1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_GENERIC_PGTABLE_H
3 #define _ASM_GENERIC_PGTABLE_H
10 #include <linux/mm_types.h>
11 #include <linux/bug.h>
12 #include <linux/errno.h>
13 #include <asm-generic/pgtable_uffd.h>
15 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
16 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
17 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
21 * On almost all architectures and configurations, 0 can be used as the
22 * upper ceiling to free_pgtables(): on many architectures it has the same
23 * effect as using TASK_SIZE. However, there is one configuration which
24 * must impose a more careful limit, to avoid freeing kernel pgtables.
26 #ifndef USER_PGTABLES_CEILING
27 #define USER_PGTABLES_CEILING 0UL
30 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
31 extern int ptep_set_access_flags(struct vm_area_struct
*vma
,
32 unsigned long address
, pte_t
*ptep
,
33 pte_t entry
, int dirty
);
36 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
38 extern int pmdp_set_access_flags(struct vm_area_struct
*vma
,
39 unsigned long address
, pmd_t
*pmdp
,
40 pmd_t entry
, int dirty
);
41 extern int pudp_set_access_flags(struct vm_area_struct
*vma
,
42 unsigned long address
, pud_t
*pudp
,
43 pud_t entry
, int dirty
);
45 static inline int pmdp_set_access_flags(struct vm_area_struct
*vma
,
46 unsigned long address
, pmd_t
*pmdp
,
47 pmd_t entry
, int dirty
)
52 static inline int pudp_set_access_flags(struct vm_area_struct
*vma
,
53 unsigned long address
, pud_t
*pudp
,
54 pud_t entry
, int dirty
)
59 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
62 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
63 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
64 unsigned long address
,
72 set_pte_at(vma
->vm_mm
, address
, ptep
, pte_mkold(pte
));
77 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
79 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
80 unsigned long address
,
88 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd_mkold(pmd
));
92 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
93 unsigned long address
,
99 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
102 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
103 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
104 unsigned long address
, pte_t
*ptep
);
107 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
108 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
109 extern int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
110 unsigned long address
, pmd_t
*pmdp
);
113 * Despite relevant to THP only, this API is called from generic rmap code
114 * under PageTransHuge(), hence needs a dummy implementation for !THP
116 static inline int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
117 unsigned long address
, pmd_t
*pmdp
)
122 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
125 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
126 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
127 unsigned long address
,
131 pte_clear(mm
, address
, ptep
);
136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
137 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
138 static inline pmd_t
pmdp_huge_get_and_clear(struct mm_struct
*mm
,
139 unsigned long address
,
146 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
147 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
148 static inline pud_t
pudp_huge_get_and_clear(struct mm_struct
*mm
,
149 unsigned long address
,
157 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
158 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
160 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
161 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
162 static inline pmd_t
pmdp_huge_get_and_clear_full(struct mm_struct
*mm
,
163 unsigned long address
, pmd_t
*pmdp
,
166 return pmdp_huge_get_and_clear(mm
, address
, pmdp
);
170 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
171 static inline pud_t
pudp_huge_get_and_clear_full(struct mm_struct
*mm
,
172 unsigned long address
, pud_t
*pudp
,
175 return pudp_huge_get_and_clear(mm
, address
, pudp
);
178 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
180 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
181 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
182 unsigned long address
, pte_t
*ptep
,
186 pte
= ptep_get_and_clear(mm
, address
, ptep
);
192 * Some architectures may be able to avoid expensive synchronization
193 * primitives when modifications are made to PTE's which are already
194 * not present, or in the process of an address space destruction.
