1 // SPDX-License-Identifier: GPL-2.0-only
3 * kernel/locking/mutex.c
5 * Mutexes: blocking mutual exclusion locks
7 * Started by Ingo Molnar:
9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12 * David Howells for suggestions and improvements.
14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15 * from the -rt tree, where it was originally implemented for rtmutexes
16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
19 * Also see Documentation/locking/mutex-design.rst.
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
40 __mutex_init(struct mutex
*lock
, const char *name
, struct lock_class_key
*key
)
42 atomic_long_set(&lock
->owner
, 0);
43 spin_lock_init(&lock
->wait_lock
);
44 INIT_LIST_HEAD(&lock
->wait_list
);
45 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
46 osq_lock_init(&lock
->osq
);
49 debug_mutex_init(lock
, name
, key
);
51 EXPORT_SYMBOL(__mutex_init
);
54 * @owner: contains: 'struct task_struct *' to the current lock owner,
55 * NULL means not owned. Since task_struct pointers are aligned at
56 * at least L1_CACHE_BYTES, we have low bits to store extra state.
58 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
59 * Bit1 indicates unlock needs to hand the lock to the top-waiter
60 * Bit2 indicates handoff has been done and we're waiting for pickup.
62 #define MUTEX_FLAG_WAITERS 0x01
63 #define MUTEX_FLAG_HANDOFF 0x02
64 #define MUTEX_FLAG_PICKUP 0x04
66 #define MUTEX_FLAGS 0x07
69 * Internal helper function; C doesn't allow us to hide it :/
71 * DO NOT USE (outside of mutex code).
73 static inline struct task_struct
*__mutex_owner(struct mutex
*lock
)
75 return (struct task_struct
*)(atomic_long_read(&lock
->owner
) & ~MUTEX_FLAGS
);
78 static inline struct task_struct
*__owner_task(unsigned long owner
)
80 return (struct task_struct
*)(owner
& ~MUTEX_FLAGS
);
83 bool mutex_is_locked(struct mutex
*lock
)
85 return __mutex_owner(lock
) != NULL
;
87 EXPORT_SYMBOL(mutex_is_locked
);
89 __must_check
enum mutex_trylock_recursive_enum
90 mutex_trylock_recursive(struct mutex
*lock
)
92 if (unlikely(__mutex_owner(lock
) == current
))
93 return MUTEX_TRYLOCK_RECURSIVE
;
95 return mutex_trylock(lock
);
97 EXPORT_SYMBOL(mutex_trylock_recursive
);
99 static inline unsigned long __owner_flags(unsigned long owner
)
101 return owner
& MUTEX_FLAGS
;
105 * Trylock variant that retuns the owning task on failure.
107 static inline struct task_struct
*__mutex_trylock_or_owner(struct mutex
*lock
)
109 unsigned long owner
, curr
= (unsigned long)current
;
111 owner
= atomic_long_read(&lock
->owner
);
112 for (;;) { /* must loop, can race against a flag */
113 unsigned long old
, flags
= __owner_flags(owner
);
114 unsigned long task
= owner
& ~MUTEX_FLAGS
;
117 if (likely(task
!= curr
))
120 if (likely(!(flags
& MUTEX_FLAG_PICKUP
)))
123 flags
&= ~MUTEX_FLAG_PICKUP
;
125 #ifdef CONFIG_DEBUG_MUTEXES
126 DEBUG_LOCKS_WARN_ON(flags
& MUTEX_FLAG_PICKUP
);
131 * We set the HANDOFF bit, we must make sure it doesn't live
132 * past the point where we acquire it. This would be possible
133 * if we (accidentally) set the bit on an unlocked mutex.
135 flags
&= ~MUTEX_FLAG_HANDOFF
;
137 old
= atomic_long_cmpxchg_acquire(&lock
->owner
, owner
, curr
| flags
);
144 return __owner_task(owner
);
148 * Actual trylock that will work on any unlocked state.
150 static inline bool __mutex_trylock(struct mutex
*lock
)
152 return !__mutex_trylock_or_owner(lock
);
155 #ifndef CONFIG_DEBUG_LOCK_ALLOC
157 * Lockdep annotations are contained to the slow paths for simplicity.
158 * There is nothing that would stop spreading the lockdep annotations outwards
163 * Optimistic trylock that only works in the uncontended case. Make sure to
164 * follow with a __mutex_trylock() before failing.
166 static __always_inline
bool __mutex_trylock_fast(struct mutex
*lock
)
168 unsigned long curr
= (unsigned long)current
;
169 unsigned long zero
= 0UL;
171 if (atomic_long_try_cmpxchg_acquire(&lock
->owner
, &zero
, curr
))
177 static __always_inline
bool __mutex_unlock_fast(struct mutex
*lock
)
179 unsigned long curr
= (unsigned long)current
;
181 if (atomic_long_cmpxchg_release(&lock
->owner
, curr
, 0UL) == curr
)
188 static inline void __mutex_set_flag(struct mutex
*lock
, unsigned long flag
)
190 atomic_long_or(flag
, &lock
->owner
);
193 static inline void __mutex_clear_flag(struct mutex
*lock
, unsigned long flag
)
195 atomic_long_andnot(flag
, &lock
->owner
);
198 static inline bool __mutex_waiter_is_first(struct mutex
*lock
, struct mutex_waiter
*waiter
)
200 return list_first_entry(&lock
->wait_list
, struct mutex_waiter
, list
) == waiter
;
204 * Add @waiter to a given location in the lock wait_list and set the
205 * FLAG_WAITERS flag if it's the first waiter.
