1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
30 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
31 * allocating too much.
33 #define UBIFS_KMALLOC_OK (128*1024)
35 /* Slab cache for UBIFS inodes */
36 static struct kmem_cache
*ubifs_inode_slab
;
38 /* UBIFS TNC shrinker description */
39 static struct shrinker ubifs_shrinker_info
= {
40 .scan_objects
= ubifs_shrink_scan
,
41 .count_objects
= ubifs_shrink_count
,
42 .seeks
= DEFAULT_SEEKS
,
46 * validate_inode - validate inode.
47 * @c: UBIFS file-system description object
48 * @inode: the inode to validate
50 * This is a helper function for 'ubifs_iget()' which validates various fields
51 * of a newly built inode to make sure they contain sane values and prevent
52 * possible vulnerabilities. Returns zero if the inode is all right and
53 * a non-zero error code if not.
55 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
58 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
60 if (inode
->i_size
> c
->max_inode_sz
) {
61 ubifs_err(c
, "inode is too large (%lld)",
62 (long long)inode
->i_size
);
66 if (ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
67 ubifs_err(c
, "unknown compression type %d", ui
->compr_type
);
71 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
74 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
77 if (ui
->xattr
&& !S_ISREG(inode
->i_mode
))
80 if (!ubifs_compr_present(c
, ui
->compr_type
)) {
81 ubifs_warn(c
, "inode %lu uses '%s' compression, but it was not compiled in",
82 inode
->i_ino
, ubifs_compr_name(c
, ui
->compr_type
));
85 err
= dbg_check_dir(c
, inode
);
89 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
93 struct ubifs_ino_node
*ino
;
94 struct ubifs_info
*c
= sb
->s_fs_info
;
96 struct ubifs_inode
*ui
;
98 dbg_gen("inode %lu", inum
);
100 inode
= iget_locked(sb
, inum
);
102 return ERR_PTR(-ENOMEM
);
103 if (!(inode
->i_state
& I_NEW
))
105 ui
= ubifs_inode(inode
);
107 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
113 ino_key_init(c
, &key
, inode
->i_ino
);
115 err
= ubifs_tnc_lookup(c
, &key
, ino
);
119 inode
->i_flags
|= S_NOCMTIME
;
121 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT
))
122 inode
->i_flags
|= S_NOATIME
;
124 set_nlink(inode
, le32_to_cpu(ino
->nlink
));
125 i_uid_write(inode
, le32_to_cpu(ino
->uid
));
126 i_gid_write(inode
, le32_to_cpu(ino
->gid
));
127 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
128 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
129 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
130 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
131 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
132 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
133 inode
->i_mode
= le32_to_cpu(ino
->mode
);
134 inode
->i_size
= le64_to_cpu(ino
->size
);
136 ui
->data_len
= le32_to_cpu(ino
->data_len
);
137 ui
->flags
= le32_to_cpu(ino
->flags
);
138 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
139 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
140 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
141 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
142 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
143 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
145 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
147 err
= validate_inode(c
, inode
);
151 switch (inode
->i_mode
& S_IFMT
) {
153 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
154 inode
->i_op
= &ubifs_file_inode_operations
;
155 inode
->i_fop
= &ubifs_file_operations
;
157 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
162 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
163 ((char *)ui
->data
)[ui
->data_len
] = '\0';
164 } else if (ui
->data_len
!= 0) {
170 inode
->i_op
= &ubifs_dir_inode_operations
;
171 inode
->i_fop
= &ubifs_dir_operations
;
172 if (ui
->data_len
!= 0) {
178 inode
->i_op
= &ubifs_symlink_inode_operations
;
179 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
183 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
188 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
189 ((char *)ui
->data
)[ui
->data_len
] = '\0';
195 union ubifs_dev_desc
*dev
;
197 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
203 dev
= (union ubifs_dev_desc
*)ino
->data
;
204 if (ui
->data_len
== sizeof(dev
->new))
205 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
206 else if (ui
->data_len
== sizeof(dev
->huge
))
207 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
212 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
213 inode
->i_op
= &ubifs_file_inode_operations
;
214 init_special_inode(inode
, inode
->i_mode
, rdev
);
219 inode
->i_op
= &ubifs_file_inode_operations
;
220 init_special_inode(inode
, inode
->i_mode
, 0);
221 if (ui
->data_len
!= 0) {
232 ubifs_set_inode_flags(inode
);
233 unlock_new_inode(inode
);
237 ubifs_err(c
, "inode %lu validation failed, error %d", inode
->i_ino
, err
);
238 ubifs_dump_node(c
, ino
);
239 ubifs_dump_inode(c
, inode
);
244 ubifs_err(c
, "failed to read inode %lu, error %d", inode
->i_ino
, err
);
249 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
251 struct ubifs_inode
*ui
;
253 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
257 memset((void *)ui
+ sizeof(struct inode
), 0,
258 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
259 mutex_init(&ui
->ui_mutex
);
260 spin_lock_init(&ui
->ui_lock
);
261 return &ui
->vfs_inode
;
264 static void ubifs_free_inode(struct inode
*inode
)
266 struct ubifs_inode
*ui
= ubifs_inode(inode
);
269 fscrypt_free_inode(inode
);
271 kmem_cache_free(ubifs_inode_slab
, ui
);
275 * Note, Linux write-back code calls this without 'i_mutex'.
277 static int ubifs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
280 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
281 struct ubifs_inode
*ui
= ubifs_inode(inode
);
283 ubifs_assert(c
, !ui
->xattr
);
284 if (is_bad_inode(inode
))
287 mutex_lock(&ui
->ui_mutex
);
289 * Due to races between write-back forced by budgeting
290 * (see 'sync_some_inodes()') and background write-back, the inode may
291 * have already been synchronized, do not do this again. This might
292 * also happen if it was synchronized in an VFS operation, e.g.
296 mutex_unlock(&ui
->ui_mutex
);
301 * As an optimization, do not write orphan inodes to the media just
302 * because this is not needed.
304 dbg_gen("inode %lu, mode %#x, nlink %u",
305 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
306 if (inode
->i_nlink
) {
307 err
= ubifs_jnl_write_inode(c
, inode
);
309 ubifs_err(c
, "can't write inode %lu, error %d",
312 err
= dbg_check_inode_size(c
, inode
, ui
->ui_size
);
316 mutex_unlock(&ui
->ui_mutex
);
317 ubifs_release_dirty_inode_budget(c
, ui
);
321 static int ubifs_drop_inode(struct inode
*inode
)
323 int drop
= generic_drop_inode(inode
);
326 drop
= fscrypt_drop_inode(inode
);
331 static void ubifs_evict_inode(struct inode
*inode
)
334 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
335 struct ubifs_inode
*ui
= ubifs_inode(inode
);
339 * Extended attribute inode deletions are fully handled in
340 * 'ubifs_removexattr()'. These inodes are special and have
341 * limited usage, so there is nothing to do here.
345 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
346 ubifs_assert(c
, !atomic_read(&inode
->i_count
));
348 truncate_inode_pages_final(&inode
->i_data
);
353 if (is_bad_inode(inode
))
356 ui
->ui_size
= inode
->i_size
= 0;
357 err
= ubifs_jnl_delete_inode(c
, inode
);
360 * Worst case we have a lost orphan inode wasting space, so a
361 * simple error message is OK here.