196 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
197 static inline void pte_clear_not_present_full(struct mm_struct
*mm
,
198 unsigned long address
,
202 pte_clear(mm
, address
, ptep
);
206 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
207 extern pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
208 unsigned long address
,
212 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
213 extern pmd_t
pmdp_huge_clear_flush(struct vm_area_struct
*vma
,
214 unsigned long address
,
216 extern pud_t
pudp_huge_clear_flush(struct vm_area_struct
*vma
,
217 unsigned long address
,
221 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
223 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long address
, pte_t
*ptep
)
225 pte_t old_pte
= *ptep
;
226 set_pte_at(mm
, address
, ptep
, pte_wrprotect(old_pte
));
230 #ifndef pte_savedwrite
231 #define pte_savedwrite pte_write
234 #ifndef pte_mk_savedwrite
235 #define pte_mk_savedwrite pte_mkwrite
238 #ifndef pte_clear_savedwrite
239 #define pte_clear_savedwrite pte_wrprotect
242 #ifndef pmd_savedwrite
243 #define pmd_savedwrite pmd_write
246 #ifndef pmd_mk_savedwrite
247 #define pmd_mk_savedwrite pmd_mkwrite
250 #ifndef pmd_clear_savedwrite
251 #define pmd_clear_savedwrite pmd_wrprotect
254 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
257 unsigned long address
, pmd_t
*pmdp
)
259 pmd_t old_pmd
= *pmdp
;
260 set_pmd_at(mm
, address
, pmdp
, pmd_wrprotect(old_pmd
));
263 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
264 unsigned long address
, pmd_t
*pmdp
)
268 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
270 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
271 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
272 static inline void pudp_set_wrprotect(struct mm_struct
*mm
,
273 unsigned long address
, pud_t
*pudp
)
275 pud_t old_pud
= *pudp
;
277 set_pud_at(mm
, address
, pudp
, pud_wrprotect(old_pud
));
280 static inline void pudp_set_wrprotect(struct mm_struct
*mm
,
281 unsigned long address
, pud_t
*pudp
)
285 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
288 #ifndef pmdp_collapse_flush
289 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
290 extern pmd_t
pmdp_collapse_flush(struct vm_area_struct
*vma
,
291 unsigned long address
, pmd_t
*pmdp
);
293 static inline pmd_t
pmdp_collapse_flush(struct vm_area_struct
*vma
,
294 unsigned long address
,
300 #define pmdp_collapse_flush pmdp_collapse_flush
301 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
304 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
305 extern void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
309 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
310 extern pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
);
313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
315 * This is an implementation of pmdp_establish() that is only suitable for an
316 * architecture that doesn't have hardware dirty/accessed bits. In this case we
317 * can't race with CPU which sets these bits and non-atomic aproach is fine.
319 static inline pmd_t
generic_pmdp_establish(struct vm_area_struct
*vma
,
320 unsigned long address
, pmd_t
*pmdp
, pmd_t pmd
)
322 pmd_t old_pmd
= *pmdp
;
323 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
328 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
329 extern pmd_t
pmdp_invalidate(struct vm_area_struct
*vma
, unsigned long address
,
333 #ifndef __HAVE_ARCH_PTE_SAME
334 static inline int pte_same(pte_t pte_a
, pte_t pte_b
)
336 return pte_val(pte_a
) == pte_val(pte_b
);
340 #ifndef __HAVE_ARCH_PTE_UNUSED
342 * Some architectures provide facilities to virtualization guests
343 * so that they can flag allocated pages as unused. This allows the
344 * host to transparently reclaim unused pages. This function returns
345 * whether the pte's page is unused.
347 static inline int pte_unused(pte_t pte
)
353 #ifndef pte_access_permitted
354 #define pte_access_permitted(pte, write) \
355 (pte_present(pte) && (!(write) || pte_write(pte)))
358 #ifndef pmd_access_permitted
359 #define pmd_access_permitted(pmd, write) \
360 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
363 #ifndef pud_access_permitted
364 #define pud_access_permitted(pud, write) \
365 (pud_present(pud) && (!(write) || pud_write(pud)))
368 #ifndef p4d_access_permitted
369 #define p4d_access_permitted(p4d, write) \
370 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
373 #ifndef pgd_access_permitted
374 #define pgd_access_permitted(pgd, write) \
375 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
378 #ifndef __HAVE_ARCH_PMD_SAME
379 static inline int pmd_same(pmd_t pmd_a
, pmd_t pmd_b
)
381 return pmd_val(pmd_a
) == pmd_val(pmd_b
);
384 static inline int pud_same(pud_t pud_a
, pud_t pud_b
)
386 return pud_val(pud_a
) == pud_val(pud_b
);
390 #ifndef __HAVE_ARCH_P4D_SAME
391 static inline int p4d_same(p4d_t p4d_a
, p4d_t p4d_b
)
393 return p4d_val(p4d_a
) == p4d_val(p4d_b
);
397 #ifndef __HAVE_ARCH_PGD_SAME
398 static inline int pgd_same(pgd_t pgd_a
, pgd_t pgd_b
)
400 return pgd_val(pgd_a
) == pgd_val(pgd_b
);
405 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
406 * TLB flush will be required as a result of the "set". For example, use
407 * in scenarios where it is known ahead of time that the routine is
408 * setting non-present entries, or re-setting an existing entry to the
409 * same value. Otherwise, use the typical "set" helpers and flush the
412 #define set_pte_safe(ptep, pte) \
414 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
415 set_pte(ptep, pte); \
418 #define set_pmd_safe(pmdp, pmd) \
420 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
421 set_pmd(pmdp, pmd); \
424 #define set_pud_safe(pudp, pud) \
426 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
427 set_pud(pudp, pud); \
430 #define set_p4d_safe(p4dp, p4d) \
432 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
433 set_p4d(p4dp, p4d); \
436 #define set_pgd_safe(pgdp, pgd) \
438 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
439 set_pgd(pgdp, pgd); \
442 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
444 * Some architectures support metadata associated with a page. When a
445 * page is being swapped out, this metadata must be saved so it can be
446 * restored when the page is swapped back in. SPARC M7 and newer
447 * processors support an ADI (Application Data Integrity) tag for the
448 * page as metadata for the page. arch_do_swap_page() can restore this
449 * metadata when a page is swapped back in.
