Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / fs / ubifs / orphan.c
blob283f9eb48410d9d8aeb9f07979ea89eebb825aab
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Author: Adrian Hunter
8 */
10 #include "ubifs.h"
13 * An orphan is an inode number whose inode node has been committed to the index
14 * with a link count of zero. That happens when an open file is deleted
15 * (unlinked) and then a commit is run. In the normal course of events the inode
16 * would be deleted when the file is closed. However in the case of an unclean
17 * unmount, orphans need to be accounted for. After an unclean unmount, the
18 * orphans' inodes must be deleted which means either scanning the entire index
19 * looking for them, or keeping a list on flash somewhere. This unit implements
20 * the latter approach.
22 * The orphan area is a fixed number of LEBs situated between the LPT area and
23 * the main area. The number of orphan area LEBs is specified when the file
24 * system is created. The minimum number is 1. The size of the orphan area
25 * should be so that it can hold the maximum number of orphans that are expected
26 * to ever exist at one time.
28 * The number of orphans that can fit in a LEB is:
30 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
32 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
34 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
35 * zero, the inode number is added to the rb-tree. It is removed from the tree
36 * when the inode is deleted. Any new orphans that are in the orphan tree when
37 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
38 * If the orphan area is full, it is consolidated to make space. There is
39 * always enough space because validation prevents the user from creating more
40 * than the maximum number of orphans allowed.
43 static int dbg_check_orphans(struct ubifs_info *c);
45 static struct ubifs_orphan *orphan_add(struct ubifs_info *c, ino_t inum,
46 struct ubifs_orphan *parent_orphan)
48 struct ubifs_orphan *orphan, *o;
49 struct rb_node **p, *parent = NULL;
51 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
52 if (!orphan)
53 return ERR_PTR(-ENOMEM);
54 orphan->inum = inum;
55 orphan->new = 1;
56 INIT_LIST_HEAD(&orphan->child_list);
58 spin_lock(&c->orphan_lock);
59 if (c->tot_orphans >= c->max_orphans) {
60 spin_unlock(&c->orphan_lock);
61 kfree(orphan);
62 return ERR_PTR(-ENFILE);
64 p = &c->orph_tree.rb_node;
65 while (*p) {
66 parent = *p;
67 o = rb_entry(parent, struct ubifs_orphan, rb);
68 if (inum < o->inum)
69 p = &(*p)->rb_left;
70 else if (inum > o->inum)
71 p = &(*p)->rb_right;
72 else {
73 ubifs_err(c, "orphaned twice");
74 spin_unlock(&c->orphan_lock);
75 kfree(orphan);
76 return ERR_PTR(-EINVAL);
79 c->tot_orphans += 1;
80 c->new_orphans += 1;
81 rb_link_node(&orphan->rb, parent, p);
82 rb_insert_color(&orphan->rb, &c->orph_tree);
83 list_add_tail(&orphan->list, &c->orph_list);
84 list_add_tail(&orphan->new_list, &c->orph_new);
86 if (parent_orphan) {
87 list_add_tail(&orphan->child_list,
88 &parent_orphan->child_list);
91 spin_unlock(&c->orphan_lock);
92 dbg_gen("ino %lu", (unsigned long)inum);
93 return orphan;
96 static struct ubifs_orphan *lookup_orphan(struct ubifs_info *c, ino_t inum)
98 struct ubifs_orphan *o;
99 struct rb_node *p;
101 p = c->orph_tree.rb_node;
102 while (p) {
103 o = rb_entry(p, struct ubifs_orphan, rb);
104 if (inum < o->inum)
105 p = p->rb_left;
106 else if (inum > o->inum)
107 p = p->rb_right;
108 else {
109 return o;
112 return NULL;
115 static void __orphan_drop(struct ubifs_info *c, struct ubifs_orphan *o)
117 rb_erase(&o->rb, &c->orph_tree);
118 list_del(&o->list);
119 c->tot_orphans -= 1;
121 if (o->new) {
122 list_del(&o->new_list);
123 c->new_orphans -= 1;
126 kfree(o);
129 static void orphan_delete(struct ubifs_info *c, struct ubifs_orphan *orph)
131 if (orph->del) {
132 dbg_gen("deleted twice ino %lu", (unsigned long)orph->inum);
133 return;
136 if (orph->cmt) {
137 orph->del = 1;
138 orph->dnext = c->orph_dnext;
139 c->orph_dnext = orph;
140 dbg_gen("delete later ino %lu", (unsigned long)orph->inum);
141 return;
144 __orphan_drop(c, orph);
148 * ubifs_add_orphan - add an orphan.
