 (ubifs_lpt_scan_callback
)scan_for_free_cb
,
453 ubifs_assert(c
, data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
454 c
->lscan_lnum
= data
.lnum
;
455 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
458 ubifs_assert(c
, lprops
->lnum
== data
.lnum
);
459 ubifs_assert(c
, lprops
->free
>= min_space
);
460 ubifs_assert(c
, !(lprops
->flags
& LPROPS_TAKEN
));
461 ubifs_assert(c
, !(lprops
->flags
& LPROPS_INDEX
));
466 * ubifs_find_free_space - find a data LEB with free space.
467 * @c: the UBIFS file-system description object
468 * @min_space: minimum amount of required free space
469 * @offs: contains offset of where free space starts on exit
470 * @squeeze: whether to try to find space in a non-empty LEB first
472 * This function looks for an LEB with at least @min_space bytes of free space.
473 * It tries to find an empty LEB if possible. If no empty LEBs are available,
474 * this function searches for a non-empty data LEB. The returned LEB is marked
477 * This function returns found LEB number in case of success, %-ENOSPC if it
478 * failed to find a LEB with @min_space bytes of free space and other a negative
479 * error codes in case of failure.
481 int ubifs_find_free_space(struct ubifs_info
*c
, int min_space
, int *offs
,
484 const struct ubifs_lprops
*lprops
;
485 int lebs
, rsvd_idx_lebs
, pick_free
= 0, err
, lnum
, flags
;
487 dbg_find("min_space %d", min_space
);
490 /* Check if there are enough empty LEBs for commit */
491 spin_lock(&c
->space_lock
);
492 if (c
->bi
.min_idx_lebs
> c
->lst
.idx_lebs
)
493 rsvd_idx_lebs
= c
->bi
.min_idx_lebs
- c
->lst
.idx_lebs
;
496 lebs
= c
->lst
.empty_lebs
+ c
->freeable_cnt
+ c
->idx_gc_cnt
-
497 c
->lst
.taken_empty_lebs
;
498 if (rsvd_idx_lebs
< lebs
)
500 * OK to allocate an empty LEB, but we still don't want to go
501 * looking for one if there aren't any.
503 if (c
->lst
.empty_lebs
- c
->lst
.taken_empty_lebs
> 0) {
506 * Because we release the space lock, we must account
507 * for this allocation here. After the LEB properties
508 * flags have been updated, we subtract one. Note, the
509 * result of this is that lprops also decreases
510 * @taken_empty_lebs in 'ubifs_change_lp()', so it is
511 * off by one for a short period of time which may
512 * introduce a small disturbance to budgeting
513 * calculations, but this is harmless because at the
514 * worst case this would make the budgeting subsystem
515 * be more pessimistic than needed.
517 * Fundamentally, this is about serialization of the
518 * budgeting and lprops subsystems. We could make the
519 * @space_lock a mutex and avoid dropping it before
520 * calling 'ubifs_change_lp()', but mutex is more
521 * heavy-weight, and we want budgeting to be as fast as
524 c
->lst
.taken_empty_lebs
+= 1;
526 spin_unlock(&c
->space_lock
);
528 lprops
= do_find_free_space(c
, min_space
, pick_free
, squeeze
);
529 if (IS_ERR(lprops
)) {
530 err
= PTR_ERR(lprops
);
535 flags
= lprops
->flags
| LPROPS_TAKEN
;
537 lprops
= ubifs_change_lp(c
, lprops
, LPROPS_NC
, LPROPS_NC
, flags
, 0);
538 if (IS_ERR(lprops
)) {
539 err
= PTR_ERR(lprops
);
544 spin_lock(&c
->space_lock
);
545 c
->lst
.taken_empty_lebs
-= 1;
546 spin_unlock(&c
->space_lock
);
549 *offs
= c
->leb_size
- lprops
->free
;
550 ubifs_release_lprops(c
);
554 * Ensure that empty LEBs have been unmapped. They may not have
555 * been, for example, because of an unclean unmount. Also
556 * LEBs that were freeable LEBs (free + dirty == leb_size) will
557 * not have been unmapped.
559 err
= ubifs_leb_unmap(c
, lnum
);
564 dbg_find("found LEB %d, free %d", lnum
, c
->leb_size
- *offs
);
565 ubifs_assert(c
, *offs
<= c
->leb_size
- min_space
);
570 spin_lock(&c
->space_lock
);
571 c
->lst
.taken_empty_lebs
-= 1;
572 spin_unlock(&c
->space_lock
);
574 ubifs_release_lprops(c
);
579 * scan_for_idx_cb - callback used by the scan for a free LEB for the index.