208 __mutex_add_waiter(struct mutex
*lock
, struct mutex_waiter
*waiter
,
209 struct list_head
*list
)
211 debug_mutex_add_waiter(lock
, waiter
, current
);
213 list_add_tail(&waiter
->list
, list
);
214 if (__mutex_waiter_is_first(lock
, waiter
))
215 __mutex_set_flag(lock
, MUTEX_FLAG_WAITERS
);
219 * Give up ownership to a specific task, when @task = NULL, this is equivalent
220 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
221 * WAITERS. Provides RELEASE semantics like a regular unlock, the
222 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
224 static void __mutex_handoff(struct mutex
*lock
, struct task_struct
*task
)
226 unsigned long owner
= atomic_long_read(&lock
->owner
);
229 unsigned long old
, new;
231 #ifdef CONFIG_DEBUG_MUTEXES
232 DEBUG_LOCKS_WARN_ON(__owner_task(owner
) != current
);
233 DEBUG_LOCKS_WARN_ON(owner
& MUTEX_FLAG_PICKUP
);
236 new = (owner
& MUTEX_FLAG_WAITERS
);
237 new |= (unsigned long)task
;
239 new |= MUTEX_FLAG_PICKUP
;
241 old
= atomic_long_cmpxchg_release(&lock
->owner
, owner
, new);
249 #ifndef CONFIG_DEBUG_LOCK_ALLOC
251 * We split the mutex lock/unlock logic into separate fastpath and
252 * slowpath functions, to reduce the register pressure on the fastpath.
253 * We also put the fastpath first in the kernel image, to make sure the
254 * branch is predicted by the CPU as default-untaken.
256 static void __sched
__mutex_lock_slowpath(struct mutex
*lock
);
259 * mutex_lock - acquire the mutex
260 * @lock: the mutex to be acquired
262 * Lock the mutex exclusively for this task. If the mutex is not
263 * available right now, it will sleep until it can get it.
265 * The mutex must later on be released by the same task that
266 * acquired it. Recursive locking is not allowed. The task
267 * may not exit without first unlocking the mutex. Also, kernel
268 * memory where the mutex resides must not be freed with
269 * the mutex still locked. The mutex must first be initialized
270 * (or statically defined) before it can be locked. memset()-ing
271 * the mutex to 0 is not allowed.
273 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
274 * checks that will enforce the restrictions and will also do
275 * deadlock debugging)
277 * This function is similar to (but not equivalent to) down().
279 void __sched
mutex_lock(struct mutex
*lock
)
283 if (!__mutex_trylock_fast(lock
))
284 __mutex_lock_slowpath(lock
);
286 EXPORT_SYMBOL(mutex_lock
);
291 * The newer transactions are killed when:
292 * It (the new transaction) makes a request for a lock being held
293 * by an older transaction.
296 * The newer transactions are wounded when:
297 * An older transaction makes a request for a lock being held by
298 * the newer transaction.
302 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
305 static __always_inline
void
306 ww_mutex_lock_acquired(struct ww_mutex
*ww
, struct ww_acquire_ctx
*ww_ctx
)
308 #ifdef CONFIG_DEBUG_MUTEXES
310 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
311 * but released with a normal mutex_unlock in this call.
313 * This should never happen, always use ww_mutex_unlock.
315 DEBUG_LOCKS_WARN_ON(ww
->ctx
);
318 * Not quite done after calling ww_acquire_done() ?
320 DEBUG_LOCKS_WARN_ON(ww_ctx
->done_acquire
);
322 if (ww_ctx
->contending_lock
) {
324 * After -EDEADLK you tried to
325 * acquire a different ww_mutex? Bad!
327 DEBUG_LOCKS_WARN_ON(ww_ctx
->contending_lock
!= ww
);
330 * You called ww_mutex_lock after receiving -EDEADLK,
331 * but 'forgot' to unlock everything else first?
333 DEBUG_LOCKS_WARN_ON(ww_ctx
->acquired
> 0);
334 ww_ctx
->contending_lock
= NULL
;
338 * Naughty, using a different class will lead to undefined behavior!
340 DEBUG_LOCKS_WARN_ON(ww_ctx
->ww_class
!= ww
->ww_class
);
347 * Determine if context @a is 'after' context @b. IOW, @a is a younger
348 * transaction than @b and depending on algorithm either needs to wait for
351 static inline bool __sched
352 __ww_ctx_stamp_after(struct ww_acquire_ctx
*a
, struct ww_acquire_ctx
*b
)
355 return (signed long)(a
->stamp
- b
->stamp
) > 0;
359 * Wait-Die; wake a younger waiter context (when locks held) such that it can
362 * Among waiters with context, only the first one can have other locks acquired
363 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
364 * __ww_mutex_check_kill() wake any but the earliest context.