149 * @c: UBIFS file-system description object
150 * @inum: orphan inode number
152 * Add an orphan. This function is called when an inodes link count drops to
153 * zero.
155 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
157 int err = 0;
158 ino_t xattr_inum;
159 union ubifs_key key;
160 struct ubifs_dent_node *xent, *pxent = NULL;
161 struct fscrypt_name nm = {0};
162 struct ubifs_orphan *xattr_orphan;
163 struct ubifs_orphan *orphan;
165 orphan = orphan_add(c, inum, NULL);
166 if (IS_ERR(orphan))
167 return PTR_ERR(orphan);
169 lowest_xent_key(c, &key, inum);
170 while (1) {
171 xent = ubifs_tnc_next_ent(c, &key, &nm);
172 if (IS_ERR(xent)) {
173 err = PTR_ERR(xent);
174 if (err == -ENOENT)
175 break;
176 return err;
179 fname_name(&nm) = xent->name;
180 fname_len(&nm) = le16_to_cpu(xent->nlen);
181 xattr_inum = le64_to_cpu(xent->inum);
183 xattr_orphan = orphan_add(c, xattr_inum, orphan);
184 if (IS_ERR(xattr_orphan)) {
185 kfree(xent);
186 return PTR_ERR(xattr_orphan);
189 kfree(pxent);
190 pxent = xent;
191 key_read(c, &xent->key, &key);
193 kfree(pxent);
195 return 0;
199 * ubifs_delete_orphan - delete an orphan.
200 * @c: UBIFS file-system description object
201 * @inum: orphan inode number
203 * Delete an orphan. This function is called when an inode is deleted.
205 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
207 struct ubifs_orphan *orph, *child_orph, *tmp_o;
209 spin_lock(&c->orphan_lock);
211 orph = lookup_orphan(c, inum);
212 if (!orph) {
213 spin_unlock(&c->orphan_lock);
214 ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
215 dump_stack();
217 return;
220 list_for_each_entry_safe(child_orph, tmp_o, &orph->child_list, child_list) {
221 list_del(&child_orph->child_list);
222 orphan_delete(c, child_orph);
225 orphan_delete(c, orph);
227 spin_unlock(&c->orphan_lock);
231 * ubifs_orphan_start_commit - start commit of orphans.
232 * @c: UBIFS file-system description object
234 * Start commit of orphans.
236 int ubifs_orphan_start_commit(struct ubifs_info *c)
238 struct ubifs_orphan *orphan, **last;
240 spin_lock(&c->orphan_lock);
241 last = &c->orph_cnext;
242 list_for_each_entry(orphan, &c->orph_new, new_list) {
243 ubifs_assert(c, orphan->new);
244 ubifs_assert(c, !orphan->cmt);
245 orphan->new = 0;
246 orphan->cmt = 1;
247 *last = orphan;
248 last = &orphan->cnext;
250 *last = NULL;
251 c->cmt_orphans = c->new_orphans;
252 c->new_orphans = 0;
253 dbg_cmt("%d orphans to commit", c->cmt_orphans);
254 INIT_LIST_HEAD(&c->orph_new);
255 if (c->tot_orphans == 0)
256 c->no_orphs = 1;
257 else
258 c->no_orphs = 0;
259 spin_unlock(&c->orphan_lock);
260 return 0;
264 * avail_orphs - calculate available space.
265 * @c: UBIFS file-system description object
267 * This function returns the number of orphans that can be written in the
268 * available space.
270 static int avail_orphs(struct ubifs_info *c)
272 int avail_lebs, avail, gap;
274 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
275 avail = avail_lebs *
276 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
277 gap = c->leb_size - c->ohead_offs;
278 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
279 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
280 return avail;
284 * tot_avail_orphs - calculate total space.
285 * @c: UBIFS file-system description object
287 * This function returns the number of orphans that can be written in half
288 * the total space. That leaves half the space for adding new orphans.