363 ubifs_err(c
, "can't delete inode %lu, error %d",
368 ubifs_release_dirty_inode_budget(c
, ui
);
370 /* We've deleted something - clean the "no space" flags */
371 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
376 fscrypt_put_encryption_info(inode
);
379 static void ubifs_dirty_inode(struct inode
*inode
, int flags
)
381 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
382 struct ubifs_inode
*ui
= ubifs_inode(inode
);
384 ubifs_assert(c
, mutex_is_locked(&ui
->ui_mutex
));
387 dbg_gen("inode %lu", inode
->i_ino
);
391 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
393 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
394 unsigned long long free
;
395 __le32
*uuid
= (__le32
*)c
->uuid
;
397 free
= ubifs_get_free_space(c
);
398 dbg_gen("free space %lld bytes (%lld blocks)",
399 free
, free
>> UBIFS_BLOCK_SHIFT
);
401 buf
->f_type
= UBIFS_SUPER_MAGIC
;
402 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
403 buf
->f_blocks
= c
->block_cnt
;
404 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
405 if (free
> c
->report_rp_size
)
406 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
411 buf
->f_namelen
= UBIFS_MAX_NLEN
;
412 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
413 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
414 ubifs_assert(c
, buf
->f_bfree
<= c
->block_cnt
);
418 static int ubifs_show_options(struct seq_file
*s
, struct dentry
*root
)
420 struct ubifs_info
*c
= root
->d_sb
->s_fs_info
;
422 if (c
->mount_opts
.unmount_mode
== 2)
423 seq_puts(s
, ",fast_unmount");
424 else if (c
->mount_opts
.unmount_mode
== 1)
425 seq_puts(s
, ",norm_unmount");
427 if (c
->mount_opts
.bulk_read
== 2)
428 seq_puts(s
, ",bulk_read");
429 else if (c
->mount_opts
.bulk_read
== 1)
430 seq_puts(s
, ",no_bulk_read");
432 if (c
->mount_opts
.chk_data_crc
== 2)
433 seq_puts(s
, ",chk_data_crc");
434 else if (c
->mount_opts
.chk_data_crc
== 1)
435 seq_puts(s
, ",no_chk_data_crc");
437 if (c
->mount_opts
.override_compr
) {
438 seq_printf(s
, ",compr=%s",
439 ubifs_compr_name(c
, c
->mount_opts
.compr_type
));
442 seq_printf(s
, ",assert=%s", ubifs_assert_action_name(c
));
443 seq_printf(s
, ",ubi=%d,vol=%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
448 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
451 struct ubifs_info
*c
= sb
->s_fs_info
;
454 * Zero @wait is just an advisory thing to help the file system shove
455 * lots of data into the queues, and there will be the second
456 * '->sync_fs()' call, with non-zero @wait.
462 * Synchronize write buffers, because 'ubifs_run_commit()' does not
463 * do this if it waits for an already running commit.
465 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
466 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
472 * Strictly speaking, it is not necessary to commit the journal here,
473 * synchronizing write-buffers would be enough. But committing makes
474 * UBIFS free space predictions much more accurate, so we want to let
475 * the user be able to get more accurate results of 'statfs()' after
476 * they synchronize the file system.
478 err
= ubifs_run_commit(c
);
482 return ubi_sync(c
->vi
.ubi_num
);
486 * init_constants_early - initialize UBIFS constants.
487 * @c: UBIFS file-system description object
489 * This function initialize UBIFS constants which do not need the superblock to
490 * be read. It also checks that the UBI volume satisfies basic UBIFS
491 * requirements. Returns zero in case of success and a negative error code in
494 static int init_constants_early(struct ubifs_info
*c
)
496 if (c
->vi
.corrupted
) {
497 ubifs_warn(c
, "UBI volume is corrupted - read-only mode");
502 ubifs_msg(c
, "read-only UBI device");
506 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
507 ubifs_msg(c
, "static UBI volume - read-only mode");
511 c
->leb_cnt
= c
->vi
.size
;
512 c
->leb_size
= c
->vi
.usable_leb_size
;
513 c
->leb_start
= c
->di
.leb_start
;
514 c
->half_leb_size
= c
->leb_size
/ 2;
515 c
->min_io_size
= c
->di
.min_io_size
;
516 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
517 c
->max_write_size
= c
->di
.max_write_size
;
518 c
->max_write_shift
= fls(c
->max_write_size
) - 1;
520 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
521 ubifs_errc(c
, "too small LEBs (%d bytes), min. is %d bytes",
522 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
526 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
527 ubifs_errc(c
, "too few LEBs (%d), min. is %d",
528 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
532 if (!is_power_of_2(c
->min_io_size
)) {
533 ubifs_errc(c
, "bad min. I/O size %d", c
->min_io_size
);
538 * Maximum write size has to be greater or equivalent to min. I/O
539 * size, and be multiple of min. I/O size.
541 if (c
->max_write_size
< c
->min_io_size
||
542 c
->max_write_size
% c
->min_io_size
||
543 !is_power_of_2(c
->max_write_size
)) {
544 ubifs_errc(c
, "bad write buffer size %d for %d min. I/O unit",
545 c
->max_write_size
, c
->min_io_size
);
550 * UBIFS aligns all node to 8-byte boundary, so to make function in
551 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
554 if (c
->min_io_size
< 8) {
557 if (c
->max_write_size
< c
->min_io_size
) {
558 c
->max_write_size
= c
->min_io_size
;
559 c
->max_write_shift
= c
->min_io_shift
;
563 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
564 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
567 * Initialize node length ranges which are mostly needed for node
570 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
571 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
572 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
573 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
574 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
575 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
576 c
->ranges
[UBIFS_AUTH_NODE
].min_len
= UBIFS_AUTH_NODE_SZ
;
577 c
->ranges
[UBIFS_AUTH_NODE
].max_len
= UBIFS_AUTH_NODE_SZ
+
579 c
->ranges
[UBIFS_SIG_NODE
].min_len
= UBIFS_SIG_NODE_SZ
;
580 c
->ranges
[UBIFS_SIG_NODE
].max_len
= c
->leb_size
- UBIFS_SB_NODE_SZ
;
582 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
583 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
584 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
585 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
586 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
587 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
588 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
589 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
590 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
591 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
592 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
594 * Minimum indexing node size is amended later when superblock is
595 * read and the key length is known.
597 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
599 * Maximum indexing node size is amended later when superblock is
600 * read and the fanout is known.
602 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
605 * Initialize dead and dark LEB space watermarks. See gc.c for comments
606 * about these values.
608 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
609 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
612 * Calculate how many bytes would be wasted at the end of LEB if it was
613 * fully filled with data nodes of maximum size. This is used in
614 * calculations when reporting free space.
616 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
618 /* Buffer size for bulk-reads */
619 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
620 if (c
->max_bu_buf_len
> c
->leb_size
)
621 c
->max_bu_buf_len
= c
->leb_size
;
623 /* Log is ready, preserve one LEB for commits. */
624 c
->min_log_bytes
= c
->leb_size
;
630 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
631 * @c: UBIFS file-system description object
632 * @lnum: LEB the write-buffer was synchronized to
633 * @free: how many free bytes left in this LEB
634 * @pad: how many bytes were padded
636 * This is a callback function which is called by the I/O unit when the
637 * write-buffer is synchronized. We need this to correctly maintain space
638 * accounting in bud logical eraseblocks. This function returns zero in case of
639 * success and a negative error code in case of failure.
