Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / fs / ubifs / super.c
blob7fc2f3f07c16edf8c571793598fd19775460de1e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
30 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
31 * allocating too much.
33 #define UBIFS_KMALLOC_OK (128*1024)
35 /* Slab cache for UBIFS inodes */
36 static struct kmem_cache *ubifs_inode_slab;
38 /* UBIFS TNC shrinker description */
39 static struct shrinker ubifs_shrinker_info = {
40 .scan_objects = ubifs_shrink_scan,
41 .count_objects = ubifs_shrink_count,
42 .seeks = DEFAULT_SEEKS,
45 /**
46 * validate_inode - validate inode.
47 * @c: UBIFS file-system description object
48 * @inode: the inode to validate
50 * This is a helper function for 'ubifs_iget()' which validates various fields
51 * of a newly built inode to make sure they contain sane values and prevent
52 * possible vulnerabilities. Returns zero if the inode is all right and
53 * a non-zero error code if not.
55 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
57 int err;
58 const struct ubifs_inode *ui = ubifs_inode(inode);
60 if (inode->i_size > c->max_inode_sz) {
61 ubifs_err(c, "inode is too large (%lld)",
62 (long long)inode->i_size);
63 return 1;
66 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
67 ubifs_err(c, "unknown compression type %d", ui->compr_type);
68 return 2;
71 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
72 return 3;
74 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
75 return 4;
77 if (ui->xattr && !S_ISREG(inode->i_mode))
78 return 5;
80 if (!ubifs_compr_present(c, ui->compr_type)) {
81 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
82 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
85 err = dbg_check_dir(c, inode);
86 return err;
89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
91 int err;
92 union ubifs_key key;
93 struct ubifs_ino_node *ino;
94 struct ubifs_info *c = sb->s_fs_info;
95 struct inode *inode;
96 struct ubifs_inode *ui;
98 dbg_gen("inode %lu", inum);
100 inode = iget_locked(sb, inum);
101 if (!inode)
102 return ERR_PTR(-ENOMEM);
103 if (!(inode->i_state & I_NEW))
104 return inode;
105 ui = ubifs_inode(inode);
107 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
108 if (!ino) {
109 err = -ENOMEM;
110 goto out;
113 ino_key_init(c, &key, inode->i_ino);
115 err = ubifs_tnc_lookup(c, &key, ino);
116 if (err)
117 goto out_ino;
119 inode->i_flags |= S_NOCMTIME;
121 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
122 inode->i_flags |= S_NOATIME;
124 set_nlink(inode, le32_to_cpu(ino->nlink));
125 i_uid_write(inode, le32_to_cpu(ino->uid));
126 i_gid_write(inode, le32_to_cpu(ino->gid));
127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 inode->i_mode = le32_to_cpu(ino->mode);
134 inode->i_size = le64_to_cpu(ino->size);
136 ui->data_len = le32_to_cpu(ino->data_len);
137 ui->flags = le32_to_cpu(ino->flags);
138 ui->compr_type = le16_to_cpu(ino->compr_type);
139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
141 ui->xattr_size = le32_to_cpu(ino->xattr_size);
142 ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 ui->synced_i_size = ui->ui_size = inode->i_size;
145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
147 err = validate_inode(c, inode);
148 if (err)
149 goto out_invalid;
151 switch (inode->i_mode & S_IFMT) {
152 case S_IFREG:
153 inode->i_mapping->a_ops = &ubifs_file_address_operations;
154 inode->i_op = &ubifs_file_inode_operations;
155 inode->i_fop = &ubifs_file_operations;
156 if (ui->xattr) {
157 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
158 if (!ui->data) {
159 err = -ENOMEM;
160 goto out_ino;
162 memcpy(ui->data, ino->data, ui->data_len);
163 ((char *)ui->data)[ui->data_len] = '\0';
164 } else if (ui->data_len != 0) {
165 err = 10;
166 goto out_invalid;
168 break;
169 case S_IFDIR:
170 inode->i_op = &ubifs_dir_inode_operations;
171 inode->i_fop = &ubifs_dir_operations;
172 if (ui->data_len != 0) {
173 err = 11;
174 goto out_invalid;
176 break;
177 case S_IFLNK:
178 inode->i_op = &ubifs_symlink_inode_operations;
179 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
180 err = 12;
181 goto out_invalid;
183 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
184 if (!ui->data) {
185 err = -ENOMEM;
186 goto out_ino;
188 memcpy(ui->data, ino->data, ui->data_len);
189 ((char *)ui->data)[ui->data_len] = '\0';
190 break;
191 case S_IFBLK:
192 case S_IFCHR:
194 dev_t rdev;
195 union ubifs_dev_desc *dev;
197 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
198 if (!ui->data) {
199 err = -ENOMEM;
200 goto out_ino;
203 dev = (union ubifs_dev_desc *)ino->data;
204 if (ui->data_len == sizeof(dev->new))
205 rdev = new_decode_dev(le32_to_cpu(dev->new));
206 else if (ui->data_len == sizeof(dev->huge))
207 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
208 else {
209 err = 13;
210 goto out_invalid;
212 memcpy(ui->data, ino->data, ui->data_len);
213 inode->i_op = &ubifs_file_inode_operations;
214 init_special_inode(inode, inode->i_mode, rdev);
215 break;
217 case S_IFSOCK:
218 case S_IFIFO:
219 inode->i_op = &ubifs_file_inode_operations;
220 init_special_inode(inode, inode->i_mode, 0);
221 if (ui->data_len != 0) {
222 err = 14;
223 goto out_invalid;
225 break;
226 default:
227 err = 15;
228 goto out_invalid;
231 kfree(ino);
232 ubifs_set_inode_flags(inode);
233 unlock_new_inode(inode);
234 return inode;
236 out_invalid:
237 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
238 ubifs_dump_node(c, ino);
239 ubifs_dump_inode(c, inode);
240 err = -EINVAL;
241 out_ino:
242 kfree(ino);
243 out:
244 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
245 iget_failed(inode);
246 return ERR_PTR(err);
249 static struct inode *ubifs_alloc_inode(struct super_block *sb)
251 struct ubifs_inode *ui;
253 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
254 if (!ui)
255 return NULL;
257 memset((void *)ui + sizeof(struct inode), 0,
258 sizeof(struct ubifs_inode) - sizeof(struct inode));
259 mutex_init(&ui->ui_mutex);
260 spin_lock_init(&ui->ui_lock);
261 return &ui->vfs_inode;
264 static void ubifs_free_inode(struct inode *inode)
266 struct ubifs_inode *ui = ubifs_inode(inode);
268 kfree(ui->data);
269 fscrypt_free_inode(inode);
271 kmem_cache_free(ubifs_inode_slab, ui);
275 * Note, Linux write-back code calls this without 'i_mutex'.
277 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
279 int err = 0;
280 struct ubifs_info *c = inode->i_sb->s_fs_info;
281 struct ubifs_inode *ui = ubifs_inode(inode);
283 ubifs_assert(c, !ui->xattr);
284 if (is_bad_inode(inode))
285 return 0;
287 mutex_lock(&ui->ui_mutex);
289 * Due to races between write-back forced by budgeting
290 * (see 'sync_some_inodes()') and background write-back, the inode may
291 * have already been synchronized, do not do this again. This might
292 * also happen if it was synchronized in an VFS operation, e.g.
293 * 'ubifs_link()'.
295 if (!ui->dirty) {
296 mutex_unlock(&ui->ui_mutex);
297 return 0;
301 * As an optimization, do not write orphan inodes to the media just
302 * because this is not needed.
304 dbg_gen("inode %lu, mode %#x, nlink %u",
305 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
306 if (inode->i_nlink) {
307 err = ubifs_jnl_write_inode(c, inode);
308 if (err)
309 ubifs_err(c, "can't write inode %lu, error %d",
310 inode->i_ino, err);
311 else
312 err = dbg_check_inode_size(c, inode, ui->ui_size);
315 ui->dirty = 0;
316 mutex_unlock(&ui->ui_mutex);
317 ubifs_release_dirty_inode_budget(c, ui);
318 return err;
321 static int ubifs_drop_inode(struct inode *inode)
323 int drop = generic_drop_inode(inode);
325 if (!drop)
326 drop = fscrypt_drop_inode(inode);
328 return drop;
331 static void ubifs_evict_inode(struct inode *inode)
333 int err;
334 struct ubifs_info *c = inode->i_sb->s_fs_info;
335 struct ubifs_inode *ui = ubifs_inode(inode);
337 if (ui->xattr)
339 * Extended attribute inode deletions are fully handled in
340 * 'ubifs_removexattr()'. These inodes are special and have
341 * limited usage, so there is nothing to do here.
