Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / kernel / sched / core.c
blobf2618ade80479f2812819dbea288c6f0776282b0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
5 * Core kernel scheduler code and related syscalls
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
11 #include <linux/nospec.h>
13 #include <linux/kcov.h>
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
22 #include "pelt.h"
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
42 * Debugging: various feature bits
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
48 #define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
53 #undef SCHED_FEAT
54 #endif
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
63 * period over which we measure -rt task CPU usage in us.
64 * default: 1s
66 unsigned int sysctl_sched_rt_period = 1000000;
68 __read_mostly int scheduler_running;
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
74 int sysctl_sched_rt_runtime = 950000;
77 * __task_rq_lock - lock the rq @p resides on.
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 __acquires(rq->lock)
82 struct rq *rq;
84 lockdep_assert_held(&p->pi_lock);
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 rq_pin_lock(rq, rf);
91 return rq;
93 raw_spin_unlock(&rq->lock);
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
107 struct rq *rq;
109 for (;;) {
110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
114 * move_queued_task() task_rq_lock()
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
123 * If we observe the old CPU in task_rq_lock(), the acquire of
124 * the old rq->lock will fully serialize against the stores.
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 rq_pin_lock(rq, rf);
132 return rq;
134 raw_spin_unlock(&rq->lock);
135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
143 * RQ-clock updating methods:
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
152 s64 __maybe_unused steal = 0, irq_delta = 0;
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
172 if (irq_delta > delta)
173 irq_delta = delta;
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((&paravirt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
183 if (unlikely(steal > delta))
184 steal = delta;
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
189 #endif
191 rq->clock_task += delta;
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 update_rq_clock_pelt(rq, delta);
200 void update_rq_clock(struct rq *rq)
202 s64 delta;
204 lockdep_assert_held(&rq->lock);
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
209 #ifdef CONFIG_SCHED_DEBUG
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
223 #ifdef CONFIG_SCHED_HRTICK
225 * Use HR-timers to deliver accurate preemption points.
228 static void hrtick_clear(struct rq *rq)
230 if (hrtimer_active(&rq->hrtick_timer))
231 hrtimer_cancel(&rq->hrtick_timer);
235 * High-resolution timer tick.
236 * Runs from hardirq context with interrupts disabled.
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
240 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 struct rq_flags rf;
243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
245 rq_lock(rq, &rf);
246 update_rq_clock(rq);
247 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 rq_unlock(rq, &rf);
250 return HRTIMER_NORESTART;
253 #ifdef CONFIG_SMP
255 static void __hrtick_restart(struct rq *rq)
257 struct hrtimer *timer = &rq->hrtick_timer;
259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
263 * called from hardirq (IPI) context
265 static void __hrtick_start(void *arg)
267 struct rq *rq = arg;
268 struct rq_flags rf;
270 rq_lock(rq, &rf);
271 __hrtick_restart(rq);
272 rq_unlock(rq, &rf);
276 * Called to set the hrtick timer state.
278 * called with rq->lock held and irqs disabled
280 void hrtick_start(struct rq *rq, u64 delay)
282 struct hrtimer *timer = &rq->hrtick_timer;
283 ktime_t time;
284 s64 delta;
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
293 hrtimer_set_expires(timer, time);
295 if (rq == this_rq())
296 __hrtick_restart(rq);
297 else
298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
301 #else
303 * Called to set the hrtick timer state.
305 * called with rq->lock held and irqs disabled
307 void hrtick_start(struct rq *rq, u64 delay)
310 * Don't schedule slices shorter than 10000ns, that just
311 * doesn't make sense. Rely on vruntime for fairness.
313 delay = max_t(u64, delay, 10000LL);
314 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
315 HRTIMER_MODE_REL_PINNED_HARD);
317 #endif /* CONFIG_SMP */
319 static void hrtick_rq_init(struct rq *rq)
321 #ifdef CONFIG_SMP
322 rq->hrtick_csd.flags = 0;
323 rq->hrtick_csd.func = __hrtick_start;
324 rq->hrtick_csd.info = rq;
325 #endif
327 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
328 rq->hrtick_timer.function = hrtick;
330 #else /* CONFIG_SCHED_HRTICK */
331 static inline void hrtick_clear(struct rq *rq)
335 static inline void hrtick_rq_init(struct rq *rq)
338 #endif /* CONFIG_SCHED_HRTICK */
341 * cmpxchg based fetch_or, macro so it works for different integer types
343 #define fetch_or(ptr, mask) \
344 ({ \
345 typeof(ptr) _ptr = (ptr); \
346 typeof(mask) _mask = (mask); \
347 typeof(*_ptr) _old, _val = *_ptr; \
349 for (;;) { \
350 _old = cmpxchg(_ptr, _val, _val | _mask); \
351 if (_old == _val) \
352 break; \
353 _val = _old; \
355 _old; \
358 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
360 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
361 * this avoids any races wrt polling state changes and thereby avoids
362 * spurious IPIs.
364 static bool set_nr_and_not_polling(struct task_struct *p)
366 struct thread_info *ti = task_thread_info(p);
367 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
371 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
373 * If this returns true, then the idle task promises to call
374 * sched_ttwu_pending() and reschedule soon.
376 static bool set_nr_if_polling(struct task_struct *p)
378 struct thread_info *ti = task_thread_info(p);
379 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
381 for (;;) {
382 if (!(val & _TIF_POLLING_NRFLAG))
383 return false;
384 if (val & _TIF_NEED_RESCHED)
385 return true;
386 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
387 if (old == val)
388 break;
389 val = old;
391 return true;
394 #else
395 static bool set_nr_and_not_polling(struct task_struct *p)
397 set_tsk_need_resched(p);
398 return true;
401 #ifdef CONFIG_SMP
402 static bool set_nr_if_polling(struct task_struct *p)
404 return false;
406 #endif
407 #endif
409 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
411 struct wake_q_node *node = &task->wake_q;
414 * Atomically grab the task, if ->wake_q is !nil already it means
415 * its already queued (either by us or someone else) and will get the
416 * wakeup due to that.
418 * In order to ensure that a pending wakeup will observe our pending
419 * state, even in the failed case, an explicit smp_mb() must be used.
421 smp_mb__before_atomic();
422 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
423 return false;
426 * The head is context local, there can be no concurrency.
428 *head->lastp = node;
429 head->lastp = &node->next;
430 return true;
434 * wake_q_add() - queue a wakeup for 'later' waking.
435 * @head: the wake_q_head to add @task to
436 * @task: the task to queue for 'later' wakeup
438 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
439 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
440 * instantly.
442 * This function must be used as-if it were wake_up_process(); IOW the task
443 * must be ready to be woken at this location.
445 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
447 if (__wake_q_add(head, task))
448 get_task_struct(task);
452 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
453 * @head: the wake_q_head to add @task to
454 * @task: the task to queue for 'later' wakeup
456 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
457 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
458 * instantly.
460 * This function must be used as-if it were wake_up_process(); IOW the task
461 * must be ready to be woken at this location.
463 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
464 * that already hold reference to @task can call the 'safe' version and trust
465 * wake_q to do the right thing depending whether or not the @task is already
466 * queued for wakeup.
468 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
470 if (!__wake_q_add(head, task))
471 put_task_struct(task);
474 void wake_up_q(struct wake_q_head *head)
476 struct wake_q_node *node = head->first;
478 while (node != WAKE_Q_TAIL) {
479 struct task_struct *task;
481 task = container_of(node, struct task_struct, wake_q);
482 BUG_ON(!task);
483 /* Task can safely be re-inserted now: */
484 node = node->next;
485 task->wake_q.next = NULL;
488 * wake_up_process() executes a full barrier, which pairs with
489 * the queueing in wake_q_add() so as not to miss wakeups.
491 wake_up_process(task);
492 put_task_struct(task);
497 * resched_curr - mark rq's current task 'to be rescheduled now'.
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
503 void resched_curr(struct rq *rq)
505 struct task_struct *curr = rq->curr;
506 int cpu;
508 lockdep_assert_held(&rq->lock);
510 if (test_tsk_need_resched(curr))
511 return;
513 cpu = cpu_of(rq);
515 if (cpu == smp_processor_id()) {
516 set_tsk_need_resched(curr);
517 set_preempt_need_resched();
518 return;
521 if (set_nr_and_not_polling(curr))
522 smp_send_reschedule(cpu);
523 else
524 trace_sched_wake_idle_without_ipi(cpu);
527 void resched_cpu(int cpu)
529 struct rq *rq = cpu_rq(cpu);
530 unsigned long flags;
532 raw_spin_lock_irqsave(&rq->lock, flags);
533 if (cpu_online(cpu) || cpu == smp_processor_id())
534 resched_curr(rq);
535 raw_spin_unlock_irqrestore(&rq->lock, flags);
538 #ifdef CONFIG_SMP
539 #ifdef CONFIG_NO_HZ_COMMON
541 * In the semi idle case, use the nearest busy CPU for migrating timers
542 * from an idle CPU. This is good for power-savings.
544 * We don't do similar optimization for completely idle system, as
545 * selecting an idle CPU will add more delays to the timers than intended
546 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
548 int get_nohz_timer_target(void)
550 int i, cpu = smp_processor_id(), default_cpu = -1;
551 struct sched_domain *sd;
553 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
554 if (!idle_cpu(cpu))
555 return cpu;
556 default_cpu = cpu;
559 rcu_read_lock();
560 for_each_domain(cpu, sd) {
561 for_each_cpu_and(i, sched_domain_span(sd),
562 housekeeping_cpumask(HK_FLAG_TIMER)) {
563 if (cpu == i)
564 continue;
566 if (!idle_cpu(i)) {
567 cpu = i;
568 goto unlock;
573 if (default_cpu == -1)
574 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 cpu = default_cpu;
576 unlock:
577 rcu_read_unlock();
578 return cpu;
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
591 static void wake_up_idle_cpu(int cpu)
593 struct rq *rq = cpu_rq(cpu);
595 if (cpu == smp_processor_id())
596 return;
598 if (set_nr_and_not_polling(rq->idle))
599 smp_send_reschedule(cpu);
600 else
601 trace_sched_wake_idle_without_ipi(cpu);
604 static bool wake_up_full_nohz_cpu(int cpu)
607 * We just need the target to call irq_exit() and re-evaluate
608 * the next tick. The nohz full kick at least implies that.
609 * If needed we can still optimize that later with an
610 * empty IRQ.
612 if (cpu_is_offline(cpu))
613 return true; /* Don't try to wake offline CPUs. */
614 if (tick_nohz_full_cpu(cpu)) {
615 if (cpu != smp_processor_id() ||
616 tick_nohz_tick_stopped())
617 tick_nohz_full_kick_cpu(cpu);
618 return true;
621 return false;
625 * Wake up the specified CPU. If the CPU is going offline, it is the
626 * caller's responsibility to deal with the lost wakeup, for example,
627 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
629 void wake_up_nohz_cpu(int cpu)
631 if (!wake_up_full_nohz_cpu(cpu))
632 wake_up_idle_cpu(cpu);
635 static inline bool got_nohz_idle_kick(void)
637 int cpu = smp_processor_id();
639 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
640 return false;
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
650 return false;
653 #else /* CONFIG_NO_HZ_COMMON */
655 static inline bool got_nohz_idle_kick(void)
657 return false;
660 #endif /* CONFIG_NO_HZ_COMMON */
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(struct rq *rq)
665 int fifo_nr_running;
667 /* Deadline tasks, even if single, need the tick */
668 if (rq->dl.dl_nr_running)
669 return false;
672 * If there are more than one RR tasks, we need the tick to effect the
673 * actual RR behaviour.
675 if (rq->rt.rr_nr_running) {
676 if (rq->rt.rr_nr_running == 1)
677 return true;
678 else
679 return false;
683 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 * forced preemption between FIFO tasks.
686 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 if (fifo_nr_running)
688 return true;
691 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 * if there's more than one we need the tick for involuntary
693 * preemption.
695 if (rq->nr_running > 1)
696 return false;
698 return true;
700 #endif /* CONFIG_NO_HZ_FULL */
701 #endif /* CONFIG_SMP */
703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 * Iterate task_group tree rooted at *from, calling @down when first entering a
707 * node and @up when leaving it for the final time.
709 * Caller must hold rcu_lock or sufficient equivalent.
711 int walk_tg_tree_from(struct task_group *from,
712 tg_visitor down, tg_visitor up, void *data)
714 struct task_group *parent, *child;
715 int ret;
717 parent = from;
719 down:
720 ret = (*down)(parent, data);
721 if (ret)
722 goto out;
723 list_for_each_entry_rcu(child, &parent->children, siblings) {
724 parent = child;
725 goto down;
728 continue;
730 ret = (*up)(parent, data);
731 if (ret || parent == from)
732 goto out;
734 child = parent;
735 parent = parent->parent;
736 if (parent)
737 goto up;
738 out:
739 return ret;
742 int tg_nop(struct task_group *tg, void *data)
744 return 0;
746 #endif
748 static void set_load_weight(struct task_struct *p, bool update_load)
750 int prio = p->static_prio - MAX_RT_PRIO;
751 struct load_weight *load = &p->se.load;
754 * SCHED_IDLE tasks get minimal weight:
756 if (task_has_idle_policy(p)) {
757 load->weight = scale_load(WEIGHT_IDLEPRIO);
758 load->inv_weight = WMULT_IDLEPRIO;
759 return;
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
774 #ifdef CONFIG_UCLAMP_TASK
776 * Serializes updates of utilization clamp values
778 * The (slow-path) user-space triggers utilization clamp value updates which
779 * can require updates on (fast-path) scheduler's data structures used to
780 * support enqueue/dequeue operations.
781 * While the per-CPU rq lock protects fast-path update operations, user-space
782 * requests are serialized using a mutex to reduce the risk of conflicting
783 * updates or API abuses.
785 static DEFINE_MUTEX(uclamp_mutex);
787 /* Max allowed minimum utilization */
788 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790 /* Max allowed maximum utilization */
791 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793 /* All clamps are required to be less or equal than these values */
794 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796 /* Integer rounded range for each bucket */
797 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799 #define for_each_clamp_id(clamp_id) \
800 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 return clamp_value / UCLAMP_BUCKET_DELTA;
807 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
812 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
814 if (clamp_id == UCLAMP_MIN)
815 return 0;
816 return SCHED_CAPACITY_SCALE;
819 static inline void uclamp_se_set(struct uclamp_se *uc_se,
820 unsigned int value, bool user_defined)
822 uc_se->value = value;
823 uc_se->bucket_id = uclamp_bucket_id(value);
824 uc_se->user_defined = user_defined;
827 static inline unsigned int
828 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
829 unsigned int clamp_value)
832 * Avoid blocked utilization pushing up the frequency when we go
833 * idle (which drops the max-clamp) by retaining the last known
834 * max-clamp.
836 if (clamp_id == UCLAMP_MAX) {
837 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
838 return clamp_value;
841 return uclamp_none(UCLAMP_MIN);
844 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
845 unsigned int clamp_value)
847 /* Reset max-clamp retention only on idle exit */
848 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
849 return;
851 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
854 static inline
855 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
856 unsigned int clamp_value)
858 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
859 int bucket_id = UCLAMP_BUCKETS - 1;
862 * Since both min and max clamps are max aggregated, find the
863 * top most bucket with tasks in.
865 for ( ; bucket_id >= 0; bucket_id--) {
866 if (!bucket[bucket_id].tasks)
867 continue;
868 return bucket[bucket_id].value;
871 /* No tasks -- default clamp values */
872 return uclamp_idle_value(rq, clamp_id, clamp_value);
875 static inline struct uclamp_se
876 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
879 #ifdef CONFIG_UCLAMP_TASK_GROUP
880 struct uclamp_se uc_max;
883 * Tasks in autogroups or root task group will be
884 * restricted by system defaults.
886 if (task_group_is_autogroup(task_group(p)))
887 return uc_req;
888 if (task_group(p) == &root_task_group)
889 return uc_req;
891 uc_max = task_group(p)->uclamp[clamp_id];
892 if (uc_req.value > uc_max.value || !uc_req.user_defined)
893 return uc_max;
894 #endif
896 return uc_req;
900 * The effective clamp bucket index of a task depends on, by increasing
901 * priority:
902 * - the task specific clamp value, when explicitly requested from userspace
903 * - the task group effective clamp value, for tasks not either in the root
904 * group or in an autogroup
905 * - the system default clamp value, defined by the sysadmin
907 static inline struct uclamp_se
908 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
911 struct uclamp_se uc_max = uclamp_default[clamp_id];
913 /* System default restrictions always apply */
914 if (unlikely(uc_req.value > uc_max.value))
915 return uc_max;
917 return uc_req;
920 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 struct uclamp_se uc_eff;
924 /* Task currently refcounted: use back-annotated (effective) value */
925 if (p->uclamp[clamp_id].active)
926 return (unsigned long)p->uclamp[clamp_id].value;
928 uc_eff = uclamp_eff_get(p, clamp_id);
930 return (unsigned long)uc_eff.value;
934 * When a task is enqueued on a rq, the clamp bucket currently defined by the
935 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
936 * updates the rq's clamp value if required.
938 * Tasks can have a task-specific value requested from user-space, track
939 * within each bucket the maximum value for tasks refcounted in it.
940 * This "local max aggregation" allows to track the exact "requested" value
941 * for each bucket when all its RUNNABLE tasks require the same clamp.
943 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
944 enum uclamp_id clamp_id)
946 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
947 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
948 struct uclamp_bucket *bucket;
950 lockdep_assert_held(&rq->lock);
952 /* Update task effective clamp */
953 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955 bucket = &uc_rq->bucket[uc_se->bucket_id];
956 bucket->tasks++;
957 uc_se->active = true;
959 uclamp_idle_reset(rq, clamp_id, uc_se->value);
962 * Local max aggregation: rq buckets always track the max
963 * "requested" clamp value of its RUNNABLE tasks.
965 if (bucket->tasks == 1 || uc_se->value > bucket->value)
966 bucket->value = uc_se->value;
968 if (uc_se->value > READ_ONCE(uc_rq->value))
969 WRITE_ONCE(uc_rq->value, uc_se->value);
973 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
974 * is released. If this is the last task reference counting the rq's max
975 * active clamp value, then the rq's clamp value is updated.
977 * Both refcounted tasks and rq's cached clamp values are expected to be
978 * always valid. If it's detected they are not, as defensive programming,
979 * enforce the expected state and warn.
981 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
982 enum uclamp_id clamp_id)
984 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
985 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
986 struct uclamp_bucket *bucket;
987 unsigned int bkt_clamp;
988 unsigned int rq_clamp;
990 lockdep_assert_held(&rq->lock);
992 bucket = &uc_rq->bucket[uc_se->bucket_id];
993 SCHED_WARN_ON(!bucket->tasks);
994 if (likely(bucket->tasks))
995 bucket->tasks--;
996 uc_se->active = false;
999 * Keep "local max aggregation" simple and accept to (possibly)
1000 * overboost some RUNNABLE tasks in the same bucket.
1001 * The rq clamp bucket value is reset to its base value whenever
1002 * there are no more RUNNABLE tasks refcounting it.
1004 if (likely(bucket->tasks))
1005 return;
1007 rq_clamp = READ_ONCE(uc_rq->value);
1009 * Defensive programming: this should never happen. If it happens,
1010 * e.g. due to future modification, warn and fixup the expected value.
1012 SCHED_WARN_ON(bucket->value > rq_clamp);
1013 if (bucket->value >= rq_clamp) {
1014 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1015 WRITE_ONCE(uc_rq->value, bkt_clamp);
1019 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 enum uclamp_id clamp_id;
1023 if (unlikely(!p->sched_class->uclamp_enabled))
1024 return;
1026 for_each_clamp_id(clamp_id)
1027 uclamp_rq_inc_id(rq, p, clamp_id);
1029 /* Reset clamp idle holding when there is one RUNNABLE task */
1030 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1031 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 enum uclamp_id clamp_id;
1038 if (unlikely(!p->sched_class->uclamp_enabled))
1039 return;
1041 for_each_clamp_id(clamp_id)
1042 uclamp_rq_dec_id(rq, p, clamp_id);
1045 static inline void
1046 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 struct rq_flags rf;
1049 struct rq *rq;
1052 * Lock the task and the rq where the task is (or was) queued.
1054 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1055 * price to pay to safely serialize util_{min,max} updates with
1056 * enqueues, dequeues and migration operations.
1057 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 rq = task_rq_lock(p, &rf);
1062 * Setting the clamp bucket is serialized by task_rq_lock().
1063 * If the task is not yet RUNNABLE and its task_struct is not
1064 * affecting a valid clamp bucket, the next time it's enqueued,
1065 * it will already see the updated clamp bucket value.
1067 if (p->uclamp[clamp_id].active) {
1068 uclamp_rq_dec_id(rq, p, clamp_id);
1069 uclamp_rq_inc_id(rq, p, clamp_id);
1072 task_rq_unlock(rq, p, &rf);
1075 #ifdef CONFIG_UCLAMP_TASK_GROUP
1076 static inline void
1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1078 unsigned int clamps)
1080 enum uclamp_id clamp_id;
1081 struct css_task_iter it;
1082 struct task_struct *p;
1084 css_task_iter_start(css, 0, &it);
1085 while ((p = css_task_iter_next(&it))) {
1086 for_each_clamp_id(clamp_id) {
1087 if ((0x1 << clamp_id) & clamps)
1088 uclamp_update_active(p, clamp_id);
1091 css_task_iter_end(&it);
1094 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1095 static void uclamp_update_root_tg(void)
1097 struct task_group *tg = &root_task_group;
1099 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1100 sysctl_sched_uclamp_util_min, false);
1101 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1102 sysctl_sched_uclamp_util_max, false);
1104 rcu_read_lock();
1105 cpu_util_update_eff(&root_task_group.css);
1106 rcu_read_unlock();
1108 #else
1109 static void uclamp_update_root_tg(void) { }
1110 #endif
1112 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1113 void __user *buffer, size_t *lenp,
1114 loff_t *ppos)
1116 bool update_root_tg = false;
1117 int old_min, old_max;
1118 int result;
1120 mutex_lock(&uclamp_mutex);
1121 old_min = sysctl_sched_uclamp_util_min;
1122 old_max = sysctl_sched_uclamp_util_max;
1124 result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 if (result)
1126 goto undo;
1127 if (!write)
1128 goto done;
1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 result = -EINVAL;
1133 goto undo;
1136 if (old_min != sysctl_sched_uclamp_util_min) {
1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 sysctl_sched_uclamp_util_min, false);
1139 update_root_tg = true;
1141 if (old_max != sysctl_sched_uclamp_util_max) {
1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 sysctl_sched_uclamp_util_max, false);
1144 update_root_tg = true;
1147 if (update_root_tg)
1148 uclamp_update_root_tg();
1151 * We update all RUNNABLE tasks only when task groups are in use.
1152 * Otherwise, keep it simple and do just a lazy update at each next
1153 * task enqueue time.