641 * This function actually belongs to the journal, but we keep it here because
642 * we want to keep it static.
644 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
646 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
650 * init_constants_sb - initialize UBIFS constants.
651 * @c: UBIFS file-system description object
653 * This is a helper function which initializes various UBIFS constants after
654 * the superblock has been read. It also checks various UBIFS parameters and
655 * makes sure they are all right. Returns zero in case of success and a
656 * negative error code in case of failure.
658 static int init_constants_sb(struct ubifs_info
*c
)
663 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
664 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
665 c
->fanout
* sizeof(struct ubifs_zbranch
);
667 tmp
= ubifs_idx_node_sz(c
, 1);
668 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
669 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
671 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
672 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
673 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
675 /* Make sure LEB size is large enough to fit full commit */
676 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
677 tmp
= ALIGN(tmp
, c
->min_io_size
);
678 if (tmp
> c
->leb_size
) {
679 ubifs_err(c
, "too small LEB size %d, at least %d needed",
685 * Make sure that the log is large enough to fit reference nodes for
686 * all buds plus one reserved LEB.
688 tmp64
= c
->max_bud_bytes
+ c
->leb_size
- 1;
689 c
->max_bud_cnt
= div_u64(tmp64
, c
->leb_size
);
690 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
693 if (c
->log_lebs
< tmp
) {
694 ubifs_err(c
, "too small log %d LEBs, required min. %d LEBs",
700 * When budgeting we assume worst-case scenarios when the pages are not
701 * be compressed and direntries are of the maximum size.
703 * Note, data, which may be stored in inodes is budgeted separately, so
704 * it is not included into 'c->bi.inode_budget'.
706 c
->bi
.page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
707 c
->bi
.inode_budget
= UBIFS_INO_NODE_SZ
;
708 c
->bi
.dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
711 * When the amount of flash space used by buds becomes
712 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
713 * The writers are unblocked when the commit is finished. To avoid
714 * writers to be blocked UBIFS initiates background commit in advance,
715 * when number of bud bytes becomes above the limit defined below.
717 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
720 * Ensure minimum journal size. All the bytes in the journal heads are
721 * considered to be used, when calculating the current journal usage.
722 * Consequently, if the journal is too small, UBIFS will treat it as
725 tmp64
= (long long)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
726 if (c
->bg_bud_bytes
< tmp64
)
727 c
->bg_bud_bytes
= tmp64
;
728 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
729 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
731 err
= ubifs_calc_lpt_geom(c
);
735 /* Initialize effective LEB size used in budgeting calculations */
736 c
->idx_leb_size
= c
->leb_size
- c
->max_idx_node_sz
;
741 * init_constants_master - initialize UBIFS constants.
742 * @c: UBIFS file-system description object
744 * This is a helper function which initializes various UBIFS constants after
745 * the master node has been read. It also checks various UBIFS parameters and
746 * makes sure they are all right.
748 static void init_constants_master(struct ubifs_info
*c
)
752 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
753 c
->report_rp_size
= ubifs_reported_space(c
, c
->rp_size
);
756 * Calculate total amount of FS blocks. This number is not used
757 * internally because it does not make much sense for UBIFS, but it is
758 * necessary to report something for the 'statfs()' call.
760 * Subtract the LEB reserved for GC, the LEB which is reserved for
761 * deletions, minimum LEBs for the index, and assume only one journal
764 tmp64
= c
->main_lebs
- 1 - 1 - MIN_INDEX_LEBS
- c
->jhead_cnt
+ 1;
765 tmp64
*= (long long)c
->leb_size
- c
->leb_overhead
;
766 tmp64
= ubifs_reported_space(c
, tmp64
);
767 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
771 * take_gc_lnum - reserve GC LEB.
772 * @c: UBIFS file-system description object
774 * This function ensures that the LEB reserved for garbage collection is marked
775 * as "taken" in lprops. We also have to set free space to LEB size and dirty
776 * space to zero, because lprops may contain out-of-date information if the
777 * file-system was un-mounted before it has been committed. This function
778 * returns zero in case of success and a negative error code in case of
781 static int take_gc_lnum(struct ubifs_info
*c
)
785 if (c
->gc_lnum
== -1) {
786 ubifs_err(c
, "no LEB for GC");
790 /* And we have to tell lprops that this LEB is taken */
791 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
797 * alloc_wbufs - allocate write-buffers.
798 * @c: UBIFS file-system description object
800 * This helper function allocates and initializes UBIFS write-buffers. Returns
801 * zero in case of success and %-ENOMEM in case of failure.
803 static int alloc_wbufs(struct ubifs_info
*c
)
807 c
->jheads
= kcalloc(c
->jhead_cnt
, sizeof(struct ubifs_jhead
),
812 /* Initialize journal heads */
813 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
814 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
815 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
819 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
820 c
->jheads
[i
].wbuf
.jhead
= i
;
821 c
->jheads
[i
].grouped
= 1;
822 c
->jheads
[i
].log_hash
= ubifs_hash_get_desc(c
);
823 if (IS_ERR(c
->jheads
[i
].log_hash
))
828 * Garbage Collector head does not need to be synchronized by timer.
829 * Also GC head nodes are not grouped.
831 c
->jheads
[GCHD
].wbuf
.no_timer
= 1;
832 c
->jheads
[GCHD
].grouped
= 0;
838 kfree(c
->jheads
[i
].log_hash
);
844 * free_wbufs - free write-buffers.
845 * @c: UBIFS file-system description object
847 static void free_wbufs(struct ubifs_info
*c
)
852 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
853 kfree(c
->jheads
[i
].wbuf
.buf
);
854 kfree(c
->jheads
[i
].wbuf
.inodes
);
855 kfree(c
->jheads
[i
].log_hash
);
863 * free_orphans - free orphans.
864 * @c: UBIFS file-system description object
866 static void free_orphans(struct ubifs_info
*c
)
868 struct ubifs_orphan
*orph
;
870 while (c
->orph_dnext
) {
871 orph
= c
->orph_dnext
;
872 c
->orph_dnext
= orph
->dnext
;
873 list_del(&orph
->list
);
877 while (!list_empty(&c
->orph_list
)) {
878 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
879 list_del(&orph
->list
);
881 ubifs_err(c
, "orphan list not empty at unmount");
889 * free_buds - free per-bud objects.
890 * @c: UBIFS file-system description object
892 static void free_buds(struct ubifs_info
*c
)
894 struct ubifs_bud
*bud
, *n
;
896 rbtree_postorder_for_each_entry_safe(bud
, n
, &c
->buds
, rb
)
901 * check_volume_empty - check if the UBI volume is empty.
902 * @c: UBIFS file-system description object
904 * This function checks if the UBIFS volume is empty by looking if its LEBs are
905 * mapped or not. The result of checking is stored in the @c->empty variable.
906 * Returns zero in case of success and a negative error code in case of
909 static int check_volume_empty(struct ubifs_info
*c
)
914 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
915 err
= ubifs_is_mapped(c
, lnum
);
916 if (unlikely(err
< 0))
930 * UBIFS mount options.