343 goto out;
345 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
346 ubifs_assert(c, !atomic_read(&inode->i_count));
348 truncate_inode_pages_final(&inode->i_data);
350 if (inode->i_nlink)
351 goto done;
353 if (is_bad_inode(inode))
354 goto out;
356 ui->ui_size = inode->i_size = 0;
357 err = ubifs_jnl_delete_inode(c, inode);
358 if (err)
360 * Worst case we have a lost orphan inode wasting space, so a
361 * simple error message is OK here.
363 ubifs_err(c, "can't delete inode %lu, error %d",
364 inode->i_ino, err);
366 out:
367 if (ui->dirty)
368 ubifs_release_dirty_inode_budget(c, ui);
369 else {
370 /* We've deleted something - clean the "no space" flags */
371 c->bi.nospace = c->bi.nospace_rp = 0;
372 smp_wmb();
374 done:
375 clear_inode(inode);
376 fscrypt_put_encryption_info(inode);
379 static void ubifs_dirty_inode(struct inode *inode, int flags)
381 struct ubifs_info *c = inode->i_sb->s_fs_info;
382 struct ubifs_inode *ui = ubifs_inode(inode);
384 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
385 if (!ui->dirty) {
386 ui->dirty = 1;
387 dbg_gen("inode %lu", inode->i_ino);
391 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
393 struct ubifs_info *c = dentry->d_sb->s_fs_info;
394 unsigned long long free;
395 __le32 *uuid = (__le32 *)c->uuid;
397 free = ubifs_get_free_space(c);
398 dbg_gen("free space %lld bytes (%lld blocks)",
399 free, free >> UBIFS_BLOCK_SHIFT);
401 buf->f_type = UBIFS_SUPER_MAGIC;
402 buf->f_bsize = UBIFS_BLOCK_SIZE;
403 buf->f_blocks = c->block_cnt;
404 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
405 if (free > c->report_rp_size)
406 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
407 else
408 buf->f_bavail = 0;
409 buf->f_files = 0;
410 buf->f_ffree = 0;
411 buf->f_namelen = UBIFS_MAX_NLEN;
412 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
413 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
414 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
415 return 0;
418 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
420 struct ubifs_info *c = root->d_sb->s_fs_info;
422 if (c->mount_opts.unmount_mode == 2)
423 seq_puts(s, ",fast_unmount");
424 else if (c->mount_opts.unmount_mode == 1)
425 seq_puts(s, ",norm_unmount");
427 if (c->mount_opts.bulk_read == 2)
428 seq_puts(s, ",bulk_read");
429 else if (c->mount_opts.bulk_read == 1)
430 seq_puts(s, ",no_bulk_read");
432 if (c->mount_opts.chk_data_crc == 2)
433 seq_puts(s, ",chk_data_crc");
434 else if (c->mount_opts.chk_data_crc == 1)
435 seq_puts(s, ",no_chk_data_crc");
437 if (c->mount_opts.override_compr) {
438 seq_printf(s, ",compr=%s",
439 ubifs_compr_name(c, c->mount_opts.compr_type));
442 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
443 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
445 return 0;
448 static int ubifs_sync_fs(struct super_block *sb, int wait)
450 int i, err;
451 struct ubifs_info *c = sb->s_fs_info;
454 * Zero @wait is just an advisory thing to help the file system shove
455 * lots of data into the queues, and there will be the second
456 * '->sync_fs()' call, with non-zero @wait.
458 if (!wait)
459 return 0;
462 * Synchronize write buffers, because 'ubifs_run_commit()' does not
463 * do this if it waits for an already running commit.
465 for (i = 0; i < c->jhead_cnt; i++) {
466 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
467 if (err)
468 return err;
472 * Strictly speaking, it is not necessary to commit the journal here,
473 * synchronizing write-buffers would be enough. But committing makes
474 * UBIFS free space predictions much more accurate, so we want to let
475 * the user be able to get more accurate results of 'statfs()' after
476 * they synchronize the file system.
478 err = ubifs_run_commit(c);
479 if (err)
480 return err;
482 return ubi_sync(c->vi.ubi_num);
486 * init_constants_early - initialize UBIFS constants.
487 * @c: UBIFS file-system description object
489 * This function initialize UBIFS constants which do not need the superblock to
490 * be read. It also checks that the UBI volume satisfies basic UBIFS
491 * requirements. Returns zero in case of success and a negative error code in
492 * case of failure.
494 static int init_constants_early(struct ubifs_info *c)
496 if (c->vi.corrupted) {
497 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
498 c->ro_media = 1;
501 if (c->di.ro_mode) {
502 ubifs_msg(c, "read-only UBI device");
503 c->ro_media = 1;
506 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
507 ubifs_msg(c, "static UBI volume - read-only mode");
508 c->ro_media = 1;
511 c->leb_cnt = c->vi.size;
512 c->leb_size = c->vi.usable_leb_size;
513 c->leb_start = c->di.leb_start;
514 c->half_leb_size = c->leb_size / 2;
515 c->min_io_size = c->di.min_io_size;
516 c->min_io_shift = fls(c->min_io_size) - 1;
517 c->max_write_size = c->di.max_write_size;
518 c->max_write_shift = fls(c->max_write_size) - 1;
520 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
521 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
522 c->leb_size, UBIFS_MIN_LEB_SZ);
523 return -EINVAL;
526 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
527 ubifs_errc(c, "too few LEBs (%d), min. is %d",
528 c->leb_cnt, UBIFS_MIN_LEB_CNT);
529 return -EINVAL;
532 if (!is_power_of_2(c->min_io_size)) {
533 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
534 return -EINVAL;
538 * Maximum write size has to be greater or equivalent to min. I/O
539 * size, and be multiple of min. I/O size.
541 if (c->max_write_size < c->min_io_size ||
542 c->max_write_size % c->min_io_size ||
543 !is_power_of_2(c->max_write_size)) {
544 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
545 c->max_write_size, c->min_io_size);
546 return -EINVAL;
550 * UBIFS aligns all node to 8-byte boundary, so to make function in
551 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
552 * less than 8.
554 if (c->min_io_size < 8) {
555 c->min_io_size = 8;
556 c->min_io_shift = 3;
557 if (c->max_write_size < c->min_io_size) {
558 c->max_write_size = c->min_io_size;
559 c->max_write_shift = c->min_io_shift;
563 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
564 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
567 * Initialize node length ranges which are mostly needed for node
568 * length validation.
570 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
571 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
572 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
573 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
574 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
575 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
576 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
577 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
578 UBIFS_MAX_HMAC_LEN;
579 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
580 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
582 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
583 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
584 c->ranges[UBIFS_ORPH_NODE].min_len =
585 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
586 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
587 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
588 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
589 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
590 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
591 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
592 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
594 * Minimum indexing node size is amended later when superblock is
595 * read and the key length is known.
597 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
599 * Maximum indexing node size is amended later when superblock is
600 * read and the fanout is known.
602 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
605 * Initialize dead and dark LEB space watermarks. See gc.c for comments
606 * about these values.
608 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
609 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
612 * Calculate how many bytes would be wasted at the end of LEB if it was
613 * fully filled with data nodes of maximum size. This is used in
614 * calculations when reporting free space.
616 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
618 /* Buffer size for bulk-reads */
619 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
620 if (c->max_bu_buf_len > c->leb_size)
621 c->max_bu_buf_len = c->leb_size;
623 /* Log is ready, preserve one LEB for commits. */
624 c->min_log_bytes = c->leb_size;
626 return 0;
630 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
631 * @c: UBIFS file-system description object
632 * @lnum: LEB the write-buffer was synchronized to
633 * @free: how many free bytes left in this LEB
634 * @pad: how many bytes were padded
636 * This is a callback function which is called by the I/O unit when the
637 * write-buffer is synchronized. We need this to correctly maintain space
638 * accounting in bud logical eraseblocks. This function returns zero in case of
639 * success and a negative error code in case of failure.