290 static int tot_avail_orphs(struct ubifs_info *c)
292 int avail_lebs, avail;
294 avail_lebs = c->orph_lebs;
295 avail = avail_lebs *
296 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
297 return avail / 2;
301 * do_write_orph_node - write a node to the orphan head.
302 * @c: UBIFS file-system description object
303 * @len: length of node
304 * @atomic: write atomically
306 * This function writes a node to the orphan head from the orphan buffer. If
307 * %atomic is not zero, then the write is done atomically. On success, %0 is
308 * returned, otherwise a negative error code is returned.
310 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
312 int err = 0;
314 if (atomic) {
315 ubifs_assert(c, c->ohead_offs == 0);
316 ubifs_prepare_node(c, c->orph_buf, len, 1);
317 len = ALIGN(len, c->min_io_size);
318 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
319 } else {
320 if (c->ohead_offs == 0) {
321 /* Ensure LEB has been unmapped */
322 err = ubifs_leb_unmap(c, c->ohead_lnum);
323 if (err)
324 return err;
326 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
327 c->ohead_offs);
329 return err;
333 * write_orph_node - write an orphan node.
334 * @c: UBIFS file-system description object
335 * @atomic: write atomically
337 * This function builds an orphan node from the cnext list and writes it to the
338 * orphan head. On success, %0 is returned, otherwise a negative error code
339 * is returned.
341 static int write_orph_node(struct ubifs_info *c, int atomic)
343 struct ubifs_orphan *orphan, *cnext;
344 struct ubifs_orph_node *orph;
345 int gap, err, len, cnt, i;
347 ubifs_assert(c, c->cmt_orphans > 0);
348 gap = c->leb_size - c->ohead_offs;
349 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
350 c->ohead_lnum += 1;
351 c->ohead_offs = 0;
352 gap = c->leb_size;
353 if (c->ohead_lnum > c->orph_last) {
355 * We limit the number of orphans so that this should
356 * never happen.
358 ubifs_err(c, "out of space in orphan area");
359 return -EINVAL;
362 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
363 if (cnt > c->cmt_orphans)
364 cnt = c->cmt_orphans;
365 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
366 ubifs_assert(c, c->orph_buf);
367 orph = c->orph_buf;
368 orph->ch.node_type = UBIFS_ORPH_NODE;
369 spin_lock(&c->orphan_lock);
370 cnext = c->orph_cnext;
371 for (i = 0; i < cnt; i++) {
372 orphan = cnext;
373 ubifs_assert(c, orphan->cmt);
374 orph->inos[i] = cpu_to_le64(orphan->inum);
375 orphan->cmt = 0;
376 cnext = orphan->cnext;
377 orphan->cnext = NULL;
379 c->orph_cnext = cnext;
380 c->cmt_orphans -= cnt;
381 spin_unlock(&c->orphan_lock);
382 if (c->cmt_orphans)
383 orph->cmt_no = cpu_to_le64(c->cmt_no);
384 else
385 /* Mark the last node of the commit */
386 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
387 ubifs_assert(c, c->ohead_offs + len <= c->leb_size);
388 ubifs_assert(c, c->ohead_lnum >= c->orph_first);
389 ubifs_assert(c, c->ohead_lnum <= c->orph_last);
390 err = do_write_orph_node(c, len, atomic);
391 c->ohead_offs += ALIGN(len, c->min_io_size);
392 c->ohead_offs = ALIGN(c->ohead_offs, 8);
393 return err;
397 * write_orph_nodes - write orphan nodes until there are no more to commit.
398 * @c: UBIFS file-system description object
399 * @atomic: write atomically
401 * This function writes orphan nodes for all the orphans to commit. On success,
402 * %0 is returned, otherwise a negative error code is returned.
404 static int write_orph_nodes(struct ubifs_info *c, int atomic)
406 int err;
408 while (c->cmt_orphans > 0) {
409 err = write_orph_node(c, atomic);
410 if (err)
411 return err;
413 if (atomic) {
414 int lnum;
416 /* Unmap any unused LEBs after consolidation */
417 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
418 err = ubifs_leb_unmap(c, lnum);
419 if (err)
420 return err;
423 return 0;
427 * consolidate - consolidate the orphan area.