367 __ww_mutex_die(struct mutex
*lock
, struct mutex_waiter
*waiter
,
368 struct ww_acquire_ctx
*ww_ctx
)
370 if (!ww_ctx
->is_wait_die
)
373 if (waiter
->ww_ctx
->acquired
> 0 &&
374 __ww_ctx_stamp_after(waiter
->ww_ctx
, ww_ctx
)) {
375 debug_mutex_wake_waiter(lock
, waiter
);
376 wake_up_process(waiter
->task
);
383 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
385 * Wound the lock holder if there are waiters with older transactions than
386 * the lock holders. Even if multiple waiters may wound the lock holder,
387 * it's sufficient that only one does.
389 static bool __ww_mutex_wound(struct mutex
*lock
,
390 struct ww_acquire_ctx
*ww_ctx
,
391 struct ww_acquire_ctx
*hold_ctx
)
393 struct task_struct
*owner
= __mutex_owner(lock
);
395 lockdep_assert_held(&lock
->wait_lock
);
398 * Possible through __ww_mutex_add_waiter() when we race with
399 * ww_mutex_set_context_fastpath(). In that case we'll get here again
400 * through __ww_mutex_check_waiters().
406 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
407 * it cannot go away because we'll have FLAG_WAITERS set and hold
413 if (ww_ctx
->acquired
> 0 && __ww_ctx_stamp_after(hold_ctx
, ww_ctx
)) {
414 hold_ctx
->wounded
= 1;
417 * wake_up_process() paired with set_current_state()
418 * inserts sufficient barriers to make sure @owner either sees
419 * it's wounded in __ww_mutex_check_kill() or has a
420 * wakeup pending to re-read the wounded state.
422 if (owner
!= current
)
423 wake_up_process(owner
);
432 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
433 * behind us on the wait-list, check if they need to die, or wound us.
435 * See __ww_mutex_add_waiter() for the list-order construction; basically the
436 * list is ordered by stamp, smallest (oldest) first.
438 * This relies on never mixing wait-die/wound-wait on the same wait-list;
439 * which is currently ensured by that being a ww_class property.
441 * The current task must not be on the wait list.
444 __ww_mutex_check_waiters(struct mutex
*lock
, struct ww_acquire_ctx
*ww_ctx
)
446 struct mutex_waiter
*cur
;
448 lockdep_assert_held(&lock
->wait_lock
);
450 list_for_each_entry(cur
, &lock
->wait_list
, list
) {
454 if (__ww_mutex_die(lock
, cur
, ww_ctx
) ||
455 __ww_mutex_wound(lock
, cur
->ww_ctx
, ww_ctx
))
461 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
462 * and wake up any waiters so they can recheck.
464 static __always_inline
void
465 ww_mutex_set_context_fastpath(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
467 ww_mutex_lock_acquired(lock
, ctx
);
470 * The lock->ctx update should be visible on all cores before
471 * the WAITERS check is done, otherwise contended waiters might be
472 * missed. The contended waiters will either see ww_ctx == NULL
473 * and keep spinning, or it will acquire wait_lock, add itself
474 * to waiter list and sleep.
476 smp_mb(); /* See comments above and below. */
479 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS
481 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx
483 * The memory barrier above pairs with the memory barrier in
484 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
485 * and/or !empty list.
487 if (likely(!(atomic_long_read(&lock
->base
.owner
) & MUTEX_FLAG_WAITERS
)))
491 * Uh oh, we raced in fastpath, check if any of the waiters need to
494 spin_lock(&lock
->base
.wait_lock
);
495 __ww_mutex_check_waiters(&lock
->base
, ctx
);
496 spin_unlock(&lock
->base
.wait_lock
);
499 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
502 bool ww_mutex_spin_on_owner(struct mutex
*lock
, struct ww_acquire_ctx
*ww_ctx
,
503 struct mutex_waiter
*waiter
)
507 ww
= container_of(lock
, struct ww_mutex
, base
);
510 * If ww->ctx is set the contents are undefined, only
511 * by acquiring wait_lock there is a guarantee that
512 * they are not invalid when reading.
514 * As such, when deadlock detection needs to be
515 * performed the optimistic spinning cannot be done.
517 * Check this in every inner iteration because we may
518 * be racing against another thread's ww_mutex_lock.
520 if (ww_ctx
->acquired
> 0 && READ_ONCE(ww
->ctx
))
524 * If we aren't on the wait list yet, cancel the spin
525 * if there are waiters. We want to avoid stealing the
526 * lock from a waiter with an earlier stamp, since the
527 * other thread may already own a lock that we also
530 if (!waiter
&& (atomic_long_read(&lock
->owner
) & MUTEX_FLAG_WAITERS
))
534 * Similarly, stop spinning if we are no longer the
537 if (waiter
&& !__mutex_waiter_is_first(lock
, waiter
))
544 * Look out! "owner" is an entirely speculative pointer access and not
547 * "noinline" so that this function shows up on perf profiles.