641 * This function actually belongs to the journal, but we keep it here because
642 * we want to keep it static.
644 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
646 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
650 * init_constants_sb - initialize UBIFS constants.
651 * @c: UBIFS file-system description object
653 * This is a helper function which initializes various UBIFS constants after
654 * the superblock has been read. It also checks various UBIFS parameters and
655 * makes sure they are all right. Returns zero in case of success and a
656 * negative error code in case of failure.
658 static int init_constants_sb(struct ubifs_info *c)
660 int tmp, err;
661 long long tmp64;
663 c->main_bytes = (long long)c->main_lebs * c->leb_size;
664 c->max_znode_sz = sizeof(struct ubifs_znode) +
665 c->fanout * sizeof(struct ubifs_zbranch);
667 tmp = ubifs_idx_node_sz(c, 1);
668 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
669 c->min_idx_node_sz = ALIGN(tmp, 8);
671 tmp = ubifs_idx_node_sz(c, c->fanout);
672 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
673 c->max_idx_node_sz = ALIGN(tmp, 8);
675 /* Make sure LEB size is large enough to fit full commit */
676 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
677 tmp = ALIGN(tmp, c->min_io_size);
678 if (tmp > c->leb_size) {
679 ubifs_err(c, "too small LEB size %d, at least %d needed",
680 c->leb_size, tmp);
681 return -EINVAL;
685 * Make sure that the log is large enough to fit reference nodes for
686 * all buds plus one reserved LEB.
688 tmp64 = c->max_bud_bytes + c->leb_size - 1;
689 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
690 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
691 tmp /= c->leb_size;
692 tmp += 1;
693 if (c->log_lebs < tmp) {
694 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
695 c->log_lebs, tmp);
696 return -EINVAL;
700 * When budgeting we assume worst-case scenarios when the pages are not
701 * be compressed and direntries are of the maximum size.
703 * Note, data, which may be stored in inodes is budgeted separately, so
704 * it is not included into 'c->bi.inode_budget'.
706 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
707 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
708 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
711 * When the amount of flash space used by buds becomes
712 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
713 * The writers are unblocked when the commit is finished. To avoid
714 * writers to be blocked UBIFS initiates background commit in advance,
715 * when number of bud bytes becomes above the limit defined below.
717 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
720 * Ensure minimum journal size. All the bytes in the journal heads are
721 * considered to be used, when calculating the current journal usage.
722 * Consequently, if the journal is too small, UBIFS will treat it as
723 * always full.
725 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
726 if (c->bg_bud_bytes < tmp64)
727 c->bg_bud_bytes = tmp64;
728 if (c->max_bud_bytes < tmp64 + c->leb_size)
729 c->max_bud_bytes = tmp64 + c->leb_size;
731 err = ubifs_calc_lpt_geom(c);
732 if (err)
733 return err;
735 /* Initialize effective LEB size used in budgeting calculations */
736 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
737 return 0;
741 * init_constants_master - initialize UBIFS constants.
742 * @c: UBIFS file-system description object
744 * This is a helper function which initializes various UBIFS constants after
745 * the master node has been read. It also checks various UBIFS parameters and
746 * makes sure they are all right.
748 static void init_constants_master(struct ubifs_info *c)
750 long long tmp64;
752 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
753 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
756 * Calculate total amount of FS blocks. This number is not used
757 * internally because it does not make much sense for UBIFS, but it is
758 * necessary to report something for the 'statfs()' call.
760 * Subtract the LEB reserved for GC, the LEB which is reserved for
761 * deletions, minimum LEBs for the index, and assume only one journal
762 * head is available.
764 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
765 tmp64 *= (long long)c->leb_size - c->leb_overhead;
766 tmp64 = ubifs_reported_space(c, tmp64);
767 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
771 * take_gc_lnum - reserve GC LEB.
772 * @c: UBIFS file-system description object
774 * This function ensures that the LEB reserved for garbage collection is marked
775 * as "taken" in lprops. We also have to set free space to LEB size and dirty
776 * space to zero, because lprops may contain out-of-date information if the
777 * file-system was un-mounted before it has been committed. This function
778 * returns zero in case of success and a negative error code in case of
779 * failure.
781 static int take_gc_lnum(struct ubifs_info *c)
783 int err;
785 if (c->gc_lnum == -1) {
786 ubifs_err(c, "no LEB for GC");
787 return -EINVAL;
790 /* And we have to tell lprops that this LEB is taken */
791 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
792 LPROPS_TAKEN, 0, 0);
793 return err;
797 * alloc_wbufs - allocate write-buffers.
798 * @c: UBIFS file-system description object
800 * This helper function allocates and initializes UBIFS write-buffers. Returns
801 * zero in case of success and %-ENOMEM in case of failure.
803 static int alloc_wbufs(struct ubifs_info *c)
805 int i, err;
807 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
808 GFP_KERNEL);
809 if (!c->jheads)
810 return -ENOMEM;
812 /* Initialize journal heads */
813 for (i = 0; i < c->jhead_cnt; i++) {
814 INIT_LIST_HEAD(&c->jheads[i].buds_list);
815 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
816 if (err)
817 return err;
819 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
820 c->jheads[i].wbuf.jhead = i;
821 c->jheads[i].grouped = 1;
822 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
823 if (IS_ERR(c->jheads[i].log_hash))
824 goto out;
828 * Garbage Collector head does not need to be synchronized by timer.
829 * Also GC head nodes are not grouped.
831 c->jheads[GCHD].wbuf.no_timer = 1;
832 c->jheads[GCHD].grouped = 0;
834 return 0;
836 out:
837 while (i--)
838 kfree(c->jheads[i].log_hash);
840 return err;
844 * free_wbufs - free write-buffers.
845 * @c: UBIFS file-system description object
847 static void free_wbufs(struct ubifs_info *c)
849 int i;
851 if (c->jheads) {
852 for (i = 0; i < c->jhead_cnt; i++) {
853 kfree(c->jheads[i].wbuf.buf);
854 kfree(c->jheads[i].wbuf.inodes);
855 kfree(c->jheads[i].log_hash);
857 kfree(c->jheads);
858 c->jheads = NULL;
863 * free_orphans - free orphans.
864 * @c: UBIFS file-system description object
866 static void free_orphans(struct ubifs_info *c)
868 struct ubifs_orphan *orph;
870 while (c->orph_dnext) {
871 orph = c->orph_dnext;
872 c->orph_dnext = orph->dnext;
873 list_del(&orph->list);
874 kfree(orph);
877 while (!list_empty(&c->orph_list)) {
878 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
879 list_del(&orph->list);
880 kfree(orph);
881 ubifs_err(c, "orphan list not empty at unmount");
884 vfree(c->orph_buf);
885 c->orph_buf = NULL;
889 * free_buds - free per-bud objects.
890 * @c: UBIFS file-system description object
892 static void free_buds(struct ubifs_info *c)
894 struct ubifs_bud *bud, *n;
896 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
897 kfree(bud);
901 * check_volume_empty - check if the UBI volume is empty.
902 * @c: UBIFS file-system description object
904 * This function checks if the UBIFS volume is empty by looking if its LEBs are
905 * mapped or not. The result of checking is stored in the @c->empty variable.
906 * Returns zero in case of success and a negative error code in case of
907 * failure.
909 static int check_volume_empty(struct ubifs_info *c)
911 int lnum, err;
913 c->empty = 1;
914 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
915 err = ubifs_is_mapped(c, lnum);
916 if (unlikely(err < 0))
917 return err;
918 if (err == 1) {
919 c->empty = 0;
920 break;
923 cond_resched();
926 return 0;
930 * UBIFS mount options.
