1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 * Copyright (C) 2006, 2007 University of Szeged, Hungary
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
14 * This file implements UBIFS I/O subsystem which provides various I/O-related
15 * helper functions (reading/writing/checking/validating nodes) and implements
16 * write-buffering support. Write buffers help to save space which otherwise
17 * would have been wasted for padding to the nearest minimal I/O unit boundary.
18 * Instead, data first goes to the write-buffer and is flushed when the
19 * buffer is full or when it is not used for some time (by timer). This is
20 * similar to the mechanism is used by JFFS2.
22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23 * write size (@c->max_write_size). The latter is the maximum amount of bytes
24 * the underlying flash is able to program at a time, and writing in
25 * @c->max_write_size units should presumably be faster. Obviously,
26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27 * @c->max_write_size bytes in size for maximum performance. However, when a
28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29 * boundary) which contains data is written, not the whole write-buffer,
30 * because this is more space-efficient.
32 * This optimization adds few complications to the code. Indeed, on the one
33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34 * also means aligning writes at the @c->max_write_size bytes offsets. On the
35 * other hand, we do not want to waste space when synchronizing the write
36 * buffer, so during synchronization we writes in smaller chunks. And this makes
37 * the next write offset to be not aligned to @c->max_write_size bytes. So the
38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39 * to @c->max_write_size bytes again. We do this by temporarily shrinking
40 * write-buffer size (@wbuf->size).
42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43 * mutexes defined inside these objects. Since sometimes upper-level code
44 * has to lock the write-buffer (e.g. journal space reservation code), many
45 * functions related to write-buffers have "nolock" suffix which means that the
46 * caller has to lock the write-buffer before calling this function.
48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49 * aligned, UBIFS starts the next node from the aligned address, and the padded
50 * bytes may contain any rubbish. In other words, UBIFS does not put padding
51 * bytes in those small gaps. Common headers of nodes store real node lengths,
52 * not aligned lengths. Indexing nodes also store real lengths in branches.
54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55 * uses padding nodes or padding bytes, if the padding node does not fit.
57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58 * they are read from the flash media.
61 #include <linux/crc32.h>
62 #include <linux/slab.h>
66 * ubifs_ro_mode - switch UBIFS to read read-only mode.
67 * @c: UBIFS file-system description object
68 * @err: error code which is the reason of switching to R/O mode
70 void ubifs_ro_mode(struct ubifs_info
*c
, int err
)
74 c
->no_chk_data_crc
= 0;
75 c
->vfs_sb
->s_flags
|= SB_RDONLY
;
76 ubifs_warn(c
, "switched to read-only mode, error %d", err
);
82 * Below are simple wrappers over UBI I/O functions which include some
83 * additional checks and UBIFS debugging stuff. See corresponding UBI function
84 * for more information.
87 int ubifs_leb_read(const struct ubifs_info
*c
, int lnum
, void *buf
, int offs
,
88 int len
, int even_ebadmsg
)
92 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
94 * In case of %-EBADMSG print the error message only if the
95 * @even_ebadmsg is true.
97 if (err
&& (err
!= -EBADMSG
|| even_ebadmsg
)) {
98 ubifs_err(c
, "reading %d bytes from LEB %d:%d failed, error %d",
99 len
, lnum
, offs
, err
);
105 int ubifs_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
, int offs
,
110 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
113 if (!dbg_is_tst_rcvry(c
))
114 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
);
116 err
= dbg_leb_write(c
, lnum
, buf
, offs
, len
);
118 ubifs_err(c
, "writing %d bytes to LEB %d:%d failed, error %d",
119 len
, lnum
, offs
, err
);
120 ubifs_ro_mode(c
, err
);
126 int ubifs_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
, int len
)
130 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
133 if (!dbg_is_tst_rcvry(c
))
134 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
);
136 err
= dbg_leb_change(c
, lnum
, buf
, len
);
138 ubifs_err(c
, "changing %d bytes in LEB %d failed, error %d",
140 ubifs_ro_mode(c
, err
);
146 int ubifs_leb_unmap(struct ubifs_info
*c
, int lnum
)
150 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
153 if (!dbg_is_tst_rcvry(c
))
154 err
= ubi_leb_unmap(c
->ubi
, lnum
);
156 err
= dbg_leb_unmap(c
, lnum
);
158 ubifs_err(c
, "unmap LEB %d failed, error %d", lnum
, err
);
159 ubifs_ro_mode(c
, err
);
165 int ubifs_leb_map(struct ubifs_info
*c
, int lnum
)
169 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
172 if (!dbg_is_tst_rcvry(c
))
173 err
= ubi_leb_map(c
->ubi
, lnum
);
175 err
= dbg_leb_map(c
, lnum
);
177 ubifs_err(c
, "mapping LEB %d failed, error %d", lnum
, err
);
178 ubifs_ro_mode(c
, err
);
184 int ubifs_is_mapped(const struct ubifs_info
*c
, int lnum
)
188 err
= ubi_is_mapped(c
->ubi
, lnum
);
190 ubifs_err(c
, "ubi_is_mapped failed for LEB %d, error %d",
198 * ubifs_check_node - check node.