1156 goto done;
1158 undo:
1159 sysctl_sched_uclamp_util_min = old_min;
1160 sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 mutex_unlock(&uclamp_mutex);
1164 return result;
1167 static int uclamp_validate(struct task_struct *p,
1168 const struct sched_attr *attr)
1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 lower_bound = attr->sched_util_min;
1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 upper_bound = attr->sched_util_max;
1178 if (lower_bound > upper_bound)
1179 return -EINVAL;
1180 if (upper_bound > SCHED_CAPACITY_SCALE)
1181 return -EINVAL;
1183 return 0;
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 const struct sched_attr *attr)
1189 enum uclamp_id clamp_id;
1192 * On scheduling class change, reset to default clamps for tasks
1193 * without a task-specific value.
1195 for_each_clamp_id(clamp_id) {
1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 unsigned int clamp_value = uclamp_none(clamp_id);
1199 /* Keep using defined clamps across class changes */
1200 if (uc_se->user_defined)
1201 continue;
1203 /* By default, RT tasks always get 100% boost */
1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 clamp_value = uclamp_none(UCLAMP_MAX);
1207 uclamp_se_set(uc_se, clamp_value, false);
1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 return;
1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 attr->sched_util_min, true);
1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 attr->sched_util_max, true);
1224 static void uclamp_fork(struct task_struct *p)
1226 enum uclamp_id clamp_id;
1228 for_each_clamp_id(clamp_id)
1229 p->uclamp[clamp_id].active = false;
1231 if (likely(!p->sched_reset_on_fork))
1232 return;
1234 for_each_clamp_id(clamp_id) {
1235 uclamp_se_set(&p->uclamp_req[clamp_id],
1236 uclamp_none(clamp_id), false);
1240 static void __init init_uclamp(void)
1242 struct uclamp_se uc_max = {};
1243 enum uclamp_id clamp_id;
1244 int cpu;
1246 mutex_init(&uclamp_mutex);
1248 for_each_possible_cpu(cpu) {
1249 memset(&cpu_rq(cpu)->uclamp, 0,
1250 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1251 cpu_rq(cpu)->uclamp_flags = 0;
1254 for_each_clamp_id(clamp_id) {
1255 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1256 uclamp_none(clamp_id), false);
1259 /* System defaults allow max clamp values for both indexes */
1260 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1261 for_each_clamp_id(clamp_id) {
1262 uclamp_default[clamp_id] = uc_max;
1263 #ifdef CONFIG_UCLAMP_TASK_GROUP
1264 root_task_group.uclamp_req[clamp_id] = uc_max;
1265 root_task_group.uclamp[clamp_id] = uc_max;
1266 #endif
1270 #else /* CONFIG_UCLAMP_TASK */
1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1273 static inline int uclamp_validate(struct task_struct *p,
1274 const struct sched_attr *attr)
1276 return -EOPNOTSUPP;
1278 static void __setscheduler_uclamp(struct task_struct *p,
1279 const struct sched_attr *attr) { }
1280 static inline void uclamp_fork(struct task_struct *p) { }
1281 static inline void init_uclamp(void) { }
1282 #endif /* CONFIG_UCLAMP_TASK */
1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1286 if (!(flags & ENQUEUE_NOCLOCK))
1287 update_rq_clock(rq);
1289 if (!(flags & ENQUEUE_RESTORE)) {
1290 sched_info_queued(rq, p);
1291 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1294 uclamp_rq_inc(rq, p);
1295 p->sched_class->enqueue_task(rq, p, flags);
1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1300 if (!(flags & DEQUEUE_NOCLOCK))
1301 update_rq_clock(rq);
1303 if (!(flags & DEQUEUE_SAVE)) {
1304 sched_info_dequeued(rq, p);
1305 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1308 uclamp_rq_dec(rq, p);
1309 p->sched_class->dequeue_task(rq, p, flags);
1312 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1314 if (task_contributes_to_load(p))
1315 rq->nr_uninterruptible--;
1317 enqueue_task(rq, p, flags);
1319 p->on_rq = TASK_ON_RQ_QUEUED;
1322 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1324 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1326 if (task_contributes_to_load(p))
1327 rq->nr_uninterruptible++;
1329 dequeue_task(rq, p, flags);
1333 * __normal_prio - return the priority that is based on the static prio
1335 static inline int __normal_prio(struct task_struct *p)
1337 return p->static_prio;
1341 * Calculate the expected normal priority: i.e. priority
1342 * without taking RT-inheritance into account. Might be
1343 * boosted by interactivity modifiers. Changes upon fork,
1344 * setprio syscalls, and whenever the interactivity
1345 * estimator recalculates.
1347 static inline int normal_prio(struct task_struct *p)
1349 int prio;
1351 if (task_has_dl_policy(p))
1352 prio = MAX_DL_PRIO-1;
1353 else if (task_has_rt_policy(p))
1354 prio = MAX_RT_PRIO-1 - p->rt_priority;
1355 else
1356 prio = __normal_prio(p);
1357 return prio;
1361 * Calculate the current priority, i.e. the priority
1362 * taken into account by the scheduler. This value might
1363 * be boosted by RT tasks, or might be boosted by
1364 * interactivity modifiers. Will be RT if the task got
1365 * RT-boosted. If not then it returns p->normal_prio.
1367 static int effective_prio(struct task_struct *p)
1369 p->normal_prio = normal_prio(p);
1371 * If we are RT tasks or we were boosted to RT priority,
1372 * keep the priority unchanged. Otherwise, update priority
1373 * to the normal priority:
1375 if (!rt_prio(p->prio))
1376 return p->normal_prio;
1377 return p->prio;
1381 * task_curr - is this task currently executing on a CPU?
1382 * @p: the task in question.
1384 * Return: 1 if the task is currently executing. 0 otherwise.
1386 inline int task_curr(const struct task_struct *p)
1388 return cpu_curr(task_cpu(p)) == p;
1392 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1393 * use the balance_callback list if you want balancing.
1395 * this means any call to check_class_changed() must be followed by a call to
1396 * balance_callback().
1398 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1399 const struct sched_class *prev_class,
1400 int oldprio)
1402 if (prev_class != p->sched_class) {
1403 if (prev_class->switched_from)
1404 prev_class->switched_from(rq, p);
1406 p->sched_class->switched_to(rq, p);
1407 } else if (oldprio != p->prio || dl_task(p))
1408 p->sched_class->prio_changed(rq, p, oldprio);
1411 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1413 const struct sched_class *class;
1415 if (p->sched_class == rq->curr->sched_class) {
1416 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1417 } else {
1418 for_each_class(class) {
1419 if (class == rq->curr->sched_class)
1420 break;
1421 if (class == p->sched_class) {
1422 resched_curr(rq);
1423 break;
1429 * A queue event has occurred, and we're going to schedule. In
1430 * this case, we can save a useless back to back clock update.
1432 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1433 rq_clock_skip_update(rq);
1436 #ifdef CONFIG_SMP
1439 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1440 * __set_cpus_allowed_ptr() and select_fallback_rq().
1442 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1444 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1445 return false;
1447 if (is_per_cpu_kthread(p))
1448 return cpu_online(cpu);
1450 return cpu_active(cpu);
1454 * This is how migration works:
1456 * 1) we invoke migration_cpu_stop() on the target CPU using
1457 * stop_one_cpu().
1458 * 2) stopper starts to run (implicitly forcing the migrated thread
1459 * off the CPU)
1460 * 3) it checks whether the migrated task is still in the wrong runqueue.
1461 * 4) if it's in the wrong runqueue then the migration thread removes
1462 * it and puts it into the right queue.
1463 * 5) stopper completes and stop_one_cpu() returns and the migration
1464 * is done.
1468 * move_queued_task - move a queued task to new rq.
1470 * Returns (locked) new rq. Old rq's lock is released.
1472 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1473 struct task_struct *p, int new_cpu)
1475 lockdep_assert_held(&rq->lock);
1477 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1478 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1479 set_task_cpu(p, new_cpu);
1480 rq_unlock(rq, rf);
1482 rq = cpu_rq(new_cpu);
1484 rq_lock(rq, rf);
1485 BUG_ON(task_cpu(p) != new_cpu);
1486 enqueue_task(rq, p, 0);
1487 p->on_rq = TASK_ON_RQ_QUEUED;
1488 check_preempt_curr(rq, p, 0);
1490 return rq;
1493 struct migration_arg {
1494 struct task_struct *task;
1495 int dest_cpu;
1499 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1500 * this because either it can't run here any more (set_cpus_allowed()
1501 * away from this CPU, or CPU going down), or because we're
1502 * attempting to rebalance this task on exec (sched_exec).
1504 * So we race with normal scheduler movements, but that's OK, as long
1505 * as the task is no longer on this CPU.
1507 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1508 struct task_struct *p, int dest_cpu)
1510 /* Affinity changed (again). */
1511 if (!is_cpu_allowed(p, dest_cpu))
1512 return rq;
1514 update_rq_clock(rq);
1515 rq = move_queued_task(rq, rf, p, dest_cpu);
1517 return rq;
1521 * migration_cpu_stop - this will be executed by a highprio stopper thread
1522 * and performs thread migration by bumping thread off CPU then
1523 * 'pushing' onto another runqueue.
1525 static int migration_cpu_stop(void *data)
1527 struct migration_arg *arg = data;
1528 struct task_struct *p = arg->task;
1529 struct rq *rq = this_rq();
1530 struct rq_flags rf;
1533 * The original target CPU might have gone down and we might
1534 * be on another CPU but it doesn't matter.
1536 local_irq_disable();
1538 * We need to explicitly wake pending tasks before running
1539 * __migrate_task() such that we will not miss enforcing cpus_ptr
1540 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1542 sched_ttwu_pending();
1544 raw_spin_lock(&p->pi_lock);
1545 rq_lock(rq, &rf);
1547 * If task_rq(p) != rq, it cannot be migrated here, because we're
1548 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1549 * we're holding p->pi_lock.
1551 if (task_rq(p) == rq) {
1552 if (task_on_rq_queued(p))
1553 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1554 else
1555 p->wake_cpu = arg->dest_cpu;
1557 rq_unlock(rq, &rf);
1558 raw_spin_unlock(&p->pi_lock);
1560 local_irq_enable();
1561 return 0;
1565 * sched_class::set_cpus_allowed must do the below, but is not required to
1566 * actually call this function.
1568 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1570 cpumask_copy(&p->cpus_mask, new_mask);
1571 p->nr_cpus_allowed = cpumask_weight(new_mask);
1574 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1576 struct rq *rq = task_rq(p);
1577 bool queued, running;
1579 lockdep_assert_held(&p->pi_lock);
1581 queued = task_on_rq_queued(p);
1582 running = task_current(rq, p);
1584 if (queued) {
1586 * Because __kthread_bind() calls this on blocked tasks without
1587 * holding rq->lock.
1589 lockdep_assert_held(&rq->lock);
1590 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1592 if (running)
1593 put_prev_task(rq, p);
1595 p->sched_class->set_cpus_allowed(p, new_mask);
1597 if (queued)
1598 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1599 if (running)
1600 set_next_task(rq, p);
1604 * Change a given task's CPU affinity. Migrate the thread to a
1605 * proper CPU and schedule it away if the CPU it's executing on
1606 * is removed from the allowed bitmask.
1608 * NOTE: the caller must have a valid reference to the task, the
1609 * task must not exit() & deallocate itself prematurely. The
1610 * call is not atomic; no spinlocks may be held.
1612 static int __set_cpus_allowed_ptr(struct task_struct *p,
1613 const struct cpumask *new_mask, bool check)
1615 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1616 unsigned int dest_cpu;
1617 struct rq_flags rf;
1618 struct rq *rq;
1619 int ret = 0;
1621 rq = task_rq_lock(p, &rf);
1622 update_rq_clock(rq);
1624 if (p->flags & PF_KTHREAD) {
1626 * Kernel threads are allowed on online && !active CPUs
1628 cpu_valid_mask = cpu_online_mask;
1632 * Must re-check here, to close a race against __kthread_bind(),
1633 * sched_setaffinity() is not guaranteed to observe the flag.
1635 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1636 ret = -EINVAL;
1637 goto out;
1640 if (cpumask_equal(p->cpus_ptr, new_mask))
1641 goto out;
1644 * Picking a ~random cpu helps in cases where we are changing affinity
1645 * for groups of tasks (ie. cpuset), so that load balancing is not
1646 * immediately required to distribute the tasks within their new mask.
1648 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1649 if (dest_cpu >= nr_cpu_ids) {
1650 ret = -EINVAL;
1651 goto out;
1654 do_set_cpus_allowed(p, new_mask);
1656 if (p->flags & PF_KTHREAD) {
1658 * For kernel threads that do indeed end up on online &&
1659 * !active we want to ensure they are strict per-CPU threads.
1661 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1662 !cpumask_intersects(new_mask, cpu_active_mask) &&
1663 p->nr_cpus_allowed != 1);
1666 /* Can the task run on the task's current CPU? If so, we're done */
1667 if (cpumask_test_cpu(task_cpu(p), new_mask))
1668 goto out;
1670 if (task_running(rq, p) || p->state == TASK_WAKING) {
1671 struct migration_arg arg = { p, dest_cpu };
1672 /* Need help from migration thread: drop lock and wait. */
1673 task_rq_unlock(rq, p, &rf);
1674 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1675 return 0;
1676 } else if (task_on_rq_queued(p)) {
1678 * OK, since we're going to drop the lock immediately
1679 * afterwards anyway.
1681 rq = move_queued_task(rq, &rf, p, dest_cpu);
1683 out:
1684 task_rq_unlock(rq, p, &rf);
1686 return ret;
1689 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1691 return __set_cpus_allowed_ptr(p, new_mask, false);
1693 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1695 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1697 #ifdef CONFIG_SCHED_DEBUG
1699 * We should never call set_task_cpu() on a blocked task,
1700 * ttwu() will sort out the placement.
1702 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1703 !p->on_rq);
1706 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1707 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1708 * time relying on p->on_rq.
1710 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1711 p->sched_class == &fair_sched_class &&
1712 (p->on_rq && !task_on_rq_migrating(p)));
1714 #ifdef CONFIG_LOCKDEP
1716 * The caller should hold either p->pi_lock or rq->lock, when changing
1717 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1719 * sched_move_task() holds both and thus holding either pins the cgroup,
1720 * see task_group().
1722 * Furthermore, all task_rq users should acquire both locks, see
1723 * task_rq_lock().
1725 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1726 lockdep_is_held(&task_rq(p)->lock)));
1727 #endif
1729 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1731 WARN_ON_ONCE(!cpu_online(new_cpu));
1732 #endif
1734 trace_sched_migrate_task(p, new_cpu);
1736 if (task_cpu(p) != new_cpu) {
1737 if (p->sched_class->migrate_task_rq)
1738 p->sched_class->migrate_task_rq(p, new_cpu);
1739 p->se.nr_migrations++;
1740 rseq_migrate(p);
1741 perf_event_task_migrate(p);
1744 __set_task_cpu(p, new_cpu);
1747 #ifdef CONFIG_NUMA_BALANCING
1748 static void __migrate_swap_task(struct task_struct *p, int cpu)
1750 if (task_on_rq_queued(p)) {
1751 struct rq *src_rq, *dst_rq;
1752 struct rq_flags srf, drf;
1754 src_rq = task_rq(p);
1755 dst_rq = cpu_rq(cpu);
1757 rq_pin_lock(src_rq, &srf);
1758 rq_pin_lock(dst_rq, &drf);
1760 deactivate_task(src_rq, p, 0);
1761 set_task_cpu(p, cpu);
1762 activate_task(dst_rq, p, 0);
1763 check_preempt_curr(dst_rq, p, 0);
1765 rq_unpin_lock(dst_rq, &drf);
1766 rq_unpin_lock(src_rq, &srf);
1768 } else {
1770 * Task isn't running anymore; make it appear like we migrated
1771 * it before it went to sleep. This means on wakeup we make the
1772 * previous CPU our target instead of where it really is.
1774 p->wake_cpu = cpu;
1778 struct migration_swap_arg {
1779 struct task_struct *src_task, *dst_task;
1780 int src_cpu, dst_cpu;
1783 static int migrate_swap_stop(void *data)
1785 struct migration_swap_arg *arg = data;
1786 struct rq *src_rq, *dst_rq;
1787 int ret = -EAGAIN;
1789 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1790 return -EAGAIN;
1792 src_rq = cpu_rq(arg->src_cpu);
1793 dst_rq = cpu_rq(arg->dst_cpu);
1795 double_raw_lock(&arg->src_task->pi_lock,
1796 &arg->dst_task->pi_lock);
1797 double_rq_lock(src_rq, dst_rq);
1799 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1800 goto unlock;
1802 if (task_cpu(arg->src_task) != arg->src_cpu)
1803 goto unlock;
1805 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1806 goto unlock;
1808 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1809 goto unlock;
1811 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1812 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1814 ret = 0;
1816 unlock:
1817 double_rq_unlock(src_rq, dst_rq);
1818 raw_spin_unlock(&arg->dst_task->pi_lock);
1819 raw_spin_unlock(&arg->src_task->pi_lock);
1821 return ret;
1825 * Cross migrate two tasks
1827 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1828 int target_cpu, int curr_cpu)
1830 struct migration_swap_arg arg;
1831 int ret = -EINVAL;
1833 arg = (struct migration_swap_arg){
1834 .src_task = cur,
1835 .src_cpu = curr_cpu,
1836 .dst_task = p,
1837 .dst_cpu = target_cpu,
1840 if (arg.src_cpu == arg.dst_cpu)
1841 goto out;
1844 * These three tests are all lockless; this is OK since all of them
1845 * will be re-checked with proper locks held further down the line.
1847 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1848 goto out;
1850 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1851 goto out;
1853 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1854 goto out;
1856 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1857 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1859 out:
1860 return ret;
1862 #endif /* CONFIG_NUMA_BALANCING */
1865 * wait_task_inactive - wait for a thread to unschedule.
1867 * If @match_state is nonzero, it's the @p->state value just checked and
1868 * not expected to change. If it changes, i.e. @p might have woken up,
1869 * then return zero. When we succeed in waiting for @p to be off its CPU,
1870 * we return a positive number (its total switch count). If a second call
1871 * a short while later returns the same number, the caller can be sure that
1872 * @p has remained unscheduled the whole time.
1874 * The caller must ensure that the task *will* unschedule sometime soon,
1875 * else this function might spin for a *long* time. This function can't
1876 * be called with interrupts off, or it may introduce deadlock with
1877 * smp_call_function() if an IPI is sent by the same process we are
1878 * waiting to become inactive.
1880 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1882 int running, queued;
1883 struct rq_flags rf;
1884 unsigned long ncsw;
1885 struct rq *rq;
1887 for (;;) {
1889 * We do the initial early heuristics without holding
1890 * any task-queue locks at all. We'll only try to get
1891 * the runqueue lock when things look like they will
1892 * work out!
1894 rq = task_rq(p);
1897 * If the task is actively running on another CPU
1898 * still, just relax and busy-wait without holding
1899 * any locks.
1901 * NOTE! Since we don't hold any locks, it's not
1902 * even sure that "rq" stays as the right runqueue!
1903 * But we don't care, since "task_running()" will
1904 * return false if the runqueue has changed and p
1905 * is actually now running somewhere else!
1907 while (task_running(rq, p)) {
1908 if (match_state && unlikely(p->state != match_state))
1909 return 0;
1910 cpu_relax();
1914 * Ok, time to look more closely! We need the rq
1915 * lock now, to be *sure*. If we're wrong, we'll
1916 * just go back and repeat.
1918 rq = task_rq_lock(p, &rf);
1919 trace_sched_wait_task(p);
1920 running = task_running(rq, p);
1921 queued = task_on_rq_queued(p);
1922 ncsw = 0;
1923 if (!match_state || p->state == match_state)
1924 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1925 task_rq_unlock(rq, p, &rf);
1928 * If it changed from the expected state, bail out now.
1930 if (unlikely(!ncsw))
1931 break;
1934 * Was it really running after all now that we
1935 * checked with the proper locks actually held?
1937 * Oops. Go back and try again..
1939 if (unlikely(running)) {
1940 cpu_relax();
1941 continue;
1945 * It's not enough that it's not actively running,
1946 * it must be off the runqueue _entirely_, and not
1947 * preempted!
1949 * So if it was still runnable (but just not actively
1950 * running right now), it's preempted, and we should
1951 * yield - it could be a while.
1953 if (unlikely(queued)) {
1954 ktime_t to = NSEC_PER_SEC / HZ;
1956 set_current_state(TASK_UNINTERRUPTIBLE);
1957 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1958 continue;
1962 * Ahh, all good. It wasn't running, and it wasn't
1963 * runnable, which means that it will never become
1964 * running in the future either. We're all done!
1966 break;
1969 return ncsw;
1972 /***
1973 * kick_process - kick a running thread to enter/exit the kernel
1974 * @p: the to-be-kicked thread
1976 * Cause a process which is running on another CPU to enter
1977 * kernel-mode, without any delay. (to get signals handled.)
1979 * NOTE: this function doesn't have to take the runqueue lock,
1980 * because all it wants to ensure is that the remote task enters
1981 * the kernel. If the IPI races and the task has been migrated
1982 * to another CPU then no harm is done and the purpose has been
1983 * achieved as well.
1985 void kick_process(struct task_struct *p)
1987 int cpu;
1989 preempt_disable();
1990 cpu = task_cpu(p);
1991 if ((cpu != smp_processor_id()) && task_curr(p))
1992 smp_send_reschedule(cpu);
1993 preempt_enable();
1995 EXPORT_SYMBOL_GPL(kick_process);
1998 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2000 * A few notes on cpu_active vs cpu_online:
2002 * - cpu_active must be a subset of cpu_online
2004 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2005 * see __set_cpus_allowed_ptr(). At this point the newly online
2006 * CPU isn't yet part of the sched domains, and balancing will not
2007 * see it.
2009 * - on CPU-down we clear cpu_active() to mask the sched domains and
2010 * avoid the load balancer to place new tasks on the to be removed
2011 * CPU. Existing tasks will remain running there and will be taken
2012 * off.
2014 * This means that fallback selection must not select !active CPUs.
2015 * And can assume that any active CPU must be online. Conversely
2016 * select_task_rq() below may allow selection of !active CPUs in order
2017 * to satisfy the above rules.
2019 static int select_fallback_rq(int cpu, struct task_struct *p)
2021 int nid = cpu_to_node(cpu);
2022 const struct cpumask *nodemask = NULL;
2023 enum { cpuset, possible, fail } state = cpuset;
2024 int dest_cpu;
2027 * If the node that the CPU is on has been offlined, cpu_to_node()
2028 * will return -1. There is no CPU on the node, and we should
2029 * select the CPU on the other node.