932 * Opt_fast_unmount: do not run a journal commit before un-mounting
933 * Opt_norm_unmount: run a journal commit before un-mounting
934 * Opt_bulk_read: enable bulk-reads
935 * Opt_no_bulk_read: disable bulk-reads
936 * Opt_chk_data_crc: check CRCs when reading data nodes
937 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
938 * Opt_override_compr: override default compressor
939 * Opt_assert: set ubifs_assert() action
940 * Opt_auth_key: The key name used for authentication
941 * Opt_auth_hash_name: The hash type used for authentication
942 * Opt_err: just end of array marker
944 enum {
945 Opt_fast_unmount,
946 Opt_norm_unmount,
947 Opt_bulk_read,
948 Opt_no_bulk_read,
949 Opt_chk_data_crc,
950 Opt_no_chk_data_crc,
951 Opt_override_compr,
952 Opt_assert,
953 Opt_auth_key,
954 Opt_auth_hash_name,
955 Opt_ignore,
956 Opt_err,
959 static const match_table_t tokens = {
960 {Opt_fast_unmount, "fast_unmount"},
961 {Opt_norm_unmount, "norm_unmount"},
962 {Opt_bulk_read, "bulk_read"},
963 {Opt_no_bulk_read, "no_bulk_read"},
964 {Opt_chk_data_crc, "chk_data_crc"},
965 {Opt_no_chk_data_crc, "no_chk_data_crc"},
966 {Opt_override_compr, "compr=%s"},
967 {Opt_auth_key, "auth_key=%s"},
968 {Opt_auth_hash_name, "auth_hash_name=%s"},
969 {Opt_ignore, "ubi=%s"},
970 {Opt_ignore, "vol=%s"},
971 {Opt_assert, "assert=%s"},
972 {Opt_err, NULL},
976 * parse_standard_option - parse a standard mount option.
977 * @option: the option to parse
979 * Normally, standard mount options like "sync" are passed to file-systems as
980 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
981 * be present in the options string. This function tries to deal with this
982 * situation and parse standard options. Returns 0 if the option was not
983 * recognized, and the corresponding integer flag if it was.
985 * UBIFS is only interested in the "sync" option, so do not check for anything
986 * else.
988 static int parse_standard_option(const char *option)
991 pr_notice("UBIFS: parse %s\n", option);
992 if (!strcmp(option, "sync"))
993 return SB_SYNCHRONOUS;
994 return 0;
998 * ubifs_parse_options - parse mount parameters.
999 * @c: UBIFS file-system description object
1000 * @options: parameters to parse
1001 * @is_remount: non-zero if this is FS re-mount
1003 * This function parses UBIFS mount options and returns zero in case success
1004 * and a negative error code in case of failure.
1006 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1007 int is_remount)
1009 char *p;
1010 substring_t args[MAX_OPT_ARGS];
1012 if (!options)
1013 return 0;
1015 while ((p = strsep(&options, ","))) {
1016 int token;
1018 if (!*p)
1019 continue;
1021 token = match_token(p, tokens, args);
1022 switch (token) {
1024 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1025 * We accept them in order to be backward-compatible. But this
1026 * should be removed at some point.
1028 case Opt_fast_unmount:
1029 c->mount_opts.unmount_mode = 2;
1030 break;
1031 case Opt_norm_unmount:
1032 c->mount_opts.unmount_mode = 1;
1033 break;
1034 case Opt_bulk_read:
1035 c->mount_opts.bulk_read = 2;
1036 c->bulk_read = 1;
1037 break;
1038 case Opt_no_bulk_read:
1039 c->mount_opts.bulk_read = 1;
1040 c->bulk_read = 0;
1041 break;
1042 case Opt_chk_data_crc:
1043 c->mount_opts.chk_data_crc = 2;
1044 c->no_chk_data_crc = 0;
1045 break;
1046 case Opt_no_chk_data_crc:
1047 c->mount_opts.chk_data_crc = 1;
1048 c->no_chk_data_crc = 1;
1049 break;
1050 case Opt_override_compr:
1052 char *name = match_strdup(&args[0]);
1054 if (!name)
1055 return -ENOMEM;
1056 if (!strcmp(name, "none"))
1057 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1058 else if (!strcmp(name, "lzo"))
1059 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1060 else if (!strcmp(name, "zlib"))
1061 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1062 else if (!strcmp(name, "zstd"))
1063 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1064 else {
1065 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1066 kfree(name);
1067 return -EINVAL;
1069 kfree(name);
1070 c->mount_opts.override_compr = 1;
1071 c->default_compr = c->mount_opts.compr_type;
1072 break;
1074 case Opt_assert:
1076 char *act = match_strdup(&args[0]);
1078 if (!act)
1079 return -ENOMEM;
1080 if (!strcmp(act, "report"))
1081 c->assert_action = ASSACT_REPORT;
1082 else if (!strcmp(act, "read-only"))
1083 c->assert_action = ASSACT_RO;
1084 else if (!strcmp(act, "panic"))
1085 c->assert_action = ASSACT_PANIC;
1086 else {
1087 ubifs_err(c, "unknown assert action \"%s\"", act);
1088 kfree(act);
1089 return -EINVAL;
1091 kfree(act);
1092 break;
1094 case Opt_auth_key:
1095 c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1096 if (!c->auth_key_name)
1097 return -ENOMEM;
1098 break;
1099 case Opt_auth_hash_name:
1100 c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1101 if (!c->auth_hash_name)
1102 return -ENOMEM;
1103 break;
1104 case Opt_ignore:
1105 break;
1106 default:
1108 unsigned long flag;
1109 struct super_block *sb = c->vfs_sb;
1111 flag = parse_standard_option(p);
1112 if (!flag) {
1113 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1115 return -EINVAL;
1117 sb->s_flags |= flag;
1118 break;
1123 return 0;
1127 * destroy_journal - destroy journal data structures.
1128 * @c: UBIFS file-system description object
1130 * This function destroys journal data structures including those that may have
1131 * been created by recovery functions.
1133 static void destroy_journal(struct ubifs_info *c)
1135 while (!list_empty(&c->unclean_leb_list)) {
1136 struct ubifs_unclean_leb *ucleb;
1138 ucleb = list_entry(c->unclean_leb_list.next,
1139 struct ubifs_unclean_leb, list);
1140 list_del(&ucleb->list);
1141 kfree(ucleb);
1143 while (!list_empty(&c->old_buds)) {
1144 struct ubifs_bud *bud;
1146 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1147 list_del(&bud->list);
1148 kfree(bud);
1150 ubifs_destroy_idx_gc(c);
1151 ubifs_destroy_size_tree(c);
1152 ubifs_tnc_close(c);
1153 free_buds(c);
1157 * bu_init - initialize bulk-read information.
1158 * @c: UBIFS file-system description object
1160 static void bu_init(struct ubifs_info *c)
1162 ubifs_assert(c, c->bulk_read == 1);
1164 if (c->bu.buf)
1165 return; /* Already initialized */
1167 again:
1168 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1169 if (!c->bu.buf) {
1170 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1171 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1172 goto again;
1175 /* Just disable bulk-read */
1176 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1177 c->max_bu_buf_len);
1178 c->mount_opts.bulk_read = 1;
1179 c->bulk_read = 0;
1180 return;
1185 * check_free_space - check if there is enough free space to mount.
1186 * @c: UBIFS file-system description object
1188 * This function makes sure UBIFS has enough free space to be mounted in
1189 * read/write mode. UBIFS must always have some free space to allow deletions.
1191 static int check_free_space(struct ubifs_info *c)
1193 ubifs_assert(c, c->dark_wm > 0);
1194 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1195 ubifs_err(c, "insufficient free space to mount in R/W mode");
1196 ubifs_dump_budg(c, &c->bi);
1197 ubifs_dump_lprops(c);
1198 return -ENOSPC;
1200 return 0;
1204 * mount_ubifs - mount UBIFS file-system.
1205 * @c: UBIFS file-system description object
1207 * This function mounts UBIFS file system. Returns zero in case of success and
1208 * a negative error code in case of failure.
1210 static int mount_ubifs(struct ubifs_info *c)
1212 int err;
1213 long long x, y;
1214 size_t sz;
1216 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1217 /* Suppress error messages while probing if SB_SILENT is set */
1218 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1220 err = init_constants_early(c);
1221 if (err)
1222 return err;
1224 err = ubifs_debugging_init(c);
1225 if (err)
1226 return err;
1228 err = check_volume_empty(c);
1229 if (err)
1230 goto out_free;
1232 if (c->empty && (c->ro_mount || c->ro_media)) {
1234 * This UBI volume is empty, and read-only, or the file system
1235 * is mounted read-only - we cannot format it.
1237 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1238 c->ro_media ? "UBI volume" : "mount");
1239 err = -EROFS;
1240 goto out_free;
1243 if (c->ro_media && !c->ro_mount) {
1244 ubifs_err(c, "cannot mount read-write - read-only media");
1245 err = -EROFS;
1246 goto out_free;
1250 * The requirement for the buffer is that it should fit indexing B-tree
1251 * height amount of integers. We assume the height if the TNC tree will
1252 * never exceed 64.