550 bool mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
,
551 struct ww_acquire_ctx
*ww_ctx
, struct mutex_waiter
*waiter
)
556 while (__mutex_owner(lock
) == owner
) {
558 * Ensure we emit the owner->on_cpu, dereference _after_
559 * checking lock->owner still matches owner. If that fails,
560 * owner might point to freed memory. If it still matches,
561 * the rcu_read_lock() ensures the memory stays valid.
566 * Use vcpu_is_preempted to detect lock holder preemption issue.
568 if (!owner
->on_cpu
|| need_resched() ||
569 vcpu_is_preempted(task_cpu(owner
))) {
574 if (ww_ctx
&& !ww_mutex_spin_on_owner(lock
, ww_ctx
, waiter
)) {
587 * Initial check for entering the mutex spinning loop
589 static inline int mutex_can_spin_on_owner(struct mutex
*lock
)
591 struct task_struct
*owner
;
598 owner
= __mutex_owner(lock
);
601 * As lock holder preemption issue, we both skip spinning if task is not
602 * on cpu or its cpu is preempted
605 retval
= owner
->on_cpu
&& !vcpu_is_preempted(task_cpu(owner
));
609 * If lock->owner is not set, the mutex has been released. Return true
610 * such that we'll trylock in the spin path, which is a faster option
611 * than the blocking slow path.
617 * Optimistic spinning.
619 * We try to spin for acquisition when we find that the lock owner
620 * is currently running on a (different) CPU and while we don't
621 * need to reschedule. The rationale is that if the lock owner is
622 * running, it is likely to release the lock soon.
624 * The mutex spinners are queued up using MCS lock so that only one
625 * spinner can compete for the mutex. However, if mutex spinning isn't
626 * going to happen, there is no point in going through the lock/unlock
629 * Returns true when the lock was taken, otherwise false, indicating
630 * that we need to jump to the slowpath and sleep.
632 * The waiter flag is set to true if the spinner is a waiter in the wait
633 * queue. The waiter-spinner will spin on the lock directly and concurrently
634 * with the spinner at the head of the OSQ, if present, until the owner is
637 static __always_inline
bool
638 mutex_optimistic_spin(struct mutex
*lock
, struct ww_acquire_ctx
*ww_ctx
,
639 const bool use_ww_ctx
, struct mutex_waiter
*waiter
)
643 * The purpose of the mutex_can_spin_on_owner() function is
644 * to eliminate the overhead of osq_lock() and osq_unlock()
645 * in case spinning isn't possible. As a waiter-spinner
646 * is not going to take OSQ lock anyway, there is no need
647 * to call mutex_can_spin_on_owner().
649 if (!mutex_can_spin_on_owner(lock
))
653 * In order to avoid a stampede of mutex spinners trying to
654 * acquire the mutex all at once, the spinners need to take a
655 * MCS (queued) lock first before spinning on the owner field.
657 if (!osq_lock(&lock
->osq
))
662 struct task_struct
*owner
;
664 /* Try to acquire the mutex... */
665 owner
= __mutex_trylock_or_owner(lock
);
670 * There's an owner, wait for it to either
671 * release the lock or go to sleep.
673 if (!mutex_spin_on_owner(lock
, owner
, ww_ctx
, waiter
))
677 * The cpu_relax() call is a compiler barrier which forces
678 * everything in this loop to be re-loaded. We don't need
679 * memory barriers as we'll eventually observe the right
680 * values at the cost of a few extra spins.
686 osq_unlock(&lock
->osq
);
693 osq_unlock(&lock
->osq
);
697 * If we fell out of the spin path because of need_resched(),
698 * reschedule now, before we try-lock the mutex. This avoids getting
699 * scheduled out right after we obtained the mutex.
701 if (need_resched()) {
703 * We _should_ have TASK_RUNNING here, but just in case
704 * we do not, make it so, otherwise we might get stuck.
706 __set_current_state(TASK_RUNNING
);
707 schedule_preempt_disabled();
713 static __always_inline
bool
714 mutex_optimistic_spin(struct mutex
*lock
, struct ww_acquire_ctx
*ww_ctx
,
715 const bool use_ww_ctx
, struct mutex_waiter
*waiter
)
721 static noinline
void __sched
__mutex_unlock_slowpath(struct mutex
*lock
, unsigned long ip
);
724 * mutex_unlock - release the mutex
725 * @lock: the mutex to be released
727 * Unlock a mutex that has been locked by this task previously.
729 * This function must not be used in interrupt context. Unlocking
730 * of a not locked mutex is not allowed.
732 * This function is similar to (but not equivalent to) up().
734 void __sched
mutex_unlock(struct mutex
*lock
)
736 #ifndef CONFIG_DEBUG_LOCK_ALLOC
737 if (__mutex_unlock_fast(lock
))
740 __mutex_unlock_slowpath(lock
, _RET_IP_
);
742 EXPORT_SYMBOL(mutex_unlock
);
745 * ww_mutex_unlock - release the w/w mutex
746 * @lock: the mutex to be released
748 * Unlock a mutex that has been locked by this task previously with any of the
749 * ww_mutex_lock* functions (with or without an acquire context). It is
750 * forbidden to release the locks after releasing the acquire context.