2031 if (nid != -1) {
2032 nodemask = cpumask_of_node(nid);
2034 /* Look for allowed, online CPU in same node. */
2035 for_each_cpu(dest_cpu, nodemask) {
2036 if (!cpu_active(dest_cpu))
2037 continue;
2038 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2039 return dest_cpu;
2043 for (;;) {
2044 /* Any allowed, online CPU? */
2045 for_each_cpu(dest_cpu, p->cpus_ptr) {
2046 if (!is_cpu_allowed(p, dest_cpu))
2047 continue;
2049 goto out;
2052 /* No more Mr. Nice Guy. */
2053 switch (state) {
2054 case cpuset:
2055 if (IS_ENABLED(CONFIG_CPUSETS)) {
2056 cpuset_cpus_allowed_fallback(p);
2057 state = possible;
2058 break;
2060 /* Fall-through */
2061 case possible:
2062 do_set_cpus_allowed(p, cpu_possible_mask);
2063 state = fail;
2064 break;
2066 case fail:
2067 BUG();
2068 break;
2072 out:
2073 if (state != cpuset) {
2075 * Don't tell them about moving exiting tasks or
2076 * kernel threads (both mm NULL), since they never
2077 * leave kernel.
2079 if (p->mm && printk_ratelimit()) {
2080 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2081 task_pid_nr(p), p->comm, cpu);
2085 return dest_cpu;
2089 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2091 static inline
2092 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2094 lockdep_assert_held(&p->pi_lock);
2096 if (p->nr_cpus_allowed > 1)
2097 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2098 else
2099 cpu = cpumask_any(p->cpus_ptr);
2102 * In order not to call set_task_cpu() on a blocking task we need
2103 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2104 * CPU.
2106 * Since this is common to all placement strategies, this lives here.
2108 * [ this allows ->select_task() to simply return task_cpu(p) and
2109 * not worry about this generic constraint ]
2111 if (unlikely(!is_cpu_allowed(p, cpu)))
2112 cpu = select_fallback_rq(task_cpu(p), p);
2114 return cpu;
2117 void sched_set_stop_task(int cpu, struct task_struct *stop)
2119 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2120 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2122 if (stop) {
2124 * Make it appear like a SCHED_FIFO task, its something
2125 * userspace knows about and won't get confused about.
2127 * Also, it will make PI more or less work without too
2128 * much confusion -- but then, stop work should not
2129 * rely on PI working anyway.
2131 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2133 stop->sched_class = &stop_sched_class;
2136 cpu_rq(cpu)->stop = stop;
2138 if (old_stop) {
2140 * Reset it back to a normal scheduling class so that
2141 * it can die in pieces.
2143 old_stop->sched_class = &rt_sched_class;
2147 #else
2149 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2150 const struct cpumask *new_mask, bool check)
2152 return set_cpus_allowed_ptr(p, new_mask);
2155 #endif /* CONFIG_SMP */
2157 static void
2158 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2160 struct rq *rq;
2162 if (!schedstat_enabled())
2163 return;
2165 rq = this_rq();
2167 #ifdef CONFIG_SMP
2168 if (cpu == rq->cpu) {
2169 __schedstat_inc(rq->ttwu_local);
2170 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2171 } else {
2172 struct sched_domain *sd;
2174 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2175 rcu_read_lock();
2176 for_each_domain(rq->cpu, sd) {
2177 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2178 __schedstat_inc(sd->ttwu_wake_remote);
2179 break;
2182 rcu_read_unlock();
2185 if (wake_flags & WF_MIGRATED)
2186 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2187 #endif /* CONFIG_SMP */
2189 __schedstat_inc(rq->ttwu_count);
2190 __schedstat_inc(p->se.statistics.nr_wakeups);
2192 if (wake_flags & WF_SYNC)
2193 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2197 * Mark the task runnable and perform wakeup-preemption.
2199 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2200 struct rq_flags *rf)
2202 check_preempt_curr(rq, p, wake_flags);
2203 p->state = TASK_RUNNING;
2204 trace_sched_wakeup(p);
2206 #ifdef CONFIG_SMP
2207 if (p->sched_class->task_woken) {
2209 * Our task @p is fully woken up and running; so its safe to
2210 * drop the rq->lock, hereafter rq is only used for statistics.
2212 rq_unpin_lock(rq, rf);
2213 p->sched_class->task_woken(rq, p);
2214 rq_repin_lock(rq, rf);
2217 if (rq->idle_stamp) {
2218 u64 delta = rq_clock(rq) - rq->idle_stamp;
2219 u64 max = 2*rq->max_idle_balance_cost;
2221 update_avg(&rq->avg_idle, delta);
2223 if (rq->avg_idle > max)
2224 rq->avg_idle = max;
2226 rq->idle_stamp = 0;
2228 #endif
2231 static void
2232 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2233 struct rq_flags *rf)
2235 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2237 lockdep_assert_held(&rq->lock);
2239 #ifdef CONFIG_SMP
2240 if (p->sched_contributes_to_load)
2241 rq->nr_uninterruptible--;
2243 if (wake_flags & WF_MIGRATED)
2244 en_flags |= ENQUEUE_MIGRATED;
2245 #endif
2247 activate_task(rq, p, en_flags);
2248 ttwu_do_wakeup(rq, p, wake_flags, rf);
2252 * Called in case the task @p isn't fully descheduled from its runqueue,
2253 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2254 * since all we need to do is flip p->state to TASK_RUNNING, since
2255 * the task is still ->on_rq.
2257 static int ttwu_remote(struct task_struct *p, int wake_flags)
2259 struct rq_flags rf;
2260 struct rq *rq;
2261 int ret = 0;
2263 rq = __task_rq_lock(p, &rf);
2264 if (task_on_rq_queued(p)) {
2265 /* check_preempt_curr() may use rq clock */
2266 update_rq_clock(rq);
2267 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2268 ret = 1;
2270 __task_rq_unlock(rq, &rf);
2272 return ret;
2275 #ifdef CONFIG_SMP
2276 void sched_ttwu_pending(void)
2278 struct rq *rq = this_rq();
2279 struct llist_node *llist = llist_del_all(&rq->wake_list);
2280 struct task_struct *p, *t;
2281 struct rq_flags rf;
2283 if (!llist)
2284 return;
2286 rq_lock_irqsave(rq, &rf);
2287 update_rq_clock(rq);
2289 llist_for_each_entry_safe(p, t, llist, wake_entry)
2290 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2292 rq_unlock_irqrestore(rq, &rf);
2295 void scheduler_ipi(void)
2298 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2299 * TIF_NEED_RESCHED remotely (for the first time) will also send
2300 * this IPI.
2302 preempt_fold_need_resched();
2304 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2305 return;
2308 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2309 * traditionally all their work was done from the interrupt return
2310 * path. Now that we actually do some work, we need to make sure
2311 * we do call them.
2313 * Some archs already do call them, luckily irq_enter/exit nest
2314 * properly.
2316 * Arguably we should visit all archs and update all handlers,
2317 * however a fair share of IPIs are still resched only so this would
2318 * somewhat pessimize the simple resched case.
2320 irq_enter();
2321 sched_ttwu_pending();
2324 * Check if someone kicked us for doing the nohz idle load balance.
2326 if (unlikely(got_nohz_idle_kick())) {
2327 this_rq()->idle_balance = 1;
2328 raise_softirq_irqoff(SCHED_SOFTIRQ);
2330 irq_exit();
2333 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2335 struct rq *rq = cpu_rq(cpu);
2337 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2339 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2340 if (!set_nr_if_polling(rq->idle))
2341 smp_send_reschedule(cpu);
2342 else
2343 trace_sched_wake_idle_without_ipi(cpu);
2347 void wake_up_if_idle(int cpu)
2349 struct rq *rq = cpu_rq(cpu);
2350 struct rq_flags rf;
2352 rcu_read_lock();
2354 if (!is_idle_task(rcu_dereference(rq->curr)))
2355 goto out;
2357 if (set_nr_if_polling(rq->idle)) {
2358 trace_sched_wake_idle_without_ipi(cpu);
2359 } else {
2360 rq_lock_irqsave(rq, &rf);
2361 if (is_idle_task(rq->curr))
2362 smp_send_reschedule(cpu);
2363 /* Else CPU is not idle, do nothing here: */
2364 rq_unlock_irqrestore(rq, &rf);
2367 out:
2368 rcu_read_unlock();
2371 bool cpus_share_cache(int this_cpu, int that_cpu)
2373 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2375 #endif /* CONFIG_SMP */
2377 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2379 struct rq *rq = cpu_rq(cpu);
2380 struct rq_flags rf;
2382 #if defined(CONFIG_SMP)
2383 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2384 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2385 ttwu_queue_remote(p, cpu, wake_flags);
2386 return;
2388 #endif
2390 rq_lock(rq, &rf);
2391 update_rq_clock(rq);
2392 ttwu_do_activate(rq, p, wake_flags, &rf);
2393 rq_unlock(rq, &rf);
2397 * Notes on Program-Order guarantees on SMP systems.
2399 * MIGRATION
2401 * The basic program-order guarantee on SMP systems is that when a task [t]
2402 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2403 * execution on its new CPU [c1].
2405 * For migration (of runnable tasks) this is provided by the following means:
2407 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2408 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2409 * rq(c1)->lock (if not at the same time, then in that order).
2410 * C) LOCK of the rq(c1)->lock scheduling in task
2412 * Release/acquire chaining guarantees that B happens after A and C after B.
2413 * Note: the CPU doing B need not be c0 or c1
2415 * Example:
2417 * CPU0 CPU1 CPU2
2419 * LOCK rq(0)->lock
2420 * sched-out X
2421 * sched-in Y
2422 * UNLOCK rq(0)->lock
2424 * LOCK rq(0)->lock // orders against CPU0
2425 * dequeue X
2426 * UNLOCK rq(0)->lock
2428 * LOCK rq(1)->lock
2429 * enqueue X
2430 * UNLOCK rq(1)->lock
2432 * LOCK rq(1)->lock // orders against CPU2
2433 * sched-out Z
2434 * sched-in X
2435 * UNLOCK rq(1)->lock
2438 * BLOCKING -- aka. SLEEP + WAKEUP
2440 * For blocking we (obviously) need to provide the same guarantee as for
2441 * migration. However the means are completely different as there is no lock
2442 * chain to provide order. Instead we do:
2444 * 1) smp_store_release(X->on_cpu, 0)
2445 * 2) smp_cond_load_acquire(!X->on_cpu)
2447 * Example:
2449 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2451 * LOCK rq(0)->lock LOCK X->pi_lock
2452 * dequeue X
2453 * sched-out X
2454 * smp_store_release(X->on_cpu, 0);
2456 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2457 * X->state = WAKING
2458 * set_task_cpu(X,2)
2460 * LOCK rq(2)->lock
2461 * enqueue X
2462 * X->state = RUNNING
2463 * UNLOCK rq(2)->lock
2465 * LOCK rq(2)->lock // orders against CPU1
2466 * sched-out Z
2467 * sched-in X
2468 * UNLOCK rq(2)->lock
2470 * UNLOCK X->pi_lock
2471 * UNLOCK rq(0)->lock
2474 * However, for wakeups there is a second guarantee we must provide, namely we
2475 * must ensure that CONDITION=1 done by the caller can not be reordered with
2476 * accesses to the task state; see try_to_wake_up() and set_current_state().
2480 * try_to_wake_up - wake up a thread
2481 * @p: the thread to be awakened
2482 * @state: the mask of task states that can be woken
2483 * @wake_flags: wake modifier flags (WF_*)
2485 * If (@state & @p->state) @p->state = TASK_RUNNING.
2487 * If the task was not queued/runnable, also place it back on a runqueue.
2489 * Atomic against schedule() which would dequeue a task, also see
2490 * set_current_state().
2492 * This function executes a full memory barrier before accessing the task
2493 * state; see set_current_state().
2495 * Return: %true if @p->state changes (an actual wakeup was done),
2496 * %false otherwise.
2498 static int
2499 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2501 unsigned long flags;
2502 int cpu, success = 0;
2504 preempt_disable();
2505 if (p == current) {
2507 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2508 * == smp_processor_id()'. Together this means we can special
2509 * case the whole 'p->on_rq && ttwu_remote()' case below
2510 * without taking any locks.
2512 * In particular:
2513 * - we rely on Program-Order guarantees for all the ordering,
2514 * - we're serialized against set_special_state() by virtue of
2515 * it disabling IRQs (this allows not taking ->pi_lock).
2517 if (!(p->state & state))
2518 goto out;
2520 success = 1;
2521 cpu = task_cpu(p);
2522 trace_sched_waking(p);
2523 p->state = TASK_RUNNING;
2524 trace_sched_wakeup(p);
2525 goto out;
2529 * If we are going to wake up a thread waiting for CONDITION we
2530 * need to ensure that CONDITION=1 done by the caller can not be
2531 * reordered with p->state check below. This pairs with mb() in
2532 * set_current_state() the waiting thread does.
2534 raw_spin_lock_irqsave(&p->pi_lock, flags);
2535 smp_mb__after_spinlock();
2536 if (!(p->state & state))
2537 goto unlock;
2539 trace_sched_waking(p);
2541 /* We're going to change ->state: */
2542 success = 1;
2543 cpu = task_cpu(p);
2546 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2547 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2548 * in smp_cond_load_acquire() below.
2550 * sched_ttwu_pending() try_to_wake_up()
2551 * STORE p->on_rq = 1 LOAD p->state
2552 * UNLOCK rq->lock
2554 * __schedule() (switch to task 'p')
2555 * LOCK rq->lock smp_rmb();
2556 * smp_mb__after_spinlock();
2557 * UNLOCK rq->lock
2559 * [task p]
2560 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2562 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2563 * __schedule(). See the comment for smp_mb__after_spinlock().
2565 smp_rmb();
2566 if (p->on_rq && ttwu_remote(p, wake_flags))
2567 goto unlock;
2569 #ifdef CONFIG_SMP
2571 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2572 * possible to, falsely, observe p->on_cpu == 0.
2574 * One must be running (->on_cpu == 1) in order to remove oneself
2575 * from the runqueue.
2577 * __schedule() (switch to task 'p') try_to_wake_up()
2578 * STORE p->on_cpu = 1 LOAD p->on_rq
2579 * UNLOCK rq->lock
2581 * __schedule() (put 'p' to sleep)
2582 * LOCK rq->lock smp_rmb();
2583 * smp_mb__after_spinlock();
2584 * STORE p->on_rq = 0 LOAD p->on_cpu
2586 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2587 * __schedule(). See the comment for smp_mb__after_spinlock().
2589 smp_rmb();
2592 * If the owning (remote) CPU is still in the middle of schedule() with
2593 * this task as prev, wait until its done referencing the task.
2595 * Pairs with the smp_store_release() in finish_task().
2597 * This ensures that tasks getting woken will be fully ordered against
2598 * their previous state and preserve Program Order.
2600 smp_cond_load_acquire(&p->on_cpu, !VAL);
2602 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2603 p->state = TASK_WAKING;
2605 if (p->in_iowait) {
2606 delayacct_blkio_end(p);
2607 atomic_dec(&task_rq(p)->nr_iowait);
2610 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2611 if (task_cpu(p) != cpu) {
2612 wake_flags |= WF_MIGRATED;
2613 psi_ttwu_dequeue(p);
2614 set_task_cpu(p, cpu);
2617 #else /* CONFIG_SMP */
2619 if (p->in_iowait) {
2620 delayacct_blkio_end(p);
2621 atomic_dec(&task_rq(p)->nr_iowait);
2624 #endif /* CONFIG_SMP */
2626 ttwu_queue(p, cpu, wake_flags);
2627 unlock:
2628 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2629 out:
2630 if (success)
2631 ttwu_stat(p, cpu, wake_flags);
2632 preempt_enable();
2634 return success;
2638 * wake_up_process - Wake up a specific process
2639 * @p: The process to be woken up.
2641 * Attempt to wake up the nominated process and move it to the set of runnable
2642 * processes.
2644 * Return: 1 if the process was woken up, 0 if it was already running.
2646 * This function executes a full memory barrier before accessing the task state.
2648 int wake_up_process(struct task_struct *p)
2650 return try_to_wake_up(p, TASK_NORMAL, 0);
2652 EXPORT_SYMBOL(wake_up_process);
2654 int wake_up_state(struct task_struct *p, unsigned int state)
2656 return try_to_wake_up(p, state, 0);
2660 * Perform scheduler related setup for a newly forked process p.
2661 * p is forked by current.
2663 * __sched_fork() is basic setup used by init_idle() too:
2665 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2667 p->on_rq = 0;
2669 p->se.on_rq = 0;
2670 p->se.exec_start = 0;
2671 p->se.sum_exec_runtime = 0;
2672 p->se.prev_sum_exec_runtime = 0;
2673 p->se.nr_migrations = 0;
2674 p->se.vruntime = 0;
2675 INIT_LIST_HEAD(&p->se.group_node);
2677 #ifdef CONFIG_FAIR_GROUP_SCHED
2678 p->se.cfs_rq = NULL;
2679 #endif
2681 #ifdef CONFIG_SCHEDSTATS
2682 /* Even if schedstat is disabled, there should not be garbage */
2683 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2684 #endif
2686 RB_CLEAR_NODE(&p->dl.rb_node);
2687 init_dl_task_timer(&p->dl);
2688 init_dl_inactive_task_timer(&p->dl);
2689 __dl_clear_params(p);
2691 INIT_LIST_HEAD(&p->rt.run_list);
2692 p->rt.timeout = 0;
2693 p->rt.time_slice = sched_rr_timeslice;
2694 p->rt.on_rq = 0;
2695 p->rt.on_list = 0;
2697 #ifdef CONFIG_PREEMPT_NOTIFIERS
2698 INIT_HLIST_HEAD(&p->preempt_notifiers);
2699 #endif
2701 #ifdef CONFIG_COMPACTION
2702 p->capture_control = NULL;
2703 #endif
2704 init_numa_balancing(clone_flags, p);
2707 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2709 #ifdef CONFIG_NUMA_BALANCING
2711 void set_numabalancing_state(bool enabled)
2713 if (enabled)
2714 static_branch_enable(&sched_numa_balancing);
2715 else
2716 static_branch_disable(&sched_numa_balancing);
2719 #ifdef CONFIG_PROC_SYSCTL
2720 int sysctl_numa_balancing(struct ctl_table *table, int write,
2721 void __user *buffer, size_t *lenp, loff_t *ppos)
2723 struct ctl_table t;
2724 int err;
2725 int state = static_branch_likely(&sched_numa_balancing);
2727 if (write && !capable(CAP_SYS_ADMIN))
2728 return -EPERM;
2730 t = *table;
2731 t.data = &state;
2732 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2733 if (err < 0)
2734 return err;
2735 if (write)
2736 set_numabalancing_state(state);
2737 return err;
2739 #endif
2740 #endif
2742 #ifdef CONFIG_SCHEDSTATS
2744 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2745 static bool __initdata __sched_schedstats = false;
2747 static void set_schedstats(bool enabled)
2749 if (enabled)
2750 static_branch_enable(&sched_schedstats);
2751 else
2752 static_branch_disable(&sched_schedstats);
2755 void force_schedstat_enabled(void)
2757 if (!schedstat_enabled()) {
2758 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2759 static_branch_enable(&sched_schedstats);
2763 static int __init setup_schedstats(char *str)
2765 int ret = 0;
2766 if (!str)
2767 goto out;
2770 * This code is called before jump labels have been set up, so we can't
2771 * change the static branch directly just yet. Instead set a temporary
2772 * variable so init_schedstats() can do it later.
2774 if (!strcmp(str, "enable")) {
2775 __sched_schedstats = true;
2776 ret = 1;
2777 } else if (!strcmp(str, "disable")) {
2778 __sched_schedstats = false;
2779 ret = 1;
2781 out:
2782 if (!ret)
2783 pr_warn("Unable to parse schedstats=\n");
2785 return ret;
2787 __setup("schedstats=", setup_schedstats);
2789 static void __init init_schedstats(void)
2791 set_schedstats(__sched_schedstats);
2794 #ifdef CONFIG_PROC_SYSCTL
2795 int sysctl_schedstats(struct ctl_table *table, int write,
2796 void __user *buffer, size_t *lenp, loff_t *ppos)
2798 struct ctl_table t;
2799 int err;
2800 int state = static_branch_likely(&sched_schedstats);
2802 if (write && !capable(CAP_SYS_ADMIN))
2803 return -EPERM;
2805 t = *table;
2806 t.data = &state;
2807 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2808 if (err < 0)
2809 return err;
2810 if (write)
2811 set_schedstats(state);
2812 return err;
2814 #endif /* CONFIG_PROC_SYSCTL */
2815 #else /* !CONFIG_SCHEDSTATS */
2816 static inline void init_schedstats(void) {}
2817 #endif /* CONFIG_SCHEDSTATS */
2820 * fork()/clone()-time setup:
2822 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2824 unsigned long flags;
2826 __sched_fork(clone_flags, p);
2828 * We mark the process as NEW here. This guarantees that
2829 * nobody will actually run it, and a signal or other external
2830 * event cannot wake it up and insert it on the runqueue either.
2832 p->state = TASK_NEW;
2835 * Make sure we do not leak PI boosting priority to the child.
2837 p->prio = current->normal_prio;
2839 uclamp_fork(p);
2842 * Revert to default priority/policy on fork if requested.
2844 if (unlikely(p->sched_reset_on_fork)) {
2845 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2846 p->policy = SCHED_NORMAL;
2847 p->static_prio = NICE_TO_PRIO(0);
2848 p->rt_priority = 0;
2849 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2850 p->static_prio = NICE_TO_PRIO(0);
2852 p->prio = p->normal_prio = __normal_prio(p);
2853 set_load_weight(p, false);
2856 * We don't need the reset flag anymore after the fork. It has
2857 * fulfilled its duty:
2859 p->sched_reset_on_fork = 0;
2862 if (dl_prio(p->prio))
2863 return -EAGAIN;
2864 else if (rt_prio(p->prio))
2865 p->sched_class = &rt_sched_class;
2866 else
2867 p->sched_class = &fair_sched_class;
2869 init_entity_runnable_average(&p->se);
2872 * The child is not yet in the pid-hash so no cgroup attach races,
2873 * and the cgroup is pinned to this child due to cgroup_fork()
2874 * is ran before sched_fork().
2876 * Silence PROVE_RCU.
2878 raw_spin_lock_irqsave(&p->pi_lock, flags);
2880 * We're setting the CPU for the first time, we don't migrate,
2881 * so use __set_task_cpu().
2883 __set_task_cpu(p, smp_processor_id());
2884 if (p->sched_class->task_fork)
2885 p->sched_class->task_fork(p);
2886 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2888 #ifdef CONFIG_SCHED_INFO
2889 if (likely(sched_info_on()))
2890 memset(&p->sched_info, 0, sizeof(p->sched_info));
2891 #endif
2892 #if defined(CONFIG_SMP)
2893 p->on_cpu = 0;
2894 #endif
2895 init_task_preempt_count(p);
2896 #ifdef CONFIG_SMP
2897 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2898 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2899 #endif
2900 return 0;
2903 unsigned long to_ratio(u64 period, u64 runtime)
2905 if (runtime == RUNTIME_INF)
2906 return BW_UNIT;
2909 * Doing this here saves a lot of checks in all
2910 * the calling paths, and returning zero seems
2911 * safe for them anyway.
2913 if (period == 0)
2914 return 0;
2916 return div64_u64(runtime << BW_SHIFT, period);
2920 * wake_up_new_task - wake up a newly created task for the first time.