451 static inline void arch_do_swap_page(struct mm_struct
*mm
,
452 struct vm_area_struct
*vma
,
454 pte_t pte
, pte_t oldpte
)
460 #ifndef __HAVE_ARCH_UNMAP_ONE
462 * Some architectures support metadata associated with a page. When a
463 * page is being swapped out, this metadata must be saved so it can be
464 * restored when the page is swapped back in. SPARC M7 and newer
465 * processors support an ADI (Application Data Integrity) tag for the
466 * page as metadata for the page. arch_unmap_one() can save this
467 * metadata on a swap-out of a page.
469 static inline int arch_unmap_one(struct mm_struct
*mm
,
470 struct vm_area_struct
*vma
,
478 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
479 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
482 #ifndef __HAVE_ARCH_MOVE_PTE
483 #define move_pte(pte, prot, old_addr, new_addr) (pte)
486 #ifndef pte_accessible
487 # define pte_accessible(mm, pte) ((void)(pte), 1)
490 #ifndef flush_tlb_fix_spurious_fault
491 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
494 #ifndef pgprot_noncached
495 #define pgprot_noncached(prot) (prot)
498 #ifndef pgprot_writecombine
499 #define pgprot_writecombine pgprot_noncached
502 #ifndef pgprot_writethrough
503 #define pgprot_writethrough pgprot_noncached
506 #ifndef pgprot_device
507 #define pgprot_device pgprot_noncached
510 #ifndef pgprot_modify
511 #define pgprot_modify pgprot_modify
512 static inline pgprot_t
pgprot_modify(pgprot_t oldprot
, pgprot_t newprot
)
514 if (pgprot_val(oldprot
) == pgprot_val(pgprot_noncached(oldprot
)))
515 newprot
= pgprot_noncached(newprot
);
516 if (pgprot_val(oldprot
) == pgprot_val(pgprot_writecombine(oldprot
)))
517 newprot
= pgprot_writecombine(newprot
);
518 if (pgprot_val(oldprot
) == pgprot_val(pgprot_device(oldprot
)))
519 newprot
= pgprot_device(newprot
);
525 * When walking page tables, get the address of the next boundary,
526 * or the end address of the range if that comes earlier. Although no
527 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
530 #define pgd_addr_end(addr, end) \
531 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
532 (__boundary - 1 < (end) - 1)? __boundary: (end); \
536 #define p4d_addr_end(addr, end) \
537 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
538 (__boundary - 1 < (end) - 1)? __boundary: (end); \
543 #define pud_addr_end(addr, end) \
544 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
545 (__boundary - 1 < (end) - 1)? __boundary: (end); \
550 #define pmd_addr_end(addr, end) \
551 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
552 (__boundary - 1 < (end) - 1)? __boundary: (end); \
557 * When walking page tables, we usually want to skip any p?d_none entries;
558 * and any p?d_bad entries - reporting the error before resetting to none.