932 * Opt_fast_unmount: do not run a journal commit before un-mounting
933 * Opt_norm_unmount: run a journal commit before un-mounting
934 * Opt_bulk_read: enable bulk-reads
935 * Opt_no_bulk_read: disable bulk-reads
936 * Opt_chk_data_crc: check CRCs when reading data nodes
937 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
938 * Opt_override_compr: override default compressor
939 * Opt_assert: set ubifs_assert() action
940 * Opt_auth_key: The key name used for authentication
941 * Opt_auth_hash_name: The hash type used for authentication
942 * Opt_err: just end of array marker
959 static const match_table_t tokens
= {
960 {Opt_fast_unmount
, "fast_unmount"},
961 {Opt_norm_unmount
, "norm_unmount"},
962 {Opt_bulk_read
, "bulk_read"},
963 {Opt_no_bulk_read
, "no_bulk_read"},
964 {Opt_chk_data_crc
, "chk_data_crc"},
965 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
966 {Opt_override_compr
, "compr=%s"},
967 {Opt_auth_key
, "auth_key=%s"},
968 {Opt_auth_hash_name
, "auth_hash_name=%s"},
969 {Opt_ignore
, "ubi=%s"},
970 {Opt_ignore
, "vol=%s"},
971 {Opt_assert
, "assert=%s"},
976 * parse_standard_option - parse a standard mount option.
977 * @option: the option to parse
979 * Normally, standard mount options like "sync" are passed to file-systems as
980 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
981 * be present in the options string. This function tries to deal with this
982 * situation and parse standard options. Returns 0 if the option was not
983 * recognized, and the corresponding integer flag if it was.
985 * UBIFS is only interested in the "sync" option, so do not check for anything
988 static int parse_standard_option(const char *option
)
991 pr_notice("UBIFS: parse %s\n", option
);
992 if (!strcmp(option
, "sync"))
993 return SB_SYNCHRONOUS
;
998 * ubifs_parse_options - parse mount parameters.
999 * @c: UBIFS file-system description object
1000 * @options: parameters to parse
1001 * @is_remount: non-zero if this is FS re-mount
1003 * This function parses UBIFS mount options and returns zero in case success
1004 * and a negative error code in case of failure.
1006 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
1010 substring_t args
[MAX_OPT_ARGS
];
1015 while ((p
= strsep(&options
, ","))) {
1021 token
= match_token(p
, tokens
, args
);
1024 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1025 * We accept them in order to be backward-compatible. But this
1026 * should be removed at some point.
1028 case Opt_fast_unmount
:
1029 c
->mount_opts
.unmount_mode
= 2;
1031 case Opt_norm_unmount
:
1032 c
->mount_opts
.unmount_mode
= 1;
1035 c
->mount_opts
.bulk_read
= 2;
1038 case Opt_no_bulk_read
:
1039 c
->mount_opts
.bulk_read
= 1;
1042 case Opt_chk_data_crc
:
1043 c
->mount_opts
.chk_data_crc
= 2;
1044 c
->no_chk_data_crc
= 0;
1046 case Opt_no_chk_data_crc
:
1047 c
->mount_opts
.chk_data_crc
= 1;
1048 c
->no_chk_data_crc
= 1;
1050 case Opt_override_compr
:
1052 char *name
= match_strdup(&args
[0]);
1056 if (!strcmp(name
, "none"))
1057 c
->mount_opts
.compr_type
= UBIFS_COMPR_NONE
;
1058 else if (!strcmp(name
, "lzo"))
1059 c
->mount_opts
.compr_type
= UBIFS_COMPR_LZO
;
1060 else if (!strcmp(name
, "zlib"))
1061 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZLIB
;
1062 else if (!strcmp(name
, "zstd"))
1063 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZSTD
;
1065 ubifs_err(c
, "unknown compressor \"%s\"", name
); //FIXME: is c ready?
1070 c
->mount_opts
.override_compr
= 1;
1071 c
->default_compr
= c
->mount_opts
.compr_type
;
1076 char *act
= match_strdup(&args
[0]);
1080 if (!strcmp(act
, "report"))
1081 c
->assert_action
= ASSACT_REPORT
;
1082 else if (!strcmp(act
, "read-only"))
1083 c
->assert_action
= ASSACT_RO
;
1084 else if (!strcmp(act
, "panic"))
1085 c
->assert_action
= ASSACT_PANIC
;
1087 ubifs_err(c
, "unknown assert action \"%s\"", act
);
1095 c
->auth_key_name
= kstrdup(args
[0].from
, GFP_KERNEL
);
1096 if (!c
->auth_key_name
)
1099 case Opt_auth_hash_name
:
1100 c
->auth_hash_name
= kstrdup(args
[0].from
, GFP_KERNEL
);
1101 if (!c
->auth_hash_name
)
1109 struct super_block
*sb
= c
->vfs_sb
;
1111 flag
= parse_standard_option(p
);
1113 ubifs_err(c
, "unrecognized mount option \"%s\" or missing value",
1117 sb
->s_flags
|= flag
;
1127 * destroy_journal - destroy journal data structures.
1128 * @c: UBIFS file-system description object
1130 * This function destroys journal data structures including those that may have
1131 * been created by recovery functions.
1133 static void destroy_journal(struct ubifs_info
*c
)
1135 while (!list_empty(&c
->unclean_leb_list
)) {
1136 struct ubifs_unclean_leb
*ucleb
;
1138 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1139 struct ubifs_unclean_leb
, list
);
1140 list_del(&ucleb
->list
);
1143 while (!list_empty(&c
->old_buds
)) {
1144 struct ubifs_bud
*bud
;
1146 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
1147 list_del(&bud
->list
);
1150 ubifs_destroy_idx_gc(c
);
1151 ubifs_destroy_size_tree(c
);
1157 * bu_init - initialize bulk-read information.
1158 * @c: UBIFS file-system description object
1160 static void bu_init(struct ubifs_info
*c
)
1162 ubifs_assert(c
, c
->bulk_read
== 1);
1165 return; /* Already initialized */
1168 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1170 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1171 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1175 /* Just disable bulk-read */
1176 ubifs_warn(c
, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1178 c
->mount_opts
.bulk_read
= 1;
1185 * check_free_space - check if there is enough free space to mount.
1186 * @c: UBIFS file-system description object
1188 * This function makes sure UBIFS has enough free space to be mounted in
1189 * read/write mode. UBIFS must always have some free space to allow deletions.
1191 static int check_free_space(struct ubifs_info
*c
)
1193 ubifs_assert(c
, c
->dark_wm
> 0);
1194 if (c
->lst
.total_free
+ c
->lst
.total_dirty
< c
->dark_wm
) {
1195 ubifs_err(c
, "insufficient free space to mount in R/W mode");
1196 ubifs_dump_budg(c
, &c
->bi
);
1197 ubifs_dump_lprops(c
);
1204 * mount_ubifs - mount UBIFS file-system.
1205 * @c: UBIFS file-system description object
1207 * This function mounts UBIFS file system. Returns zero in case of success and
1208 * a negative error code in case of failure.
1210 static int mount_ubifs(struct ubifs_info
*c
)
1216 c
->ro_mount
= !!sb_rdonly(c
->vfs_sb
);
1217 /* Suppress error messages while probing if SB_SILENT is set */
1218 c
->probing
= !!(c
->vfs_sb
->s_flags
& SB_SILENT
);
1220 err
= init_constants_early(c
);
1224 err
= ubifs_debugging_init(c
);
1228 err
= check_volume_empty(c
);
1232 if (c
->empty
&& (c
->ro_mount
|| c
->ro_media
)) {
1234 * This UBI volume is empty, and read-only, or the file system
1235 * is mounted read-only - we cannot format it.