580 * @c: the UBIFS file-system description object
581 * @lprops: LEB properties to scan
582 * @in_tree: whether the LEB properties are in main memory
583 * @data: information passed to and from the caller of the scan
585 * This function returns a code that indicates whether the scan should continue
586 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
587 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
590 static int scan_for_idx_cb(struct ubifs_info
*c
,
591 const struct ubifs_lprops
*lprops
, int in_tree
,
592 struct scan_data
*data
)
594 int ret
= LPT_SCAN_CONTINUE
;
596 /* Exclude LEBs that are currently in use */
597 if (lprops
->flags
& LPROPS_TAKEN
)
598 return LPT_SCAN_CONTINUE
;
599 /* Determine whether to add these LEB properties to the tree */
600 if (!in_tree
&& valuable(c
, lprops
))
602 /* Exclude index LEBS */
603 if (lprops
->flags
& LPROPS_INDEX
)
605 /* Exclude LEBs that cannot be made empty */
606 if (lprops
->free
+ lprops
->dirty
!= c
->leb_size
)
609 * We are allocating for the index so it is safe to allocate LEBs with
610 * only free and dirty space, because write buffers are sync'd at commit
613 data
->lnum
= lprops
->lnum
;
614 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
618 * scan_for_leb_for_idx - scan for a free LEB for the index.
619 * @c: the UBIFS file-system description object
621 static const struct ubifs_lprops
*scan_for_leb_for_idx(struct ubifs_info
*c
)
623 const struct ubifs_lprops
*lprops
;
624 struct scan_data data
;
628 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
629 (ubifs_lpt_scan_callback
)scan_for_idx_cb
,
633 ubifs_assert(c
, data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
634 c
->lscan_lnum
= data
.lnum
;
635 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
638 ubifs_assert(c
, lprops
->lnum
== data
.lnum
);
639 ubifs_assert(c
, lprops
->free
+ lprops
->dirty
== c
->leb_size
);
640 ubifs_assert(c
, !(lprops
->flags
& LPROPS_TAKEN
));
641 ubifs_assert(c
, !(lprops
->flags
& LPROPS_INDEX
));
646 * ubifs_find_free_leb_for_idx - find a free LEB for the index.
647 * @c: the UBIFS file-system description object
649 * This function looks for a free LEB and returns that LEB number. The returned
650 * LEB is marked as "taken", "index".
652 * Only empty LEBs are allocated. This is for two reasons. First, the commit
653 * calculates the number of LEBs to allocate based on the assumption that they
654 * will be empty. Secondly, free space at the end of an index LEB is not
655 * guaranteed to be empty because it may have been used by the in-the-gaps
656 * method prior to an unclean unmount.
658 * If no LEB is found %-ENOSPC is returned. For other failures another negative
659 * error code is returned.
661 int ubifs_find_free_leb_for_idx(struct ubifs_info
*c
)
663 const struct ubifs_lprops
*lprops
;
664 int lnum
= -1, err
, flags
;
668 lprops
= ubifs_fast_find_empty(c
);
670 lprops
= ubifs_fast_find_freeable(c
);
673 * The first condition means the following: go scan the
674 * LPT if there are uncategorized lprops, which means
675 * there may be freeable LEBs there (UBIFS does not
676 * store the information about freeable LEBs in the
679 if (c
->in_a_category_cnt
!= c
->main_lebs
||
680 c
->lst
.empty_lebs
- c
->lst
.taken_empty_lebs
> 0) {
681 ubifs_assert(c
, c
->freeable_cnt
== 0);
682 lprops
= scan_for_leb_for_idx(c
);
683 if (IS_ERR(lprops
)) {
684 err
= PTR_ERR(lprops
);
698 dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
699 lnum
, lprops
->free
, lprops
->dirty
, lprops
->flags
);
701 flags
= lprops
->flags
| LPROPS_TAKEN
| LPROPS_INDEX
;
702 lprops
= ubifs_change_lp(c
, lprops
, c
->leb_size
, 0, flags
, 0);
703 if (IS_ERR(lprops
)) {
704 err
= PTR_ERR(lprops
);
708 ubifs_release_lprops(c
);
711 * Ensure that empty LEBs have been unmapped. They may not have been,
712 * for example, because of an unclean unmount. Also LEBs that were
713 * freeable LEBs (free + dirty == leb_size) will not have been unmapped.