559 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
561 void pgd_clear_bad(pgd_t
*);
563 #ifndef __PAGETABLE_P4D_FOLDED
564 void p4d_clear_bad(p4d_t
*);
566 #define p4d_clear_bad(p4d) do { } while (0)
569 #ifndef __PAGETABLE_PUD_FOLDED
570 void pud_clear_bad(pud_t
*);
572 #define pud_clear_bad(p4d) do { } while (0)
575 void pmd_clear_bad(pmd_t
*);
577 static inline int pgd_none_or_clear_bad(pgd_t
*pgd
)
581 if (unlikely(pgd_bad(*pgd
))) {
588 static inline int p4d_none_or_clear_bad(p4d_t
*p4d
)
592 if (unlikely(p4d_bad(*p4d
))) {
599 static inline int pud_none_or_clear_bad(pud_t
*pud
)
603 if (unlikely(pud_bad(*pud
))) {
610 static inline int pmd_none_or_clear_bad(pmd_t
*pmd
)
614 if (unlikely(pmd_bad(*pmd
))) {
621 static inline pte_t
__ptep_modify_prot_start(struct vm_area_struct
*vma
,
626 * Get the current pte state, but zero it out to make it
627 * non-present, preventing the hardware from asynchronously
630 return ptep_get_and_clear(vma
->vm_mm
, addr
, ptep
);
633 static inline void __ptep_modify_prot_commit(struct vm_area_struct
*vma
,
635 pte_t
*ptep
, pte_t pte
)
638 * The pte is non-present, so there's no hardware state to
641 set_pte_at(vma
->vm_mm
, addr
, ptep
, pte
);
644 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
646 * Start a pte protection read-modify-write transaction, which
647 * protects against asynchronous hardware modifications to the pte.
648 * The intention is not to prevent the hardware from making pte
649 * updates, but to prevent any updates it may make from being lost.
651 * This does not protect against other software modifications of the
652 * pte; the appropriate pte lock must be held over the transation.
654 * Note that this interface is intended to be batchable, meaning that
655 * ptep_modify_prot_commit may not actually update the pte, but merely
656 * queue the update to be done at some later time. The update must be
657 * actually committed before the pte lock is released, however.
659 static inline pte_t
ptep_modify_prot_start(struct vm_area_struct
*vma
,
663 return __ptep_modify_prot_start(vma
, addr
, ptep
);
667 * Commit an update to a pte, leaving any hardware-controlled bits in
668 * the PTE unmodified.
670 static inline void ptep_modify_prot_commit(struct vm_area_struct
*vma
,
672 pte_t
*ptep
, pte_t old_pte
, pte_t pte
)
674 __ptep_modify_prot_commit(vma
, addr
, ptep
, pte
);
676 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
677 #endif /* CONFIG_MMU */
680 * No-op macros that just return the current protection value. Defined here
681 * because these macros can be used used even if CONFIG_MMU is not defined.
683 #ifndef pgprot_encrypted
684 #define pgprot_encrypted(prot) (prot)
687 #ifndef pgprot_decrypted
688 #define pgprot_decrypted(prot) (prot)
692 * A facility to provide lazy MMU batching. This allows PTE updates and
693 * page invalidations to be delayed until a call to leave lazy MMU mode
694 * is issued. Some architectures may benefit from doing this, and it is
695 * beneficial for both shadow and direct mode hypervisors, which may batch
696 * the PTE updates which happen during this window. Note that using this
697 * interface requires that read hazards be removed from the code. A read
698 * hazard could result in the direct mode hypervisor case, since the actual
699 * write to the page tables may not yet have taken place, so reads though
700 * a raw PTE pointer after it has been modified are not guaranteed to be
701 * up to date. This mode can only be entered and left under the protection of
702 * the page table locks for all page tables which may be modified. In the UP
703 * case, this is required so that preemption is disabled, and in the SMP case,
704 * it must synchronize the delayed page table writes properly on other CPUs.