1237 ubifs_err(c
, "can't format empty UBI volume: read-only %s",
1238 c
->ro_media
? "UBI volume" : "mount");
1243 if (c
->ro_media
&& !c
->ro_mount
) {
1244 ubifs_err(c
, "cannot mount read-write - read-only media");
1250 * The requirement for the buffer is that it should fit indexing B-tree
1251 * height amount of integers. We assume the height if the TNC tree will
1255 c
->bottom_up_buf
= kmalloc_array(BOTTOM_UP_HEIGHT
, sizeof(int),
1257 if (!c
->bottom_up_buf
)
1260 c
->sbuf
= vmalloc(c
->leb_size
);
1265 c
->ileb_buf
= vmalloc(c
->leb_size
);
1270 if (c
->bulk_read
== 1)
1274 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
+ \
1275 UBIFS_CIPHER_BLOCK_SIZE
,
1277 if (!c
->write_reserve_buf
)
1283 if (c
->auth_key_name
) {
1284 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION
)) {
1285 err
= ubifs_init_authentication(c
);
1289 ubifs_err(c
, "auth_key_name, but UBIFS is built without"
1290 " authentication support");
1296 err
= ubifs_read_superblock(c
);
1303 * Make sure the compressor which is set as default in the superblock
1304 * or overridden by mount options is actually compiled in.
1306 if (!ubifs_compr_present(c
, c
->default_compr
)) {
1307 ubifs_err(c
, "'compressor \"%s\" is not compiled in",
1308 ubifs_compr_name(c
, c
->default_compr
));
1313 err
= init_constants_sb(c
);
1317 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
) * 2;
1318 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1324 err
= alloc_wbufs(c
);
1328 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1330 /* Create background thread */
1331 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1332 if (IS_ERR(c
->bgt
)) {
1333 err
= PTR_ERR(c
->bgt
);
1335 ubifs_err(c
, "cannot spawn \"%s\", error %d",
1339 wake_up_process(c
->bgt
);
1342 err
= ubifs_read_master(c
);
1346 init_constants_master(c
);
1348 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1349 ubifs_msg(c
, "recovery needed");
1350 c
->need_recovery
= 1;
1353 if (c
->need_recovery
&& !c
->ro_mount
) {
1354 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1359 err
= ubifs_lpt_init(c
, 1, !c
->ro_mount
);
1363 if (!c
->ro_mount
&& c
->space_fixup
) {
1364 err
= ubifs_fixup_free_space(c
);
1369 if (!c
->ro_mount
&& !c
->need_recovery
) {
1371 * Set the "dirty" flag so that if we reboot uncleanly we
1372 * will notice this immediately on the next mount.
1374 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1375 err
= ubifs_write_master(c
);
1381 * Handle offline signed images: Now that the master node is
1382 * written and its validation no longer depends on the hash
1383 * in the superblock, we can update the offline signed
1384 * superblock with a HMAC version,
1386 if (ubifs_authenticated(c
) && ubifs_hmac_zero(c
, c
->sup_node
->hmac
)) {
1387 err
= ubifs_hmac_wkm(c
, c
->sup_node
->hmac_wkm
);
1390 c
->superblock_need_write
= 1;
1393 if (!c
->ro_mount
&& c
->superblock_need_write
) {
1394 err
= ubifs_write_sb_node(c
, c
->sup_node
);
1397 c
->superblock_need_write
= 0;
1400 err
= dbg_check_idx_size(c
, c
->bi
.old_idx_sz
);
1404 err
= ubifs_replay_journal(c
);
1408 /* Calculate 'min_idx_lebs' after journal replay */
1409 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
1411 err
= ubifs_mount_orphans(c
, c
->need_recovery
, c
->ro_mount
);
1418 err
= check_free_space(c
);
1422 /* Check for enough log space */
1423 lnum
= c
->lhead_lnum
+ 1;
1424 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1425 lnum
= UBIFS_LOG_LNUM
;
1426 if (lnum
== c
->ltail_lnum
) {
1427 err
= ubifs_consolidate_log(c
);
1432 if (c
->need_recovery
) {
1433 if (!ubifs_authenticated(c
)) {
1434 err
= ubifs_recover_size(c
, true);
1439 err
= ubifs_rcvry_gc_commit(c
);
1443 if (ubifs_authenticated(c
)) {
1444 err
= ubifs_recover_size(c
, false);
1449 err
= take_gc_lnum(c
);
1454 * GC LEB may contain garbage if there was an unclean
1455 * reboot, and it should be un-mapped.
1457 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1462 err
= dbg_check_lprops(c
);
1465 } else if (c
->need_recovery
) {
1466 err
= ubifs_recover_size(c
, false);
1471 * Even if we mount read-only, we have to set space in GC LEB
1472 * to proper value because this affects UBIFS free space
1473 * reporting. We do not want to have a situation when
1474 * re-mounting from R/O to R/W changes amount of free space.
1476 err
= take_gc_lnum(c
);
1481 spin_lock(&ubifs_infos_lock
);
1482 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1483 spin_unlock(&ubifs_infos_lock
);
1485 if (c
->need_recovery
) {
1487 ubifs_msg(c
, "recovery deferred");
1489 c
->need_recovery
= 0;
1490 ubifs_msg(c
, "recovery completed");
1492 * GC LEB has to be empty and taken at this point. But
1493 * the journal head LEBs may also be accounted as
1494 * "empty taken" if they are empty.
1496 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
1499 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
1501 err
= dbg_check_filesystem(c
);
1505 dbg_debugfs_init_fs(c
);
1509 ubifs_msg(c
, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1510 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
,
1511 c
->ro_mount
? ", R/O mode" : "");
1512 x
= (long long)c
->main_lebs
* c
->leb_size
;
1513 y
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1514 ubifs_msg(c
, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1515 c
->leb_size
, c
->leb_size
>> 10, c
->min_io_size
,
1517 ubifs_msg(c
, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1518 x
, x
>> 20, c
->main_lebs
,
1519 y
, y
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1520 ubifs_msg(c
, "reserved for root: %llu bytes (%llu KiB)",
1521 c
->report_rp_size
, c
->report_rp_size
>> 10);
1522 ubifs_msg(c
, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1523 c
->fmt_version
, c
->ro_compat_version
,
1524 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
, c
->uuid
,
1525 c
->big_lpt
? ", big LPT model" : ", small LPT model");
1527 dbg_gen("default compressor: %s", ubifs_compr_name(c
, c
->default_compr
));
1528 dbg_gen("data journal heads: %d",
1529 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1530 dbg_gen("log LEBs: %d (%d - %d)",
1531 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1532 dbg_gen("LPT area LEBs: %d (%d - %d)",
1533 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1534 dbg_gen("orphan area LEBs: %d (%d - %d)",
1535 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1536 dbg_gen("main area LEBs: %d (%d - %d)",
1537 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1538 dbg_gen("index LEBs: %d", c
->lst
.idx_lebs
);
1539 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1540 c
->bi
.old_idx_sz
, c
->bi
.old_idx_sz
>> 10,
1541 c
->bi
.old_idx_sz
>> 20);
1542 dbg_gen("key hash type: %d", c
->key_hash_type
);
1543 dbg_gen("tree fanout: %d", c
->fanout
);
1544 dbg_gen("reserved GC LEB: %d", c
->gc_lnum
);
1545 dbg_gen("max. znode size %d", c
->max_znode_sz
);
1546 dbg_gen("max. index node size %d", c
->max_idx_node_sz
);
1547 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1548 UBIFS_DATA_NODE_SZ
, UBIFS_INO_NODE_SZ
, UBIFS_DENT_NODE_SZ
);
1549 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1550 UBIFS_TRUN_NODE_SZ
, UBIFS_SB_NODE_SZ
, UBIFS_MST_NODE_SZ
);
1551 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1552 UBIFS_REF_NODE_SZ
, UBIFS_CS_NODE_SZ
, UBIFS_ORPH_NODE_SZ
);
1553 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1554 UBIFS_MAX_DATA_NODE_SZ
, UBIFS_MAX_INO_NODE_SZ
,
1555 UBIFS_MAX_DENT_NODE_SZ
, ubifs_idx_node_sz(c
, c
->fanout
));
1556 dbg_gen("dead watermark: %d", c
->dead_wm
);
1557 dbg_gen("dark watermark: %d", c
->dark_wm
);
1558 dbg_gen("LEB overhead: %d", c
->leb_overhead
);
1559 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1560 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1561 x
, x
>> 10, x
>> 20);
1562 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1563 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1564 c
->max_bud_bytes
>> 20);
1565 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1566 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1567 c
->bg_bud_bytes
>> 20);
1568 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1569 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1570 dbg_gen("max. seq. number: %llu", c
->max_sqnum
);
1571 dbg_gen("commit number: %llu", c
->cmt_no
);
1572 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c
));
1573 dbg_gen("max orphans: %d", c
->max_orphans
);
1578 spin_lock(&ubifs_infos_lock
);
1579 list_del(&c
->infos_list
);
1580 spin_unlock(&ubifs_infos_lock
);
1586 ubifs_lpt_free(c
, 0);
1589 kfree(c
->rcvrd_mst_node
);
1591 kthread_stop(c
->bgt
);
1597 kfree(c
->write_reserve_buf
);
1601 kfree(c
->bottom_up_buf
);
1603 ubifs_debugging_exit(c
);
1608 * ubifs_umount - un-mount UBIFS file-system.