428 * @c: UBIFS file-system description object
430 * This function enables consolidation by putting all the orphans into the list
431 * to commit. The list is in the order that the orphans were added, and the
432 * LEBs are written atomically in order, so at no time can orphans be lost by
433 * an unclean unmount.
435 * This function returns %0 on success and a negative error code on failure.
437 static int consolidate(struct ubifs_info *c)
439 int tot_avail = tot_avail_orphs(c), err = 0;
441 spin_lock(&c->orphan_lock);
442 dbg_cmt("there is space for %d orphans and there are %d",
443 tot_avail, c->tot_orphans);
444 if (c->tot_orphans - c->new_orphans <= tot_avail) {
445 struct ubifs_orphan *orphan, **last;
446 int cnt = 0;
448 /* Change the cnext list to include all non-new orphans */
449 last = &c->orph_cnext;
450 list_for_each_entry(orphan, &c->orph_list, list) {
451 if (orphan->new)
452 continue;
453 orphan->cmt = 1;
454 *last = orphan;
455 last = &orphan->cnext;
456 cnt += 1;
458 *last = NULL;
459 ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans);
460 c->cmt_orphans = cnt;
461 c->ohead_lnum = c->orph_first;
462 c->ohead_offs = 0;
463 } else {
465 * We limit the number of orphans so that this should
466 * never happen.
468 ubifs_err(c, "out of space in orphan area");
469 err = -EINVAL;
471 spin_unlock(&c->orphan_lock);
472 return err;
476 * commit_orphans - commit orphans.
477 * @c: UBIFS file-system description object
479 * This function commits orphans to flash. On success, %0 is returned,
480 * otherwise a negative error code is returned.
482 static int commit_orphans(struct ubifs_info *c)
484 int avail, atomic = 0, err;
486 ubifs_assert(c, c->cmt_orphans > 0);
487 avail = avail_orphs(c);
488 if (avail < c->cmt_orphans) {
489 /* Not enough space to write new orphans, so consolidate */
490 err = consolidate(c);
491 if (err)
492 return err;
493 atomic = 1;
495 err = write_orph_nodes(c, atomic);
496 return err;
500 * erase_deleted - erase the orphans marked for deletion.
501 * @c: UBIFS file-system description object
503 * During commit, the orphans being committed cannot be deleted, so they are
504 * marked for deletion and deleted by this function. Also, the recovery
505 * adds killed orphans to the deletion list, and therefore they are deleted
506 * here too.
508 static void erase_deleted(struct ubifs_info *c)
510 struct ubifs_orphan *orphan, *dnext;
512 spin_lock(&c->orphan_lock);
513 dnext = c->orph_dnext;
514 while (dnext) {
515 orphan = dnext;
516 dnext = orphan->dnext;
517 ubifs_assert(c, !orphan->new);
518 ubifs_assert(c, orphan->del);
519 rb_erase(&orphan->rb, &c->orph_tree);
520 list_del(&orphan->list);
521 c->tot_orphans -= 1;
522 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
523 kfree(orphan);
525 c->orph_dnext = NULL;
526 spin_unlock(&c->orphan_lock);
530 * ubifs_orphan_end_commit - end commit of orphans.
531 * @c: UBIFS file-system description object
533 * End commit of orphans.
535 int ubifs_orphan_end_commit(struct ubifs_info *c)
537 int err;
539 if (c->cmt_orphans != 0) {
540 err = commit_orphans(c);
541 if (err)
542 return err;
544 erase_deleted(c);
545 err = dbg_check_orphans(c);
546 return err;
550 * ubifs_clear_orphans - erase all LEBs used for orphans.
551 * @c: UBIFS file-system description object
553 * If recovery is not required, then the orphans from the previous session
554 * are not needed. This function locates the LEBs used to record
555 * orphans, and un-maps them.
557 int ubifs_clear_orphans(struct ubifs_info *c)
559 int lnum, err;
561 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
562 err = ubifs_leb_unmap(c, lnum);
563 if (err)
564 return err;
566 c->ohead_lnum = c->orph_first;
567 c->ohead_offs = 0;
568 return 0;
572 * insert_dead_orphan - insert an orphan.
573 * @c: UBIFS file-system description object
574 * @inum: orphan inode number
576 * This function is a helper to the 'do_kill_orphans()' function. The orphan
577 * must be kept until the next commit, so it is added to the rb-tree and the
578 * deletion list.