199 * @c: UBIFS file-system description object
200 * @buf: node to check
201 * @lnum: logical eraseblock number
202 * @offs: offset within the logical eraseblock
203 * @quiet: print no messages
204 * @must_chk_crc: indicates whether to always check the CRC
206 * This function checks node magic number and CRC checksum. This function also
207 * validates node length to prevent UBIFS from becoming crazy when an attacker
208 * feeds it a file-system image with incorrect nodes. For example, too large
209 * node length in the common header could cause UBIFS to read memory outside of
210 * allocated buffer when checking the CRC checksum.
212 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
213 * true, which is controlled by corresponding UBIFS mount option. However, if
214 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
215 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
216 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
217 * is checked. This is because during mounting or re-mounting from R/O mode to
218 * R/W mode we may read journal nodes (when replying the journal or doing the
219 * recovery) and the journal nodes may potentially be corrupted, so checking is
222 * This function returns zero in case of success and %-EUCLEAN in case of bad
225 int ubifs_check_node(const struct ubifs_info
*c
, const void *buf
, int lnum
,
226 int offs
, int quiet
, int must_chk_crc
)
228 int err
= -EINVAL
, type
, node_len
, dump_node
= 1;
229 uint32_t crc
, node_crc
, magic
;
230 const struct ubifs_ch
*ch
= buf
;
232 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
233 ubifs_assert(c
, !(offs
& 7) && offs
< c
->leb_size
);
235 magic
= le32_to_cpu(ch
->magic
);
236 if (magic
!= UBIFS_NODE_MAGIC
) {
238 ubifs_err(c
, "bad magic %#08x, expected %#08x",
239 magic
, UBIFS_NODE_MAGIC
);
244 type
= ch
->node_type
;
245 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
247 ubifs_err(c
, "bad node type %d", type
);
251 node_len
= le32_to_cpu(ch
->len
);
252 if (node_len
+ offs
> c
->leb_size
)
255 if (c
->ranges
[type
].max_len
== 0) {
256 if (node_len
!= c
->ranges
[type
].len
)
258 } else if (node_len
< c
->ranges
[type
].min_len
||
259 node_len
> c
->ranges
[type
].max_len
)
262 if (!must_chk_crc
&& type
== UBIFS_DATA_NODE
&& !c
->mounting
&&
263 !c
->remounting_rw
&& c
->no_chk_data_crc
)
266 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
267 node_crc
= le32_to_cpu(ch
->crc
);
268 if (crc
!= node_crc
) {
270 ubifs_err(c
, "bad CRC: calculated %#08x, read %#08x",
280 ubifs_err(c
, "bad node length %d", node_len
);
281 if (type
== UBIFS_DATA_NODE
&& node_len
> UBIFS_DATA_NODE_SZ
)
285 ubifs_err(c
, "bad node at LEB %d:%d", lnum
, offs
);
287 ubifs_dump_node(c
, buf
);
289 int safe_len
= min3(node_len
, c
->leb_size
- offs
,
290 (int)UBIFS_MAX_DATA_NODE_SZ
);
291 pr_err("\tprevent out-of-bounds memory access\n");
292 pr_err("\ttruncated data node length %d\n", safe_len
);
293 pr_err("\tcorrupted data node:\n");
294 print_hex_dump(KERN_ERR
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
303 * ubifs_pad - pad flash space.
304 * @c: UBIFS file-system description object
305 * @buf: buffer to put padding to
306 * @pad: how many bytes to pad
308 * The flash media obliges us to write only in chunks of %c->min_io_size and
309 * when we have to write less data we add padding node to the write-buffer and
310 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
311 * media is being scanned. If the amount of wasted space is not enough to fit a
312 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
313 * pattern (%UBIFS_PADDING_BYTE).