1609 * @c: UBIFS file-system description object
1611 * Note, this function is called to free allocated resourced when un-mounting,
1612 * as well as free resources when an error occurred while we were half way
1613 * through mounting (error path cleanup function). So it has to make sure the
1614 * resource was actually allocated before freeing it.
1616 static void ubifs_umount(struct ubifs_info
*c
)
1618 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1621 dbg_debugfs_exit_fs(c
);
1622 spin_lock(&ubifs_infos_lock
);
1623 list_del(&c
->infos_list
);
1624 spin_unlock(&ubifs_infos_lock
);
1627 kthread_stop(c
->bgt
);
1632 ubifs_lpt_free(c
, 0);
1633 ubifs_exit_authentication(c
);
1635 kfree(c
->auth_key_name
);
1636 kfree(c
->auth_hash_name
);
1638 kfree(c
->rcvrd_mst_node
);
1640 kfree(c
->write_reserve_buf
);
1644 kfree(c
->bottom_up_buf
);
1646 ubifs_debugging_exit(c
);
1650 * ubifs_remount_rw - re-mount in read-write mode.
1651 * @c: UBIFS file-system description object
1653 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1654 * mode. This function allocates the needed resources and re-mounts UBIFS in
1657 static int ubifs_remount_rw(struct ubifs_info
*c
)
1661 if (c
->rw_incompat
) {
1662 ubifs_err(c
, "the file-system is not R/W-compatible");
1663 ubifs_msg(c
, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1664 c
->fmt_version
, c
->ro_compat_version
,
1665 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
);
1669 mutex_lock(&c
->umount_mutex
);
1670 dbg_save_space_info(c
);
1671 c
->remounting_rw
= 1;
1674 if (c
->space_fixup
) {
1675 err
= ubifs_fixup_free_space(c
);
1680 err
= check_free_space(c
);
1684 if (c
->need_recovery
) {
1685 ubifs_msg(c
, "completing deferred recovery");
1686 err
= ubifs_write_rcvrd_mst_node(c
);
1689 if (!ubifs_authenticated(c
)) {
1690 err
= ubifs_recover_size(c
, true);
1694 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1697 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1701 /* A readonly mount is not allowed to have orphans */
1702 ubifs_assert(c
, c
->tot_orphans
== 0);
1703 err
= ubifs_clear_orphans(c
);
1708 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1709 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1710 err
= ubifs_write_master(c
);
1715 if (c
->superblock_need_write
) {
1716 struct ubifs_sb_node
*sup
= c
->sup_node
;
1718 err
= ubifs_write_sb_node(c
, sup
);
1722 c
->superblock_need_write
= 0;
1725 c
->ileb_buf
= vmalloc(c
->leb_size
);
1731 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
+ \
1732 UBIFS_CIPHER_BLOCK_SIZE
, GFP_KERNEL
);
1733 if (!c
->write_reserve_buf
) {
1738 err
= ubifs_lpt_init(c
, 0, 1);
1742 /* Create background thread */
1743 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1744 if (IS_ERR(c
->bgt
)) {
1745 err
= PTR_ERR(c
->bgt
);
1747 ubifs_err(c
, "cannot spawn \"%s\", error %d",
1751 wake_up_process(c
->bgt
);
1753 c
->orph_buf
= vmalloc(c
->leb_size
);
1759 /* Check for enough log space */
1760 lnum
= c
->lhead_lnum
+ 1;
1761 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1762 lnum
= UBIFS_LOG_LNUM
;
1763 if (lnum
== c
->ltail_lnum
) {
1764 err
= ubifs_consolidate_log(c
);
1769 if (c
->need_recovery
) {
1770 err
= ubifs_rcvry_gc_commit(c
);
1774 if (ubifs_authenticated(c
)) {
1775 err
= ubifs_recover_size(c
, false);
1780 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1785 dbg_gen("re-mounted read-write");
1786 c
->remounting_rw
= 0;
1788 if (c
->need_recovery
) {
1789 c
->need_recovery
= 0;
1790 ubifs_msg(c
, "deferred recovery completed");
1793 * Do not run the debugging space check if the were doing
1794 * recovery, because when we saved the information we had the
1795 * file-system in a state where the TNC and lprops has been
1796 * modified in memory, but all the I/O operations (including a
1797 * commit) were deferred. So the file-system was in
1798 * "non-committed" state. Now the file-system is in committed
1799 * state, and of course the amount of free space will change
1800 * because, for example, the old index size was imprecise.
1802 err
= dbg_check_space_info(c
);
1805 mutex_unlock(&c
->umount_mutex
);
1813 kthread_stop(c
->bgt
);
1817 kfree(c
->write_reserve_buf
);
1818 c
->write_reserve_buf
= NULL
;
1821 ubifs_lpt_free(c
, 1);
1822 c
->remounting_rw
= 0;
1823 mutex_unlock(&c
->umount_mutex
);
1828 * ubifs_remount_ro - re-mount in read-only mode.
1829 * @c: UBIFS file-system description object
1831 * We assume VFS has stopped writing. Possibly the background thread could be
1832 * running a commit, however kthread_stop will wait in that case.