2922 * This function will do some initial scheduler statistics housekeeping
2923 * that must be done for every newly created context, then puts the task
2924 * on the runqueue and wakes it.
2926 void wake_up_new_task(struct task_struct *p)
2928 struct rq_flags rf;
2929 struct rq *rq;
2931 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2932 p->state = TASK_RUNNING;
2933 #ifdef CONFIG_SMP
2935 * Fork balancing, do it here and not earlier because:
2936 * - cpus_ptr can change in the fork path
2937 * - any previously selected CPU might disappear through hotplug
2939 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2940 * as we're not fully set-up yet.
2942 p->recent_used_cpu = task_cpu(p);
2943 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2944 #endif
2945 rq = __task_rq_lock(p, &rf);
2946 update_rq_clock(rq);
2947 post_init_entity_util_avg(p);
2949 activate_task(rq, p, ENQUEUE_NOCLOCK);
2950 trace_sched_wakeup_new(p);
2951 check_preempt_curr(rq, p, WF_FORK);
2952 #ifdef CONFIG_SMP
2953 if (p->sched_class->task_woken) {
2955 * Nothing relies on rq->lock after this, so its fine to
2956 * drop it.
2958 rq_unpin_lock(rq, &rf);
2959 p->sched_class->task_woken(rq, p);
2960 rq_repin_lock(rq, &rf);
2962 #endif
2963 task_rq_unlock(rq, p, &rf);
2966 #ifdef CONFIG_PREEMPT_NOTIFIERS
2968 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2970 void preempt_notifier_inc(void)
2972 static_branch_inc(&preempt_notifier_key);
2974 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2976 void preempt_notifier_dec(void)
2978 static_branch_dec(&preempt_notifier_key);
2980 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2983 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2984 * @notifier: notifier struct to register
2986 void preempt_notifier_register(struct preempt_notifier *notifier)
2988 if (!static_branch_unlikely(&preempt_notifier_key))
2989 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2991 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2993 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2996 * preempt_notifier_unregister - no longer interested in preemption notifications
2997 * @notifier: notifier struct to unregister
2999 * This is *not* safe to call from within a preemption notifier.
3001 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3003 hlist_del(&notifier->link);
3005 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3007 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3009 struct preempt_notifier *notifier;
3011 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3012 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3015 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3017 if (static_branch_unlikely(&preempt_notifier_key))
3018 __fire_sched_in_preempt_notifiers(curr);
3021 static void
3022 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3023 struct task_struct *next)
3025 struct preempt_notifier *notifier;
3027 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3028 notifier->ops->sched_out(notifier, next);
3031 static __always_inline void
3032 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3033 struct task_struct *next)
3035 if (static_branch_unlikely(&preempt_notifier_key))
3036 __fire_sched_out_preempt_notifiers(curr, next);
3039 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3041 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3045 static inline void
3046 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3047 struct task_struct *next)
3051 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3053 static inline void prepare_task(struct task_struct *next)
3055 #ifdef CONFIG_SMP
3057 * Claim the task as running, we do this before switching to it
3058 * such that any running task will have this set.
3060 next->on_cpu = 1;
3061 #endif
3064 static inline void finish_task(struct task_struct *prev)
3066 #ifdef CONFIG_SMP
3068 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3069 * We must ensure this doesn't happen until the switch is completely
3070 * finished.
3072 * In particular, the load of prev->state in finish_task_switch() must
3073 * happen before this.
3075 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3077 smp_store_release(&prev->on_cpu, 0);
3078 #endif
3081 static inline void
3082 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3085 * Since the runqueue lock will be released by the next
3086 * task (which is an invalid locking op but in the case
3087 * of the scheduler it's an obvious special-case), so we
3088 * do an early lockdep release here:
3090 rq_unpin_lock(rq, rf);
3091 spin_release(&rq->lock.dep_map, _THIS_IP_);
3092 #ifdef CONFIG_DEBUG_SPINLOCK
3093 /* this is a valid case when another task releases the spinlock */
3094 rq->lock.owner = next;
3095 #endif
3098 static inline void finish_lock_switch(struct rq *rq)
3101 * If we are tracking spinlock dependencies then we have to
3102 * fix up the runqueue lock - which gets 'carried over' from
3103 * prev into current:
3105 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3106 raw_spin_unlock_irq(&rq->lock);
3110 * NOP if the arch has not defined these:
3113 #ifndef prepare_arch_switch
3114 # define prepare_arch_switch(next) do { } while (0)
3115 #endif
3117 #ifndef finish_arch_post_lock_switch
3118 # define finish_arch_post_lock_switch() do { } while (0)
3119 #endif
3122 * prepare_task_switch - prepare to switch tasks
3123 * @rq: the runqueue preparing to switch
3124 * @prev: the current task that is being switched out
3125 * @next: the task we are going to switch to.
3127 * This is called with the rq lock held and interrupts off. It must
3128 * be paired with a subsequent finish_task_switch after the context
3129 * switch.
3131 * prepare_task_switch sets up locking and calls architecture specific
3132 * hooks.
3134 static inline void
3135 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3136 struct task_struct *next)
3138 kcov_prepare_switch(prev);
3139 sched_info_switch(rq, prev, next);
3140 perf_event_task_sched_out(prev, next);
3141 rseq_preempt(prev);
3142 fire_sched_out_preempt_notifiers(prev, next);
3143 prepare_task(next);
3144 prepare_arch_switch(next);
3148 * finish_task_switch - clean up after a task-switch
3149 * @prev: the thread we just switched away from.
3151 * finish_task_switch must be called after the context switch, paired
3152 * with a prepare_task_switch call before the context switch.
3153 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3154 * and do any other architecture-specific cleanup actions.
3156 * Note that we may have delayed dropping an mm in context_switch(). If
3157 * so, we finish that here outside of the runqueue lock. (Doing it
3158 * with the lock held can cause deadlocks; see schedule() for
3159 * details.)
3161 * The context switch have flipped the stack from under us and restored the
3162 * local variables which were saved when this task called schedule() in the
3163 * past. prev == current is still correct but we need to recalculate this_rq
3164 * because prev may have moved to another CPU.
3166 static struct rq *finish_task_switch(struct task_struct *prev)
3167 __releases(rq->lock)
3169 struct rq *rq = this_rq();
3170 struct mm_struct *mm = rq->prev_mm;
3171 long prev_state;
3174 * The previous task will have left us with a preempt_count of 2
3175 * because it left us after:
3177 * schedule()
3178 * preempt_disable(); // 1
3179 * __schedule()
3180 * raw_spin_lock_irq(&rq->lock) // 2
3182 * Also, see FORK_PREEMPT_COUNT.
3184 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3185 "corrupted preempt_count: %s/%d/0x%x\n",
3186 current->comm, current->pid, preempt_count()))
3187 preempt_count_set(FORK_PREEMPT_COUNT);
3189 rq->prev_mm = NULL;
3192 * A task struct has one reference for the use as "current".
3193 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3194 * schedule one last time. The schedule call will never return, and
3195 * the scheduled task must drop that reference.
3197 * We must observe prev->state before clearing prev->on_cpu (in
3198 * finish_task), otherwise a concurrent wakeup can get prev
3199 * running on another CPU and we could rave with its RUNNING -> DEAD
3200 * transition, resulting in a double drop.
3202 prev_state = prev->state;
3203 vtime_task_switch(prev);
3204 perf_event_task_sched_in(prev, current);
3205 finish_task(prev);
3206 finish_lock_switch(rq);
3207 finish_arch_post_lock_switch();
3208 kcov_finish_switch(current);
3210 fire_sched_in_preempt_notifiers(current);
3212 * When switching through a kernel thread, the loop in
3213 * membarrier_{private,global}_expedited() may have observed that
3214 * kernel thread and not issued an IPI. It is therefore possible to
3215 * schedule between user->kernel->user threads without passing though
3216 * switch_mm(). Membarrier requires a barrier after storing to
3217 * rq->curr, before returning to userspace, so provide them here:
3219 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3220 * provided by mmdrop(),
3221 * - a sync_core for SYNC_CORE.
3223 if (mm) {
3224 membarrier_mm_sync_core_before_usermode(mm);
3225 mmdrop(mm);
3227 if (unlikely(prev_state == TASK_DEAD)) {
3228 if (prev->sched_class->task_dead)
3229 prev->sched_class->task_dead(prev);
3232 * Remove function-return probe instances associated with this
3233 * task and put them back on the free list.
3235 kprobe_flush_task(prev);
3237 /* Task is done with its stack. */
3238 put_task_stack(prev);
3240 put_task_struct_rcu_user(prev);
3243 tick_nohz_task_switch();
3244 return rq;
3247 #ifdef CONFIG_SMP
3249 /* rq->lock is NOT held, but preemption is disabled */
3250 static void __balance_callback(struct rq *rq)
3252 struct callback_head *head, *next;
3253 void (*func)(struct rq *rq);
3254 unsigned long flags;
3256 raw_spin_lock_irqsave(&rq->lock, flags);
3257 head = rq->balance_callback;
3258 rq->balance_callback = NULL;
3259 while (head) {
3260 func = (void (*)(struct rq *))head->func;
3261 next = head->next;
3262 head->next = NULL;
3263 head = next;
3265 func(rq);
3267 raw_spin_unlock_irqrestore(&rq->lock, flags);
3270 static inline void balance_callback(struct rq *rq)
3272 if (unlikely(rq->balance_callback))
3273 __balance_callback(rq);
3276 #else
3278 static inline void balance_callback(struct rq *rq)
3282 #endif
3285 * schedule_tail - first thing a freshly forked thread must call.
3286 * @prev: the thread we just switched away from.
3288 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3289 __releases(rq->lock)
3291 struct rq *rq;
3294 * New tasks start with FORK_PREEMPT_COUNT, see there and
3295 * finish_task_switch() for details.
3297 * finish_task_switch() will drop rq->lock() and lower preempt_count
3298 * and the preempt_enable() will end up enabling preemption (on
3299 * PREEMPT_COUNT kernels).
3302 rq = finish_task_switch(prev);
3303 balance_callback(rq);
3304 preempt_enable();
3306 if (current->set_child_tid)
3307 put_user(task_pid_vnr(current), current->set_child_tid);
3309 calculate_sigpending();
3313 * context_switch - switch to the new MM and the new thread's register state.
3315 static __always_inline struct rq *
3316 context_switch(struct rq *rq, struct task_struct *prev,
3317 struct task_struct *next, struct rq_flags *rf)
3319 prepare_task_switch(rq, prev, next);
3322 * For paravirt, this is coupled with an exit in switch_to to
3323 * combine the page table reload and the switch backend into
3324 * one hypercall.
3326 arch_start_context_switch(prev);
3329 * kernel -> kernel lazy + transfer active
3330 * user -> kernel lazy + mmgrab() active
3332 * kernel -> user switch + mmdrop() active
3333 * user -> user switch
3335 if (!next->mm) { // to kernel
3336 enter_lazy_tlb(prev->active_mm, next);
3338 next->active_mm = prev->active_mm;
3339 if (prev->mm) // from user
3340 mmgrab(prev->active_mm);
3341 else
3342 prev->active_mm = NULL;
3343 } else { // to user
3344 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3346 * sys_membarrier() requires an smp_mb() between setting
3347 * rq->curr / membarrier_switch_mm() and returning to userspace.
3349 * The below provides this either through switch_mm(), or in
3350 * case 'prev->active_mm == next->mm' through
3351 * finish_task_switch()'s mmdrop().
3353 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3355 if (!prev->mm) { // from kernel
3356 /* will mmdrop() in finish_task_switch(). */
3357 rq->prev_mm = prev->active_mm;
3358 prev->active_mm = NULL;
3362 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3364 prepare_lock_switch(rq, next, rf);
3366 /* Here we just switch the register state and the stack. */
3367 switch_to(prev, next, prev);
3368 barrier();
3370 return finish_task_switch(prev);
3374 * nr_running and nr_context_switches:
3376 * externally visible scheduler statistics: current number of runnable
3377 * threads, total number of context switches performed since bootup.
3379 unsigned long nr_running(void)
3381 unsigned long i, sum = 0;
3383 for_each_online_cpu(i)
3384 sum += cpu_rq(i)->nr_running;
3386 return sum;
3390 * Check if only the current task is running on the CPU.
3392 * Caution: this function does not check that the caller has disabled
3393 * preemption, thus the result might have a time-of-check-to-time-of-use
3394 * race. The caller is responsible to use it correctly, for example:
3396 * - from a non-preemptible section (of course)
3398 * - from a thread that is bound to a single CPU
3400 * - in a loop with very short iterations (e.g. a polling loop)
3402 bool single_task_running(void)
3404 return raw_rq()->nr_running == 1;
3406 EXPORT_SYMBOL(single_task_running);
3408 unsigned long long nr_context_switches(void)
3410 int i;
3411 unsigned long long sum = 0;
3413 for_each_possible_cpu(i)
3414 sum += cpu_rq(i)->nr_switches;
3416 return sum;
3420 * Consumers of these two interfaces, like for example the cpuidle menu
3421 * governor, are using nonsensical data. Preferring shallow idle state selection
3422 * for a CPU that has IO-wait which might not even end up running the task when
3423 * it does become runnable.
3426 unsigned long nr_iowait_cpu(int cpu)
3428 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3432 * IO-wait accounting, and how its mostly bollocks (on SMP).
3434 * The idea behind IO-wait account is to account the idle time that we could
3435 * have spend running if it were not for IO. That is, if we were to improve the
3436 * storage performance, we'd have a proportional reduction in IO-wait time.
3438 * This all works nicely on UP, where, when a task blocks on IO, we account
3439 * idle time as IO-wait, because if the storage were faster, it could've been
3440 * running and we'd not be idle.
3442 * This has been extended to SMP, by doing the same for each CPU. This however
3443 * is broken.
3445 * Imagine for instance the case where two tasks block on one CPU, only the one
3446 * CPU will have IO-wait accounted, while the other has regular idle. Even
3447 * though, if the storage were faster, both could've ran at the same time,
3448 * utilising both CPUs.
3450 * This means, that when looking globally, the current IO-wait accounting on
3451 * SMP is a lower bound, by reason of under accounting.
3453 * Worse, since the numbers are provided per CPU, they are sometimes
3454 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3455 * associated with any one particular CPU, it can wake to another CPU than it
3456 * blocked on. This means the per CPU IO-wait number is meaningless.
3458 * Task CPU affinities can make all that even more 'interesting'.
3461 unsigned long nr_iowait(void)
3463 unsigned long i, sum = 0;
3465 for_each_possible_cpu(i)
3466 sum += nr_iowait_cpu(i);
3468 return sum;
3471 #ifdef CONFIG_SMP
3474 * sched_exec - execve() is a valuable balancing opportunity, because at
3475 * this point the task has the smallest effective memory and cache footprint.
3477 void sched_exec(void)
3479 struct task_struct *p = current;
3480 unsigned long flags;
3481 int dest_cpu;
3483 raw_spin_lock_irqsave(&p->pi_lock, flags);
3484 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3485 if (dest_cpu == smp_processor_id())
3486 goto unlock;
3488 if (likely(cpu_active(dest_cpu))) {
3489 struct migration_arg arg = { p, dest_cpu };
3491 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3492 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3493 return;
3495 unlock:
3496 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3499 #endif
3501 DEFINE_PER_CPU(struct kernel_stat, kstat);
3502 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3504 EXPORT_PER_CPU_SYMBOL(kstat);
3505 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3508 * The function fair_sched_class.update_curr accesses the struct curr
3509 * and its field curr->exec_start; when called from task_sched_runtime(),
3510 * we observe a high rate of cache misses in practice.
3511 * Prefetching this data results in improved performance.
3513 static inline void prefetch_curr_exec_start(struct task_struct *p)
3515 #ifdef CONFIG_FAIR_GROUP_SCHED
3516 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3517 #else
3518 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3519 #endif
3520 prefetch(curr);
3521 prefetch(&curr->exec_start);
3525 * Return accounted runtime for the task.
3526 * In case the task is currently running, return the runtime plus current's
3527 * pending runtime that have not been accounted yet.
3529 unsigned long long task_sched_runtime(struct task_struct *p)
3531 struct rq_flags rf;
3532 struct rq *rq;
3533 u64 ns;
3535 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3537 * 64-bit doesn't need locks to atomically read a 64-bit value.
3538 * So we have a optimization chance when the task's delta_exec is 0.
3539 * Reading ->on_cpu is racy, but this is ok.
3541 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3542 * If we race with it entering CPU, unaccounted time is 0. This is
3543 * indistinguishable from the read occurring a few cycles earlier.
3544 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3545 * been accounted, so we're correct here as well.
3547 if (!p->on_cpu || !task_on_rq_queued(p))
3548 return p->se.sum_exec_runtime;
3549 #endif
3551 rq = task_rq_lock(p, &rf);
3553 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3554 * project cycles that may never be accounted to this
3555 * thread, breaking clock_gettime().
3557 if (task_current(rq, p) && task_on_rq_queued(p)) {
3558 prefetch_curr_exec_start(p);
3559 update_rq_clock(rq);
3560 p->sched_class->update_curr(rq);
3562 ns = p->se.sum_exec_runtime;
3563 task_rq_unlock(rq, p, &rf);
3565 return ns;
3568 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3570 void arch_set_thermal_pressure(struct cpumask *cpus,
3571 unsigned long th_pressure)
3573 int cpu;
3575 for_each_cpu(cpu, cpus)
3576 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3580 * This function gets called by the timer code, with HZ frequency.
3581 * We call it with interrupts disabled.
3583 void scheduler_tick(void)
3585 int cpu = smp_processor_id();
3586 struct rq *rq = cpu_rq(cpu);
3587 struct task_struct *curr = rq->curr;
3588 struct rq_flags rf;
3589 unsigned long thermal_pressure;
3591 arch_scale_freq_tick();
3592 sched_clock_tick();
3594 rq_lock(rq, &rf);
3596 update_rq_clock(rq);
3597 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3598 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3599 curr->sched_class->task_tick(rq, curr, 0);
3600 calc_global_load_tick(rq);
3601 psi_task_tick(rq);
3603 rq_unlock(rq, &rf);
3605 perf_event_task_tick();
3607 #ifdef CONFIG_SMP
3608 rq->idle_balance = idle_cpu(cpu);
3609 trigger_load_balance(rq);
3610 #endif
3613 #ifdef CONFIG_NO_HZ_FULL
3615 struct tick_work {
3616 int cpu;
3617 atomic_t state;
3618 struct delayed_work work;
3620 /* Values for ->state, see diagram below. */
3621 #define TICK_SCHED_REMOTE_OFFLINE 0
3622 #define TICK_SCHED_REMOTE_OFFLINING 1
3623 #define TICK_SCHED_REMOTE_RUNNING 2
3626 * State diagram for ->state:
3629 * TICK_SCHED_REMOTE_OFFLINE
3630 * | ^
3631 * | |
3632 * | | sched_tick_remote()
3633 * | |
3634 * | |
3635 * +--TICK_SCHED_REMOTE_OFFLINING
3636 * | ^
3637 * | |
3638 * sched_tick_start() | | sched_tick_stop()
3639 * | |
3640 * V |
3641 * TICK_SCHED_REMOTE_RUNNING
3644 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3645 * and sched_tick_start() are happy to leave the state in RUNNING.
3648 static struct tick_work __percpu *tick_work_cpu;
3650 static void sched_tick_remote(struct work_struct *work)
3652 struct delayed_work *dwork = to_delayed_work(work);
3653 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3654 int cpu = twork->cpu;
3655 struct rq *rq = cpu_rq(cpu);
3656 struct task_struct *curr;
3657 struct rq_flags rf;
3658 u64 delta;
3659 int os;
3662 * Handle the tick only if it appears the remote CPU is running in full
3663 * dynticks mode. The check is racy by nature, but missing a tick or
3664 * having one too much is no big deal because the scheduler tick updates
3665 * statistics and checks timeslices in a time-independent way, regardless
3666 * of when exactly it is running.
3668 if (!tick_nohz_tick_stopped_cpu(cpu))
3669 goto out_requeue;
3671 rq_lock_irq(rq, &rf);
3672 curr = rq->curr;
3673 if (cpu_is_offline(cpu))
3674 goto out_unlock;
3676 update_rq_clock(rq);
3678 if (!is_idle_task(curr)) {
3680 * Make sure the next tick runs within a reasonable
3681 * amount of time.
3683 delta = rq_clock_task(rq) - curr->se.exec_start;
3684 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3686 curr->sched_class->task_tick(rq, curr, 0);
3688 calc_load_nohz_remote(rq);
3689 out_unlock:
3690 rq_unlock_irq(rq, &rf);
3691 out_requeue:
3694 * Run the remote tick once per second (1Hz). This arbitrary
3695 * frequency is large enough to avoid overload but short enough
3696 * to keep scheduler internal stats reasonably up to date. But
3697 * first update state to reflect hotplug activity if required.
3699 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3700 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3701 if (os == TICK_SCHED_REMOTE_RUNNING)
3702 queue_delayed_work(system_unbound_wq, dwork, HZ);
3705 static void sched_tick_start(int cpu)
3707 int os;
3708 struct tick_work *twork;
3710 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3711 return;
3713 WARN_ON_ONCE(!tick_work_cpu);
3715 twork = per_cpu_ptr(tick_work_cpu, cpu);
3716 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3717 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3718 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3719 twork->cpu = cpu;
3720 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3721 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3725 #ifdef CONFIG_HOTPLUG_CPU
3726 static void sched_tick_stop(int cpu)
3728 struct tick_work *twork;
3729 int os;
3731 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3732 return;
3734 WARN_ON_ONCE(!tick_work_cpu);
3736 twork = per_cpu_ptr(tick_work_cpu, cpu);
3737 /* There cannot be competing actions, but don't rely on stop-machine. */
3738 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3739 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3740 /* Don't cancel, as this would mess up the state machine. */
3742 #endif /* CONFIG_HOTPLUG_CPU */
3744 int __init sched_tick_offload_init(void)
3746 tick_work_cpu = alloc_percpu(struct tick_work);
3747 BUG_ON(!tick_work_cpu);
3748 return 0;
3751 #else /* !CONFIG_NO_HZ_FULL */
3752 static inline void sched_tick_start(int cpu) { }
3753 static inline void sched_tick_stop(int cpu) { }
3754 #endif
3756 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3757 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3759 * If the value passed in is equal to the current preempt count
3760 * then we just disabled preemption. Start timing the latency.
3762 static inline void preempt_latency_start(int val)
3764 if (preempt_count() == val) {
3765 unsigned long ip = get_lock_parent_ip();
3766 #ifdef CONFIG_DEBUG_PREEMPT
3767 current->preempt_disable_ip = ip;
3768 #endif
3769 trace_preempt_off(CALLER_ADDR0, ip);
3773 void preempt_count_add(int val)
3775 #ifdef CONFIG_DEBUG_PREEMPT
3777 * Underflow?
3779 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3780 return;
3781 #endif
3782 __preempt_count_add(val);
3783 #ifdef CONFIG_DEBUG_PREEMPT
3785 * Spinlock count overflowing soon?