706 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
707 #define arch_enter_lazy_mmu_mode() do {} while (0)
708 #define arch_leave_lazy_mmu_mode() do {} while (0)
709 #define arch_flush_lazy_mmu_mode() do {} while (0)
713 * A facility to provide batching of the reload of page tables and
714 * other process state with the actual context switch code for
715 * paravirtualized guests. By convention, only one of the batched
716 * update (lazy) modes (CPU, MMU) should be active at any given time,
717 * entry should never be nested, and entry and exits should always be
718 * paired. This is for sanity of maintaining and reasoning about the
719 * kernel code. In this case, the exit (end of the context switch) is
720 * in architecture-specific code, and so doesn't need a generic
723 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
724 #define arch_start_context_switch(prev) do {} while (0)
727 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
728 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
729 static inline pmd_t
pmd_swp_mksoft_dirty(pmd_t pmd
)
734 static inline int pmd_swp_soft_dirty(pmd_t pmd
)
739 static inline pmd_t
pmd_swp_clear_soft_dirty(pmd_t pmd
)
744 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
745 static inline int pte_soft_dirty(pte_t pte
)
750 static inline int pmd_soft_dirty(pmd_t pmd
)
755 static inline pte_t
pte_mksoft_dirty(pte_t pte
)
760 static inline pmd_t
pmd_mksoft_dirty(pmd_t pmd
)
765 static inline pte_t
pte_clear_soft_dirty(pte_t pte
)
770 static inline pmd_t
pmd_clear_soft_dirty(pmd_t pmd
)
775 static inline pte_t
pte_swp_mksoft_dirty(pte_t pte
)
780 static inline int pte_swp_soft_dirty(pte_t pte
)
785 static inline pte_t
pte_swp_clear_soft_dirty(pte_t pte
)
790 static inline pmd_t
pmd_swp_mksoft_dirty(pmd_t pmd
)
795 static inline int pmd_swp_soft_dirty(pmd_t pmd
)
800 static inline pmd_t
pmd_swp_clear_soft_dirty(pmd_t pmd
)
806 #ifndef __HAVE_PFNMAP_TRACKING
808 * Interfaces that can be used by architecture code to keep track of
809 * memory type of pfn mappings specified by the remap_pfn_range,
814 * track_pfn_remap is called when a _new_ pfn mapping is being established
815 * by remap_pfn_range() for physical range indicated by pfn and size.
817 static inline int track_pfn_remap(struct vm_area_struct
*vma
, pgprot_t
*prot
,
818 unsigned long pfn
, unsigned long addr
,
825 * track_pfn_insert is called when a _new_ single pfn is established
826 * by vmf_insert_pfn().
828 static inline void track_pfn_insert(struct vm_area_struct
*vma
, pgprot_t
*prot
,
834 * track_pfn_copy is called when vma that is covering the pfnmap gets
835 * copied through copy_page_range().
837 static inline int track_pfn_copy(struct vm_area_struct
*vma
)
843 * untrack_pfn is called while unmapping a pfnmap for a region.
844 * untrack can be called for a specific region indicated by pfn and size or
845 * can be for the entire vma (in which case pfn, size are zero).
847 static inline void untrack_pfn(struct vm_area_struct
*vma
,
848 unsigned long pfn
, unsigned long size
)
853 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
855 static inline void untrack_pfn_moved(struct vm_area_struct
*vma
)
859 extern int track_pfn_remap(struct vm_area_struct
*vma
, pgprot_t
*prot
,
860 unsigned long pfn
, unsigned long addr
,
862 extern void track_pfn_insert(struct vm_area_struct
*vma
, pgprot_t
*prot
,
864 extern int track_pfn_copy(struct vm_area_struct
*vma
);
865 extern void untrack_pfn(struct vm_area_struct
*vma
, unsigned long pfn
,
867 extern void untrack_pfn_moved(struct vm_area_struct
*vma
);
870 #ifdef __HAVE_COLOR_ZERO_PAGE
871 static inline int is_zero_pfn(unsigned long pfn
)
873 extern unsigned long zero_pfn
;
874 unsigned long offset_from_zero_pfn
= pfn
- zero_pfn
;
875 return offset_from_zero_pfn
<= (zero_page_mask
>> PAGE_SHIFT
);
878 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
881 static inline int is_zero_pfn(unsigned long pfn
)
883 extern unsigned long zero_pfn
;
884 return pfn
== zero_pfn
;
887 static inline unsigned long my_zero_pfn(unsigned long addr
)
889 extern unsigned long zero_pfn
;
896 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
897 static inline int pmd_trans_huge(pmd_t pmd
)
902 static inline int pmd_write(pmd_t pmd
)
907 #endif /* pmd_write */
908 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
911 static inline int pud_write(pud_t pud
)
916 #endif /* pud_write */
918 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
919 static inline int pmd_devmap(pmd_t pmd
)
923 static inline int pud_devmap(pud_t pud
)
927 static inline int pgd_devmap(pgd_t pgd
)
933 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
934 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
935 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
936 static inline int pud_trans_huge(pud_t pud
)
942 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