315 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
318 void ubifs_pad(const struct ubifs_info
*c
, void *buf
, int pad
)
322 ubifs_assert(c
, pad
>= 0 && !(pad
& 7));
324 if (pad
>= UBIFS_PAD_NODE_SZ
) {
325 struct ubifs_ch
*ch
= buf
;
326 struct ubifs_pad_node
*pad_node
= buf
;
328 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
329 ch
->node_type
= UBIFS_PAD_NODE
;
330 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
331 ch
->padding
[0] = ch
->padding
[1] = 0;
333 ch
->len
= cpu_to_le32(UBIFS_PAD_NODE_SZ
);
334 pad
-= UBIFS_PAD_NODE_SZ
;
335 pad_node
->pad_len
= cpu_to_le32(pad
);
336 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, UBIFS_PAD_NODE_SZ
- 8);
337 ch
->crc
= cpu_to_le32(crc
);
338 memset(buf
+ UBIFS_PAD_NODE_SZ
, 0, pad
);
340 /* Too little space, padding node won't fit */
341 memset(buf
, UBIFS_PADDING_BYTE
, pad
);
345 * next_sqnum - get next sequence number.
346 * @c: UBIFS file-system description object
348 static unsigned long long next_sqnum(struct ubifs_info
*c
)
350 unsigned long long sqnum
;
352 spin_lock(&c
->cnt_lock
);
353 sqnum
= ++c
->max_sqnum
;
354 spin_unlock(&c
->cnt_lock
);
356 if (unlikely(sqnum
>= SQNUM_WARN_WATERMARK
)) {
357 if (sqnum
>= SQNUM_WATERMARK
) {
358 ubifs_err(c
, "sequence number overflow %llu, end of life",
360 ubifs_ro_mode(c
, -EINVAL
);
362 ubifs_warn(c
, "running out of sequence numbers, end of life soon");
368 void ubifs_init_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
370 struct ubifs_ch
*ch
= node
;
371 unsigned long long sqnum
= next_sqnum(c
);
373 ubifs_assert(c
, len
>= UBIFS_CH_SZ
);
375 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
376 ch
->len
= cpu_to_le32(len
);
377 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
378 ch
->sqnum
= cpu_to_le64(sqnum
);
379 ch
->padding
[0] = ch
->padding
[1] = 0;
383 pad
= ALIGN(len
, c
->min_io_size
) - len
;
384 ubifs_pad(c
, node
+ len
, pad
);
388 void ubifs_crc_node(struct ubifs_info
*c
, void *node
, int len
)
390 struct ubifs_ch
*ch
= node
;
393 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
394 ch
->crc
= cpu_to_le32(crc
);
398 * ubifs_prepare_node_hmac - prepare node to be written to flash.
399 * @c: UBIFS file-system description object
400 * @node: the node to pad
402 * @hmac_offs: offset of the HMAC in the node
403 * @pad: if the buffer has to be padded
405 * This function prepares node at @node to be written to the media - it
406 * calculates node CRC, fills the common header, and adds proper padding up to
407 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
408 * a HMAC is inserted into the node at the given offset.
410 * This function returns 0 for success or a negative error code otherwise.
412 int ubifs_prepare_node_hmac(struct ubifs_info
*c
, void *node
, int len
,
413 int hmac_offs
, int pad
)
417 ubifs_init_node(c
, node
, len
, pad
);
420 err
= ubifs_node_insert_hmac(c
, node
, len
, hmac_offs
);
425 ubifs_crc_node(c
, node
, len
);
431 * ubifs_prepare_node - prepare node to be written to flash.
432 * @c: UBIFS file-system description object
433 * @node: the node to pad
435 * @pad: if the buffer has to be padded
437 * This function prepares node at @node to be written to the media - it
438 * calculates node CRC, fills the common header, and adds proper padding up to
439 * the next minimum I/O unit if @pad is not zero.
441 void ubifs_prepare_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
444 * Deliberately ignore return value since this function can only fail
445 * when a hmac offset is given.
447 ubifs_prepare_node_hmac(c
, node
, len
, 0, pad
);
451 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
452 * @c: UBIFS file-system description object
453 * @node: the node to pad
455 * @last: indicates the last node of the group
457 * This function prepares node at @node to be written to the media - it
458 * calculates node CRC and fills the common header.