1834 static void ubifs_remount_ro(struct ubifs_info
*c
)
1838 ubifs_assert(c
, !c
->need_recovery
);
1839 ubifs_assert(c
, !c
->ro_mount
);
1841 mutex_lock(&c
->umount_mutex
);
1843 kthread_stop(c
->bgt
);
1847 dbg_save_space_info(c
);
1849 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1850 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1852 ubifs_ro_mode(c
, err
);
1855 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1856 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1857 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1858 err
= ubifs_write_master(c
);
1860 ubifs_ro_mode(c
, err
);
1864 kfree(c
->write_reserve_buf
);
1865 c
->write_reserve_buf
= NULL
;
1868 ubifs_lpt_free(c
, 1);
1870 err
= dbg_check_space_info(c
);
1872 ubifs_ro_mode(c
, err
);
1873 mutex_unlock(&c
->umount_mutex
);
1876 static void ubifs_put_super(struct super_block
*sb
)
1879 struct ubifs_info
*c
= sb
->s_fs_info
;
1881 ubifs_msg(c
, "un-mount UBI device %d", c
->vi
.ubi_num
);
1884 * The following asserts are only valid if there has not been a failure
1885 * of the media. For example, there will be dirty inodes if we failed
1886 * to write them back because of I/O errors.
1889 ubifs_assert(c
, c
->bi
.idx_growth
== 0);
1890 ubifs_assert(c
, c
->bi
.dd_growth
== 0);
1891 ubifs_assert(c
, c
->bi
.data_growth
== 0);
1895 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1896 * and file system un-mount. Namely, it prevents the shrinker from
1897 * picking this superblock for shrinking - it will be just skipped if
1898 * the mutex is locked.
1900 mutex_lock(&c
->umount_mutex
);
1903 * First of all kill the background thread to make sure it does
1904 * not interfere with un-mounting and freeing resources.
1907 kthread_stop(c
->bgt
);
1912 * On fatal errors c->ro_error is set to 1, in which case we do
1913 * not write the master node.
1918 /* Synchronize write-buffers */
1919 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1920 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1922 ubifs_ro_mode(c
, err
);
1926 * We are being cleanly unmounted which means the
1927 * orphans were killed - indicate this in the master
1928 * node. Also save the reserved GC LEB number.
1930 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1931 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1932 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1933 err
= ubifs_write_master(c
);
1936 * Recovery will attempt to fix the master area
1937 * next mount, so we just print a message and
1938 * continue to unmount normally.
1940 ubifs_err(c
, "failed to write master node, error %d",
1943 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1944 /* Make sure write-buffer timers are canceled */
1945 hrtimer_cancel(&c
->jheads
[i
].wbuf
.timer
);
1950 ubi_close_volume(c
->ubi
);
1951 mutex_unlock(&c
->umount_mutex
);
1954 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1957 struct ubifs_info
*c
= sb
->s_fs_info
;
1959 sync_filesystem(sb
);
1960 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1962 err
= ubifs_parse_options(c
, data
, 1);
1964 ubifs_err(c
, "invalid or unknown remount parameter");
1968 if (c
->ro_mount
&& !(*flags
& SB_RDONLY
)) {
1970 ubifs_msg(c
, "cannot re-mount R/W due to prior errors");
1974 ubifs_msg(c
, "cannot re-mount R/W - UBI volume is R/O");
1977 err
= ubifs_remount_rw(c
);
1980 } else if (!c
->ro_mount
&& (*flags
& SB_RDONLY
)) {
1982 ubifs_msg(c
, "cannot re-mount R/O due to prior errors");
1985 ubifs_remount_ro(c
);
1988 if (c
->bulk_read
== 1)
1991 dbg_gen("disable bulk-read");
1992 mutex_lock(&c
->bu_mutex
);
1995 mutex_unlock(&c
->bu_mutex
);
1998 if (!c
->need_recovery
)
1999 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
2004 const struct super_operations ubifs_super_operations
= {
2005 .alloc_inode
= ubifs_alloc_inode
,
2006 .free_inode
= ubifs_free_inode
,
2007 .put_super
= ubifs_put_super
,
2008 .write_inode
= ubifs_write_inode
,
2009 .drop_inode
= ubifs_drop_inode
,
2010 .evict_inode
= ubifs_evict_inode
,
2011 .statfs
= ubifs_statfs
,
2012 .dirty_inode
= ubifs_dirty_inode
,
2013 .remount_fs
= ubifs_remount_fs
,
2014 .show_options
= ubifs_show_options
,
2015 .sync_fs
= ubifs_sync_fs
,
2019 * open_ubi - parse UBI device name string and open the UBI device.
2020 * @name: UBI volume name
2021 * @mode: UBI volume open mode
2023 * The primary method of mounting UBIFS is by specifying the UBI volume
2024 * character device node path. However, UBIFS may also be mounted withoug any
2025 * character device node using one of the following methods:
2027 * o ubiX_Y - mount UBI device number X, volume Y;
2028 * o ubiY - mount UBI device number 0, volume Y;
2029 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2030 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2032 * Alternative '!' separator may be used instead of ':' (because some shells
2033 * like busybox may interpret ':' as an NFS host name separator). This function
2034 * returns UBI volume description object in case of success and a negative
2035 * error code in case of failure.
2037 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
2039 struct ubi_volume_desc
*ubi
;
2043 if (!name
|| !*name
)
2044 return ERR_PTR(-EINVAL
);
2046 /* First, try to open using the device node path method */
2047 ubi
= ubi_open_volume_path(name
, mode
);
2051 /* Try the "nodev" method */
2052 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
2053 return ERR_PTR(-EINVAL
);
2055 /* ubi:NAME method */
2056 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
2057 return ubi_open_volume_nm(0, name
+ 4, mode
);
2059 if (!isdigit(name
[3]))
2060 return ERR_PTR(-EINVAL
);
2062 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
2065 if (*endptr
== '\0')
2066 return ubi_open_volume(0, dev
, mode
);
2069 if (*endptr
== '_' && isdigit(endptr
[1])) {
2070 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
2071 if (*endptr
!= '\0')
2072 return ERR_PTR(-EINVAL
);
2073 return ubi_open_volume(dev
, vol
, mode
);
2076 /* ubiX:NAME method */
2077 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
2078 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
2080 return ERR_PTR(-EINVAL
);
2083 static struct ubifs_info
*alloc_ubifs_info(struct ubi_volume_desc
*ubi
)
2085 struct ubifs_info
*c
;
2087 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
2089 spin_lock_init(&c
->cnt_lock
);
2090 spin_lock_init(&c
->cs_lock
);
2091 spin_lock_init(&c
->buds_lock
);
2092 spin_lock_init(&c
->space_lock
);
2093 spin_lock_init(&c
->orphan_lock
);
2094 init_rwsem(&c
->commit_sem
);
2095 mutex_init(&c
->lp_mutex
);
2096 mutex_init(&c
->tnc_mutex
);
2097 mutex_init(&c
->log_mutex
);
2098 mutex_init(&c
->umount_mutex
);
2099 mutex_init(&c
->bu_mutex
);
2100 mutex_init(&c
->write_reserve_mutex
);
2101 init_waitqueue_head(&c
->cmt_wq
);
2103 c
->old_idx
= RB_ROOT
;
2104 c
->size_tree
= RB_ROOT
;
2105 c
->orph_tree
= RB_ROOT
;
2106 INIT_LIST_HEAD(&c
->infos_list
);
2107 INIT_LIST_HEAD(&c
->idx_gc
);
2108 INIT_LIST_HEAD(&c
->replay_list
);
2109 INIT_LIST_HEAD(&c
->replay_buds
);
2110 INIT_LIST_HEAD(&c
->uncat_list
);
2111 INIT_LIST_HEAD(&c
->empty_list
);
2112 INIT_LIST_HEAD(&c
->freeable_list
);
2113 INIT_LIST_HEAD(&c
->frdi_idx_list
);
2114 INIT_LIST_HEAD(&c
->unclean_leb_list
);
2115 INIT_LIST_HEAD(&c
->old_buds
);
2116 INIT_LIST_HEAD(&c
->orph_list
);
2117 INIT_LIST_HEAD(&c
->orph_new
);
2118 c
->no_chk_data_crc
= 1;
2119 c
->assert_action
= ASSACT_RO
;
2121 c
->highest_inum
= UBIFS_FIRST_INO
;
2122 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
2124 ubi_get_volume_info(ubi
, &c
->vi
);
2125 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
2130 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
2132 struct ubifs_info
*c
= sb
->s_fs_info
;
2137 /* Re-open the UBI device in read-write mode */
2138 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
2139 if (IS_ERR(c
->ubi
)) {
2140 err
= PTR_ERR(c
->ubi
);
2144 err
= ubifs_parse_options(c
, data
, 0);
2149 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2150 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2151 * which means the user would have to wait not just for their own I/O
2152 * but the read-ahead I/O as well i.e. completely pointless.