943 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t
*pud
)
945 pud_t pudval
= READ_ONCE(*pud
);
947 if (pud_none(pudval
) || pud_trans_huge(pudval
) || pud_devmap(pudval
))
949 if (unlikely(pud_bad(pudval
))) {
956 /* See pmd_trans_unstable for discussion. */
957 static inline int pud_trans_unstable(pud_t
*pud
)
959 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
960 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
961 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud
);
967 #ifndef pmd_read_atomic
968 static inline pmd_t
pmd_read_atomic(pmd_t
*pmdp
)
971 * Depend on compiler for an atomic pmd read. NOTE: this is
972 * only going to work, if the pmdval_t isn't larger than
979 #ifndef arch_needs_pgtable_deposit
980 #define arch_needs_pgtable_deposit() (false)
983 * This function is meant to be used by sites walking pagetables with
984 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
985 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
986 * into a null pmd and the transhuge page fault can convert a null pmd
987 * into an hugepmd or into a regular pmd (if the hugepage allocation
988 * fails). While holding the mmap_sem in read mode the pmd becomes
989 * stable and stops changing under us only if it's not null and not a
990 * transhuge pmd. When those races occurs and this function makes a
991 * difference vs the standard pmd_none_or_clear_bad, the result is
992 * undefined so behaving like if the pmd was none is safe (because it
993 * can return none anyway). The compiler level barrier() is critically
994 * important to compute the two checks atomically on the same pmdval.
996 * For 32bit kernels with a 64bit large pmd_t this automatically takes
997 * care of reading the pmd atomically to avoid SMP race conditions
998 * against pmd_populate() when the mmap_sem is hold for reading by the
999 * caller (a special atomic read not done by "gcc" as in the generic
1000 * version above, is also needed when THP is disabled because the page
1001 * fault can populate the pmd from under us).
1003 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
*pmd
)
1005 pmd_t pmdval
= pmd_read_atomic(pmd
);
1007 * The barrier will stabilize the pmdval in a register or on
1008 * the stack so that it will stop changing under the code.
1010 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1011 * pmd_read_atomic is allowed to return a not atomic pmdval
1012 * (for example pointing to an hugepage that has never been
1013 * mapped in the pmd). The below checks will only care about
1014 * the low part of the pmd with 32bit PAE x86 anyway, with the
1015 * exception of pmd_none(). So the important thing is that if
1016 * the low part of the pmd is found null, the high part will
1017 * be also null or the pmd_none() check below would be
1020 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1024 * !pmd_present() checks for pmd migration entries
1026 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1027 * But using that requires moving current function and pmd_trans_unstable()
1028 * to linux/swapops.h to resovle dependency, which is too much code move.
1030 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1031 * because !pmd_present() pages can only be under migration not swapped
1034 * pmd_none() is preseved for future condition checks on pmd migration
1035 * entries and not confusing with this function name, although it is
1036 * redundant with !pmd_present().
1038 if (pmd_none(pmdval
) || pmd_trans_huge(pmdval
) ||
1039 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION
) && !pmd_present(pmdval
)))
1041 if (unlikely(pmd_bad(pmdval
))) {
1049 * This is a noop if Transparent Hugepage Support is not built into
1050 * the kernel. Otherwise it is equivalent to
1051 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1052 * places that already verified the pmd is not none and they want to
1053 * walk ptes while holding the mmap sem in read mode (write mode don't
1054 * need this). If THP is not enabled, the pmd can't go away under the
1055 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1056 * run a pmd_trans_unstable before walking the ptes after
1057 * split_huge_pmd returns (because it may have run when the pmd become
1058 * null, but then a page fault can map in a THP and not a regular page).
1060 static inline int pmd_trans_unstable(pmd_t
*pmd
)
1062 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1063 return pmd_none_or_trans_huge_or_clear_bad(pmd
);
1069 #ifndef CONFIG_NUMA_BALANCING
1071 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1072 * the only case the kernel cares is for NUMA balancing and is only ever set
1073 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1074 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
1075 * is the responsibility of the caller to distinguish between PROT_NONE
1076 * protections and NUMA hinting fault protections.