580 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
582 struct ubifs_orphan *orphan, *o;
583 struct rb_node **p, *parent = NULL;
585 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
586 if (!orphan)
587 return -ENOMEM;
588 orphan->inum = inum;
590 p = &c->orph_tree.rb_node;
591 while (*p) {
592 parent = *p;
593 o = rb_entry(parent, struct ubifs_orphan, rb);
594 if (inum < o->inum)
595 p = &(*p)->rb_left;
596 else if (inum > o->inum)
597 p = &(*p)->rb_right;
598 else {
599 /* Already added - no problem */
600 kfree(orphan);
601 return 0;
604 c->tot_orphans += 1;
605 rb_link_node(&orphan->rb, parent, p);
606 rb_insert_color(&orphan->rb, &c->orph_tree);
607 list_add_tail(&orphan->list, &c->orph_list);
608 orphan->del = 1;
609 orphan->dnext = c->orph_dnext;
610 c->orph_dnext = orphan;
611 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
612 c->new_orphans, c->tot_orphans);
613 return 0;
617 * do_kill_orphans - remove orphan inodes from the index.
618 * @c: UBIFS file-system description object
619 * @sleb: scanned LEB
620 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
621 * @outofdate: whether the LEB is out of date is returned here
622 * @last_flagged: whether the end orphan node is encountered
624 * This function is a helper to the 'kill_orphans()' function. It goes through
625 * every orphan node in a LEB and for every inode number recorded, removes
626 * all keys for that inode from the TNC.
628 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
629 unsigned long long *last_cmt_no, int *outofdate,
630 int *last_flagged)
632 struct ubifs_scan_node *snod;
633 struct ubifs_orph_node *orph;
634 struct ubifs_ino_node *ino = NULL;
635 unsigned long long cmt_no;
636 ino_t inum;
637 int i, n, err, first = 1;
639 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
640 if (!ino)
641 return -ENOMEM;
643 list_for_each_entry(snod, &sleb->nodes, list) {
644 if (snod->type != UBIFS_ORPH_NODE) {
645 ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
646 snod->type, sleb->lnum, snod->offs);
647 ubifs_dump_node(c, snod->node);
648 err = -EINVAL;
649 goto out_free;
652 orph = snod->node;
654 /* Check commit number */
655 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
657 * The commit number on the master node may be less, because
658 * of a failed commit. If there are several failed commits in a
659 * row, the commit number written on orphan nodes will continue
660 * to increase (because the commit number is adjusted here) even
661 * though the commit number on the master node stays the same
662 * because the master node has not been re-written.
664 if (cmt_no > c->cmt_no)
665 c->cmt_no = cmt_no;
666 if (cmt_no < *last_cmt_no && *last_flagged) {
668 * The last orphan node had a higher commit number and
669 * was flagged as the last written for that commit
670 * number. That makes this orphan node, out of date.
672 if (!first) {
673 ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
674 cmt_no, sleb->lnum, snod->offs);
675 ubifs_dump_node(c, snod->node);
676 err = -EINVAL;
677 goto out_free;
679 dbg_rcvry("out of date LEB %d", sleb->lnum);
680 *outofdate = 1;
681 err = 0;
682 goto out_free;
685 if (first)
686 first = 0;
688 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
689 for (i = 0; i < n; i++) {
690 union ubifs_key key1, key2;
692 inum = le64_to_cpu(orph->inos[i]);
694 ino_key_init(c, &key1, inum);
695 err = ubifs_tnc_lookup(c, &key1, ino);
696 if (err && err != -ENOENT)
697 goto out_free;
700 * Check whether an inode can really get deleted.
701 * linkat() with O_TMPFILE allows rebirth of an inode.
703 if (err == 0 && ino->nlink == 0) {
704 dbg_rcvry("deleting orphaned inode %lu",
705 (unsigned long)inum);
707 lowest_ino_key(c, &key1, inum);
708 highest_ino_key(c, &key2, inum);
710 err = ubifs_tnc_remove_range(c, &key1, &key2);
711 if (err)
712 goto out_ro;
715 err = insert_dead_orphan(c, inum);
716 if (err)
717 goto out_free;
720 *last_cmt_no = cmt_no;
721 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
722 dbg_rcvry("last orph node for commit %llu at %d:%d",
723 cmt_no, sleb->lnum, snod->offs);
724 *last_flagged = 1;
725 } else
726 *last_flagged = 0;
729 err = 0;
730 out_free:
731 kfree(ino);
732 return err;
734 out_ro:
735 ubifs_ro_mode(c, err);
736 kfree(ino);
737 return err;
741 * kill_orphans - remove all orphan inodes from the index.