752 * This function must not be used in interrupt context. Unlocking
753 * of a unlocked mutex is not allowed.
755 void __sched
ww_mutex_unlock(struct ww_mutex
*lock
)
758 * The unlocking fastpath is the 0->1 transition from 'locked'
759 * into 'unlocked' state:
762 #ifdef CONFIG_DEBUG_MUTEXES
763 DEBUG_LOCKS_WARN_ON(!lock
->ctx
->acquired
);
765 if (lock
->ctx
->acquired
> 0)
766 lock
->ctx
->acquired
--;
770 mutex_unlock(&lock
->base
);
772 EXPORT_SYMBOL(ww_mutex_unlock
);
775 static __always_inline
int __sched
776 __ww_mutex_kill(struct mutex
*lock
, struct ww_acquire_ctx
*ww_ctx
)
778 if (ww_ctx
->acquired
> 0) {
779 #ifdef CONFIG_DEBUG_MUTEXES
782 ww
= container_of(lock
, struct ww_mutex
, base
);
783 DEBUG_LOCKS_WARN_ON(ww_ctx
->contending_lock
);
784 ww_ctx
->contending_lock
= ww
;
794 * Check the wound condition for the current lock acquire.
796 * Wound-Wait: If we're wounded, kill ourself.
798 * Wait-Die: If we're trying to acquire a lock already held by an older
799 * context, kill ourselves.
801 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
802 * look at waiters before us in the wait-list.
804 static inline int __sched
805 __ww_mutex_check_kill(struct mutex
*lock
, struct mutex_waiter
*waiter
,
806 struct ww_acquire_ctx
*ctx
)
808 struct ww_mutex
*ww
= container_of(lock
, struct ww_mutex
, base
);
809 struct ww_acquire_ctx
*hold_ctx
= READ_ONCE(ww
->ctx
);
810 struct mutex_waiter
*cur
;
812 if (ctx
->acquired
== 0)
815 if (!ctx
->is_wait_die
) {
817 return __ww_mutex_kill(lock
, ctx
);
822 if (hold_ctx
&& __ww_ctx_stamp_after(ctx
, hold_ctx
))
823 return __ww_mutex_kill(lock
, ctx
);
826 * If there is a waiter in front of us that has a context, then its
827 * stamp is earlier than ours and we must kill ourself.
830 list_for_each_entry_continue_reverse(cur
, &lock
->wait_list
, list
) {
834 return __ww_mutex_kill(lock
, ctx
);
841 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
842 * first. Such that older contexts are preferred to acquire the lock over
845 * Waiters without context are interspersed in FIFO order.
847 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
848 * older contexts already waiting) to avoid unnecessary waiting and for
849 * Wound-Wait ensure we wound the owning context when it is younger.
851 static inline int __sched
852 __ww_mutex_add_waiter(struct mutex_waiter
*waiter
,
854 struct ww_acquire_ctx
*ww_ctx
)
856 struct mutex_waiter
*cur
;
857 struct list_head
*pos
;
861 __mutex_add_waiter(lock
, waiter
, &lock
->wait_list
);
865 is_wait_die
= ww_ctx
->is_wait_die
;
868 * Add the waiter before the first waiter with a higher stamp.
869 * Waiters without a context are skipped to avoid starving
870 * them. Wait-Die waiters may die here. Wound-Wait waiters
871 * never die here, but they are sorted in stamp order and
872 * may wound the lock holder.
874 pos
= &lock
->wait_list
;
875 list_for_each_entry_reverse(cur
, &lock
->wait_list
, list
) {
879 if (__ww_ctx_stamp_after(ww_ctx
, cur
->ww_ctx
)) {
881 * Wait-Die: if we find an older context waiting, there
882 * is no point in queueing behind it, as we'd have to
883 * die the moment it would acquire the lock.
886 int ret
= __ww_mutex_kill(lock
, ww_ctx
);
897 /* Wait-Die: ensure younger waiters die. */
898 __ww_mutex_die(lock
, cur
, ww_ctx
);
901 __mutex_add_waiter(lock
, waiter
, pos
);
904 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
905 * wound that such that we might proceed.
908 struct ww_mutex
*ww
= container_of(lock
, struct ww_mutex
, base
);
911 * See ww_mutex_set_context_fastpath(). Orders setting
912 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
913 * such that either we or the fastpath will wound @ww->ctx.
916 __ww_mutex_wound(lock
, ww_ctx
, ww
->ctx
);
923 * Lock a mutex (possibly interruptible), slowpath:
925 static __always_inline
int __sched
926 __mutex_lock_common(struct mutex
*lock
, long state
, unsigned int subclass
,
927 struct lockdep_map
*nest_lock
, unsigned long ip
,
928 struct ww_acquire_ctx
*ww_ctx
, const bool use_ww_ctx
)
930 struct mutex_waiter waiter
;
937 #ifdef CONFIG_DEBUG_MUTEXES
938 DEBUG_LOCKS_WARN_ON(lock
->magic
!= lock
);
941 ww
= container_of(lock
, struct ww_mutex
, base
);
942 if (use_ww_ctx
&& ww_ctx
) {
943 if (unlikely(ww_ctx
== READ_ONCE(ww
->ctx
)))
947 * Reset the wounded flag after a kill. No other process can
948 * race and wound us here since they can't have a valid owner
949 * pointer if we don't have any locks held.