3787 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3788 PREEMPT_MASK - 10);
3789 #endif
3790 preempt_latency_start(val);
3792 EXPORT_SYMBOL(preempt_count_add);
3793 NOKPROBE_SYMBOL(preempt_count_add);
3796 * If the value passed in equals to the current preempt count
3797 * then we just enabled preemption. Stop timing the latency.
3799 static inline void preempt_latency_stop(int val)
3801 if (preempt_count() == val)
3802 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3805 void preempt_count_sub(int val)
3807 #ifdef CONFIG_DEBUG_PREEMPT
3809 * Underflow?
3811 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3812 return;
3814 * Is the spinlock portion underflowing?
3816 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3817 !(preempt_count() & PREEMPT_MASK)))
3818 return;
3819 #endif
3821 preempt_latency_stop(val);
3822 __preempt_count_sub(val);
3824 EXPORT_SYMBOL(preempt_count_sub);
3825 NOKPROBE_SYMBOL(preempt_count_sub);
3827 #else
3828 static inline void preempt_latency_start(int val) { }
3829 static inline void preempt_latency_stop(int val) { }
3830 #endif
3832 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3834 #ifdef CONFIG_DEBUG_PREEMPT
3835 return p->preempt_disable_ip;
3836 #else
3837 return 0;
3838 #endif
3842 * Print scheduling while atomic bug:
3844 static noinline void __schedule_bug(struct task_struct *prev)
3846 /* Save this before calling printk(), since that will clobber it */
3847 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3849 if (oops_in_progress)
3850 return;
3852 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3853 prev->comm, prev->pid, preempt_count());
3855 debug_show_held_locks(prev);
3856 print_modules();
3857 if (irqs_disabled())
3858 print_irqtrace_events(prev);
3859 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3860 && in_atomic_preempt_off()) {
3861 pr_err("Preemption disabled at:");
3862 print_ip_sym(preempt_disable_ip);
3863 pr_cont("\n");
3865 if (panic_on_warn)
3866 panic("scheduling while atomic\n");
3868 dump_stack();
3869 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3873 * Various schedule()-time debugging checks and statistics:
3875 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3877 #ifdef CONFIG_SCHED_STACK_END_CHECK
3878 if (task_stack_end_corrupted(prev))
3879 panic("corrupted stack end detected inside scheduler\n");
3880 #endif
3882 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3883 if (!preempt && prev->state && prev->non_block_count) {
3884 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3885 prev->comm, prev->pid, prev->non_block_count);
3886 dump_stack();
3887 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3889 #endif
3891 if (unlikely(in_atomic_preempt_off())) {
3892 __schedule_bug(prev);
3893 preempt_count_set(PREEMPT_DISABLED);
3895 rcu_sleep_check();
3897 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3899 schedstat_inc(this_rq()->sched_count);
3903 * Pick up the highest-prio task:
3905 static inline struct task_struct *
3906 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3908 const struct sched_class *class;
3909 struct task_struct *p;
3912 * Optimization: we know that if all tasks are in the fair class we can
3913 * call that function directly, but only if the @prev task wasn't of a
3914 * higher scheduling class, because otherwise those loose the
3915 * opportunity to pull in more work from other CPUs.
3917 if (likely((prev->sched_class == &idle_sched_class ||
3918 prev->sched_class == &fair_sched_class) &&
3919 rq->nr_running == rq->cfs.h_nr_running)) {
3921 p = pick_next_task_fair(rq, prev, rf);
3922 if (unlikely(p == RETRY_TASK))
3923 goto restart;
3925 /* Assumes fair_sched_class->next == idle_sched_class */
3926 if (!p) {
3927 put_prev_task(rq, prev);
3928 p = pick_next_task_idle(rq);
3931 return p;
3934 restart:
3935 #ifdef CONFIG_SMP
3937 * We must do the balancing pass before put_next_task(), such
3938 * that when we release the rq->lock the task is in the same
3939 * state as before we took rq->lock.
3941 * We can terminate the balance pass as soon as we know there is
3942 * a runnable task of @class priority or higher.
3944 for_class_range(class, prev->sched_class, &idle_sched_class) {
3945 if (class->balance(rq, prev, rf))
3946 break;
3948 #endif
3950 put_prev_task(rq, prev);
3952 for_each_class(class) {
3953 p = class->pick_next_task(rq);
3954 if (p)
3955 return p;
3958 /* The idle class should always have a runnable task: */
3959 BUG();
3963 * __schedule() is the main scheduler function.
3965 * The main means of driving the scheduler and thus entering this function are:
3967 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3969 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3970 * paths. For example, see arch/x86/entry_64.S.
3972 * To drive preemption between tasks, the scheduler sets the flag in timer
3973 * interrupt handler scheduler_tick().
3975 * 3. Wakeups don't really cause entry into schedule(). They add a
3976 * task to the run-queue and that's it.
3978 * Now, if the new task added to the run-queue preempts the current
3979 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3980 * called on the nearest possible occasion:
3982 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3984 * - in syscall or exception context, at the next outmost
3985 * preempt_enable(). (this might be as soon as the wake_up()'s
3986 * spin_unlock()!)
3988 * - in IRQ context, return from interrupt-handler to
3989 * preemptible context
3991 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3992 * then at the next:
3994 * - cond_resched() call
3995 * - explicit schedule() call
3996 * - return from syscall or exception to user-space
3997 * - return from interrupt-handler to user-space
3999 * WARNING: must be called with preemption disabled!
4001 static void __sched notrace __schedule(bool preempt)
4003 struct task_struct *prev, *next;
4004 unsigned long *switch_count;
4005 struct rq_flags rf;
4006 struct rq *rq;
4007 int cpu;
4009 cpu = smp_processor_id();
4010 rq = cpu_rq(cpu);
4011 prev = rq->curr;
4013 schedule_debug(prev, preempt);
4015 if (sched_feat(HRTICK))
4016 hrtick_clear(rq);
4018 local_irq_disable();
4019 rcu_note_context_switch(preempt);
4022 * Make sure that signal_pending_state()->signal_pending() below
4023 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4024 * done by the caller to avoid the race with signal_wake_up().
4026 * The membarrier system call requires a full memory barrier
4027 * after coming from user-space, before storing to rq->curr.
4029 rq_lock(rq, &rf);
4030 smp_mb__after_spinlock();
4032 /* Promote REQ to ACT */
4033 rq->clock_update_flags <<= 1;
4034 update_rq_clock(rq);
4036 switch_count = &prev->nivcsw;
4037 if (!preempt && prev->state) {
4038 if (signal_pending_state(prev->state, prev)) {
4039 prev->state = TASK_RUNNING;
4040 } else {
4041 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4043 if (prev->in_iowait) {
4044 atomic_inc(&rq->nr_iowait);
4045 delayacct_blkio_start();
4048 switch_count = &prev->nvcsw;
4051 next = pick_next_task(rq, prev, &rf);
4052 clear_tsk_need_resched(prev);
4053 clear_preempt_need_resched();
4055 if (likely(prev != next)) {
4056 rq->nr_switches++;
4058 * RCU users of rcu_dereference(rq->curr) may not see
4059 * changes to task_struct made by pick_next_task().
4061 RCU_INIT_POINTER(rq->curr, next);
4063 * The membarrier system call requires each architecture
4064 * to have a full memory barrier after updating
4065 * rq->curr, before returning to user-space.
4067 * Here are the schemes providing that barrier on the
4068 * various architectures:
4069 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4070 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4071 * - finish_lock_switch() for weakly-ordered
4072 * architectures where spin_unlock is a full barrier,
4073 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4074 * is a RELEASE barrier),
4076 ++*switch_count;
4078 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4080 trace_sched_switch(preempt, prev, next);
4082 /* Also unlocks the rq: */
4083 rq = context_switch(rq, prev, next, &rf);
4084 } else {
4085 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4086 rq_unlock_irq(rq, &rf);
4089 balance_callback(rq);
4092 void __noreturn do_task_dead(void)
4094 /* Causes final put_task_struct in finish_task_switch(): */
4095 set_special_state(TASK_DEAD);
4097 /* Tell freezer to ignore us: */
4098 current->flags |= PF_NOFREEZE;
4100 __schedule(false);
4101 BUG();
4103 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4104 for (;;)
4105 cpu_relax();
4108 static inline void sched_submit_work(struct task_struct *tsk)
4110 if (!tsk->state)
4111 return;
4114 * If a worker went to sleep, notify and ask workqueue whether
4115 * it wants to wake up a task to maintain concurrency.
4116 * As this function is called inside the schedule() context,
4117 * we disable preemption to avoid it calling schedule() again
4118 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4119 * requires it.
4121 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4122 preempt_disable();
4123 if (tsk->flags & PF_WQ_WORKER)
4124 wq_worker_sleeping(tsk);
4125 else
4126 io_wq_worker_sleeping(tsk);
4127 preempt_enable_no_resched();
4130 if (tsk_is_pi_blocked(tsk))
4131 return;
4134 * If we are going to sleep and we have plugged IO queued,
4135 * make sure to submit it to avoid deadlocks.
4137 if (blk_needs_flush_plug(tsk))
4138 blk_schedule_flush_plug(tsk);
4141 static void sched_update_worker(struct task_struct *tsk)
4143 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4144 if (tsk->flags & PF_WQ_WORKER)
4145 wq_worker_running(tsk);
4146 else
4147 io_wq_worker_running(tsk);
4151 asmlinkage __visible void __sched schedule(void)
4153 struct task_struct *tsk = current;
4155 sched_submit_work(tsk);
4156 do {
4157 preempt_disable();
4158 __schedule(false);
4159 sched_preempt_enable_no_resched();
4160 } while (need_resched());
4161 sched_update_worker(tsk);
4163 EXPORT_SYMBOL(schedule);
4166 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4167 * state (have scheduled out non-voluntarily) by making sure that all
4168 * tasks have either left the run queue or have gone into user space.
4169 * As idle tasks do not do either, they must not ever be preempted
4170 * (schedule out non-voluntarily).
4172 * schedule_idle() is similar to schedule_preempt_disable() except that it
4173 * never enables preemption because it does not call sched_submit_work().
4175 void __sched schedule_idle(void)
4178 * As this skips calling sched_submit_work(), which the idle task does
4179 * regardless because that function is a nop when the task is in a
4180 * TASK_RUNNING state, make sure this isn't used someplace that the
4181 * current task can be in any other state. Note, idle is always in the
4182 * TASK_RUNNING state.
4184 WARN_ON_ONCE(current->state);
4185 do {
4186 __schedule(false);
4187 } while (need_resched());
4190 #ifdef CONFIG_CONTEXT_TRACKING
4191 asmlinkage __visible void __sched schedule_user(void)
4194 * If we come here after a random call to set_need_resched(),
4195 * or we have been woken up remotely but the IPI has not yet arrived,
4196 * we haven't yet exited the RCU idle mode. Do it here manually until
4197 * we find a better solution.
4199 * NB: There are buggy callers of this function. Ideally we
4200 * should warn if prev_state != CONTEXT_USER, but that will trigger
4201 * too frequently to make sense yet.
4203 enum ctx_state prev_state = exception_enter();
4204 schedule();
4205 exception_exit(prev_state);
4207 #endif
4210 * schedule_preempt_disabled - called with preemption disabled
4212 * Returns with preemption disabled. Note: preempt_count must be 1
4214 void __sched schedule_preempt_disabled(void)
4216 sched_preempt_enable_no_resched();
4217 schedule();
4218 preempt_disable();
4221 static void __sched notrace preempt_schedule_common(void)
4223 do {
4225 * Because the function tracer can trace preempt_count_sub()
4226 * and it also uses preempt_enable/disable_notrace(), if
4227 * NEED_RESCHED is set, the preempt_enable_notrace() called
4228 * by the function tracer will call this function again and
4229 * cause infinite recursion.
4231 * Preemption must be disabled here before the function
4232 * tracer can trace. Break up preempt_disable() into two
4233 * calls. One to disable preemption without fear of being
4234 * traced. The other to still record the preemption latency,
4235 * which can also be traced by the function tracer.
4237 preempt_disable_notrace();
4238 preempt_latency_start(1);
4239 __schedule(true);
4240 preempt_latency_stop(1);
4241 preempt_enable_no_resched_notrace();
4244 * Check again in case we missed a preemption opportunity
4245 * between schedule and now.
4247 } while (need_resched());
4250 #ifdef CONFIG_PREEMPTION
4252 * This is the entry point to schedule() from in-kernel preemption
4253 * off of preempt_enable.
4255 asmlinkage __visible void __sched notrace preempt_schedule(void)
4258 * If there is a non-zero preempt_count or interrupts are disabled,
4259 * we do not want to preempt the current task. Just return..
4261 if (likely(!preemptible()))
4262 return;
4264 preempt_schedule_common();
4266 NOKPROBE_SYMBOL(preempt_schedule);
4267 EXPORT_SYMBOL(preempt_schedule);
4270 * preempt_schedule_notrace - preempt_schedule called by tracing
4272 * The tracing infrastructure uses preempt_enable_notrace to prevent
4273 * recursion and tracing preempt enabling caused by the tracing
4274 * infrastructure itself. But as tracing can happen in areas coming
4275 * from userspace or just about to enter userspace, a preempt enable
4276 * can occur before user_exit() is called. This will cause the scheduler
4277 * to be called when the system is still in usermode.
4279 * To prevent this, the preempt_enable_notrace will use this function
4280 * instead of preempt_schedule() to exit user context if needed before
4281 * calling the scheduler.
4283 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4285 enum ctx_state prev_ctx;
4287 if (likely(!preemptible()))
4288 return;
4290 do {
4292 * Because the function tracer can trace preempt_count_sub()
4293 * and it also uses preempt_enable/disable_notrace(), if
4294 * NEED_RESCHED is set, the preempt_enable_notrace() called
4295 * by the function tracer will call this function again and
4296 * cause infinite recursion.
4298 * Preemption must be disabled here before the function
4299 * tracer can trace. Break up preempt_disable() into two
4300 * calls. One to disable preemption without fear of being
4301 * traced. The other to still record the preemption latency,
4302 * which can also be traced by the function tracer.
4304 preempt_disable_notrace();
4305 preempt_latency_start(1);
4307 * Needs preempt disabled in case user_exit() is traced
4308 * and the tracer calls preempt_enable_notrace() causing
4309 * an infinite recursion.
4311 prev_ctx = exception_enter();
4312 __schedule(true);
4313 exception_exit(prev_ctx);
4315 preempt_latency_stop(1);
4316 preempt_enable_no_resched_notrace();
4317 } while (need_resched());
4319 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4321 #endif /* CONFIG_PREEMPTION */
4324 * This is the entry point to schedule() from kernel preemption
4325 * off of irq context.
4326 * Note, that this is called and return with irqs disabled. This will
4327 * protect us against recursive calling from irq.
4329 asmlinkage __visible void __sched preempt_schedule_irq(void)
4331 enum ctx_state prev_state;
4333 /* Catch callers which need to be fixed */
4334 BUG_ON(preempt_count() || !irqs_disabled());
4336 prev_state = exception_enter();
4338 do {
4339 preempt_disable();
4340 local_irq_enable();
4341 __schedule(true);
4342 local_irq_disable();
4343 sched_preempt_enable_no_resched();
4344 } while (need_resched());
4346 exception_exit(prev_state);
4349 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4350 void *key)
4352 return try_to_wake_up(curr->private, mode, wake_flags);
4354 EXPORT_SYMBOL(default_wake_function);
4356 #ifdef CONFIG_RT_MUTEXES
4358 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4360 if (pi_task)
4361 prio = min(prio, pi_task->prio);
4363 return prio;
4366 static inline int rt_effective_prio(struct task_struct *p, int prio)
4368 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4370 return __rt_effective_prio(pi_task, prio);
4374 * rt_mutex_setprio - set the current priority of a task
4375 * @p: task to boost
4376 * @pi_task: donor task
4378 * This function changes the 'effective' priority of a task. It does
4379 * not touch ->normal_prio like __setscheduler().
4381 * Used by the rt_mutex code to implement priority inheritance
4382 * logic. Call site only calls if the priority of the task changed.
4384 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4386 int prio, oldprio, queued, running, queue_flag =
4387 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4388 const struct sched_class *prev_class;
4389 struct rq_flags rf;
4390 struct rq *rq;
4392 /* XXX used to be waiter->prio, not waiter->task->prio */
4393 prio = __rt_effective_prio(pi_task, p->normal_prio);
4396 * If nothing changed; bail early.
4398 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4399 return;
4401 rq = __task_rq_lock(p, &rf);
4402 update_rq_clock(rq);
4404 * Set under pi_lock && rq->lock, such that the value can be used under
4405 * either lock.
4407 * Note that there is loads of tricky to make this pointer cache work
4408 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4409 * ensure a task is de-boosted (pi_task is set to NULL) before the
4410 * task is allowed to run again (and can exit). This ensures the pointer
4411 * points to a blocked task -- which guaratees the task is present.
4413 p->pi_top_task = pi_task;
4416 * For FIFO/RR we only need to set prio, if that matches we're done.
4418 if (prio == p->prio && !dl_prio(prio))
4419 goto out_unlock;
4422 * Idle task boosting is a nono in general. There is one
4423 * exception, when PREEMPT_RT and NOHZ is active:
4425 * The idle task calls get_next_timer_interrupt() and holds
4426 * the timer wheel base->lock on the CPU and another CPU wants
4427 * to access the timer (probably to cancel it). We can safely
4428 * ignore the boosting request, as the idle CPU runs this code
4429 * with interrupts disabled and will complete the lock
4430 * protected section without being interrupted. So there is no
4431 * real need to boost.
4433 if (unlikely(p == rq->idle)) {
4434 WARN_ON(p != rq->curr);
4435 WARN_ON(p->pi_blocked_on);
4436 goto out_unlock;
4439 trace_sched_pi_setprio(p, pi_task);
4440 oldprio = p->prio;
4442 if (oldprio == prio)
4443 queue_flag &= ~DEQUEUE_MOVE;
4445 prev_class = p->sched_class;
4446 queued = task_on_rq_queued(p);
4447 running = task_current(rq, p);
4448 if (queued)
4449 dequeue_task(rq, p, queue_flag);
4450 if (running)
4451 put_prev_task(rq, p);
4454 * Boosting condition are:
4455 * 1. -rt task is running and holds mutex A
4456 * --> -dl task blocks on mutex A
4458 * 2. -dl task is running and holds mutex A
4459 * --> -dl task blocks on mutex A and could preempt the
4460 * running task
4462 if (dl_prio(prio)) {
4463 if (!dl_prio(p->normal_prio) ||
4464 (pi_task && dl_prio(pi_task->prio) &&
4465 dl_entity_preempt(&pi_task->dl, &p->dl))) {
4466 p->dl.dl_boosted = 1;
4467 queue_flag |= ENQUEUE_REPLENISH;
4468 } else
4469 p->dl.dl_boosted = 0;
4470 p->sched_class = &dl_sched_class;
4471 } else if (rt_prio(prio)) {
4472 if (dl_prio(oldprio))
4473 p->dl.dl_boosted = 0;
4474 if (oldprio < prio)
4475 queue_flag |= ENQUEUE_HEAD;
4476 p->sched_class = &rt_sched_class;
4477 } else {
4478 if (dl_prio(oldprio))
4479 p->dl.dl_boosted = 0;
4480 if (rt_prio(oldprio))
4481 p->rt.timeout = 0;
4482 p->sched_class = &fair_sched_class;
4485 p->prio = prio;
4487 if (queued)
4488 enqueue_task(rq, p, queue_flag);
4489 if (running)
4490 set_next_task(rq, p);
4492 check_class_changed(rq, p, prev_class, oldprio);
4493 out_unlock:
4494 /* Avoid rq from going away on us: */
4495 preempt_disable();
4496 __task_rq_unlock(rq, &rf);
4498 balance_callback(rq);
4499 preempt_enable();
4501 #else
4502 static inline int rt_effective_prio(struct task_struct *p, int prio)
4504 return prio;
4506 #endif
4508 void set_user_nice(struct task_struct *p, long nice)
4510 bool queued, running;
4511 int old_prio;
4512 struct rq_flags rf;
4513 struct rq *rq;
4515 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4516 return;
4518 * We have to be careful, if called from sys_setpriority(),
4519 * the task might be in the middle of scheduling on another CPU.
4521 rq = task_rq_lock(p, &rf);
4522 update_rq_clock(rq);
4525 * The RT priorities are set via sched_setscheduler(), but we still
4526 * allow the 'normal' nice value to be set - but as expected
4527 * it wont have any effect on scheduling until the task is
4528 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4530 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4531 p->static_prio = NICE_TO_PRIO(nice);
4532 goto out_unlock;
4534 queued = task_on_rq_queued(p);
4535 running = task_current(rq, p);
4536 if (queued)
4537 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4538 if (running)
4539 put_prev_task(rq, p);
4541 p->static_prio = NICE_TO_PRIO(nice);
4542 set_load_weight(p, true);
4543 old_prio = p->prio;
4544 p->prio = effective_prio(p);
4546 if (queued)
4547 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4548 if (running)
4549 set_next_task(rq, p);
4552 * If the task increased its priority or is running and
4553 * lowered its priority, then reschedule its CPU:
4555 p->sched_class->prio_changed(rq, p, old_prio);
4557 out_unlock:
4558 task_rq_unlock(rq, p, &rf);
4560 EXPORT_SYMBOL(set_user_nice);
4563 * can_nice - check if a task can reduce its nice value
4564 * @p: task
4565 * @nice: nice value
4567 int can_nice(const struct task_struct *p, const int nice)
4569 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4570 int nice_rlim = nice_to_rlimit(nice);
4572 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4573 capable(CAP_SYS_NICE));
4576 #ifdef __ARCH_WANT_SYS_NICE
4579 * sys_nice - change the priority of the current process.
4580 * @increment: priority increment
4582 * sys_setpriority is a more generic, but much slower function that
4583 * does similar things.
4585 SYSCALL_DEFINE1(nice, int, increment)
4587 long nice, retval;
4590 * Setpriority might change our priority at the same moment.
4591 * We don't have to worry. Conceptually one call occurs first
4592 * and we have a single winner.
4594 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4595 nice = task_nice(current) + increment;
4597 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4598 if (increment < 0 && !can_nice(current, nice))
4599 return -EPERM;
4601 retval = security_task_setnice(current, nice);
4602 if (retval)
4603 return retval;
4605 set_user_nice(current, nice);
4606 return 0;
4609 #endif
4612 * task_prio - return the priority value of a given task.
4613 * @p: the task in question.
4615 * Return: The priority value as seen by users in /proc.
4616 * RT tasks are offset by -200. Normal tasks are centered
4617 * around 0, value goes from -16 to +15.
4619 int task_prio(const struct task_struct *p)
4621 return p->prio - MAX_RT_PRIO;
4625 * idle_cpu - is a given CPU idle currently?
4626 * @cpu: the processor in question.
4628 * Return: 1 if the CPU is currently idle. 0 otherwise.
4630 int idle_cpu(int cpu)
4632 struct rq *rq = cpu_rq(cpu);
4634 if (rq->curr != rq->idle)
4635 return 0;
4637 if (rq->nr_running)
4638 return 0;
4640 #ifdef CONFIG_SMP
4641 if (!llist_empty(&rq->wake_list))
4642 return 0;
4643 #endif
4645 return 1;
4649 * available_idle_cpu - is a given CPU idle for enqueuing work.