742 * @c: UBIFS file-system description object
744 * If recovery is required, then orphan inodes recorded during the previous
745 * session (which ended with an unclean unmount) must be deleted from the index.
746 * This is done by updating the TNC, but since the index is not updated until
747 * the next commit, the LEBs where the orphan information is recorded are not
748 * erased until the next commit.
750 static int kill_orphans(struct ubifs_info *c)
752 unsigned long long last_cmt_no = 0;
753 int lnum, err = 0, outofdate = 0, last_flagged = 0;
755 c->ohead_lnum = c->orph_first;
756 c->ohead_offs = 0;
757 /* Check no-orphans flag and skip this if no orphans */
758 if (c->no_orphs) {
759 dbg_rcvry("no orphans");
760 return 0;
763 * Orph nodes always start at c->orph_first and are written to each
764 * successive LEB in turn. Generally unused LEBs will have been unmapped
765 * but may contain out of date orphan nodes if the unmap didn't go
766 * through. In addition, the last orphan node written for each commit is
767 * marked (top bit of orph->cmt_no is set to 1). It is possible that
768 * there are orphan nodes from the next commit (i.e. the commit did not
769 * complete successfully). In that case, no orphans will have been lost
770 * due to the way that orphans are written, and any orphans added will
771 * be valid orphans anyway and so can be deleted.
773 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
774 struct ubifs_scan_leb *sleb;
776 dbg_rcvry("LEB %d", lnum);
777 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
778 if (IS_ERR(sleb)) {
779 if (PTR_ERR(sleb) == -EUCLEAN)
780 sleb = ubifs_recover_leb(c, lnum, 0,
781 c->sbuf, -1);
782 if (IS_ERR(sleb)) {
783 err = PTR_ERR(sleb);
784 break;
787 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
788 &last_flagged);
789 if (err || outofdate) {
790 ubifs_scan_destroy(sleb);
791 break;
793 if (sleb->endpt) {
794 c->ohead_lnum = lnum;
795 c->ohead_offs = sleb->endpt;
797 ubifs_scan_destroy(sleb);
799 return err;
803 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
804 * @c: UBIFS file-system description object
805 * @unclean: indicates recovery from unclean unmount
806 * @read_only: indicates read only mount
808 * This function is called when mounting to erase orphans from the previous
809 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
810 * orphans are deleted.
812 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
814 int err = 0;
816 c->max_orphans = tot_avail_orphs(c);
818 if (!read_only) {
819 c->orph_buf = vmalloc(c->leb_size);
820 if (!c->orph_buf)
821 return -ENOMEM;
824 if (unclean)
825 err = kill_orphans(c);
826 else if (!read_only)
827 err = ubifs_clear_orphans(c);
829 return err;
833 * Everything below is related to debugging.