1254 err = -ENOMEM;
1255 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1256 GFP_KERNEL);
1257 if (!c->bottom_up_buf)
1258 goto out_free;
1260 c->sbuf = vmalloc(c->leb_size);
1261 if (!c->sbuf)
1262 goto out_free;
1264 if (!c->ro_mount) {
1265 c->ileb_buf = vmalloc(c->leb_size);
1266 if (!c->ileb_buf)
1267 goto out_free;
1270 if (c->bulk_read == 1)
1271 bu_init(c);
1273 if (!c->ro_mount) {
1274 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1275 UBIFS_CIPHER_BLOCK_SIZE,
1276 GFP_KERNEL);
1277 if (!c->write_reserve_buf)
1278 goto out_free;
1281 c->mounting = 1;
1283 if (c->auth_key_name) {
1284 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1285 err = ubifs_init_authentication(c);
1286 if (err)
1287 goto out_free;
1288 } else {
1289 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1290 " authentication support");
1291 err = -EINVAL;
1292 goto out_free;
1296 err = ubifs_read_superblock(c);
1297 if (err)
1298 goto out_free;
1300 c->probing = 0;
1303 * Make sure the compressor which is set as default in the superblock
1304 * or overridden by mount options is actually compiled in.
1306 if (!ubifs_compr_present(c, c->default_compr)) {
1307 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1308 ubifs_compr_name(c, c->default_compr));
1309 err = -ENOTSUPP;
1310 goto out_free;
1313 err = init_constants_sb(c);
1314 if (err)
1315 goto out_free;
1317 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1318 c->cbuf = kmalloc(sz, GFP_NOFS);
1319 if (!c->cbuf) {
1320 err = -ENOMEM;
1321 goto out_free;
1324 err = alloc_wbufs(c);
1325 if (err)
1326 goto out_cbuf;
1328 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1329 if (!c->ro_mount) {
1330 /* Create background thread */
1331 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1332 if (IS_ERR(c->bgt)) {
1333 err = PTR_ERR(c->bgt);
1334 c->bgt = NULL;
1335 ubifs_err(c, "cannot spawn \"%s\", error %d",
1336 c->bgt_name, err);
1337 goto out_wbufs;
1339 wake_up_process(c->bgt);
1342 err = ubifs_read_master(c);
1343 if (err)
1344 goto out_master;
1346 init_constants_master(c);
1348 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1349 ubifs_msg(c, "recovery needed");
1350 c->need_recovery = 1;
1353 if (c->need_recovery && !c->ro_mount) {
1354 err = ubifs_recover_inl_heads(c, c->sbuf);
1355 if (err)
1356 goto out_master;
1359 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1360 if (err)
1361 goto out_master;
1363 if (!c->ro_mount && c->space_fixup) {
1364 err = ubifs_fixup_free_space(c);
1365 if (err)
1366 goto out_lpt;
1369 if (!c->ro_mount && !c->need_recovery) {
1371 * Set the "dirty" flag so that if we reboot uncleanly we
1372 * will notice this immediately on the next mount.
1374 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1375 err = ubifs_write_master(c);
1376 if (err)
1377 goto out_lpt;
1381 * Handle offline signed images: Now that the master node is
1382 * written and its validation no longer depends on the hash
1383 * in the superblock, we can update the offline signed
1384 * superblock with a HMAC version,
1386 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1387 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1388 if (err)
1389 goto out_lpt;
1390 c->superblock_need_write = 1;
1393 if (!c->ro_mount && c->superblock_need_write) {
1394 err = ubifs_write_sb_node(c, c->sup_node);
1395 if (err)
1396 goto out_lpt;
1397 c->superblock_need_write = 0;
1400 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1401 if (err)
1402 goto out_lpt;
1404 err = ubifs_replay_journal(c);
1405 if (err)
1406 goto out_journal;
1408 /* Calculate 'min_idx_lebs' after journal replay */
1409 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1411 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1412 if (err)
1413 goto out_orphans;
1415 if (!c->ro_mount) {
1416 int lnum;
1418 err = check_free_space(c);
1419 if (err)
1420 goto out_orphans;
1422 /* Check for enough log space */
1423 lnum = c->lhead_lnum + 1;
1424 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1425 lnum = UBIFS_LOG_LNUM;
1426 if (lnum == c->ltail_lnum) {
1427 err = ubifs_consolidate_log(c);
1428 if (err)
1429 goto out_orphans;
1432 if (c->need_recovery) {
1433 if (!ubifs_authenticated(c)) {
1434 err = ubifs_recover_size(c, true);
1435 if (err)
1436 goto out_orphans;
1439 err = ubifs_rcvry_gc_commit(c);
1440 if (err)
1441 goto out_orphans;
1443 if (ubifs_authenticated(c)) {
1444 err = ubifs_recover_size(c, false);
1445 if (err)
1446 goto out_orphans;
1448 } else {
1449 err = take_gc_lnum(c);
1450 if (err)
1451 goto out_orphans;
1454 * GC LEB may contain garbage if there was an unclean
1455 * reboot, and it should be un-mapped.
1457 err = ubifs_leb_unmap(c, c->gc_lnum);
1458 if (err)
1459 goto out_orphans;
1462 err = dbg_check_lprops(c);
1463 if (err)
1464 goto out_orphans;
1465 } else if (c->need_recovery) {
1466 err = ubifs_recover_size(c, false);
1467 if (err)
1468 goto out_orphans;
1469 } else {
1471 * Even if we mount read-only, we have to set space in GC LEB
1472 * to proper value because this affects UBIFS free space
1473 * reporting. We do not want to have a situation when
1474 * re-mounting from R/O to R/W changes amount of free space.
1476 err = take_gc_lnum(c);
1477 if (err)
1478 goto out_orphans;
1481 spin_lock(&ubifs_infos_lock);
1482 list_add_tail(&c->infos_list, &ubifs_infos);
1483 spin_unlock(&ubifs_infos_lock);
1485 if (c->need_recovery) {
1486 if (c->ro_mount)
1487 ubifs_msg(c, "recovery deferred");
1488 else {
1489 c->need_recovery = 0;
1490 ubifs_msg(c, "recovery completed");
1492 * GC LEB has to be empty and taken at this point. But
1493 * the journal head LEBs may also be accounted as
1494 * "empty taken" if they are empty.
1496 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1498 } else
1499 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1501 err = dbg_check_filesystem(c);
1502 if (err)
1503 goto out_infos;
1505 dbg_debugfs_init_fs(c);
1507 c->mounting = 0;
1509 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1510 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1511 c->ro_mount ? ", R/O mode" : "");
1512 x = (long long)c->main_lebs * c->leb_size;
1513 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1514 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1515 c->leb_size, c->leb_size >> 10, c->min_io_size,
1516 c->max_write_size);
1517 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1518 x, x >> 20, c->main_lebs,
1519 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1520 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1521 c->report_rp_size, c->report_rp_size >> 10);
1522 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1523 c->fmt_version, c->ro_compat_version,
1524 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1525 c->big_lpt ? ", big LPT model" : ", small LPT model");
1527 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1528 dbg_gen("data journal heads: %d",
1529 c->jhead_cnt - NONDATA_JHEADS_CNT);
1530 dbg_gen("log LEBs: %d (%d - %d)",
1531 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1532 dbg_gen("LPT area LEBs: %d (%d - %d)",
1533 c->lpt_lebs, c->lpt_first, c->lpt_last);
1534 dbg_gen("orphan area LEBs: %d (%d - %d)",
1535 c->orph_lebs, c->orph_first, c->orph_last);
1536 dbg_gen("main area LEBs: %d (%d - %d)",
1537 c->main_lebs, c->main_first, c->leb_cnt - 1);
1538 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1539 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1540 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1541 c->bi.old_idx_sz >> 20);
1542 dbg_gen("key hash type: %d", c->key_hash_type);
1543 dbg_gen("tree fanout: %d", c->fanout);
1544 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1545 dbg_gen("max. znode size %d", c->max_znode_sz);
1546 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1547 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1548 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1549 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1550 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1551 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1552 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1553 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1554 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1555 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1556 dbg_gen("dead watermark: %d", c->dead_wm);
1557 dbg_gen("dark watermark: %d", c->dark_wm);
1558 dbg_gen("LEB overhead: %d", c->leb_overhead);
1559 x = (long long)c->main_lebs * c->dark_wm;
1560 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1561 x, x >> 10, x >> 20);
1562 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1563 c->max_bud_bytes, c->max_bud_bytes >> 10,
1564 c->max_bud_bytes >> 20);
1565 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1566 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1567 c->bg_bud_bytes >> 20);
1568 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1569 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1570 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1571 dbg_gen("commit number: %llu", c->cmt_no);
1572 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1573 dbg_gen("max orphans: %d", c->max_orphans);
1575 return 0;
1577 out_infos:
1578 spin_lock(&ubifs_infos_lock);
1579 list_del(&c->infos_list);
1580 spin_unlock(&ubifs_infos_lock);
1581 out_orphans:
1582 free_orphans(c);
1583 out_journal:
1584 destroy_journal(c);
1585 out_lpt:
1586 ubifs_lpt_free(c, 0);
1587 out_master:
1588 kfree(c->mst_node);
1589 kfree(c->rcvrd_mst_node);
1590 if (c->bgt)
1591 kthread_stop(c->bgt);
1592 out_wbufs:
1593 free_wbufs(c);
1594 out_cbuf:
1595 kfree(c->cbuf);
1596 out_free:
1597 kfree(c->write_reserve_buf);
1598 kfree(c->bu.buf);
1599 vfree(c->ileb_buf);
1600 vfree(c->sbuf);
1601 kfree(c->bottom_up_buf);
1602 kfree(c->sup_node);
1603 ubifs_debugging_exit(c);
1604 return err;
1608 * ubifs_umount - un-mount UBIFS file-system.