460 void ubifs_prep_grp_node(struct ubifs_info
*c
, void *node
, int len
, int last
)
463 struct ubifs_ch
*ch
= node
;
464 unsigned long long sqnum
= next_sqnum(c
);
466 ubifs_assert(c
, len
>= UBIFS_CH_SZ
);
468 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
469 ch
->len
= cpu_to_le32(len
);
471 ch
->group_type
= UBIFS_LAST_OF_NODE_GROUP
;
473 ch
->group_type
= UBIFS_IN_NODE_GROUP
;
474 ch
->sqnum
= cpu_to_le64(sqnum
);
475 ch
->padding
[0] = ch
->padding
[1] = 0;
476 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
477 ch
->crc
= cpu_to_le32(crc
);
481 * wbuf_timer_callback - write-buffer timer callback function.
482 * @timer: timer data (write-buffer descriptor)
484 * This function is called when the write-buffer timer expires.
486 static enum hrtimer_restart
wbuf_timer_callback_nolock(struct hrtimer
*timer
)
488 struct ubifs_wbuf
*wbuf
= container_of(timer
, struct ubifs_wbuf
, timer
);
490 dbg_io("jhead %s", dbg_jhead(wbuf
->jhead
));
492 wbuf
->c
->need_wbuf_sync
= 1;
493 ubifs_wake_up_bgt(wbuf
->c
);
494 return HRTIMER_NORESTART
;
498 * new_wbuf_timer - start new write-buffer timer.
499 * @c: UBIFS file-system description object
500 * @wbuf: write-buffer descriptor
502 static void new_wbuf_timer_nolock(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
504 ktime_t softlimit
= ms_to_ktime(dirty_writeback_interval
* 10);
505 unsigned long long delta
= dirty_writeback_interval
;
507 /* centi to milli, milli to nano, then 10% */
508 delta
*= 10ULL * NSEC_PER_MSEC
/ 10ULL;
510 ubifs_assert(c
, !hrtimer_active(&wbuf
->timer
));
511 ubifs_assert(c
, delta
<= ULONG_MAX
);
515 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
516 dbg_jhead(wbuf
->jhead
),
517 div_u64(ktime_to_ns(softlimit
), USEC_PER_SEC
),
518 div_u64(ktime_to_ns(softlimit
) + delta
, USEC_PER_SEC
));
519 hrtimer_start_range_ns(&wbuf
->timer
, softlimit
, delta
,
524 * cancel_wbuf_timer - cancel write-buffer timer.
525 * @wbuf: write-buffer descriptor
527 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
532 hrtimer_cancel(&wbuf
->timer
);
536 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
537 * @wbuf: write-buffer to synchronize
539 * This function synchronizes write-buffer @buf and returns zero in case of
540 * success or a negative error code in case of failure.
542 * Note, although write-buffers are of @c->max_write_size, this function does
543 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
544 * if the write-buffer is only partially filled with data, only the used part
545 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
546 * This way we waste less space.
548 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf
*wbuf
)
550 struct ubifs_info
*c
= wbuf
->c
;
551 int err
, dirt
, sync_len
;
553 cancel_wbuf_timer_nolock(wbuf
);
554 if (!wbuf
->used
|| wbuf
->lnum
== -1)
555 /* Write-buffer is empty or not seeked */
558 dbg_io("LEB %d:%d, %d bytes, jhead %s",
559 wbuf
->lnum
, wbuf
->offs
, wbuf
->used
, dbg_jhead(wbuf
->jhead
));
560 ubifs_assert(c
, !(wbuf
->avail
& 7));
561 ubifs_assert(c
, wbuf
->offs
+ wbuf
->size
<= c
->leb_size
);
562 ubifs_assert(c
, wbuf
->size
>= c
->min_io_size
);
563 ubifs_assert(c
, wbuf
->size
<= c
->max_write_size
);
564 ubifs_assert(c
, wbuf
->size
% c
->min_io_size
== 0);
565 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
566 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
567 ubifs_assert(c
, !((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
573 * Do not write whole write buffer but write only the minimum necessary
574 * amount of min. I/O units.