836 struct check_orphan {
837 struct rb_node rb;
838 ino_t inum;
841 struct check_info {
842 unsigned long last_ino;
843 unsigned long tot_inos;
844 unsigned long missing;
845 unsigned long long leaf_cnt;
846 struct ubifs_ino_node *node;
847 struct rb_root root;
850 static bool dbg_find_orphan(struct ubifs_info *c, ino_t inum)
852 bool found = false;
854 spin_lock(&c->orphan_lock);
855 found = !!lookup_orphan(c, inum);
856 spin_unlock(&c->orphan_lock);
858 return found;
861 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
863 struct check_orphan *orphan, *o;
864 struct rb_node **p, *parent = NULL;
866 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
867 if (!orphan)
868 return -ENOMEM;
869 orphan->inum = inum;
871 p = &root->rb_node;
872 while (*p) {
873 parent = *p;
874 o = rb_entry(parent, struct check_orphan, rb);
875 if (inum < o->inum)
876 p = &(*p)->rb_left;
877 else if (inum > o->inum)
878 p = &(*p)->rb_right;
879 else {
880 kfree(orphan);
881 return 0;
884 rb_link_node(&orphan->rb, parent, p);
885 rb_insert_color(&orphan->rb, root);
886 return 0;
889 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
891 struct check_orphan *o;
892 struct rb_node *p;
894 p = root->rb_node;
895 while (p) {
896 o = rb_entry(p, struct check_orphan, rb);
897 if (inum < o->inum)
898 p = p->rb_left;
899 else if (inum > o->inum)
900 p = p->rb_right;
901 else
902 return 1;
904 return 0;
907 static void dbg_free_check_tree(struct rb_root *root)
909 struct check_orphan *o, *n;
911 rbtree_postorder_for_each_entry_safe(o, n, root, rb)
912 kfree(o);
915 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
916 void *priv)
918 struct check_info *ci = priv;
919 ino_t inum;
920 int err;
922 inum = key_inum(c, &zbr->key);
923 if (inum != ci->last_ino) {
924 /* Lowest node type is the inode node, so it comes first */
925 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
926 ubifs_err(c, "found orphan node ino %lu, type %d",
927 (unsigned long)inum, key_type(c, &zbr->key));
928 ci->last_ino = inum;
929 ci->tot_inos += 1;
930 err = ubifs_tnc_read_node(c, zbr, ci->node);
931 if (err) {
932 ubifs_err(c, "node read failed, error %d", err);
933 return err;
935 if (ci->node->nlink == 0)
936 /* Must be recorded as an orphan */
937 if (!dbg_find_check_orphan(&ci->root, inum) &&
938 !dbg_find_orphan(c, inum)) {
939 ubifs_err(c, "missing orphan, ino %lu",
940 (unsigned long)inum);
941 ci->missing += 1;
944 ci->leaf_cnt += 1;
945 return 0;
948 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
950 struct ubifs_scan_node *snod;
951 struct ubifs_orph_node *orph;
952 ino_t inum;
953 int i, n, err;
955 list_for_each_entry(snod, &sleb->nodes, list) {
956 cond_resched();
957 if (snod->type != UBIFS_ORPH_NODE)
958 continue;
959 orph = snod->node;
960 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
961 for (i = 0; i < n; i++) {
962 inum = le64_to_cpu(orph->inos[i]);
963 err = dbg_ins_check_orphan(&ci->root, inum);
964 if (err)
965 return err;
968 return 0;
971 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
973 int lnum, err = 0;
974 void *buf;
976 /* Check no-orphans flag and skip this if no orphans */
977 if (c->no_orphs)
978 return 0;
980 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
981 if (!buf) {
982 ubifs_err(c, "cannot allocate memory to check orphans");
983 return 0;
986 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
987 struct ubifs_scan_leb *sleb;
989 sleb = ubifs_scan(c, lnum, 0, buf, 0);
990 if (IS_ERR(sleb)) {
991 err = PTR_ERR(sleb);
992 break;
995 err = dbg_read_orphans(ci, sleb);
996 ubifs_scan_destroy(sleb);
997 if (err)
998 break;
1001 vfree(buf);
1002 return err;
1005 static int dbg_check_orphans(struct ubifs_info *c)
1007 struct check_info ci;
1008 int err;
1010 if (!dbg_is_chk_orph(c))
1011 return 0;
1013 ci.last_ino = 0;
1014 ci.tot_inos = 0;
1015 ci.missing = 0;
1016 ci.leaf_cnt = 0;
1017 ci.root = RB_ROOT;
1018 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
1019 if (!ci.node) {
1020 ubifs_err(c, "out of memory");
1021 return -ENOMEM;
1024 err = dbg_scan_orphans(c, &ci);
1025 if (err)
1026 goto out;
1028 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
1029 if (err) {
1030 ubifs_err(c, "cannot scan TNC, error %d", err);
1031 goto out;
1034 if (ci.missing) {
1035 ubifs_err(c, "%lu missing orphan(s)", ci.missing);
1036 err = -EINVAL;
1037 goto out;
1040 dbg_cmt("last inode number is %lu", ci.last_ino);
1041 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
1042 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
1044 out:
1045 dbg_free_check_tree(&ci.root);
1046 kfree(ci.node);
1047 return err;