1609 * @c: UBIFS file-system description object
1611 * Note, this function is called to free allocated resourced when un-mounting,
1612 * as well as free resources when an error occurred while we were half way
1613 * through mounting (error path cleanup function). So it has to make sure the
1614 * resource was actually allocated before freeing it.
1616 static void ubifs_umount(struct ubifs_info *c)
1618 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1619 c->vi.vol_id);
1621 dbg_debugfs_exit_fs(c);
1622 spin_lock(&ubifs_infos_lock);
1623 list_del(&c->infos_list);
1624 spin_unlock(&ubifs_infos_lock);
1626 if (c->bgt)
1627 kthread_stop(c->bgt);
1629 destroy_journal(c);
1630 free_wbufs(c);
1631 free_orphans(c);
1632 ubifs_lpt_free(c, 0);
1633 ubifs_exit_authentication(c);
1635 kfree(c->auth_key_name);
1636 kfree(c->auth_hash_name);
1637 kfree(c->cbuf);
1638 kfree(c->rcvrd_mst_node);
1639 kfree(c->mst_node);
1640 kfree(c->write_reserve_buf);
1641 kfree(c->bu.buf);
1642 vfree(c->ileb_buf);
1643 vfree(c->sbuf);
1644 kfree(c->bottom_up_buf);
1645 kfree(c->sup_node);
1646 ubifs_debugging_exit(c);
1650 * ubifs_remount_rw - re-mount in read-write mode.
1651 * @c: UBIFS file-system description object
1653 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1654 * mode. This function allocates the needed resources and re-mounts UBIFS in
1655 * read-write mode.
1657 static int ubifs_remount_rw(struct ubifs_info *c)
1659 int err, lnum;
1661 if (c->rw_incompat) {
1662 ubifs_err(c, "the file-system is not R/W-compatible");
1663 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1664 c->fmt_version, c->ro_compat_version,
1665 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1666 return -EROFS;
1669 mutex_lock(&c->umount_mutex);
1670 dbg_save_space_info(c);
1671 c->remounting_rw = 1;
1672 c->ro_mount = 0;
1674 if (c->space_fixup) {
1675 err = ubifs_fixup_free_space(c);
1676 if (err)
1677 goto out;
1680 err = check_free_space(c);
1681 if (err)
1682 goto out;
1684 if (c->need_recovery) {
1685 ubifs_msg(c, "completing deferred recovery");
1686 err = ubifs_write_rcvrd_mst_node(c);
1687 if (err)
1688 goto out;
1689 if (!ubifs_authenticated(c)) {
1690 err = ubifs_recover_size(c, true);
1691 if (err)
1692 goto out;
1694 err = ubifs_clean_lebs(c, c->sbuf);
1695 if (err)
1696 goto out;
1697 err = ubifs_recover_inl_heads(c, c->sbuf);
1698 if (err)
1699 goto out;
1700 } else {
1701 /* A readonly mount is not allowed to have orphans */
1702 ubifs_assert(c, c->tot_orphans == 0);
1703 err = ubifs_clear_orphans(c);
1704 if (err)
1705 goto out;
1708 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1709 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1710 err = ubifs_write_master(c);
1711 if (err)
1712 goto out;
1715 if (c->superblock_need_write) {
1716 struct ubifs_sb_node *sup = c->sup_node;
1718 err = ubifs_write_sb_node(c, sup);
1719 if (err)
1720 goto out;
1722 c->superblock_need_write = 0;
1725 c->ileb_buf = vmalloc(c->leb_size);
1726 if (!c->ileb_buf) {
1727 err = -ENOMEM;
1728 goto out;
1731 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1732 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1733 if (!c->write_reserve_buf) {
1734 err = -ENOMEM;
1735 goto out;
1738 err = ubifs_lpt_init(c, 0, 1);
1739 if (err)
1740 goto out;
1742 /* Create background thread */
1743 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1744 if (IS_ERR(c->bgt)) {
1745 err = PTR_ERR(c->bgt);
1746 c->bgt = NULL;
1747 ubifs_err(c, "cannot spawn \"%s\", error %d",
1748 c->bgt_name, err);
1749 goto out;
1751 wake_up_process(c->bgt);
1753 c->orph_buf = vmalloc(c->leb_size);
1754 if (!c->orph_buf) {
1755 err = -ENOMEM;
1756 goto out;
1759 /* Check for enough log space */
1760 lnum = c->lhead_lnum + 1;
1761 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1762 lnum = UBIFS_LOG_LNUM;
1763 if (lnum == c->ltail_lnum) {
1764 err = ubifs_consolidate_log(c);
1765 if (err)
1766 goto out;
1769 if (c->need_recovery) {
1770 err = ubifs_rcvry_gc_commit(c);
1771 if (err)
1772 goto out;
1774 if (ubifs_authenticated(c)) {
1775 err = ubifs_recover_size(c, false);
1776 if (err)
1777 goto out;
1779 } else {
1780 err = ubifs_leb_unmap(c, c->gc_lnum);
1782 if (err)
1783 goto out;
1785 dbg_gen("re-mounted read-write");
1786 c->remounting_rw = 0;
1788 if (c->need_recovery) {
1789 c->need_recovery = 0;
1790 ubifs_msg(c, "deferred recovery completed");
1791 } else {
1793 * Do not run the debugging space check if the were doing
1794 * recovery, because when we saved the information we had the
1795 * file-system in a state where the TNC and lprops has been
1796 * modified in memory, but all the I/O operations (including a
1797 * commit) were deferred. So the file-system was in
1798 * "non-committed" state. Now the file-system is in committed
1799 * state, and of course the amount of free space will change
1800 * because, for example, the old index size was imprecise.
1802 err = dbg_check_space_info(c);
1805 mutex_unlock(&c->umount_mutex);
1806 return err;
1808 out:
1809 c->ro_mount = 1;
1810 vfree(c->orph_buf);
1811 c->orph_buf = NULL;
1812 if (c->bgt) {
1813 kthread_stop(c->bgt);
1814 c->bgt = NULL;
1816 free_wbufs(c);
1817 kfree(c->write_reserve_buf);
1818 c->write_reserve_buf = NULL;
1819 vfree(c->ileb_buf);
1820 c->ileb_buf = NULL;
1821 ubifs_lpt_free(c, 1);
1822 c->remounting_rw = 0;
1823 mutex_unlock(&c->umount_mutex);
1824 return err;
1828 * ubifs_remount_ro - re-mount in read-only mode.
1829 * @c: UBIFS file-system description object
1831 * We assume VFS has stopped writing. Possibly the background thread could be
1832 * running a commit, however kthread_stop will wait in that case.