1078 static inline int pte_protnone(pte_t pte
)
1083 static inline int pmd_protnone(pmd_t pmd
)
1087 #endif /* CONFIG_NUMA_BALANCING */
1089 #endif /* CONFIG_MMU */
1091 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1093 #ifndef __PAGETABLE_P4D_FOLDED
1094 int p4d_set_huge(p4d_t
*p4d
, phys_addr_t addr
, pgprot_t prot
);
1095 int p4d_clear_huge(p4d_t
*p4d
);
1097 static inline int p4d_set_huge(p4d_t
*p4d
, phys_addr_t addr
, pgprot_t prot
)
1101 static inline int p4d_clear_huge(p4d_t
*p4d
)
1105 #endif /* !__PAGETABLE_P4D_FOLDED */
1107 int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
);
1108 int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
);
1109 int pud_clear_huge(pud_t
*pud
);
1110 int pmd_clear_huge(pmd_t
*pmd
);
1111 int p4d_free_pud_page(p4d_t
*p4d
, unsigned long addr
);
1112 int pud_free_pmd_page(pud_t
*pud
, unsigned long addr
);
1113 int pmd_free_pte_page(pmd_t
*pmd
, unsigned long addr
);
1114 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1115 static inline int p4d_set_huge(p4d_t
*p4d
, phys_addr_t addr
, pgprot_t prot
)
1119 static inline int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
)
1123 static inline int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
)
1127 static inline int p4d_clear_huge(p4d_t
*p4d
)
1131 static inline int pud_clear_huge(pud_t
*pud
)
1135 static inline int pmd_clear_huge(pmd_t
*pmd
)
1139 static inline int p4d_free_pud_page(p4d_t
*p4d
, unsigned long addr
)
1143 static inline int pud_free_pmd_page(pud_t
*pud
, unsigned long addr
)
1147 static inline int pmd_free_pte_page(pmd_t
*pmd
, unsigned long addr
)
1151 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1153 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1156 * ARCHes with special requirements for evicting THP backing TLB entries can
1157 * implement this. Otherwise also, it can help optimize normal TLB flush in
1158 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1159 * entire TLB TLB if flush span is greater than a threshold, which will
1160 * likely be true for a single huge page. Thus a single thp flush will
1161 * invalidate the entire TLB which is not desitable.
1162 * e.g. see arch/arc: flush_pmd_tlb_range
1164 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1165 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1167 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1168 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1173 int phys_mem_access_prot_allowed(struct file
*file
, unsigned long pfn
,
1174 unsigned long size
, pgprot_t
*vma_prot
);
1176 #ifndef CONFIG_X86_ESPFIX64
1177 static inline void init_espfix_bsp(void) { }
1180 extern void __init
pgtable_cache_init(void);
1182 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1183 static inline bool pfn_modify_allowed(unsigned long pfn
, pgprot_t prot
)
1188 static inline bool arch_has_pfn_modify_check(void)
1192 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1195 * Architecture PAGE_KERNEL_* fallbacks
1197 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1198 * because they really don't support them, or the port needs to be updated to
1199 * reflect the required functionality. Below are a set of relatively safe
1200 * fallbacks, as best effort, which we can count on in lieu of the architectures
1201 * not defining them on their own yet.
1204 #ifndef PAGE_KERNEL_RO
1205 # define PAGE_KERNEL_RO PAGE_KERNEL
1208 #ifndef PAGE_KERNEL_EXEC
1209 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1212 #endif /* !__ASSEMBLY__ */
1214 #ifndef io_remap_pfn_range
1215 #define io_remap_pfn_range remap_pfn_range
1218 #ifndef has_transparent_hugepage
1219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1220 #define has_transparent_hugepage() 1
1222 #define has_transparent_hugepage() 0
1227 * On some architectures it depends on the mm if the p4d/pud or pmd
1228 * layer of the page table hierarchy is folded or not.
1230 #ifndef mm_p4d_folded
1231 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1234 #ifndef mm_pud_folded
1235 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1238 #ifndef mm_pmd_folded
1239 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1243 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1244 * This differs from p?d_huge() by the fact that they are always available (if
1245 * the architecture supports large pages at the appropriate level) even
1246 * if CONFIG_HUGETLB_PAGE is not defined.
1247 * Only meaningful when called on a valid entry.
1250 #define pgd_leaf(x) 0
1253 #define p4d_leaf(x) 0
1256 #define pud_leaf(x) 0
1259 #define pmd_leaf(x) 0
1262 #endif /* _ASM_GENERIC_PGTABLE_H */