951 if (ww_ctx
->acquired
== 0)
956 mutex_acquire_nest(&lock
->dep_map
, subclass
, 0, nest_lock
, ip
);
958 if (__mutex_trylock(lock
) ||
959 mutex_optimistic_spin(lock
, ww_ctx
, use_ww_ctx
, NULL
)) {
960 /* got the lock, yay! */
961 lock_acquired(&lock
->dep_map
, ip
);
962 if (use_ww_ctx
&& ww_ctx
)
963 ww_mutex_set_context_fastpath(ww
, ww_ctx
);
968 spin_lock(&lock
->wait_lock
);
970 * After waiting to acquire the wait_lock, try again.
972 if (__mutex_trylock(lock
)) {
973 if (use_ww_ctx
&& ww_ctx
)
974 __ww_mutex_check_waiters(lock
, ww_ctx
);
979 debug_mutex_lock_common(lock
, &waiter
);
981 lock_contended(&lock
->dep_map
, ip
);
984 /* add waiting tasks to the end of the waitqueue (FIFO): */
985 __mutex_add_waiter(lock
, &waiter
, &lock
->wait_list
);
988 #ifdef CONFIG_DEBUG_MUTEXES
989 waiter
.ww_ctx
= MUTEX_POISON_WW_CTX
;
993 * Add in stamp order, waking up waiters that must kill
996 ret
= __ww_mutex_add_waiter(&waiter
, lock
, ww_ctx
);
1000 waiter
.ww_ctx
= ww_ctx
;
1003 waiter
.task
= current
;
1005 set_current_state(state
);
1008 * Once we hold wait_lock, we're serialized against
1009 * mutex_unlock() handing the lock off to us, do a trylock
1010 * before testing the error conditions to make sure we pick up
1013 if (__mutex_trylock(lock
))
1017 * Check for signals and kill conditions while holding
1018 * wait_lock. This ensures the lock cancellation is ordered
1019 * against mutex_unlock() and wake-ups do not go missing.
1021 if (signal_pending_state(state
, current
)) {
1026 if (use_ww_ctx
&& ww_ctx
) {
1027 ret
= __ww_mutex_check_kill(lock
, &waiter
, ww_ctx
);
1032 spin_unlock(&lock
->wait_lock
);
1033 schedule_preempt_disabled();
1036 * ww_mutex needs to always recheck its position since its waiter
1037 * list is not FIFO ordered.
1039 if ((use_ww_ctx
&& ww_ctx
) || !first
) {
1040 first
= __mutex_waiter_is_first(lock
, &waiter
);
1042 __mutex_set_flag(lock
, MUTEX_FLAG_HANDOFF
);
1045 set_current_state(state
);
1047 * Here we order against unlock; we must either see it change
1048 * state back to RUNNING and fall through the next schedule(),
1049 * or we must see its unlock and acquire.
1051 if (__mutex_trylock(lock
) ||
1052 (first
&& mutex_optimistic_spin(lock
, ww_ctx
, use_ww_ctx
, &waiter
)))
1055 spin_lock(&lock
->wait_lock
);
1057 spin_lock(&lock
->wait_lock
);
1059 __set_current_state(TASK_RUNNING
);
1061 if (use_ww_ctx
&& ww_ctx
) {
1063 * Wound-Wait; we stole the lock (!first_waiter), check the
1064 * waiters as anyone might want to wound us.
1066 if (!ww_ctx
->is_wait_die
&&
1067 !__mutex_waiter_is_first(lock
, &waiter
))
1068 __ww_mutex_check_waiters(lock
, ww_ctx
);
1071 mutex_remove_waiter(lock
, &waiter
, current
);
1072 if (likely(list_empty(&lock
->wait_list
)))
1073 __mutex_clear_flag(lock
, MUTEX_FLAGS
);
1075 debug_mutex_free_waiter(&waiter
);
1078 /* got the lock - cleanup and rejoice! */
1079 lock_acquired(&lock
->dep_map
, ip
);
1081 if (use_ww_ctx
&& ww_ctx
)
1082 ww_mutex_lock_acquired(ww
, ww_ctx
);
1084 spin_unlock(&lock
->wait_lock
);
1089 __set_current_state(TASK_RUNNING
);
1090 mutex_remove_waiter(lock
, &waiter
, current
);
1092 spin_unlock(&lock
->wait_lock
);
1093 debug_mutex_free_waiter(&waiter
);
1094 mutex_release(&lock
->dep_map
, ip
);
1100 __mutex_lock(struct mutex
*lock
, long state
, unsigned int subclass
,
1101 struct lockdep_map
*nest_lock
, unsigned long ip
)
1103 return __mutex_lock_common(lock
, state
, subclass
, nest_lock
, ip
, NULL
, false);
1107 __ww_mutex_lock(struct mutex
*lock
, long state
, unsigned int subclass
,
1108 struct lockdep_map
*nest_lock
, unsigned long ip
,
1109 struct ww_acquire_ctx
*ww_ctx
)
1111 return __mutex_lock_common(lock
, state
, subclass
, nest_lock
, ip
, ww_ctx
, true);
1114 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1116 mutex_lock_nested(struct mutex