4650 * @cpu: the CPU in question.
4652 * Return: 1 if the CPU is currently idle. 0 otherwise.
4654 int available_idle_cpu(int cpu)
4656 if (!idle_cpu(cpu))
4657 return 0;
4659 if (vcpu_is_preempted(cpu))
4660 return 0;
4662 return 1;
4666 * idle_task - return the idle task for a given CPU.
4667 * @cpu: the processor in question.
4669 * Return: The idle task for the CPU @cpu.
4671 struct task_struct *idle_task(int cpu)
4673 return cpu_rq(cpu)->idle;
4677 * find_process_by_pid - find a process with a matching PID value.
4678 * @pid: the pid in question.
4680 * The task of @pid, if found. %NULL otherwise.
4682 static struct task_struct *find_process_by_pid(pid_t pid)
4684 return pid ? find_task_by_vpid(pid) : current;
4688 * sched_setparam() passes in -1 for its policy, to let the functions
4689 * it calls know not to change it.
4691 #define SETPARAM_POLICY -1
4693 static void __setscheduler_params(struct task_struct *p,
4694 const struct sched_attr *attr)
4696 int policy = attr->sched_policy;
4698 if (policy == SETPARAM_POLICY)
4699 policy = p->policy;
4701 p->policy = policy;
4703 if (dl_policy(policy))
4704 __setparam_dl(p, attr);
4705 else if (fair_policy(policy))
4706 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4709 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4710 * !rt_policy. Always setting this ensures that things like
4711 * getparam()/getattr() don't report silly values for !rt tasks.
4713 p->rt_priority = attr->sched_priority;
4714 p->normal_prio = normal_prio(p);
4715 set_load_weight(p, true);
4718 /* Actually do priority change: must hold pi & rq lock. */
4719 static void __setscheduler(struct rq *rq, struct task_struct *p,
4720 const struct sched_attr *attr, bool keep_boost)
4723 * If params can't change scheduling class changes aren't allowed
4724 * either.
4726 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4727 return;
4729 __setscheduler_params(p, attr);
4732 * Keep a potential priority boosting if called from
4733 * sched_setscheduler().
4735 p->prio = normal_prio(p);
4736 if (keep_boost)
4737 p->prio = rt_effective_prio(p, p->prio);
4739 if (dl_prio(p->prio))
4740 p->sched_class = &dl_sched_class;
4741 else if (rt_prio(p->prio))
4742 p->sched_class = &rt_sched_class;
4743 else
4744 p->sched_class = &fair_sched_class;
4748 * Check the target process has a UID that matches the current process's:
4750 static bool check_same_owner(struct task_struct *p)
4752 const struct cred *cred = current_cred(), *pcred;
4753 bool match;
4755 rcu_read_lock();
4756 pcred = __task_cred(p);
4757 match = (uid_eq(cred->euid, pcred->euid) ||
4758 uid_eq(cred->euid, pcred->uid));
4759 rcu_read_unlock();
4760 return match;
4763 static int __sched_setscheduler(struct task_struct *p,
4764 const struct sched_attr *attr,
4765 bool user, bool pi)
4767 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4768 MAX_RT_PRIO - 1 - attr->sched_priority;
4769 int retval, oldprio, oldpolicy = -1, queued, running;
4770 int new_effective_prio, policy = attr->sched_policy;
4771 const struct sched_class *prev_class;
4772 struct rq_flags rf;
4773 int reset_on_fork;
4774 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4775 struct rq *rq;
4777 /* The pi code expects interrupts enabled */
4778 BUG_ON(pi && in_interrupt());
4779 recheck:
4780 /* Double check policy once rq lock held: */
4781 if (policy < 0) {
4782 reset_on_fork = p->sched_reset_on_fork;
4783 policy = oldpolicy = p->policy;
4784 } else {
4785 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4787 if (!valid_policy(policy))
4788 return -EINVAL;
4791 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4792 return -EINVAL;
4795 * Valid priorities for SCHED_FIFO and SCHED_RR are
4796 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4797 * SCHED_BATCH and SCHED_IDLE is 0.
4799 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4800 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4801 return -EINVAL;
4802 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4803 (rt_policy(policy) != (attr->sched_priority != 0)))
4804 return -EINVAL;
4807 * Allow unprivileged RT tasks to decrease priority:
4809 if (user && !capable(CAP_SYS_NICE)) {
4810 if (fair_policy(policy)) {
4811 if (attr->sched_nice < task_nice(p) &&
4812 !can_nice(p, attr->sched_nice))
4813 return -EPERM;
4816 if (rt_policy(policy)) {
4817 unsigned long rlim_rtprio =
4818 task_rlimit(p, RLIMIT_RTPRIO);
4820 /* Can't set/change the rt policy: */
4821 if (policy != p->policy && !rlim_rtprio)
4822 return -EPERM;
4824 /* Can't increase priority: */
4825 if (attr->sched_priority > p->rt_priority &&
4826 attr->sched_priority > rlim_rtprio)
4827 return -EPERM;
4831 * Can't set/change SCHED_DEADLINE policy at all for now
4832 * (safest behavior); in the future we would like to allow
4833 * unprivileged DL tasks to increase their relative deadline
4834 * or reduce their runtime (both ways reducing utilization)
4836 if (dl_policy(policy))
4837 return -EPERM;
4840 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4841 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4843 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4844 if (!can_nice(p, task_nice(p)))
4845 return -EPERM;
4848 /* Can't change other user's priorities: */
4849 if (!check_same_owner(p))
4850 return -EPERM;
4852 /* Normal users shall not reset the sched_reset_on_fork flag: */
4853 if (p->sched_reset_on_fork && !reset_on_fork)
4854 return -EPERM;
4857 if (user) {
4858 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4859 return -EINVAL;
4861 retval = security_task_setscheduler(p);
4862 if (retval)
4863 return retval;
4866 /* Update task specific "requested" clamps */
4867 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4868 retval = uclamp_validate(p, attr);
4869 if (retval)
4870 return retval;
4873 if (pi)
4874 cpuset_read_lock();
4877 * Make sure no PI-waiters arrive (or leave) while we are
4878 * changing the priority of the task:
4880 * To be able to change p->policy safely, the appropriate
4881 * runqueue lock must be held.
4883 rq = task_rq_lock(p, &rf);
4884 update_rq_clock(rq);
4887 * Changing the policy of the stop threads its a very bad idea:
4889 if (p == rq->stop) {
4890 retval = -EINVAL;
4891 goto unlock;
4895 * If not changing anything there's no need to proceed further,
4896 * but store a possible modification of reset_on_fork.
4898 if (unlikely(policy == p->policy)) {
4899 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4900 goto change;
4901 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4902 goto change;
4903 if (dl_policy(policy) && dl_param_changed(p, attr))
4904 goto change;
4905 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4906 goto change;
4908 p->sched_reset_on_fork = reset_on_fork;
4909 retval = 0;
4910 goto unlock;
4912 change:
4914 if (user) {
4915 #ifdef CONFIG_RT_GROUP_SCHED
4917 * Do not allow realtime tasks into groups that have no runtime
4918 * assigned.
4920 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4921 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4922 !task_group_is_autogroup(task_group(p))) {
4923 retval = -EPERM;
4924 goto unlock;
4926 #endif
4927 #ifdef CONFIG_SMP
4928 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4929 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4930 cpumask_t *span = rq->rd->span;
4933 * Don't allow tasks with an affinity mask smaller than
4934 * the entire root_domain to become SCHED_DEADLINE. We
4935 * will also fail if there's no bandwidth available.
4937 if (!cpumask_subset(span, p->cpus_ptr) ||
4938 rq->rd->dl_bw.bw == 0) {
4939 retval = -EPERM;
4940 goto unlock;
4943 #endif
4946 /* Re-check policy now with rq lock held: */
4947 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4948 policy = oldpolicy = -1;
4949 task_rq_unlock(rq, p, &rf);
4950 if (pi)
4951 cpuset_read_unlock();
4952 goto recheck;
4956 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4957 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4958 * is available.
4960 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4961 retval = -EBUSY;
4962 goto unlock;
4965 p->sched_reset_on_fork = reset_on_fork;
4966 oldprio = p->prio;
4968 if (pi) {
4970 * Take priority boosted tasks into account. If the new
4971 * effective priority is unchanged, we just store the new
4972 * normal parameters and do not touch the scheduler class and
4973 * the runqueue. This will be done when the task deboost
4974 * itself.
4976 new_effective_prio = rt_effective_prio(p, newprio);
4977 if (new_effective_prio == oldprio)
4978 queue_flags &= ~DEQUEUE_MOVE;
4981 queued = task_on_rq_queued(p);
4982 running = task_current(rq, p);
4983 if (queued)
4984 dequeue_task(rq, p, queue_flags);
4985 if (running)
4986 put_prev_task(rq, p);
4988 prev_class = p->sched_class;
4990 __setscheduler(rq, p, attr, pi);
4991 __setscheduler_uclamp(p, attr);
4993 if (queued) {
4995 * We enqueue to tail when the priority of a task is
4996 * increased (user space view).
4998 if (oldprio < p->prio)
4999 queue_flags |= ENQUEUE_HEAD;
5001 enqueue_task(rq, p, queue_flags);
5003 if (running)
5004 set_next_task(rq, p);
5006 check_class_changed(rq, p, prev_class, oldprio);
5008 /* Avoid rq from going away on us: */
5009 preempt_disable();
5010 task_rq_unlock(rq, p, &rf);
5012 if (pi) {
5013 cpuset_read_unlock();
5014 rt_mutex_adjust_pi(p);
5017 /* Run balance callbacks after we've adjusted the PI chain: */
5018 balance_callback(rq);
5019 preempt_enable();
5021 return 0;
5023 unlock:
5024 task_rq_unlock(rq, p, &rf);
5025 if (pi)
5026 cpuset_read_unlock();
5027 return retval;
5030 static int _sched_setscheduler(struct task_struct *p, int policy,
5031 const struct sched_param *param, bool check)
5033 struct sched_attr attr = {
5034 .sched_policy = policy,
5035 .sched_priority = param->sched_priority,
5036 .sched_nice = PRIO_TO_NICE(p->static_prio),
5039 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5040 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5041 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5042 policy &= ~SCHED_RESET_ON_FORK;
5043 attr.sched_policy = policy;
5046 return __sched_setscheduler(p, &attr, check, true);
5049 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5050 * @p: the task in question.
5051 * @policy: new policy.
5052 * @param: structure containing the new RT priority.
5054 * Return: 0 on success. An error code otherwise.
5056 * NOTE that the task may be already dead.
5058 int sched_setscheduler(struct task_struct *p, int policy,
5059 const struct sched_param *param)
5061 return _sched_setscheduler(p, policy, param, true);
5063 EXPORT_SYMBOL_GPL(sched_setscheduler);
5065 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5067 return __sched_setscheduler(p, attr, true, true);
5069 EXPORT_SYMBOL_GPL(sched_setattr);
5071 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5073 return __sched_setscheduler(p, attr, false, true);
5077 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5078 * @p: the task in question.
5079 * @policy: new policy.
5080 * @param: structure containing the new RT priority.
5082 * Just like sched_setscheduler, only don't bother checking if the
5083 * current context has permission. For example, this is needed in
5084 * stop_machine(): we create temporary high priority worker threads,
5085 * but our caller might not have that capability.
5087 * Return: 0 on success. An error code otherwise.
5089 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5090 const struct sched_param *param)
5092 return _sched_setscheduler(p, policy, param, false);
5094 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5096 static int
5097 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5099 struct sched_param lparam;
5100 struct task_struct *p;
5101 int retval;
5103 if (!param || pid < 0)
5104 return -EINVAL;
5105 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5106 return -EFAULT;
5108 rcu_read_lock();
5109 retval = -ESRCH;
5110 p = find_process_by_pid(pid);
5111 if (likely(p))
5112 get_task_struct(p);
5113 rcu_read_unlock();
5115 if (likely(p)) {
5116 retval = sched_setscheduler(p, policy, &lparam);
5117 put_task_struct(p);
5120 return retval;
5124 * Mimics kernel/events/core.c perf_copy_attr().
5126 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5128 u32 size;
5129 int ret;
5131 /* Zero the full structure, so that a short copy will be nice: */
5132 memset(attr, 0, sizeof(*attr));
5134 ret = get_user(size, &uattr->size);
5135 if (ret)
5136 return ret;
5138 /* ABI compatibility quirk: */
5139 if (!size)
5140 size = SCHED_ATTR_SIZE_VER0;
5141 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5142 goto err_size;
5144 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5145 if (ret) {
5146 if (ret == -E2BIG)
5147 goto err_size;
5148 return ret;
5151 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5152 size < SCHED_ATTR_SIZE_VER1)
5153 return -EINVAL;
5156 * XXX: Do we want to be lenient like existing syscalls; or do we want
5157 * to be strict and return an error on out-of-bounds values?
5159 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5161 return 0;
5163 err_size:
5164 put_user(sizeof(*attr), &uattr->size);
5165 return -E2BIG;
5169 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5170 * @pid: the pid in question.
5171 * @policy: new policy.
5172 * @param: structure containing the new RT priority.
5174 * Return: 0 on success. An error code otherwise.
5176 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5178 if (policy < 0)
5179 return -EINVAL;
5181 return do_sched_setscheduler(pid, policy, param);
5185 * sys_sched_setparam - set/change the RT priority of a thread
5186 * @pid: the pid in question.
5187 * @param: structure containing the new RT priority.
5189 * Return: 0 on success. An error code otherwise.
5191 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5193 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5197 * sys_sched_setattr - same as above, but with extended sched_attr
5198 * @pid: the pid in question.
5199 * @uattr: structure containing the extended parameters.
5200 * @flags: for future extension.
5202 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5203 unsigned int, flags)
5205 struct sched_attr attr;
5206 struct task_struct *p;
5207 int retval;
5209 if (!uattr || pid < 0 || flags)
5210 return -EINVAL;
5212 retval = sched_copy_attr(uattr, &attr);
5213 if (retval)
5214 return retval;
5216 if ((int)attr.sched_policy < 0)
5217 return -EINVAL;
5218 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5219 attr.sched_policy = SETPARAM_POLICY;
5221 rcu_read_lock();
5222 retval = -ESRCH;
5223 p = find_process_by_pid(pid);
5224 if (likely(p))
5225 get_task_struct(p);
5226 rcu_read_unlock();
5228 if (likely(p)) {
5229 retval = sched_setattr(p, &attr);
5230 put_task_struct(p);
5233 return retval;
5237 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5238 * @pid: the pid in question.
5240 * Return: On success, the policy of the thread. Otherwise, a negative error
5241 * code.
5243 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5245 struct task_struct *p;
5246 int retval;
5248 if (pid < 0)
5249 return -EINVAL;
5251 retval = -ESRCH;
5252 rcu_read_lock();
5253 p = find_process_by_pid(pid);
5254 if (p) {
5255 retval = security_task_getscheduler(p);
5256 if (!retval)
5257 retval = p->policy
5258 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5260 rcu_read_unlock();
5261 return retval;
5265 * sys_sched_getparam - get the RT priority of a thread
5266 * @pid: the pid in question.
5267 * @param: structure containing the RT priority.
5269 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5270 * code.
5272 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5274 struct sched_param lp = { .sched_priority = 0 };
5275 struct task_struct *p;
5276 int retval;
5278 if (!param || pid < 0)
5279 return -EINVAL;
5281 rcu_read_lock();
5282 p = find_process_by_pid(pid);
5283 retval = -ESRCH;
5284 if (!p)
5285 goto out_unlock;
5287 retval = security_task_getscheduler(p);
5288 if (retval)
5289 goto out_unlock;
5291 if (task_has_rt_policy(p))
5292 lp.sched_priority = p->rt_priority;
5293 rcu_read_unlock();
5296 * This one might sleep, we cannot do it with a spinlock held ...
5298 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5300 return retval;
5302 out_unlock:
5303 rcu_read_unlock();
5304 return retval;
5308 * Copy the kernel size attribute structure (which might be larger
5309 * than what user-space knows about) to user-space.
5311 * Note that all cases are valid: user-space buffer can be larger or
5312 * smaller than the kernel-space buffer. The usual case is that both
5313 * have the same size.
5315 static int
5316 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5317 struct sched_attr *kattr,
5318 unsigned int usize)
5320 unsigned int ksize = sizeof(*kattr);
5322 if (!access_ok(uattr, usize))
5323 return -EFAULT;
5326 * sched_getattr() ABI forwards and backwards compatibility:
5328 * If usize == ksize then we just copy everything to user-space and all is good.
5330 * If usize < ksize then we only copy as much as user-space has space for,
5331 * this keeps ABI compatibility as well. We skip the rest.
5333 * If usize > ksize then user-space is using a newer version of the ABI,
5334 * which part the kernel doesn't know about. Just ignore it - tooling can
5335 * detect the kernel's knowledge of attributes from the attr->size value
5336 * which is set to ksize in this case.
5338 kattr->size = min(usize, ksize);
5340 if (copy_to_user(uattr, kattr, kattr->size))
5341 return -EFAULT;
5343 return 0;
5347 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5348 * @pid: the pid in question.
5349 * @uattr: structure containing the extended parameters.
5350 * @usize: sizeof(attr) for fwd/bwd comp.
5351 * @flags: for future extension.
5353 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5354 unsigned int, usize, unsigned int, flags)
5356 struct sched_attr kattr = { };
5357 struct task_struct *p;
5358 int retval;
5360 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5361 usize < SCHED_ATTR_SIZE_VER0 || flags)
5362 return -EINVAL;
5364 rcu_read_lock();
5365 p = find_process_by_pid(pid);
5366 retval = -ESRCH;
5367 if (!p)
5368 goto out_unlock;
5370 retval = security_task_getscheduler(p);
5371 if (retval)
5372 goto out_unlock;
5374 kattr.sched_policy = p->policy;
5375 if (p->sched_reset_on_fork)
5376 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5377 if (task_has_dl_policy(p))
5378 __getparam_dl(p, &kattr);
5379 else if (task_has_rt_policy(p))
5380 kattr.sched_priority = p->rt_priority;
5381 else
5382 kattr.sched_nice = task_nice(p);
5384 #ifdef CONFIG_UCLAMP_TASK
5385 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5386 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5387 #endif
5389 rcu_read_unlock();
5391 return sched_attr_copy_to_user(uattr, &kattr, usize);
5393 out_unlock:
5394 rcu_read_unlock();
5395 return retval;
5398 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5400 cpumask_var_t cpus_allowed, new_mask;
5401 struct task_struct *p;
5402 int retval;
5404 rcu_read_lock();
5406 p = find_process_by_pid(pid);
5407 if (!p) {
5408 rcu_read_unlock();
5409 return -ESRCH;
5412 /* Prevent p going away */
5413 get_task_struct(p);
5414 rcu_read_unlock();
5416 if (p->flags & PF_NO_SETAFFINITY) {
5417 retval = -EINVAL;
5418 goto out_put_task;
5420 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5421 retval = -ENOMEM;
5422 goto out_put_task;
5424 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5425 retval = -ENOMEM;
5426 goto out_free_cpus_allowed;
5428 retval = -EPERM;
5429 if (!check_same_owner(p)) {
5430 rcu_read_lock();
5431 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5432 rcu_read_unlock();
5433 goto out_free_new_mask;
5435 rcu_read_unlock();
5438 retval = security_task_setscheduler(p);
5439 if (retval)
5440 goto out_free_new_mask;
5443 cpuset_cpus_allowed(p, cpus_allowed);
5444 cpumask_and(new_mask, in_mask, cpus_allowed);
5447 * Since bandwidth control happens on root_domain basis,
5448 * if admission test is enabled, we only admit -deadline
5449 * tasks allowed to run on all the CPUs in the task's
5450 * root_domain.
5452 #ifdef CONFIG_SMP
5453 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5454 rcu_read_lock();
5455 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5456 retval = -EBUSY;
5457 rcu_read_unlock();
5458 goto out_free_new_mask;
5460 rcu_read_unlock();
5462 #endif
5463 again:
5464 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5466 if (!retval) {
5467 cpuset_cpus_allowed(p, cpus_allowed);
5468 if (!cpumask_subset(new_mask, cpus_allowed)) {
5470 * We must have raced with a concurrent cpuset
5471 * update. Just reset the cpus_allowed to the
5472 * cpuset's cpus_allowed
5474 cpumask_copy(new_mask, cpus_allowed);
5475 goto again;
5478 out_free_new_mask:
5479 free_cpumask_var(new_mask);
5480 out_free_cpus_allowed:
5481 free_cpumask_var(cpus_allowed);
5482 out_put_task:
5483 put_task_struct(p);
5484 return retval;
5487 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5488 struct cpumask *new_mask)
5490 if (len < cpumask_size())
5491 cpumask_clear(new_mask);
5492 else if (len > cpumask_size())
5493 len = cpumask_size();
5495 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5499 * sys_sched_setaffinity - set the CPU affinity of a process
5500 * @pid: pid of the process
5501 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5502 * @user_mask_ptr: user-space pointer to the new CPU mask
5504 * Return: 0 on success. An error code otherwise.
5506 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5507 unsigned long __user *, user_mask_ptr)
5509 cpumask_var_t new_mask;
5510 int retval;
5512 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5513 return -ENOMEM;
5515 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5516 if (retval == 0)
5517 retval = sched_setaffinity(pid, new_mask);
5518 free_cpumask_var(new_mask);
5519 return retval;
5522 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5524 struct task_struct *p;
5525 unsigned long flags;
5526 int retval;
5528 rcu_read_lock();
5530 retval = -ESRCH;
5531 p = find_process_by_pid(pid);
5532 if (!p)
5533 goto out_unlock;
5535 retval = security_task_getscheduler(p);
5536 if (retval)
5537 goto out_unlock;
5539 raw_spin_lock_irqsave(&p->pi_lock, flags);
5540 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5541 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5543 out_unlock:
5544 rcu_read_unlock();
5546 return retval;
5550 * sys_sched_getaffinity - get the CPU affinity of a process
5551 * @pid: pid of the process
5552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5553 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5555 * Return: size of CPU mask copied to user_mask_ptr on success. An
5556 * error code otherwise.
5558 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5559 unsigned long __user *, user_mask_ptr)
5561 int ret;
5562 cpumask_var_t mask;
5564 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5565 return -EINVAL;
5566 if (len & (sizeof(unsigned long)-1))
5567 return -EINVAL;
5569 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5570 return -ENOMEM;
5572 ret = sched_getaffinity(pid, mask);
5573 if (ret == 0) {
5574 unsigned int retlen = min(len, cpumask_size());
5576 if (copy_to_user(user_mask_ptr, mask, retlen))
5577 ret = -EFAULT;
5578 else
5579 ret = retlen;
5581 free_cpumask_var(mask);
5583 return ret;
5587 * sys_sched_yield - yield the current processor to other threads.
5589 * This function yields the current CPU to other tasks. If there are no
5590 * other threads running on this CPU then this function will return.