2154 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2155 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2156 * writeback happening.
2158 err
= super_setup_bdi_name(sb
, "ubifs_%d_%d", c
->vi
.ubi_num
,
2164 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
2165 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
2166 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
2167 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
2168 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
2169 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
2170 sb
->s_op
= &ubifs_super_operations
;
2171 #ifdef CONFIG_UBIFS_FS_XATTR
2172 sb
->s_xattr
= ubifs_xattr_handlers
;
2174 fscrypt_set_ops(sb
, &ubifs_crypt_operations
);
2176 mutex_lock(&c
->umount_mutex
);
2177 err
= mount_ubifs(c
);
2179 ubifs_assert(c
, err
< 0);
2183 /* Read the root inode */
2184 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
2186 err
= PTR_ERR(root
);
2190 sb
->s_root
= d_make_root(root
);
2196 mutex_unlock(&c
->umount_mutex
);
2202 mutex_unlock(&c
->umount_mutex
);
2204 ubi_close_volume(c
->ubi
);
2209 static int sb_test(struct super_block
*sb
, void *data
)
2211 struct ubifs_info
*c1
= data
;
2212 struct ubifs_info
*c
= sb
->s_fs_info
;
2214 return c
->vi
.cdev
== c1
->vi
.cdev
;
2217 static int sb_set(struct super_block
*sb
, void *data
)
2219 sb
->s_fs_info
= data
;
2220 return set_anon_super(sb
, NULL
);
2223 static struct dentry
*ubifs_mount(struct file_system_type
*fs_type
, int flags
,
2224 const char *name
, void *data
)
2226 struct ubi_volume_desc
*ubi
;
2227 struct ubifs_info
*c
;
2228 struct super_block
*sb
;
2231 dbg_gen("name %s, flags %#x", name
, flags
);
2234 * Get UBI device number and volume ID. Mount it read-only so far
2235 * because this might be a new mount point, and UBI allows only one
2236 * read-write user at a time.
2238 ubi
= open_ubi(name
, UBI_READONLY
);
2240 if (!(flags
& SB_SILENT
))
2241 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2242 current
->pid
, name
, (int)PTR_ERR(ubi
));
2243 return ERR_CAST(ubi
);
2246 c
= alloc_ubifs_info(ubi
);
2252 dbg_gen("opened ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2254 sb
= sget(fs_type
, sb_test
, sb_set
, flags
, c
);
2262 struct ubifs_info
*c1
= sb
->s_fs_info
;
2264 /* A new mount point for already mounted UBIFS */
2265 dbg_gen("this ubi volume is already mounted");
2266 if (!!(flags
& SB_RDONLY
) != c1
->ro_mount
) {
2271 err
= ubifs_fill_super(sb
, data
, flags
& SB_SILENT
? 1 : 0);
2274 /* We do not support atime */
2275 sb
->s_flags
|= SB_ACTIVE
;
2276 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT
))
2277 ubifs_msg(c
, "full atime support is enabled.");
2279 sb
->s_flags
|= SB_NOATIME
;
2282 /* 'fill_super()' opens ubi again so we must close it here */
2283 ubi_close_volume(ubi
);
2285 return dget(sb
->s_root
);
2288 deactivate_locked_super(sb
);
2290 ubi_close_volume(ubi
);
2291 return ERR_PTR(err
);
2294 static void kill_ubifs_super(struct super_block
*s
)
2296 struct ubifs_info
*c
= s
->s_fs_info
;
2301 static struct file_system_type ubifs_fs_type
= {
2303 .owner
= THIS_MODULE
,
2304 .mount
= ubifs_mount
,
2305 .kill_sb
= kill_ubifs_super
,
2307 MODULE_ALIAS_FS("ubifs");
2310 * Inode slab cache constructor.
2312 static void inode_slab_ctor(void *obj
)
2314 struct ubifs_inode
*ui
= obj
;
2315 inode_init_once(&ui
->vfs_inode
);
2318 static int __init
ubifs_init(void)
2322 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
2324 /* Make sure node sizes are 8-byte aligned */
2325 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
2326 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
2327 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
2328 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
2329 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
2330 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
2331 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
2332 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
2333 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
2334 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
2335 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
2337 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2338 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2339 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2340 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2341 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2342 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2344 /* Check min. node size */
2345 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2346 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2347 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2348 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2350 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2351 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2352 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2353 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2355 /* Defined node sizes */
2356 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2357 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2358 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2359 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2362 * We use 2 bit wide bit-fields to store compression type, which should
2363 * be amended if more compressors are added. The bit-fields are:
2364 * @compr_type in 'struct ubifs_inode', @default_compr in
2365 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2367 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT
> 4);
2370 * We require that PAGE_SIZE is greater-than-or-equal-to
2371 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2373 if (PAGE_SIZE
< UBIFS_BLOCK_SIZE
) {
2374 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2375 current
->pid
, (unsigned int)PAGE_SIZE
);
2379 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2380 sizeof(struct ubifs_inode
), 0,
2381 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
|
2382 SLAB_ACCOUNT
, &inode_slab_ctor
);
2383 if (!ubifs_inode_slab
)
2386 err
= register_shrinker(&ubifs_shrinker_info
);
2390 err
= ubifs_compressors_init();
2396 err
= register_filesystem(&ubifs_fs_type
);
2398 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2406 ubifs_compressors_exit();
2408 unregister_shrinker(&ubifs_shrinker_info
);
2410 kmem_cache_destroy(ubifs_inode_slab
);
2413 /* late_initcall to let compressors initialize first */
2414 late_initcall(ubifs_init
);
2416 static void __exit
ubifs_exit(void)
2418 WARN_ON(!list_empty(&ubifs_infos
));
2419 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt
) != 0);
2422 ubifs_compressors_exit();
2423 unregister_shrinker(&ubifs_shrinker_info
);
2426 * Make sure all delayed rcu free inodes are flushed before we
2430 kmem_cache_destroy(ubifs_inode_slab
);
2431 unregister_filesystem(&ubifs_fs_type
);
2433 module_exit(ubifs_exit
);
2435 MODULE_LICENSE("GPL");
2436 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2437 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2438 MODULE_DESCRIPTION("UBIFS - UBI File System");