*lock
, unsigned int subclass
)
1118 __mutex_lock(lock
, TASK_UNINTERRUPTIBLE
, subclass
, NULL
, _RET_IP_
);
1121 EXPORT_SYMBOL_GPL(mutex_lock_nested
);
1124 _mutex_lock_nest_lock(struct mutex
*lock
, struct lockdep_map
*nest
)
1126 __mutex_lock(lock
, TASK_UNINTERRUPTIBLE
, 0, nest
, _RET_IP_
);
1128 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock
);
1131 mutex_lock_killable_nested(struct mutex
*lock
, unsigned int subclass
)
1133 return __mutex_lock(lock
, TASK_KILLABLE
, subclass
, NULL
, _RET_IP_
);
1135 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested
);
1138 mutex_lock_interruptible_nested(struct mutex
*lock
, unsigned int subclass
)
1140 return __mutex_lock(lock
, TASK_INTERRUPTIBLE
, subclass
, NULL
, _RET_IP_
);
1142 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested
);
1145 mutex_lock_io_nested(struct mutex
*lock
, unsigned int subclass
)
1151 token
= io_schedule_prepare();
1152 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
,
1153 subclass
, NULL
, _RET_IP_
, NULL
, 0);
1154 io_schedule_finish(token
);
1156 EXPORT_SYMBOL_GPL(mutex_lock_io_nested
);
1159 ww_mutex_deadlock_injection(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1161 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1164 if (ctx
->deadlock_inject_countdown
-- == 0) {
1165 tmp
= ctx
->deadlock_inject_interval
;
1166 if (tmp
> UINT_MAX
/4)
1169 tmp
= tmp
*2 + tmp
+ tmp
/2;
1171 ctx
->deadlock_inject_interval
= tmp
;
1172 ctx
->deadlock_inject_countdown
= tmp
;
1173 ctx
->contending_lock
= lock
;
1175 ww_mutex_unlock(lock
);
1185 ww_mutex_lock(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1190 ret
= __ww_mutex_lock(&lock
->base
, TASK_UNINTERRUPTIBLE
,
1191 0, ctx
? &ctx
->dep_map
: NULL
, _RET_IP_
,
1193 if (!ret
&& ctx
&& ctx
->acquired
> 1)
1194 return ww_mutex_deadlock_injection(lock
, ctx
);
1198 EXPORT_SYMBOL_GPL(ww_mutex_lock
);
1201 ww_mutex_lock_interruptible(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1206 ret
= __ww_mutex_lock(&lock
->base
, TASK_INTERRUPTIBLE
,
1207 0, ctx
? &ctx
->dep_map
: NULL
, _RET_IP_
,
1210 if (!ret
&& ctx
&& ctx
->acquired
> 1)
1211 return ww_mutex_deadlock_injection(lock
, ctx
);
1215 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible
);
1220 * Release the lock, slowpath:
1222 static noinline
void __sched
__mutex_unlock_slowpath(struct mutex
*lock
, unsigned long ip
)
1224 struct task_struct
*next
= NULL
;
1225 DEFINE_WAKE_Q(wake_q
);
1226 unsigned long owner
;
1228 mutex_release(&lock
->dep_map
, ip
);
1231 * Release the lock before (potentially) taking the spinlock such that
1232 * other contenders can get on with things ASAP.
1234 * Except when HANDOFF, in that case we must not clear the owner field,
1235 * but instead set it to the top waiter.
1237 owner
= atomic_long_read(&lock
->owner
);
1241 #ifdef CONFIG_DEBUG_MUTEXES
1242 DEBUG_LOCKS_WARN_ON(__owner_task(owner
) != current
);
1243 DEBUG_LOCKS_WARN_ON(owner
& MUTEX_FLAG_PICKUP
);
1246 if (owner
& MUTEX_FLAG_HANDOFF
)
1249 old
= atomic_long_cmpxchg_release(&lock
->owner
, owner
,
1250 __owner_flags(owner
));
1252 if (owner
& MUTEX_FLAG_WAITERS
)
1261 spin_lock(&lock
->wait_lock
);
1262 debug_mutex_unlock(lock
);
1263 if (!list_empty(&lock
->wait_list
)) {
1264 /* get the first entry from the wait-list: */
1265 struct mutex_waiter
*waiter
=
1266 list_first_entry(&lock
->wait_list
,
1267 struct mutex_waiter
, list
);
1269 next
= waiter
->task
;
1271 debug_mutex_wake_waiter(lock
, waiter
);
1272 wake_q_add(&wake_q
, next
);
1275 if (owner
& MUTEX_FLAG_HANDOFF
)
1276 __mutex_handoff(lock
, next
);
1278 spin_unlock(&lock
->wait_lock
);
1283 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1285 * Here come the less common (and hence less performance-critical) APIs:
1286 * mutex_lock_interruptible() and mutex_trylock().