5592 * Return: 0.
5594 static void do_sched_yield(void)
5596 struct rq_flags rf;
5597 struct rq *rq;
5599 rq = this_rq_lock_irq(&rf);
5601 schedstat_inc(rq->yld_count);
5602 current->sched_class->yield_task(rq);
5605 * Since we are going to call schedule() anyway, there's
5606 * no need to preempt or enable interrupts:
5608 preempt_disable();
5609 rq_unlock(rq, &rf);
5610 sched_preempt_enable_no_resched();
5612 schedule();
5615 SYSCALL_DEFINE0(sched_yield)
5617 do_sched_yield();
5618 return 0;
5621 #ifndef CONFIG_PREEMPTION
5622 int __sched _cond_resched(void)
5624 if (should_resched(0)) {
5625 preempt_schedule_common();
5626 return 1;
5628 rcu_all_qs();
5629 return 0;
5631 EXPORT_SYMBOL(_cond_resched);
5632 #endif
5635 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5636 * call schedule, and on return reacquire the lock.
5638 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5639 * operations here to prevent schedule() from being called twice (once via
5640 * spin_unlock(), once by hand).
5642 int __cond_resched_lock(spinlock_t *lock)
5644 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5645 int ret = 0;
5647 lockdep_assert_held(lock);
5649 if (spin_needbreak(lock) || resched) {
5650 spin_unlock(lock);
5651 if (resched)
5652 preempt_schedule_common();
5653 else
5654 cpu_relax();
5655 ret = 1;
5656 spin_lock(lock);
5658 return ret;
5660 EXPORT_SYMBOL(__cond_resched_lock);
5663 * yield - yield the current processor to other threads.
5665 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5667 * The scheduler is at all times free to pick the calling task as the most
5668 * eligible task to run, if removing the yield() call from your code breaks
5669 * it, its already broken.
5671 * Typical broken usage is:
5673 * while (!event)
5674 * yield();
5676 * where one assumes that yield() will let 'the other' process run that will
5677 * make event true. If the current task is a SCHED_FIFO task that will never
5678 * happen. Never use yield() as a progress guarantee!!
5680 * If you want to use yield() to wait for something, use wait_event().
5681 * If you want to use yield() to be 'nice' for others, use cond_resched().
5682 * If you still want to use yield(), do not!
5684 void __sched yield(void)
5686 set_current_state(TASK_RUNNING);
5687 do_sched_yield();
5689 EXPORT_SYMBOL(yield);
5692 * yield_to - yield the current processor to another thread in
5693 * your thread group, or accelerate that thread toward the
5694 * processor it's on.
5695 * @p: target task
5696 * @preempt: whether task preemption is allowed or not
5698 * It's the caller's job to ensure that the target task struct
5699 * can't go away on us before we can do any checks.
5701 * Return:
5702 * true (>0) if we indeed boosted the target task.
5703 * false (0) if we failed to boost the target.
5704 * -ESRCH if there's no task to yield to.
5706 int __sched yield_to(struct task_struct *p, bool preempt)
5708 struct task_struct *curr = current;
5709 struct rq *rq, *p_rq;
5710 unsigned long flags;
5711 int yielded = 0;
5713 local_irq_save(flags);
5714 rq = this_rq();
5716 again:
5717 p_rq = task_rq(p);
5719 * If we're the only runnable task on the rq and target rq also
5720 * has only one task, there's absolutely no point in yielding.
5722 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5723 yielded = -ESRCH;
5724 goto out_irq;
5727 double_rq_lock(rq, p_rq);
5728 if (task_rq(p) != p_rq) {
5729 double_rq_unlock(rq, p_rq);
5730 goto again;
5733 if (!curr->sched_class->yield_to_task)
5734 goto out_unlock;
5736 if (curr->sched_class != p->sched_class)
5737 goto out_unlock;
5739 if (task_running(p_rq, p) || p->state)
5740 goto out_unlock;
5742 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5743 if (yielded) {
5744 schedstat_inc(rq->yld_count);
5746 * Make p's CPU reschedule; pick_next_entity takes care of
5747 * fairness.
5749 if (preempt && rq != p_rq)
5750 resched_curr(p_rq);
5753 out_unlock:
5754 double_rq_unlock(rq, p_rq);
5755 out_irq:
5756 local_irq_restore(flags);
5758 if (yielded > 0)
5759 schedule();
5761 return yielded;
5763 EXPORT_SYMBOL_GPL(yield_to);
5765 int io_schedule_prepare(void)
5767 int old_iowait = current->in_iowait;
5769 current->in_iowait = 1;
5770 blk_schedule_flush_plug(current);
5772 return old_iowait;
5775 void io_schedule_finish(int token)
5777 current->in_iowait = token;
5781 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5782 * that process accounting knows that this is a task in IO wait state.
5784 long __sched io_schedule_timeout(long timeout)
5786 int token;
5787 long ret;
5789 token = io_schedule_prepare();
5790 ret = schedule_timeout(timeout);
5791 io_schedule_finish(token);
5793 return ret;
5795 EXPORT_SYMBOL(io_schedule_timeout);
5797 void __sched io_schedule(void)
5799 int token;
5801 token = io_schedule_prepare();
5802 schedule();
5803 io_schedule_finish(token);
5805 EXPORT_SYMBOL(io_schedule);
5808 * sys_sched_get_priority_max - return maximum RT priority.
5809 * @policy: scheduling class.
5811 * Return: On success, this syscall returns the maximum
5812 * rt_priority that can be used by a given scheduling class.
5813 * On failure, a negative error code is returned.
5815 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5817 int ret = -EINVAL;
5819 switch (policy) {
5820 case SCHED_FIFO:
5821 case SCHED_RR:
5822 ret = MAX_USER_RT_PRIO-1;
5823 break;
5824 case SCHED_DEADLINE:
5825 case SCHED_NORMAL:
5826 case SCHED_BATCH:
5827 case SCHED_IDLE:
5828 ret = 0;
5829 break;
5831 return ret;
5835 * sys_sched_get_priority_min - return minimum RT priority.
5836 * @policy: scheduling class.
5838 * Return: On success, this syscall returns the minimum
5839 * rt_priority that can be used by a given scheduling class.
5840 * On failure, a negative error code is returned.
5842 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5844 int ret = -EINVAL;
5846 switch (policy) {
5847 case SCHED_FIFO:
5848 case SCHED_RR:
5849 ret = 1;
5850 break;
5851 case SCHED_DEADLINE:
5852 case SCHED_NORMAL:
5853 case SCHED_BATCH:
5854 case SCHED_IDLE:
5855 ret = 0;
5857 return ret;
5860 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5862 struct task_struct *p;
5863 unsigned int time_slice;
5864 struct rq_flags rf;
5865 struct rq *rq;
5866 int retval;
5868 if (pid < 0)
5869 return -EINVAL;
5871 retval = -ESRCH;
5872 rcu_read_lock();
5873 p = find_process_by_pid(pid);
5874 if (!p)
5875 goto out_unlock;
5877 retval = security_task_getscheduler(p);
5878 if (retval)
5879 goto out_unlock;
5881 rq = task_rq_lock(p, &rf);
5882 time_slice = 0;
5883 if (p->sched_class->get_rr_interval)
5884 time_slice = p->sched_class->get_rr_interval(rq, p);
5885 task_rq_unlock(rq, p, &rf);
5887 rcu_read_unlock();
5888 jiffies_to_timespec64(time_slice, t);
5889 return 0;
5891 out_unlock:
5892 rcu_read_unlock();
5893 return retval;
5897 * sys_sched_rr_get_interval - return the default timeslice of a process.
5898 * @pid: pid of the process.
5899 * @interval: userspace pointer to the timeslice value.
5901 * this syscall writes the default timeslice value of a given process
5902 * into the user-space timespec buffer. A value of '0' means infinity.
5904 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5905 * an error code.
5907 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5908 struct __kernel_timespec __user *, interval)
5910 struct timespec64 t;
5911 int retval = sched_rr_get_interval(pid, &t);
5913 if (retval == 0)
5914 retval = put_timespec64(&t, interval);
5916 return retval;
5919 #ifdef CONFIG_COMPAT_32BIT_TIME
5920 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5921 struct old_timespec32 __user *, interval)
5923 struct timespec64 t;
5924 int retval = sched_rr_get_interval(pid, &t);
5926 if (retval == 0)
5927 retval = put_old_timespec32(&t, interval);
5928 return retval;
5930 #endif
5932 void sched_show_task(struct task_struct *p)
5934 unsigned long free = 0;
5935 int ppid;
5937 if (!try_get_task_stack(p))
5938 return;
5940 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5942 if (p->state == TASK_RUNNING)
5943 printk(KERN_CONT " running task ");
5944 #ifdef CONFIG_DEBUG_STACK_USAGE
5945 free = stack_not_used(p);
5946 #endif
5947 ppid = 0;
5948 rcu_read_lock();
5949 if (pid_alive(p))
5950 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5951 rcu_read_unlock();
5952 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5953 task_pid_nr(p), ppid,
5954 (unsigned long)task_thread_info(p)->flags);
5956 print_worker_info(KERN_INFO, p);
5957 show_stack(p, NULL);
5958 put_task_stack(p);
5960 EXPORT_SYMBOL_GPL(sched_show_task);
5962 static inline bool
5963 state_filter_match(unsigned long state_filter, struct task_struct *p)
5965 /* no filter, everything matches */
5966 if (!state_filter)
5967 return true;
5969 /* filter, but doesn't match */
5970 if (!(p->state & state_filter))
5971 return false;
5974 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5975 * TASK_KILLABLE).
5977 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5978 return false;
5980 return true;
5984 void show_state_filter(unsigned long state_filter)
5986 struct task_struct *g, *p;
5988 #if BITS_PER_LONG == 32
5989 printk(KERN_INFO
5990 " task PC stack pid father\n");
5991 #else
5992 printk(KERN_INFO
5993 " task PC stack pid father\n");
5994 #endif
5995 rcu_read_lock();
5996 for_each_process_thread(g, p) {
5998 * reset the NMI-timeout, listing all files on a slow
5999 * console might take a lot of time:
6000 * Also, reset softlockup watchdogs on all CPUs, because
6001 * another CPU might be blocked waiting for us to process
6002 * an IPI.
6004 touch_nmi_watchdog();
6005 touch_all_softlockup_watchdogs();
6006 if (state_filter_match(state_filter, p))
6007 sched_show_task(p);
6010 #ifdef CONFIG_SCHED_DEBUG
6011 if (!state_filter)
6012 sysrq_sched_debug_show();
6013 #endif
6014 rcu_read_unlock();
6016 * Only show locks if all tasks are dumped:
6018 if (!state_filter)
6019 debug_show_all_locks();
6023 * init_idle - set up an idle thread for a given CPU
6024 * @idle: task in question
6025 * @cpu: CPU the idle task belongs to
6027 * NOTE: this function does not set the idle thread's NEED_RESCHED
6028 * flag, to make booting more robust.
6030 void init_idle(struct task_struct *idle, int cpu)
6032 struct rq *rq = cpu_rq(cpu);
6033 unsigned long flags;
6035 __sched_fork(0, idle);
6037 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6038 raw_spin_lock(&rq->lock);
6040 idle->state = TASK_RUNNING;
6041 idle->se.exec_start = sched_clock();
6042 idle->flags |= PF_IDLE;
6044 kasan_unpoison_task_stack(idle);
6046 #ifdef CONFIG_SMP
6048 * Its possible that init_idle() gets called multiple times on a task,
6049 * in that case do_set_cpus_allowed() will not do the right thing.
6051 * And since this is boot we can forgo the serialization.
6053 set_cpus_allowed_common(idle, cpumask_of(cpu));
6054 #endif
6056 * We're having a chicken and egg problem, even though we are
6057 * holding rq->lock, the CPU isn't yet set to this CPU so the
6058 * lockdep check in task_group() will fail.
6060 * Similar case to sched_fork(). / Alternatively we could
6061 * use task_rq_lock() here and obtain the other rq->lock.
6063 * Silence PROVE_RCU
6065 rcu_read_lock();
6066 __set_task_cpu(idle, cpu);
6067 rcu_read_unlock();
6069 rq->idle = idle;
6070 rcu_assign_pointer(rq->curr, idle);
6071 idle->on_rq = TASK_ON_RQ_QUEUED;
6072 #ifdef CONFIG_SMP
6073 idle->on_cpu = 1;
6074 #endif
6075 raw_spin_unlock(&rq->lock);
6076 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6078 /* Set the preempt count _outside_ the spinlocks! */
6079 init_idle_preempt_count(idle, cpu);
6082 * The idle tasks have their own, simple scheduling class:
6084 idle->sched_class = &idle_sched_class;
6085 ftrace_graph_init_idle_task(idle, cpu);
6086 vtime_init_idle(idle, cpu);
6087 #ifdef CONFIG_SMP
6088 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6089 #endif
6092 #ifdef CONFIG_SMP
6094 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6095 const struct cpumask *trial)
6097 int ret = 1;
6099 if (!cpumask_weight(cur))
6100 return ret;
6102 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6104 return ret;
6107 int task_can_attach(struct task_struct *p,
6108 const struct cpumask *cs_cpus_allowed)
6110 int ret = 0;
6113 * Kthreads which disallow setaffinity shouldn't be moved
6114 * to a new cpuset; we don't want to change their CPU
6115 * affinity and isolating such threads by their set of
6116 * allowed nodes is unnecessary. Thus, cpusets are not
6117 * applicable for such threads. This prevents checking for
6118 * success of set_cpus_allowed_ptr() on all attached tasks
6119 * before cpus_mask may be changed.
6121 if (p->flags & PF_NO_SETAFFINITY) {
6122 ret = -EINVAL;
6123 goto out;
6126 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6127 cs_cpus_allowed))
6128 ret = dl_task_can_attach(p, cs_cpus_allowed);
6130 out:
6131 return ret;
6134 bool sched_smp_initialized __read_mostly;
6136 #ifdef CONFIG_NUMA_BALANCING
6137 /* Migrate current task p to target_cpu */
6138 int migrate_task_to(struct task_struct *p, int target_cpu)
6140 struct migration_arg arg = { p, target_cpu };
6141 int curr_cpu = task_cpu(p);
6143 if (curr_cpu == target_cpu)
6144 return 0;
6146 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6147 return -EINVAL;
6149 /* TODO: This is not properly updating schedstats */
6151 trace_sched_move_numa(p, curr_cpu, target_cpu);
6152 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6156 * Requeue a task on a given node and accurately track the number of NUMA
6157 * tasks on the runqueues
6159 void sched_setnuma(struct task_struct *p, int nid)
6161 bool queued, running;
6162 struct rq_flags rf;
6163 struct rq *rq;
6165 rq = task_rq_lock(p, &rf);
6166 queued = task_on_rq_queued(p);
6167 running = task_current(rq, p);
6169 if (queued)
6170 dequeue_task(rq, p, DEQUEUE_SAVE);
6171 if (running)
6172 put_prev_task(rq, p);
6174 p->numa_preferred_nid = nid;
6176 if (queued)
6177 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6178 if (running)
6179 set_next_task(rq, p);
6180 task_rq_unlock(rq, p, &rf);
6182 #endif /* CONFIG_NUMA_BALANCING */
6184 #ifdef CONFIG_HOTPLUG_CPU
6186 * Ensure that the idle task is using init_mm right before its CPU goes
6187 * offline.
6189 void idle_task_exit(void)
6191 struct mm_struct *mm = current->active_mm;
6193 BUG_ON(cpu_online(smp_processor_id()));
6194 BUG_ON(current != this_rq()->idle);
6196 if (mm != &init_mm) {
6197 switch_mm(mm, &init_mm, current);
6198 finish_arch_post_lock_switch();
6201 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6205 * Since this CPU is going 'away' for a while, fold any nr_active delta
6206 * we might have. Assumes we're called after migrate_tasks() so that the
6207 * nr_active count is stable. We need to take the teardown thread which
6208 * is calling this into account, so we hand in adjust = 1 to the load
6209 * calculation.
6211 * Also see the comment "Global load-average calculations".
6213 static void calc_load_migrate(struct rq *rq)
6215 long delta = calc_load_fold_active(rq, 1);
6216 if (delta)
6217 atomic_long_add(delta, &calc_load_tasks);
6220 static struct task_struct *__pick_migrate_task(struct rq *rq)
6222 const struct sched_class *class;
6223 struct task_struct *next;
6225 for_each_class(class) {
6226 next = class->pick_next_task(rq);
6227 if (next) {
6228 next->sched_class->put_prev_task(rq, next);
6229 return next;
6233 /* The idle class should always have a runnable task */
6234 BUG();
6238 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6239 * try_to_wake_up()->select_task_rq().
6241 * Called with rq->lock held even though we'er in stop_machine() and
6242 * there's no concurrency possible, we hold the required locks anyway
6243 * because of lock validation efforts.
6245 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6247 struct rq *rq = dead_rq;
6248 struct task_struct *next, *stop = rq->stop;
6249 struct rq_flags orf = *rf;
6250 int dest_cpu;
6253 * Fudge the rq selection such that the below task selection loop
6254 * doesn't get stuck on the currently eligible stop task.
6256 * We're currently inside stop_machine() and the rq is either stuck
6257 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6258 * either way we should never end up calling schedule() until we're
6259 * done here.
6261 rq->stop = NULL;
6264 * put_prev_task() and pick_next_task() sched
6265 * class method both need to have an up-to-date
6266 * value of rq->clock[_task]
6268 update_rq_clock(rq);
6270 for (;;) {
6272 * There's this thread running, bail when that's the only
6273 * remaining thread:
6275 if (rq->nr_running == 1)
6276 break;
6278 next = __pick_migrate_task(rq);
6281 * Rules for changing task_struct::cpus_mask are holding
6282 * both pi_lock and rq->lock, such that holding either
6283 * stabilizes the mask.
6285 * Drop rq->lock is not quite as disastrous as it usually is
6286 * because !cpu_active at this point, which means load-balance
6287 * will not interfere. Also, stop-machine.
6289 rq_unlock(rq, rf);
6290 raw_spin_lock(&next->pi_lock);
6291 rq_relock(rq, rf);
6294 * Since we're inside stop-machine, _nothing_ should have
6295 * changed the task, WARN if weird stuff happened, because in
6296 * that case the above rq->lock drop is a fail too.
6298 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6299 raw_spin_unlock(&next->pi_lock);
6300 continue;
6303 /* Find suitable destination for @next, with force if needed. */
6304 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6305 rq = __migrate_task(rq, rf, next, dest_cpu);
6306 if (rq != dead_rq) {
6307 rq_unlock(rq, rf);
6308 rq = dead_rq;
6309 *rf = orf;
6310 rq_relock(rq, rf);
6312 raw_spin_unlock(&next->pi_lock);
6315 rq->stop = stop;
6317 #endif /* CONFIG_HOTPLUG_CPU */
6319 void set_rq_online(struct rq *rq)
6321 if (!rq->online) {
6322 const struct sched_class *class;
6324 cpumask_set_cpu(rq->cpu, rq->rd->online);
6325 rq->online = 1;
6327 for_each_class(class) {
6328 if (class->rq_online)
6329 class->rq_online(rq);
6334 void set_rq_offline(struct rq *rq)
6336 if (rq->online) {
6337 const struct sched_class *class;
6339 for_each_class(class) {
6340 if (class->rq_offline)
6341 class->rq_offline(rq);
6344 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6345 rq->online = 0;
6350 * used to mark begin/end of suspend/resume:
6352 static int num_cpus_frozen;
6355 * Update cpusets according to cpu_active mask. If cpusets are
6356 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6357 * around partition_sched_domains().
6359 * If we come here as part of a suspend/resume, don't touch cpusets because we
6360 * want to restore it back to its original state upon resume anyway.
6362 static void cpuset_cpu_active(void)
6364 if (cpuhp_tasks_frozen) {
6366 * num_cpus_frozen tracks how many CPUs are involved in suspend
6367 * resume sequence. As long as this is not the last online
6368 * operation in the resume sequence, just build a single sched
6369 * domain, ignoring cpusets.
6371 partition_sched_domains(1, NULL, NULL);
6372 if (--num_cpus_frozen)
6373 return;
6375 * This is the last CPU online operation. So fall through and
6376 * restore the original sched domains by considering the
6377 * cpuset configurations.
6379 cpuset_force_rebuild();
6381 cpuset_update_active_cpus();
6384 static int cpuset_cpu_inactive(unsigned int cpu)
6386 if (!cpuhp_tasks_frozen) {
6387 if (dl_cpu_busy(cpu))
6388 return -EBUSY;
6389 cpuset_update_active_cpus();
6390 } else {
6391 num_cpus_frozen++;
6392 partition_sched_domains(1, NULL, NULL);
6394 return 0;
6397 int sched_cpu_activate(unsigned int cpu)
6399 struct rq *rq = cpu_rq(cpu);
6400 struct rq_flags rf;
6402 #ifdef CONFIG_SCHED_SMT
6404 * When going up, increment the number of cores with SMT present.
6406 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6407 static_branch_inc_cpuslocked(&sched_smt_present);
6408 #endif
6409 set_cpu_active(cpu, true);
6411 if (sched_smp_initialized) {
6412 sched_domains_numa_masks_set(cpu);
6413 cpuset_cpu_active();
6417 * Put the rq online, if not already. This happens:
6419 * 1) In the early boot process, because we build the real domains
6420 * after all CPUs have been brought up.
6422 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6423 * domains.
6425 rq_lock_irqsave(rq, &rf);
6426 if (rq->rd) {
6427 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6428 set_rq_online(rq);
6430 rq_unlock_irqrestore(rq, &rf);
6432 return 0;
6435 int sched_cpu_deactivate(unsigned int cpu)
6437 int ret;
6439 set_cpu_active(cpu, false);
6441 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6442 * users of this state to go away such that all new such users will
6443 * observe it.
6445 * Do sync before park smpboot threads to take care the rcu boost case.
6447 synchronize_rcu();
6449 #ifdef CONFIG_SCHED_SMT
6451 * When going down, decrement the number of cores with SMT present.
6453 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6454 static_branch_dec_cpuslocked(&sched_smt_present);
6455 #endif
6457 if (!sched_smp_initialized)
6458 return 0;
6460 ret = cpuset_cpu_inactive(cpu);
6461 if (ret) {
6462 set_cpu_active(cpu, true);
6463 return ret;
6465 sched_domains_numa_masks_clear(cpu);
6466 return 0;
6469 static void sched_rq_cpu_starting(unsigned int cpu)
6471 struct rq *rq = cpu_rq(cpu);
6473 rq->calc_load_update = calc_load_update;
6474 update_max_interval();
6477 int sched_cpu_starting(unsigned int cpu)
6479 sched_rq_cpu_starting(cpu);
6480 sched_tick_start(cpu);
6481 return 0;
6484 #ifdef CONFIG_HOTPLUG_CPU
6485 int sched_cpu_dying(unsigned int cpu)
6487 struct rq *rq = cpu_rq(cpu);
6488 struct rq_flags rf;
6490 /* Handle pending wakeups and then migrate everything off */
6491 sched_ttwu_pending();
6492 sched_tick_stop(cpu);
6494 rq_lock_irqsave(rq, &rf);
6495 if (rq->rd) {
6496 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6497 set_rq_offline(rq);
6499 migrate_tasks(rq, &rf);
6500 BUG_ON(rq->nr_running != 1);
6501 rq_unlock_irqrestore(rq, &rf);
6503 calc_load_migrate(rq);
6504 update_max_interval();
6505 nohz_balance_exit_idle(rq);
6506 hrtick_clear(rq);
6507 return 0;
6509 #endif
6511 void __init sched_init_smp(void)
6513 sched_init_numa();
6516 * There's no userspace yet to cause hotplug operations; hence all the
6517 * CPU masks are stable and all blatant races in the below code cannot
6518 * happen.