576 sync_len
= ALIGN(wbuf
->used
, c
->min_io_size
);
577 dirt
= sync_len
- wbuf
->used
;
579 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
, dirt
);
580 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
, sync_len
);
584 spin_lock(&wbuf
->lock
);
585 wbuf
->offs
+= sync_len
;
587 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
588 * But our goal is to optimize writes and make sure we write in
589 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
590 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
591 * sure that @wbuf->offs + @wbuf->size is aligned to
592 * @c->max_write_size. This way we make sure that after next
593 * write-buffer flush we are again at the optimal offset (aligned to
594 * @c->max_write_size).
596 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
597 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
598 else if (wbuf
->offs
& (c
->max_write_size
- 1))
599 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
601 wbuf
->size
= c
->max_write_size
;
602 wbuf
->avail
= wbuf
->size
;
605 spin_unlock(&wbuf
->lock
);
607 if (wbuf
->sync_callback
)
608 err
= wbuf
->sync_callback(c
, wbuf
->lnum
,
609 c
->leb_size
- wbuf
->offs
, dirt
);
614 * ubifs_wbuf_seek_nolock - seek write-buffer.
615 * @wbuf: write-buffer
616 * @lnum: logical eraseblock number to seek to
617 * @offs: logical eraseblock offset to seek to
619 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
620 * The write-buffer has to be empty. Returns zero in case of success and a
621 * negative error code in case of failure.
623 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf
*wbuf
, int lnum
, int offs
)
625 const struct ubifs_info
*c
= wbuf
->c
;
627 dbg_io("LEB %d:%d, jhead %s", lnum
, offs
, dbg_jhead(wbuf
->jhead
));
628 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
);
629 ubifs_assert(c
, offs
>= 0 && offs
<= c
->leb_size
);
630 ubifs_assert(c
, offs
% c
->min_io_size
== 0 && !(offs
& 7));
631 ubifs_assert(c
, lnum
!= wbuf
->lnum
);
632 ubifs_assert(c
, wbuf
->used
== 0);
634 spin_lock(&wbuf
->lock
);
637 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
638 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
639 else if (wbuf
->offs
& (c
->max_write_size
- 1))
640 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
642 wbuf
->size
= c
->max_write_size
;
643 wbuf
->avail
= wbuf
->size
;
645 spin_unlock(&wbuf
->lock
);
651 * ubifs_bg_wbufs_sync - synchronize write-buffers.
652 * @c: UBIFS file-system description object
654 * This function is called by background thread to synchronize write-buffers.
655 * Returns zero in case of success and a negative error code in case of
658 int ubifs_bg_wbufs_sync(struct ubifs_info
*c
)
662 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
663 if (!c
->need_wbuf_sync
)
665 c
->need_wbuf_sync
= 0;
672 dbg_io("synchronize");
673 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
674 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
679 * If the mutex is locked then wbuf is being changed, so
680 * synchronization is not necessary.
682 if (mutex_is_locked(&wbuf
->io_mutex
))
685 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
686 if (!wbuf
->need_sync
) {
687 mutex_unlock(&wbuf
->io_mutex
);
691 err
= ubifs_wbuf_sync_nolock(wbuf
);
692 mutex_unlock(&wbuf
->io_mutex
);
694 ubifs_err(c
, "cannot sync write-buffer, error %d", err
);
695 ubifs_ro_mode(c
, err
);
703 /* Cancel all timers to prevent repeated errors */
704 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
705 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
707 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
708 cancel_wbuf_timer_nolock(wbuf
);
709 mutex_unlock(&wbuf
->io_mutex
);
715 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
716 * @wbuf: write-buffer
717 * @buf: node to write
720 * This function writes data to flash via write-buffer @wbuf. This means that
721 * the last piece of the node won't reach the flash media immediately if it
722 * does not take whole max. write unit (@c->max_write_size). Instead, the node
723 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
724 * because more data are appended to the write-buffer).
726 * This function returns zero in case of success and a negative error code in
727 * case of failure. If the node cannot be written because there is no more
728 * space in this logical eraseblock, %-ENOSPC is returned.