1288 static noinline
int __sched
1289 __mutex_lock_killable_slowpath(struct mutex
*lock
);
1291 static noinline
int __sched
1292 __mutex_lock_interruptible_slowpath(struct mutex
*lock
);
1295 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1296 * @lock: The mutex to be acquired.
1298 * Lock the mutex like mutex_lock(). If a signal is delivered while the
1299 * process is sleeping, this function will return without acquiring the
1302 * Context: Process context.
1303 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1306 int __sched
mutex_lock_interruptible(struct mutex
*lock
)
1310 if (__mutex_trylock_fast(lock
))
1313 return __mutex_lock_interruptible_slowpath(lock
);
1316 EXPORT_SYMBOL(mutex_lock_interruptible
);
1319 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1320 * @lock: The mutex to be acquired.
1322 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
1323 * the current process is delivered while the process is sleeping, this
1324 * function will return without acquiring the mutex.
1326 * Context: Process context.
1327 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1328 * fatal signal arrived.
1330 int __sched
mutex_lock_killable(struct mutex
*lock
)
1334 if (__mutex_trylock_fast(lock
))
1337 return __mutex_lock_killable_slowpath(lock
);
1339 EXPORT_SYMBOL(mutex_lock_killable
);
1342 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1343 * @lock: The mutex to be acquired.
1345 * Lock the mutex like mutex_lock(). While the task is waiting for this
1346 * mutex, it will be accounted as being in the IO wait state by the
1349 * Context: Process context.
1351 void __sched
mutex_lock_io(struct mutex
*lock
)
1355 token
= io_schedule_prepare();
1357 io_schedule_finish(token
);
1359 EXPORT_SYMBOL_GPL(mutex_lock_io
);
1361 static noinline
void __sched
1362 __mutex_lock_slowpath(struct mutex
*lock
)
1364 __mutex_lock(lock
, TASK_UNINTERRUPTIBLE
, 0, NULL
, _RET_IP_
);
1367 static noinline
int __sched
1368 __mutex_lock_killable_slowpath(struct mutex
*lock
)
1370 return __mutex_lock(lock
, TASK_KILLABLE
, 0, NULL
, _RET_IP_
);
1373 static noinline
int __sched
1374 __mutex_lock_interruptible_slowpath(struct mutex
*lock
)
1376 return __mutex_lock(lock
, TASK_INTERRUPTIBLE
, 0, NULL
, _RET_IP_
);
1379 static noinline
int __sched
1380 __ww_mutex_lock_slowpath(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1382 return __ww_mutex_lock(&lock
->base
, TASK_UNINTERRUPTIBLE
, 0, NULL
,
1386 static noinline
int __sched
1387 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex
*lock
,
1388 struct ww_acquire_ctx
*ctx
)
1390 return __ww_mutex_lock(&lock
->base
, TASK_INTERRUPTIBLE
, 0, NULL
,
1397 * mutex_trylock - try to acquire the mutex, without waiting
1398 * @lock: the mutex to be acquired
1400 * Try to acquire the mutex atomically. Returns 1 if the mutex
1401 * has been acquired successfully, and 0 on contention.
1403 * NOTE: this function follows the spin_trylock() convention, so
1404 * it is negated from the down_trylock() return values! Be careful
1405 * about this when converting semaphore users to mutexes.
1407 * This function must not be used in interrupt context. The
1408 * mutex must be released by the same task that acquired it.
1410 int __sched
mutex_trylock(struct mutex
*lock
)
1414 #ifdef CONFIG_DEBUG_MUTEXES
1415 DEBUG_LOCKS_WARN_ON(lock
->magic
!= lock
);
1418 locked
= __mutex_trylock(lock
);
1420 mutex_acquire(&lock
->dep_map
, 0, 1, _RET_IP_
);
1424 EXPORT_SYMBOL(mutex_trylock
);
1426 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1428 ww_mutex_lock(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1432 if (__mutex_trylock_fast(&lock
->base
)) {
1434 ww_mutex_set_context_fastpath(lock
, ctx
);
1438 return __ww_mutex_lock_slowpath(lock
, ctx
);
1440 EXPORT_SYMBOL(ww_mutex_lock
);
1443 ww_mutex_lock_interruptible(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1447 if (__mutex_trylock_fast(&lock
->base
)) {
1449 ww_mutex_set_context_fastpath(lock
, ctx
);
1453 return __ww_mutex_lock_interruptible_slowpath(lock
, ctx
);
1455 EXPORT_SYMBOL(ww_mutex_lock_interruptible
);
1460 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1461 * @cnt: the atomic which we are to dec
1462 * @lock: the mutex to return holding if we dec to 0
1464 * return true and hold lock if we dec to 0, return false otherwise
1466 int atomic_dec_and_mutex_lock(atomic_t
*cnt
, struct mutex
*lock
)
1468 /* dec if we can't possibly hit 0 */
1469 if (atomic_add_unless(cnt
, -1, 1))
1471 /* we might hit 0, so take the lock */
1473 if (!atomic_dec_and_test(cnt
)) {
1474 /* when we actually did the dec, we didn't hit 0 */
1478 /* we hit 0, and we hold the lock */
1481 EXPORT_SYMBOL(atomic_dec_and_mutex_lock
);