715 err
= ubifs_leb_unmap(c
, lnum
);
717 ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
718 LPROPS_TAKEN
| LPROPS_INDEX
, 0);
725 ubifs_release_lprops(c
);
729 static int cmp_dirty_idx(const struct ubifs_lprops
**a
,
730 const struct ubifs_lprops
**b
)
732 const struct ubifs_lprops
*lpa
= *a
;
733 const struct ubifs_lprops
*lpb
= *b
;
735 return lpa
->dirty
+ lpa
->free
- lpb
->dirty
- lpb
->free
;
739 * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos.
740 * @c: the UBIFS file-system description object
742 * This function is called each commit to create an array of LEB numbers of
743 * dirty index LEBs sorted in order of dirty and free space. This is used by
744 * the in-the-gaps method of TNC commit.
746 int ubifs_save_dirty_idx_lnums(struct ubifs_info
*c
)
751 /* Copy the LPROPS_DIRTY_IDX heap */
752 c
->dirty_idx
.cnt
= c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1].cnt
;
753 memcpy(c
->dirty_idx
.arr
, c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1].arr
,
754 sizeof(void *) * c
->dirty_idx
.cnt
);
755 /* Sort it so that the dirtiest is now at the end */
756 sort(c
->dirty_idx
.arr
, c
->dirty_idx
.cnt
, sizeof(void *),
757 (int (*)(const void *, const void *))cmp_dirty_idx
, NULL
);
758 dbg_find("found %d dirty index LEBs", c
->dirty_idx
.cnt
);
759 if (c
->dirty_idx
.cnt
)
760 dbg_find("dirtiest index LEB is %d with dirty %d and free %d",
761 c
->dirty_idx
.arr
[c
->dirty_idx
.cnt
- 1]->lnum
,
762 c
->dirty_idx
.arr
[c
->dirty_idx
.cnt
- 1]->dirty
,
763 c
->dirty_idx
.arr
[c
->dirty_idx
.cnt
- 1]->free
);
764 /* Replace the lprops pointers with LEB numbers */
765 for (i
= 0; i
< c
->dirty_idx
.cnt
; i
++)
766 c
->dirty_idx
.arr
[i
] = (void *)(size_t)c
->dirty_idx
.arr
[i
]->lnum
;
767 ubifs_release_lprops(c
);
772 * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB.
773 * @c: the UBIFS file-system description object
774 * @lprops: LEB properties to scan
775 * @in_tree: whether the LEB properties are in main memory
776 * @data: information passed to and from the caller of the scan
778 * This function returns a code that indicates whether the scan should continue
779 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
780 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
783 static int scan_dirty_idx_cb(struct ubifs_info
*c
,
784 const struct ubifs_lprops
*lprops
, int in_tree
,
785 struct scan_data
*data
)
787 int ret
= LPT_SCAN_CONTINUE
;
789 /* Exclude LEBs that are currently in use */
790 if (lprops
->flags
& LPROPS_TAKEN
)
791 return LPT_SCAN_CONTINUE
;
792 /* Determine whether to add these LEB properties to the tree */
793 if (!in_tree
&& valuable(c
, lprops
))
795 /* Exclude non-index LEBs */
796 if (!(lprops
->flags
& LPROPS_INDEX
))
798 /* Exclude LEBs with too little space */
799 if (lprops
->free
+ lprops
->dirty
< c
->min_idx_node_sz
)
801 /* Finally we found space */
802 data
->lnum
= lprops
->lnum
;
803 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
807 * find_dirty_idx_leb - find a dirty index LEB.
808 * @c: the UBIFS file-system description object
810 * This function returns LEB number upon success and a negative error code upon
811 * failure. In particular, -ENOSPC is returned if a dirty index LEB is not
814 * Note that this function scans the entire LPT but it is called very rarely.