730 int ubifs_wbuf_write_nolock(struct ubifs_wbuf
*wbuf
, void *buf
, int len
)
732 struct ubifs_info
*c
= wbuf
->c
;
733 int err
, written
, n
, aligned_len
= ALIGN(len
, 8);
735 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len
,
736 dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
),
737 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
);
738 ubifs_assert(c
, len
> 0 && wbuf
->lnum
>= 0 && wbuf
->lnum
< c
->leb_cnt
);
739 ubifs_assert(c
, wbuf
->offs
>= 0 && wbuf
->offs
% c
->min_io_size
== 0);
740 ubifs_assert(c
, !(wbuf
->offs
& 7) && wbuf
->offs
<= c
->leb_size
);
741 ubifs_assert(c
, wbuf
->avail
> 0 && wbuf
->avail
<= wbuf
->size
);
742 ubifs_assert(c
, wbuf
->size
>= c
->min_io_size
);
743 ubifs_assert(c
, wbuf
->size
<= c
->max_write_size
);
744 ubifs_assert(c
, wbuf
->size
% c
->min_io_size
== 0);
745 ubifs_assert(c
, mutex_is_locked(&wbuf
->io_mutex
));
746 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
747 ubifs_assert(c
, !c
->space_fixup
);
748 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
749 ubifs_assert(c
, !((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
751 if (c
->leb_size
- wbuf
->offs
- wbuf
->used
< aligned_len
) {
756 cancel_wbuf_timer_nolock(wbuf
);
761 if (aligned_len
<= wbuf
->avail
) {
763 * The node is not very large and fits entirely within
766 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, len
);
768 if (aligned_len
== wbuf
->avail
) {
769 dbg_io("flush jhead %s wbuf to LEB %d:%d",
770 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
771 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
,
772 wbuf
->offs
, wbuf
->size
);
776 spin_lock(&wbuf
->lock
);
777 wbuf
->offs
+= wbuf
->size
;
778 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
779 wbuf
->size
= c
->max_write_size
;
781 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
782 wbuf
->avail
= wbuf
->size
;
785 spin_unlock(&wbuf
->lock
);
787 spin_lock(&wbuf
->lock
);
788 wbuf
->avail
-= aligned_len
;
789 wbuf
->used
+= aligned_len
;
790 spin_unlock(&wbuf
->lock
);
800 * The node is large enough and does not fit entirely within
801 * current available space. We have to fill and flush
802 * write-buffer and switch to the next max. write unit.
804 dbg_io("flush jhead %s wbuf to LEB %d:%d",
805 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
806 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, wbuf
->avail
);
807 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
812 wbuf
->offs
+= wbuf
->size
;
814 aligned_len
-= wbuf
->avail
;
815 written
+= wbuf
->avail
;
816 } else if (wbuf
->offs
& (c
->max_write_size
- 1)) {
818 * The write-buffer offset is not aligned to
819 * @c->max_write_size and @wbuf->size is less than
820 * @c->max_write_size. Write @wbuf->size bytes to make sure the
821 * following writes are done in optimal @c->max_write_size
824 dbg_io("write %d bytes to LEB %d:%d",
825 wbuf
->size
, wbuf
->lnum
, wbuf
->offs
);
826 err
= ubifs_leb_write(c
, wbuf
->lnum
, buf
, wbuf
->offs
,
831 wbuf
->offs
+= wbuf
->size
;
833 aligned_len
-= wbuf
->size
;
834 written
+= wbuf
->size
;
838 * The remaining data may take more whole max. write units, so write the
839 * remains multiple to max. write unit size directly to the flash media.
840 * We align node length to 8-byte boundary because we anyway flash wbuf
841 * if the remaining space is less than 8 bytes.
843 n
= aligned_len
>> c
->max_write_shift
;
845 n
<<= c
->max_write_shift
;
846 dbg_io("write %d bytes to LEB %d:%d", n
, wbuf
->lnum
,
848 err
= ubifs_leb_write(c
, wbuf
->lnum
, buf
+ written
,
858 spin_lock(&wbuf
->lock
);
861 * And now we have what's left and what does not take whole
862 * max. write unit, so write it to the write-buffer and we are
865 memcpy(wbuf
->buf
, buf
+ written
, len
);
867 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
868 wbuf
->size
= c
->max_write_size
;
870 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
871 wbuf
->avail
= wbuf
->size
- aligned_len
;
872 wbuf
->used
= aligned_len
;
874 spin_unlock(&wbuf
->lock
);
877 if (wbuf
->sync_callback
) {
878 int free
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
880 err
= wbuf
->sync_callback(c
, wbuf
->lnum
, free
, 0);
886 new_wbuf_timer_nolock(c
, wbuf
);
891 ubifs_err(c
, "cannot write %d bytes to LEB %d:%d, error %d",
892 len
, wbuf
->lnum
, wbuf
->offs
, err
);
893 ubifs_dump_node(c
, buf
);
895 ubifs_dump_leb(c
, wbuf
->lnum
);
900 * ubifs_write_node_hmac - write node to the media.