1834 static void ubifs_remount_ro(struct ubifs_info *c)
1836 int i, err;
1838 ubifs_assert(c, !c->need_recovery);
1839 ubifs_assert(c, !c->ro_mount);
1841 mutex_lock(&c->umount_mutex);
1842 if (c->bgt) {
1843 kthread_stop(c->bgt);
1844 c->bgt = NULL;
1847 dbg_save_space_info(c);
1849 for (i = 0; i < c->jhead_cnt; i++) {
1850 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1851 if (err)
1852 ubifs_ro_mode(c, err);
1855 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1856 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1857 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1858 err = ubifs_write_master(c);
1859 if (err)
1860 ubifs_ro_mode(c, err);
1862 vfree(c->orph_buf);
1863 c->orph_buf = NULL;
1864 kfree(c->write_reserve_buf);
1865 c->write_reserve_buf = NULL;
1866 vfree(c->ileb_buf);
1867 c->ileb_buf = NULL;
1868 ubifs_lpt_free(c, 1);
1869 c->ro_mount = 1;
1870 err = dbg_check_space_info(c);
1871 if (err)
1872 ubifs_ro_mode(c, err);
1873 mutex_unlock(&c->umount_mutex);
1876 static void ubifs_put_super(struct super_block *sb)
1878 int i;
1879 struct ubifs_info *c = sb->s_fs_info;
1881 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1884 * The following asserts are only valid if there has not been a failure
1885 * of the media. For example, there will be dirty inodes if we failed
1886 * to write them back because of I/O errors.
1888 if (!c->ro_error) {
1889 ubifs_assert(c, c->bi.idx_growth == 0);
1890 ubifs_assert(c, c->bi.dd_growth == 0);
1891 ubifs_assert(c, c->bi.data_growth == 0);
1895 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1896 * and file system un-mount. Namely, it prevents the shrinker from
1897 * picking this superblock for shrinking - it will be just skipped if
1898 * the mutex is locked.
1900 mutex_lock(&c->umount_mutex);
1901 if (!c->ro_mount) {
1903 * First of all kill the background thread to make sure it does
1904 * not interfere with un-mounting and freeing resources.
1906 if (c->bgt) {
1907 kthread_stop(c->bgt);
1908 c->bgt = NULL;
1912 * On fatal errors c->ro_error is set to 1, in which case we do
1913 * not write the master node.
1915 if (!c->ro_error) {
1916 int err;
1918 /* Synchronize write-buffers */
1919 for (i = 0; i < c->jhead_cnt; i++) {
1920 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1921 if (err)
1922 ubifs_ro_mode(c, err);
1926 * We are being cleanly unmounted which means the
1927 * orphans were killed - indicate this in the master
1928 * node. Also save the reserved GC LEB number.
1930 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1931 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1932 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1933 err = ubifs_write_master(c);
1934 if (err)
1936 * Recovery will attempt to fix the master area
1937 * next mount, so we just print a message and
1938 * continue to unmount normally.
1940 ubifs_err(c, "failed to write master node, error %d",
1941 err);
1942 } else {
1943 for (i = 0; i < c->jhead_cnt; i++)
1944 /* Make sure write-buffer timers are canceled */
1945 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1949 ubifs_umount(c);
1950 ubi_close_volume(c->ubi);
1951 mutex_unlock(&c->umount_mutex);
1954 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1956 int err;
1957 struct ubifs_info *c = sb->s_fs_info;
1959 sync_filesystem(sb);
1960 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1962 err = ubifs_parse_options(c, data, 1);
1963 if (err) {
1964 ubifs_err(c, "invalid or unknown remount parameter");
1965 return err;
1968 if (c->ro_mount && !(*flags & SB_RDONLY)) {
1969 if (c->ro_error) {
1970 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1971 return -EROFS;
1973 if (c->ro_media) {
1974 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1975 return -EROFS;
1977 err = ubifs_remount_rw(c);
1978 if (err)
1979 return err;
1980 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1981 if (c->ro_error) {
1982 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1983 return -EROFS;
1985 ubifs_remount_ro(c);
1988 if (c->bulk_read == 1)
1989 bu_init(c);
1990 else {
1991 dbg_gen("disable bulk-read");
1992 mutex_lock(&c->bu_mutex);
1993 kfree(c->bu.buf);
1994 c->bu.buf = NULL;
1995 mutex_unlock(&c->bu_mutex);
1998 if (!c->need_recovery)
1999 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2001 return 0;
2004 const struct super_operations ubifs_super_operations = {
2005 .alloc_inode = ubifs_alloc_inode,
2006 .free_inode = ubifs_free_inode,
2007 .put_super = ubifs_put_super,
2008 .write_inode = ubifs_write_inode,
2009 .drop_inode = ubifs_drop_inode,
2010 .evict_inode = ubifs_evict_inode,
2011 .statfs = ubifs_statfs,
2012 .dirty_inode = ubifs_dirty_inode,
2013 .remount_fs = ubifs_remount_fs,
2014 .show_options = ubifs_show_options,
2015 .sync_fs = ubifs_sync_fs,
2019 * open_ubi - parse UBI device name string and open the UBI device.
2020 * @name: UBI volume name
2021 * @mode: UBI volume open mode
2023 * The primary method of mounting UBIFS is by specifying the UBI volume
2024 * character device node path. However, UBIFS may also be mounted withoug any
2025 * character device node using one of the following methods:
2027 * o ubiX_Y - mount UBI device number X, volume Y;
2028 * o ubiY - mount UBI device number 0, volume Y;
2029 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2030 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2032 * Alternative '!' separator may be used instead of ':' (because some shells
2033 * like busybox may interpret ':' as an NFS host name separator). This function
2034 * returns UBI volume description object in case of success and a negative
2035 * error code in case of failure.
2037 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2039 struct ubi_volume_desc *ubi;
2040 int dev, vol;
2041 char *endptr;
2043 if (!name || !*name)
2044 return ERR_PTR(-EINVAL);
2046 /* First, try to open using the device node path method */
2047 ubi = ubi_open_volume_path(name, mode);
2048 if (!IS_ERR(ubi))
2049 return ubi;
2051 /* Try the "nodev" method */
2052 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2053 return ERR_PTR(-EINVAL);
2055 /* ubi:NAME method */
2056 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2057 return ubi_open_volume_nm(0, name + 4, mode);
2059 if (!isdigit(name[3]))
2060 return ERR_PTR(-EINVAL);
2062 dev = simple_strtoul(name + 3, &endptr, 0);
2064 /* ubiY method */
2065 if (*endptr == '\0')
2066 return ubi_open_volume(0, dev, mode);
2068 /* ubiX_Y method */
2069 if (*endptr == '_' && isdigit(endptr[1])) {
2070 vol = simple_strtoul(endptr + 1, &endptr, 0);
2071 if (*endptr != '\0')
2072 return ERR_PTR(-EINVAL);
2073 return ubi_open_volume(dev, vol, mode);
2076 /* ubiX:NAME method */
2077 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2078 return ubi_open_volume_nm(dev, ++endptr, mode);
2080 return ERR_PTR(-EINVAL);
2083 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2085 struct ubifs_info *c;
2087 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2088 if (c) {
2089 spin_lock_init(&c->cnt_lock);
2090 spin_lock_init(&c->cs_lock);
2091 spin_lock_init(&c->buds_lock);
2092 spin_lock_init(&c->space_lock);
2093 spin_lock_init(&c->orphan_lock);
2094 init_rwsem(&c->commit_sem);
2095 mutex_init(&c->lp_mutex);
2096 mutex_init(&c->tnc_mutex);
2097 mutex_init(&c->log_mutex);
2098 mutex_init(&c->umount_mutex);
2099 mutex_init(&c->bu_mutex);
2100 mutex_init(&c->write_reserve_mutex);
2101 init_waitqueue_head(&c->cmt_wq);
2102 c->buds = RB_ROOT;
2103 c->old_idx = RB_ROOT;
2104 c->size_tree = RB_ROOT;
2105 c->orph_tree = RB_ROOT;
2106 INIT_LIST_HEAD(&c->infos_list);
2107 INIT_LIST_HEAD(&c->idx_gc);
2108 INIT_LIST_HEAD(&c->replay_list);
2109 INIT_LIST_HEAD(&c->replay_buds);
2110 INIT_LIST_HEAD(&c->uncat_list);
2111 INIT_LIST_HEAD(&c->empty_list);
2112 INIT_LIST_HEAD(&c->freeable_list);
2113 INIT_LIST_HEAD(&c->frdi_idx_list);
2114 INIT_LIST_HEAD(&c->unclean_leb_list);
2115 INIT_LIST_HEAD(&c->old_buds);
2116 INIT_LIST_HEAD(&c->orph_list);
2117 INIT_LIST_HEAD(&c->orph_new);
2118 c->no_chk_data_crc = 1;
2119 c->assert_action = ASSACT_RO;
2121 c->highest_inum = UBIFS_FIRST_INO;
2122 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2124 ubi_get_volume_info(ubi, &c->vi);
2125 ubi_get_device_info(c->vi.ubi_num, &c->di);
2127 return c;
2130 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2132 struct ubifs_info *c = sb->s_fs_info;
2133 struct inode *root;
2134 int err;
2136 c->vfs_sb = sb;
2137 /* Re-open the UBI device in read-write mode */
2138 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2139 if (IS_ERR(c->ubi)) {
2140 err = PTR_ERR(c->ubi);
2141 goto out;
2144 err = ubifs_parse_options(c, data, 0);
2145 if (err)
2146 goto out_close;
2149 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2150 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2151 * which means the user would have to wait not just for their own I/O
2152 * but the read-ahead I/O as well i.e. completely pointless.