816 static int find_dirty_idx_leb(struct ubifs_info
*c
)
818 const struct ubifs_lprops
*lprops
;
819 struct ubifs_lpt_heap
*heap
;
820 struct scan_data data
;
823 /* Check all structures in memory first */
825 heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
826 for (i
= 0; i
< heap
->cnt
; i
++) {
827 lprops
= heap
->arr
[i
];
828 ret
= scan_dirty_idx_cb(c
, lprops
, 1, &data
);
829 if (ret
& LPT_SCAN_STOP
)
832 list_for_each_entry(lprops
, &c
->frdi_idx_list
, list
) {
833 ret
= scan_dirty_idx_cb(c
, lprops
, 1, &data
);
834 if (ret
& LPT_SCAN_STOP
)
837 list_for_each_entry(lprops
, &c
->uncat_list
, list
) {
838 ret
= scan_dirty_idx_cb(c
, lprops
, 1, &data
);
839 if (ret
& LPT_SCAN_STOP
)
842 if (c
->pnodes_have
>= c
->pnode_cnt
)
843 /* All pnodes are in memory, so skip scan */
845 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
846 (ubifs_lpt_scan_callback
)scan_dirty_idx_cb
,
851 ubifs_assert(c
, data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
852 c
->lscan_lnum
= data
.lnum
;
853 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
855 return PTR_ERR(lprops
);
856 ubifs_assert(c
, lprops
->lnum
== data
.lnum
);
857 ubifs_assert(c
, lprops
->free
+ lprops
->dirty
>= c
->min_idx_node_sz
);
858 ubifs_assert(c
, !(lprops
->flags
& LPROPS_TAKEN
));
859 ubifs_assert(c
, (lprops
->flags
& LPROPS_INDEX
));
861 dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x",
862 lprops
->lnum
, lprops
->free
, lprops
->dirty
, lprops
->flags
);
864 lprops
= ubifs_change_lp(c
, lprops
, LPROPS_NC
, LPROPS_NC
,
865 lprops
->flags
| LPROPS_TAKEN
, 0);
867 return PTR_ERR(lprops
);
873 * get_idx_gc_leb - try to get a LEB number from trivial GC.
874 * @c: the UBIFS file-system description object
876 static int get_idx_gc_leb(struct ubifs_info
*c
)
878 const struct ubifs_lprops
*lp
;
881 err
= ubifs_get_idx_gc_leb(c
);
886 * The LEB was due to be unmapped after the commit but
887 * it is needed now for this commit.
889 lp
= ubifs_lpt_lookup_dirty(c
, lnum
);
892 lp
= ubifs_change_lp(c
, lp
, LPROPS_NC
, LPROPS_NC
,
893 lp
->flags
| LPROPS_INDEX
, -1);
896 dbg_find("LEB %d, dirty %d and free %d flags %#x",
897 lp
->lnum
, lp
->dirty
, lp
->free
, lp
->flags
);
902 * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array.
903 * @c: the UBIFS file-system description object
905 static int find_dirtiest_idx_leb(struct ubifs_info
*c
)
907 const struct ubifs_lprops
*lp
;
911 if (!c
->dirty_idx
.cnt
)
913 /* The lprops pointers were replaced by LEB numbers */
914 lnum
= (size_t)c
->dirty_idx
.arr
[--c
->dirty_idx
.cnt
];
915 lp
= ubifs_lpt_lookup(c
, lnum
);
918 if ((lp
->flags
& LPROPS_TAKEN
) || !(lp
->flags
& LPROPS_INDEX
))
920 lp
= ubifs_change_lp(c
, lp
, LPROPS_NC
, LPROPS_NC
,
921 lp
->flags
| LPROPS_TAKEN
, 0);
926 dbg_find("LEB %d, dirty %d and free %d flags %#x", lp
->lnum
, lp
->dirty
,
927 lp
->free
, lp
->flags
);
928 ubifs_assert(c
, lp
->flags
& LPROPS_TAKEN
);
929 ubifs_assert(c
, lp
->flags
& LPROPS_INDEX
);
934 * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit.
935 * @c: the UBIFS file-system description object
937 * This function attempts to find an untaken index LEB with the most free and
938 * dirty space that can be used without overwriting index nodes that were in the
939 * last index committed.
941 int ubifs_find_dirty_idx_leb(struct ubifs_info
*c
)
948 * We made an array of the dirtiest index LEB numbers as at the start of
949 * last commit. Try that array first.
951 err
= find_dirtiest_idx_leb(c
);
953 /* Next try scanning the entire LPT */
955 err
= find_dirty_idx_leb(c
);
957 /* Finally take any index LEBs awaiting trivial GC */
959 err
= get_idx_gc_leb(c
);
961 ubifs_release_lprops(c
);