901 * @c: UBIFS file-system description object
902 * @buf: the node to write
904 * @lnum: logical eraseblock number
905 * @offs: offset within the logical eraseblock
906 * @hmac_offs: offset of the HMAC within the node
908 * This function automatically fills node magic number, assigns sequence
909 * number, and calculates node CRC checksum. The length of the @buf buffer has
910 * to be aligned to the minimal I/O unit size. This function automatically
911 * appends padding node and padding bytes if needed. Returns zero in case of
912 * success and a negative error code in case of failure.
914 int ubifs_write_node_hmac(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
915 int offs
, int hmac_offs
)
917 int err
, buf_len
= ALIGN(len
, c
->min_io_size
);
919 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
920 lnum
, offs
, dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), len
,
922 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
923 ubifs_assert(c
, offs
% c
->min_io_size
== 0 && offs
< c
->leb_size
);
924 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
925 ubifs_assert(c
, !c
->space_fixup
);
930 err
= ubifs_prepare_node_hmac(c
, buf
, len
, hmac_offs
, 1);
934 err
= ubifs_leb_write(c
, lnum
, buf
, offs
, buf_len
);
936 ubifs_dump_node(c
, buf
);
942 * ubifs_write_node - write node to the media.
943 * @c: UBIFS file-system description object
944 * @buf: the node to write
946 * @lnum: logical eraseblock number
947 * @offs: offset within the logical eraseblock
949 * This function automatically fills node magic number, assigns sequence
950 * number, and calculates node CRC checksum. The length of the @buf buffer has
951 * to be aligned to the minimal I/O unit size. This function automatically
952 * appends padding node and padding bytes if needed. Returns zero in case of
953 * success and a negative error code in case of failure.
955 int ubifs_write_node(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
958 return ubifs_write_node_hmac(c
, buf
, len
, lnum
, offs
, -1);
962 * ubifs_read_node_wbuf - read node from the media or write-buffer.
963 * @wbuf: wbuf to check for un-written data
964 * @buf: buffer to read to
967 * @lnum: logical eraseblock number
968 * @offs: offset within the logical eraseblock
970 * This function reads a node of known type and length, checks it and stores
971 * in @buf. If the node partially or fully sits in the write-buffer, this
972 * function takes data from the buffer, otherwise it reads the flash media.
973 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
974 * error code in case of failure.
976 int ubifs_read_node_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int type
, int len
,
979 const struct ubifs_info
*c
= wbuf
->c
;
980 int err
, rlen
, overlap
;
981 struct ubifs_ch
*ch
= buf
;
983 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum
, offs
,
984 dbg_ntype(type
), len
, dbg_jhead(wbuf
->jhead
));
985 ubifs_assert(c
, wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
986 ubifs_assert(c
, !(offs
& 7) && offs
< c
->leb_size
);
987 ubifs_assert(c
, type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
989 spin_lock(&wbuf
->lock
);
990 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
992 /* We may safely unlock the write-buffer and read the data */
993 spin_unlock(&wbuf
->lock
);
994 return ubifs_read_node(c
, buf
, type
, len
, lnum
, offs
);
997 /* Don't read under wbuf */
998 rlen
= wbuf
->offs
- offs
;
1002 /* Copy the rest from the write-buffer */
1003 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
1004 spin_unlock(&wbuf
->lock
);
1007 /* Read everything that goes before write-buffer */
1008 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, rlen
, 0);
1009 if (err
&& err
!= -EBADMSG
)
1013 if (type
!= ch
->node_type
) {
1014 ubifs_err(c
, "bad node type (%d but expected %d)",
1015 ch
->node_type
, type
);
1019 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
1021 ubifs_err(c
, "expected node type %d", type
);
1025 rlen
= le32_to_cpu(ch
->len
);
1027 ubifs_err(c
, "bad node length %d, expected %d", rlen
, len
);
1034 ubifs_err(c
, "bad node at LEB %d:%d", lnum
, offs
);
1035 ubifs_dump_node(c
, buf
);
1041 * ubifs_read_node - read node.
1042 * @c: UBIFS file-system description object
1043 * @buf: buffer to read to
1045 * @len: node length (not aligned)
1046 * @lnum: logical eraseblock number
1047 * @offs: offset within the logical eraseblock
1049 * This function reads a node of known type and and length, checks it and
1050 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1051 * and a negative error code in case of failure.