2154 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2155 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2156 * writeback happening.
2158 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2159 c->vi.vol_id);
2160 if (err)
2161 goto out_close;
2163 sb->s_fs_info = c;
2164 sb->s_magic = UBIFS_SUPER_MAGIC;
2165 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2166 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2167 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2168 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2169 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2170 sb->s_op = &ubifs_super_operations;
2171 #ifdef CONFIG_UBIFS_FS_XATTR
2172 sb->s_xattr = ubifs_xattr_handlers;
2173 #endif
2174 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2176 mutex_lock(&c->umount_mutex);
2177 err = mount_ubifs(c);
2178 if (err) {
2179 ubifs_assert(c, err < 0);
2180 goto out_unlock;
2183 /* Read the root inode */
2184 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2185 if (IS_ERR(root)) {
2186 err = PTR_ERR(root);
2187 goto out_umount;
2190 sb->s_root = d_make_root(root);
2191 if (!sb->s_root) {
2192 err = -ENOMEM;
2193 goto out_umount;
2196 mutex_unlock(&c->umount_mutex);
2197 return 0;
2199 out_umount:
2200 ubifs_umount(c);
2201 out_unlock:
2202 mutex_unlock(&c->umount_mutex);
2203 out_close:
2204 ubi_close_volume(c->ubi);
2205 out:
2206 return err;
2209 static int sb_test(struct super_block *sb, void *data)
2211 struct ubifs_info *c1 = data;
2212 struct ubifs_info *c = sb->s_fs_info;
2214 return c->vi.cdev == c1->vi.cdev;
2217 static int sb_set(struct super_block *sb, void *data)
2219 sb->s_fs_info = data;
2220 return set_anon_super(sb, NULL);
2223 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2224 const char *name, void *data)
2226 struct ubi_volume_desc *ubi;
2227 struct ubifs_info *c;
2228 struct super_block *sb;
2229 int err;
2231 dbg_gen("name %s, flags %#x", name, flags);
2234 * Get UBI device number and volume ID. Mount it read-only so far
2235 * because this might be a new mount point, and UBI allows only one
2236 * read-write user at a time.
2238 ubi = open_ubi(name, UBI_READONLY);
2239 if (IS_ERR(ubi)) {
2240 if (!(flags & SB_SILENT))
2241 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2242 current->pid, name, (int)PTR_ERR(ubi));
2243 return ERR_CAST(ubi);
2246 c = alloc_ubifs_info(ubi);
2247 if (!c) {
2248 err = -ENOMEM;
2249 goto out_close;
2252 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2254 sb = sget(fs_type, sb_test, sb_set, flags, c);
2255 if (IS_ERR(sb)) {
2256 err = PTR_ERR(sb);
2257 kfree(c);
2258 goto out_close;
2261 if (sb->s_root) {
2262 struct ubifs_info *c1 = sb->s_fs_info;
2263 kfree(c);
2264 /* A new mount point for already mounted UBIFS */
2265 dbg_gen("this ubi volume is already mounted");
2266 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2267 err = -EBUSY;
2268 goto out_deact;
2270 } else {
2271 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2272 if (err)
2273 goto out_deact;
2274 /* We do not support atime */
2275 sb->s_flags |= SB_ACTIVE;
2276 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2277 ubifs_msg(c, "full atime support is enabled.");
2278 else
2279 sb->s_flags |= SB_NOATIME;
2282 /* 'fill_super()' opens ubi again so we must close it here */
2283 ubi_close_volume(ubi);
2285 return dget(sb->s_root);
2287 out_deact:
2288 deactivate_locked_super(sb);
2289 out_close:
2290 ubi_close_volume(ubi);
2291 return ERR_PTR(err);
2294 static void kill_ubifs_super(struct super_block *s)
2296 struct ubifs_info *c = s->s_fs_info;
2297 kill_anon_super(s);
2298 kfree(c);
2301 static struct file_system_type ubifs_fs_type = {
2302 .name = "ubifs",
2303 .owner = THIS_MODULE,
2304 .mount = ubifs_mount,
2305 .kill_sb = kill_ubifs_super,
2307 MODULE_ALIAS_FS("ubifs");
2310 * Inode slab cache constructor.
2312 static void inode_slab_ctor(void *obj)
2314 struct ubifs_inode *ui = obj;
2315 inode_init_once(&ui->vfs_inode);
2318 static int __init ubifs_init(void)
2320 int err;
2322 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2324 /* Make sure node sizes are 8-byte aligned */
2325 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2326 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2327 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2328 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2329 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2330 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2331 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2332 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2333 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2334 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2335 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2337 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2338 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2339 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2340 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2341 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2342 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2344 /* Check min. node size */
2345 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2346 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2347 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2348 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2350 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2351 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2352 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2353 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2355 /* Defined node sizes */
2356 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2357 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2358 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2359 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2362 * We use 2 bit wide bit-fields to store compression type, which should
2363 * be amended if more compressors are added. The bit-fields are:
2364 * @compr_type in 'struct ubifs_inode', @default_compr in
2365 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2367 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2370 * We require that PAGE_SIZE is greater-than-or-equal-to
2371 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2373 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2374 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2375 current->pid, (unsigned int)PAGE_SIZE);
2376 return -EINVAL;
2379 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2380 sizeof(struct ubifs_inode), 0,
2381 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2382 SLAB_ACCOUNT, &inode_slab_ctor);
2383 if (!ubifs_inode_slab)
2384 return -ENOMEM;
2386 err = register_shrinker(&ubifs_shrinker_info);
2387 if (err)
2388 goto out_slab;
2390 err = ubifs_compressors_init();
2391 if (err)
2392 goto out_shrinker;
2394 dbg_debugfs_init();
2396 err = register_filesystem(&ubifs_fs_type);
2397 if (err) {
2398 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2399 current->pid, err);
2400 goto out_dbg;
2402 return 0;
2404 out_dbg:
2405 dbg_debugfs_exit();
2406 ubifs_compressors_exit();
2407 out_shrinker:
2408 unregister_shrinker(&ubifs_shrinker_info);
2409 out_slab:
2410 kmem_cache_destroy(ubifs_inode_slab);
2411 return err;
2413 /* late_initcall to let compressors initialize first */
2414 late_initcall(ubifs_init);
2416 static void __exit ubifs_exit(void)
2418 WARN_ON(!list_empty(&ubifs_infos));
2419 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2421 dbg_debugfs_exit();
2422 ubifs_compressors_exit();
2423 unregister_shrinker(&ubifs_shrinker_info);
2426 * Make sure all delayed rcu free inodes are flushed before we
2427 * destroy cache.
2429 rcu_barrier();
2430 kmem_cache_destroy(ubifs_inode_slab);
2431 unregister_filesystem(&ubifs_fs_type);
2433 module_exit(ubifs_exit);
2435 MODULE_LICENSE("GPL");
2436 MODULE_VERSION(__stringify(UBIFS_VERSION));
2437 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2438 MODULE_DESCRIPTION("UBIFS - UBI File System");