1053 int ubifs_read_node(const struct ubifs_info
*c
, void *buf
, int type
, int len
,
1057 struct ubifs_ch
*ch
= buf
;
1059 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
1060 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
1061 ubifs_assert(c
, len
>= UBIFS_CH_SZ
&& offs
+ len
<= c
->leb_size
);
1062 ubifs_assert(c
, !(offs
& 7) && offs
< c
->leb_size
);
1063 ubifs_assert(c
, type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
1065 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, len
, 0);
1066 if (err
&& err
!= -EBADMSG
)
1069 if (type
!= ch
->node_type
) {
1070 ubifs_errc(c
, "bad node type (%d but expected %d)",
1071 ch
->node_type
, type
);
1075 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
1077 ubifs_errc(c
, "expected node type %d", type
);
1081 l
= le32_to_cpu(ch
->len
);
1083 ubifs_errc(c
, "bad node length %d, expected %d", l
, len
);
1090 ubifs_errc(c
, "bad node at LEB %d:%d, LEB mapping status %d", lnum
,
1091 offs
, ubi_is_mapped(c
->ubi
, lnum
));
1093 ubifs_dump_node(c
, buf
);
1100 * ubifs_wbuf_init - initialize write-buffer.
1101 * @c: UBIFS file-system description object
1102 * @wbuf: write-buffer to initialize
1104 * This function initializes write-buffer. Returns zero in case of success
1105 * %-ENOMEM in case of failure.
1107 int ubifs_wbuf_init(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
1111 wbuf
->buf
= kmalloc(c
->max_write_size
, GFP_KERNEL
);
1115 size
= (c
->max_write_size
/ UBIFS_CH_SZ
+ 1) * sizeof(ino_t
);
1116 wbuf
->inodes
= kmalloc(size
, GFP_KERNEL
);
1117 if (!wbuf
->inodes
) {
1124 wbuf
->lnum
= wbuf
->offs
= -1;
1126 * If the LEB starts at the max. write size aligned address, then
1127 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1128 * set it to something smaller so that it ends at the closest max.
1129 * write size boundary.
1131 size
= c
->max_write_size
- (c
->leb_start
% c
->max_write_size
);
1132 wbuf
->avail
= wbuf
->size
= size
;
1133 wbuf
->sync_callback
= NULL
;
1134 mutex_init(&wbuf
->io_mutex
);
1135 spin_lock_init(&wbuf
->lock
);
1139 hrtimer_init(&wbuf
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1140 wbuf
->timer
.function
= wbuf_timer_callback_nolock
;
1145 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1146 * @wbuf: the write-buffer where to add
1147 * @inum: the inode number
1149 * This function adds an inode number to the inode array of the write-buffer.
1151 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1154 /* NOR flash or something similar */
1157 spin_lock(&wbuf
->lock
);
1159 wbuf
->inodes
[wbuf
->next_ino
++] = inum
;
1160 spin_unlock(&wbuf
->lock
);
1164 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1165 * @wbuf: the write-buffer
1166 * @inum: the inode number
1168 * This function returns with %1 if the write-buffer contains some data from the
1169 * given inode otherwise it returns with %0.
1171 static int wbuf_has_ino(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1175 spin_lock(&wbuf
->lock
);
1176 for (i
= 0; i
< wbuf
->next_ino
; i
++)
1177 if (inum
== wbuf
->inodes
[i
]) {
1181 spin_unlock(&wbuf
->lock
);
1187 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1188 * @c: UBIFS file-system description object
1189 * @inode: inode to synchronize
1191 * This function synchronizes write-buffers which contain nodes belonging to
1192 * @inode. Returns zero in case of success and a negative error code in case of
1195 int ubifs_sync_wbufs_by_inode(struct ubifs_info
*c
, struct inode
*inode
)
1199 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1200 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
1204 * GC head is special, do not look at it. Even if the
1205 * head contains something related to this inode, it is
1206 * a _copy_ of corresponding on-flash node which sits
1211 if (!wbuf_has_ino(wbuf
, inode
->i_ino
))
1214 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1215 if (wbuf_has_ino(wbuf
, inode
->i_ino
))
1216 err
= ubifs_wbuf_sync_nolock(wbuf
);
1217 mutex_unlock(&wbuf
->io_mutex
);
1220 ubifs_ro_mode(c
, err
);