6520 mutex_lock(&sched_domains_mutex);
6521 sched_init_domains(cpu_active_mask);
6522 mutex_unlock(&sched_domains_mutex);
6524 /* Move init over to a non-isolated CPU */
6525 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6526 BUG();
6527 sched_init_granularity();
6529 init_sched_rt_class();
6530 init_sched_dl_class();
6532 sched_smp_initialized = true;
6535 static int __init migration_init(void)
6537 sched_cpu_starting(smp_processor_id());
6538 return 0;
6540 early_initcall(migration_init);
6542 #else
6543 void __init sched_init_smp(void)
6545 sched_init_granularity();
6547 #endif /* CONFIG_SMP */
6549 int in_sched_functions(unsigned long addr)
6551 return in_lock_functions(addr) ||
6552 (addr >= (unsigned long)__sched_text_start
6553 && addr < (unsigned long)__sched_text_end);
6556 #ifdef CONFIG_CGROUP_SCHED
6558 * Default task group.
6559 * Every task in system belongs to this group at bootup.
6561 struct task_group root_task_group;
6562 LIST_HEAD(task_groups);
6564 /* Cacheline aligned slab cache for task_group */
6565 static struct kmem_cache *task_group_cache __read_mostly;
6566 #endif
6568 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6569 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6571 void __init sched_init(void)
6573 unsigned long ptr = 0;
6574 int i;
6576 wait_bit_init();
6578 #ifdef CONFIG_FAIR_GROUP_SCHED
6579 ptr += 2 * nr_cpu_ids * sizeof(void **);
6580 #endif
6581 #ifdef CONFIG_RT_GROUP_SCHED
6582 ptr += 2 * nr_cpu_ids * sizeof(void **);
6583 #endif
6584 if (ptr) {
6585 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6587 #ifdef CONFIG_FAIR_GROUP_SCHED
6588 root_task_group.se = (struct sched_entity **)ptr;
6589 ptr += nr_cpu_ids * sizeof(void **);
6591 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6592 ptr += nr_cpu_ids * sizeof(void **);
6594 #endif /* CONFIG_FAIR_GROUP_SCHED */
6595 #ifdef CONFIG_RT_GROUP_SCHED
6596 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6597 ptr += nr_cpu_ids * sizeof(void **);
6599 root_task_group.rt_rq = (struct rt_rq **)ptr;
6600 ptr += nr_cpu_ids * sizeof(void **);
6602 #endif /* CONFIG_RT_GROUP_SCHED */
6604 #ifdef CONFIG_CPUMASK_OFFSTACK
6605 for_each_possible_cpu(i) {
6606 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6607 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6608 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6609 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6611 #endif /* CONFIG_CPUMASK_OFFSTACK */
6613 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6614 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6616 #ifdef CONFIG_SMP
6617 init_defrootdomain();
6618 #endif
6620 #ifdef CONFIG_RT_GROUP_SCHED
6621 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6622 global_rt_period(), global_rt_runtime());
6623 #endif /* CONFIG_RT_GROUP_SCHED */
6625 #ifdef CONFIG_CGROUP_SCHED
6626 task_group_cache = KMEM_CACHE(task_group, 0);
6628 list_add(&root_task_group.list, &task_groups);
6629 INIT_LIST_HEAD(&root_task_group.children);
6630 INIT_LIST_HEAD(&root_task_group.siblings);
6631 autogroup_init(&init_task);
6632 #endif /* CONFIG_CGROUP_SCHED */
6634 for_each_possible_cpu(i) {
6635 struct rq *rq;
6637 rq = cpu_rq(i);
6638 raw_spin_lock_init(&rq->lock);
6639 rq->nr_running = 0;
6640 rq->calc_load_active = 0;
6641 rq->calc_load_update = jiffies + LOAD_FREQ;
6642 init_cfs_rq(&rq->cfs);
6643 init_rt_rq(&rq->rt);
6644 init_dl_rq(&rq->dl);
6645 #ifdef CONFIG_FAIR_GROUP_SCHED
6646 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6647 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6648 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6650 * How much CPU bandwidth does root_task_group get?
6652 * In case of task-groups formed thr' the cgroup filesystem, it
6653 * gets 100% of the CPU resources in the system. This overall
6654 * system CPU resource is divided among the tasks of
6655 * root_task_group and its child task-groups in a fair manner,
6656 * based on each entity's (task or task-group's) weight
6657 * (se->load.weight).
6659 * In other words, if root_task_group has 10 tasks of weight
6660 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6661 * then A0's share of the CPU resource is:
6663 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6665 * We achieve this by letting root_task_group's tasks sit
6666 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6668 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6669 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6670 #endif /* CONFIG_FAIR_GROUP_SCHED */
6672 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6673 #ifdef CONFIG_RT_GROUP_SCHED
6674 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6675 #endif
6676 #ifdef CONFIG_SMP
6677 rq->sd = NULL;
6678 rq->rd = NULL;
6679 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6680 rq->balance_callback = NULL;
6681 rq->active_balance = 0;
6682 rq->next_balance = jiffies;
6683 rq->push_cpu = 0;
6684 rq->cpu = i;
6685 rq->online = 0;
6686 rq->idle_stamp = 0;
6687 rq->avg_idle = 2*sysctl_sched_migration_cost;
6688 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6690 INIT_LIST_HEAD(&rq->cfs_tasks);
6692 rq_attach_root(rq, &def_root_domain);
6693 #ifdef CONFIG_NO_HZ_COMMON
6694 rq->last_blocked_load_update_tick = jiffies;
6695 atomic_set(&rq->nohz_flags, 0);
6696 #endif
6697 #endif /* CONFIG_SMP */
6698 hrtick_rq_init(rq);
6699 atomic_set(&rq->nr_iowait, 0);
6702 set_load_weight(&init_task, false);
6705 * The boot idle thread does lazy MMU switching as well:
6707 mmgrab(&init_mm);
6708 enter_lazy_tlb(&init_mm, current);
6711 * Make us the idle thread. Technically, schedule() should not be
6712 * called from this thread, however somewhere below it might be,
6713 * but because we are the idle thread, we just pick up running again
6714 * when this runqueue becomes "idle".
6716 init_idle(current, smp_processor_id());
6718 calc_load_update = jiffies + LOAD_FREQ;
6720 #ifdef CONFIG_SMP
6721 idle_thread_set_boot_cpu();
6722 #endif
6723 init_sched_fair_class();
6725 init_schedstats();
6727 psi_init();
6729 init_uclamp();
6731 scheduler_running = 1;
6734 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6735 static inline int preempt_count_equals(int preempt_offset)
6737 int nested = preempt_count() + rcu_preempt_depth();
6739 return (nested == preempt_offset);
6742 void __might_sleep(const char *file, int line, int preempt_offset)
6745 * Blocking primitives will set (and therefore destroy) current->state,
6746 * since we will exit with TASK_RUNNING make sure we enter with it,
6747 * otherwise we will destroy state.
6749 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6750 "do not call blocking ops when !TASK_RUNNING; "
6751 "state=%lx set at [<%p>] %pS\n",
6752 current->state,
6753 (void *)current->task_state_change,
6754 (void *)current->task_state_change);
6756 ___might_sleep(file, line, preempt_offset);
6758 EXPORT_SYMBOL(__might_sleep);
6760 void ___might_sleep(const char *file, int line, int preempt_offset)
6762 /* Ratelimiting timestamp: */
6763 static unsigned long prev_jiffy;
6765 unsigned long preempt_disable_ip;
6767 /* WARN_ON_ONCE() by default, no rate limit required: */
6768 rcu_sleep_check();
6770 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6771 !is_idle_task(current) && !current->non_block_count) ||
6772 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6773 oops_in_progress)
6774 return;
6776 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6777 return;
6778 prev_jiffy = jiffies;
6780 /* Save this before calling printk(), since that will clobber it: */
6781 preempt_disable_ip = get_preempt_disable_ip(current);
6783 printk(KERN_ERR
6784 "BUG: sleeping function called from invalid context at %s:%d\n",
6785 file, line);
6786 printk(KERN_ERR
6787 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6788 in_atomic(), irqs_disabled(), current->non_block_count,
6789 current->pid, current->comm);
6791 if (task_stack_end_corrupted(current))
6792 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6794 debug_show_held_locks(current);
6795 if (irqs_disabled())
6796 print_irqtrace_events(current);
6797 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6798 && !preempt_count_equals(preempt_offset)) {
6799 pr_err("Preemption disabled at:");
6800 print_ip_sym(preempt_disable_ip);
6801 pr_cont("\n");
6803 dump_stack();
6804 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6806 EXPORT_SYMBOL(___might_sleep);
6808 void __cant_sleep(const char *file, int line, int preempt_offset)
6810 static unsigned long prev_jiffy;
6812 if (irqs_disabled())
6813 return;
6815 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6816 return;
6818 if (preempt_count() > preempt_offset)
6819 return;
6821 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6822 return;
6823 prev_jiffy = jiffies;
6825 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6826 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6827 in_atomic(), irqs_disabled(),
6828 current->pid, current->comm);
6830 debug_show_held_locks(current);
6831 dump_stack();
6832 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6834 EXPORT_SYMBOL_GPL(__cant_sleep);
6835 #endif
6837 #ifdef CONFIG_MAGIC_SYSRQ
6838 void normalize_rt_tasks(void)
6840 struct task_struct *g, *p;
6841 struct sched_attr attr = {
6842 .sched_policy = SCHED_NORMAL,
6845 read_lock(&tasklist_lock);
6846 for_each_process_thread(g, p) {
6848 * Only normalize user tasks:
6850 if (p->flags & PF_KTHREAD)
6851 continue;
6853 p->se.exec_start = 0;
6854 schedstat_set(p->se.statistics.wait_start, 0);
6855 schedstat_set(p->se.statistics.sleep_start, 0);
6856 schedstat_set(p->se.statistics.block_start, 0);
6858 if (!dl_task(p) && !rt_task(p)) {
6860 * Renice negative nice level userspace
6861 * tasks back to 0:
6863 if (task_nice(p) < 0)
6864 set_user_nice(p, 0);
6865 continue;
6868 __sched_setscheduler(p, &attr, false, false);
6870 read_unlock(&tasklist_lock);
6873 #endif /* CONFIG_MAGIC_SYSRQ */
6875 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6877 * These functions are only useful for the IA64 MCA handling, or kdb.
6879 * They can only be called when the whole system has been
6880 * stopped - every CPU needs to be quiescent, and no scheduling
6881 * activity can take place. Using them for anything else would
6882 * be a serious bug, and as a result, they aren't even visible
6883 * under any other configuration.
6887 * curr_task - return the current task for a given CPU.
6888 * @cpu: the processor in question.
6890 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6892 * Return: The current task for @cpu.
6894 struct task_struct *curr_task(int cpu)
6896 return cpu_curr(cpu);
6899 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6901 #ifdef CONFIG_IA64
6903 * ia64_set_curr_task - set the current task for a given CPU.
6904 * @cpu: the processor in question.
6905 * @p: the task pointer to set.
6907 * Description: This function must only be used when non-maskable interrupts
6908 * are serviced on a separate stack. It allows the architecture to switch the
6909 * notion of the current task on a CPU in a non-blocking manner. This function
6910 * must be called with all CPU's synchronized, and interrupts disabled, the
6911 * and caller must save the original value of the current task (see
6912 * curr_task() above) and restore that value before reenabling interrupts and
6913 * re-starting the system.
6915 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6917 void ia64_set_curr_task(int cpu, struct task_struct *p)
6919 cpu_curr(cpu) = p;
6922 #endif
6924 #ifdef CONFIG_CGROUP_SCHED
6925 /* task_group_lock serializes the addition/removal of task groups */
6926 static DEFINE_SPINLOCK(task_group_lock);
6928 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6929 struct task_group *parent)
6931 #ifdef CONFIG_UCLAMP_TASK_GROUP
6932 enum uclamp_id clamp_id;
6934 for_each_clamp_id(clamp_id) {
6935 uclamp_se_set(&tg->uclamp_req[clamp_id],
6936 uclamp_none(clamp_id), false);
6937 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6939 #endif
6942 static void sched_free_group(struct task_group *tg)
6944 free_fair_sched_group(tg);
6945 free_rt_sched_group(tg);
6946 autogroup_free(tg);
6947 kmem_cache_free(task_group_cache, tg);
6950 /* allocate runqueue etc for a new task group */
6951 struct task_group *sched_create_group(struct task_group *parent)
6953 struct task_group *tg;
6955 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6956 if (!tg)
6957 return ERR_PTR(-ENOMEM);
6959 if (!alloc_fair_sched_group(tg, parent))
6960 goto err;
6962 if (!alloc_rt_sched_group(tg, parent))
6963 goto err;
6965 alloc_uclamp_sched_group(tg, parent);
6967 return tg;
6969 err:
6970 sched_free_group(tg);
6971 return ERR_PTR(-ENOMEM);
6974 void sched_online_group(struct task_group *tg, struct task_group *parent)
6976 unsigned long flags;
6978 spin_lock_irqsave(&task_group_lock, flags);
6979 list_add_rcu(&tg->list, &task_groups);
6981 /* Root should already exist: */
6982 WARN_ON(!parent);
6984 tg->parent = parent;
6985 INIT_LIST_HEAD(&tg->children);
6986 list_add_rcu(&tg->siblings, &parent->children);
6987 spin_unlock_irqrestore(&task_group_lock, flags);
6989 online_fair_sched_group(tg);
6992 /* rcu callback to free various structures associated with a task group */
6993 static void sched_free_group_rcu(struct rcu_head *rhp)
6995 /* Now it should be safe to free those cfs_rqs: */
6996 sched_free_group(container_of(rhp, struct task_group, rcu));
6999 void sched_destroy_group(struct task_group *tg)
7001 /* Wait for possible concurrent references to cfs_rqs complete: */
7002 call_rcu(&tg->rcu, sched_free_group_rcu);
7005 void sched_offline_group(struct task_group *tg)
7007 unsigned long flags;
7009 /* End participation in shares distribution: */
7010 unregister_fair_sched_group(tg);
7012 spin_lock_irqsave(&task_group_lock, flags);
7013 list_del_rcu(&tg->list);
7014 list_del_rcu(&tg->siblings);
7015 spin_unlock_irqrestore(&task_group_lock, flags);
7018 static void sched_change_group(struct task_struct *tsk, int type)
7020 struct task_group *tg;
7023 * All callers are synchronized by task_rq_lock(); we do not use RCU
7024 * which is pointless here. Thus, we pass "true" to task_css_check()
7025 * to prevent lockdep warnings.
7027 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7028 struct task_group, css);
7029 tg = autogroup_task_group(tsk, tg);
7030 tsk->sched_task_group = tg;
7032 #ifdef CONFIG_FAIR_GROUP_SCHED
7033 if (tsk->sched_class->task_change_group)
7034 tsk->sched_class->task_change_group(tsk, type);
7035 else
7036 #endif
7037 set_task_rq(tsk, task_cpu(tsk));
7041 * Change task's runqueue when it moves between groups.
7043 * The caller of this function should have put the task in its new group by
7044 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7045 * its new group.
7047 void sched_move_task(struct task_struct *tsk)
7049 int queued, running, queue_flags =
7050 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7051 struct rq_flags rf;
7052 struct rq *rq;
7054 rq = task_rq_lock(tsk, &rf);
7055 update_rq_clock(rq);
7057 running = task_current(rq, tsk);
7058 queued = task_on_rq_queued(tsk);
7060 if (queued)
7061 dequeue_task(rq, tsk, queue_flags);
7062 if (running)
7063 put_prev_task(rq, tsk);
7065 sched_change_group(tsk, TASK_MOVE_GROUP);
7067 if (queued)
7068 enqueue_task(rq, tsk, queue_flags);
7069 if (running) {
7070 set_next_task(rq, tsk);
7072 * After changing group, the running task may have joined a
7073 * throttled one but it's still the running task. Trigger a
7074 * resched to make sure that task can still run.
7076 resched_curr(rq);
7079 task_rq_unlock(rq, tsk, &rf);
7082 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7084 return css ? container_of(css, struct task_group, css) : NULL;
7087 static struct cgroup_subsys_state *
7088 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7090 struct task_group *parent = css_tg(parent_css);
7091 struct task_group *tg;
7093 if (!parent) {
7094 /* This is early initialization for the top cgroup */
7095 return &root_task_group.css;
7098 tg = sched_create_group(parent);
7099 if (IS_ERR(tg))
7100 return ERR_PTR(-ENOMEM);
7102 return &tg->css;
7105 /* Expose task group only after completing cgroup initialization */
7106 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7108 struct task_group *tg = css_tg(css);
7109 struct task_group *parent = css_tg(css->parent);
7111 if (parent)
7112 sched_online_group(tg, parent);
7114 #ifdef CONFIG_UCLAMP_TASK_GROUP
7115 /* Propagate the effective uclamp value for the new group */
7116 cpu_util_update_eff(css);
7117 #endif
7119 return 0;
7122 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7124 struct task_group *tg = css_tg(css);
7126 sched_offline_group(tg);
7129 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7131 struct task_group *tg = css_tg(css);
7134 * Relies on the RCU grace period between css_released() and this.
7136 sched_free_group(tg);
7140 * This is called before wake_up_new_task(), therefore we really only
7141 * have to set its group bits, all the other stuff does not apply.
7143 static void cpu_cgroup_fork(struct task_struct *task)
7145 struct rq_flags rf;
7146 struct rq *rq;
7148 rq = task_rq_lock(task, &rf);
7150 update_rq_clock(rq);
7151 sched_change_group(task, TASK_SET_GROUP);
7153 task_rq_unlock(rq, task, &rf);
7156 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7158 struct task_struct *task;
7159 struct cgroup_subsys_state *css;
7160 int ret = 0;
7162 cgroup_taskset_for_each(task, css, tset) {
7163 #ifdef CONFIG_RT_GROUP_SCHED
7164 if (!sched_rt_can_attach(css_tg(css), task))
7165 return -EINVAL;
7166 #endif
7168 * Serialize against wake_up_new_task() such that if its
7169 * running, we're sure to observe its full state.
7171 raw_spin_lock_irq(&task->pi_lock);
7173 * Avoid calling sched_move_task() before wake_up_new_task()
7174 * has happened. This would lead to problems with PELT, due to
7175 * move wanting to detach+attach while we're not attached yet.
7177 if (task->state == TASK_NEW)
7178 ret = -EINVAL;
7179 raw_spin_unlock_irq(&task->pi_lock);
7181 if (ret)
7182 break;
7184 return ret;
7187 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7189 struct task_struct *task;
7190 struct cgroup_subsys_state *css;
7192 cgroup_taskset_for_each(task, css, tset)
7193 sched_move_task(task);
7196 #ifdef CONFIG_UCLAMP_TASK_GROUP
7197 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7199 struct cgroup_subsys_state *top_css = css;
7200 struct uclamp_se *uc_parent = NULL;
7201 struct uclamp_se *uc_se = NULL;
7202 unsigned int eff[UCLAMP_CNT];
7203 enum uclamp_id clamp_id;
7204 unsigned int clamps;
7206 css_for_each_descendant_pre(css, top_css) {
7207 uc_parent = css_tg(css)->parent
7208 ? css_tg(css)->parent->uclamp : NULL;
7210 for_each_clamp_id(clamp_id) {
7211 /* Assume effective clamps matches requested clamps */
7212 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7213 /* Cap effective clamps with parent's effective clamps */
7214 if (uc_parent &&
7215 eff[clamp_id] > uc_parent[clamp_id].value) {
7216 eff[clamp_id] = uc_parent[clamp_id].value;
7219 /* Ensure protection is always capped by limit */
7220 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7222 /* Propagate most restrictive effective clamps */
7223 clamps = 0x0;
7224 uc_se = css_tg(css)->uclamp;
7225 for_each_clamp_id(clamp_id) {
7226 if (eff[clamp_id] == uc_se[clamp_id].value)
7227 continue;
7228 uc_se[clamp_id].value = eff[clamp_id];
7229 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7230 clamps |= (0x1 << clamp_id);
7232 if (!clamps) {
7233 css = css_rightmost_descendant(css);
7234 continue;
7237 /* Immediately update descendants RUNNABLE tasks */
7238 uclamp_update_active_tasks(css, clamps);
7243 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7244 * C expression. Since there is no way to convert a macro argument (N) into a
7245 * character constant, use two levels of macros.
7247 #define _POW10(exp) ((unsigned int)1e##exp)
7248 #define POW10(exp) _POW10(exp)
7250 struct uclamp_request {
7251 #define UCLAMP_PERCENT_SHIFT 2
7252 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7253 s64 percent;
7254 u64 util;
7255 int ret;
7258 static inline struct uclamp_request
7259 capacity_from_percent(char *buf)
7261 struct uclamp_request req = {
7262 .percent = UCLAMP_PERCENT_SCALE,
7263 .util = SCHED_CAPACITY_SCALE,
7264 .ret = 0,
7267 buf = strim(buf);
7268 if (strcmp(buf, "max")) {
7269 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7270 &req.percent);
7271 if (req.ret)
7272 return req;
7273 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7274 req.ret = -ERANGE;
7275 return req;
7278 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7279 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7282 return req;
7285 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7286 size_t nbytes, loff_t off,
7287 enum uclamp_id clamp_id)
7289 struct uclamp_request req;
7290 struct task_group *tg;
7292 req = capacity_from_percent(buf);
7293 if (req.ret)
7294 return req.ret;
7296 mutex_lock(&uclamp_mutex);
7297 rcu_read_lock();
7299 tg = css_tg(of_css(of));
7300 if (tg->uclamp_req[clamp_id].value != req.util)
7301 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7304 * Because of not recoverable conversion rounding we keep track of the
7305 * exact requested value
7307 tg->uclamp_pct[clamp_id] = req.percent;
7309 /* Update effective clamps to track the most restrictive value */
7310 cpu_util_update_eff(of_css(of));
7312 rcu_read_unlock();
7313 mutex_unlock(&uclamp_mutex);
7315 return nbytes;
7318 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7319 char *buf, size_t nbytes,
7320 loff_t off)
7322 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7325 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7326 char *buf, size_t nbytes,
7327 loff_t off)
7329 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7332 static inline void cpu_uclamp_print(struct seq_file *sf,
7333 enum uclamp_id clamp_id)
7335 struct task_group *tg;
7336 u64 util_clamp;
7337 u64 percent;
7338 u32 rem;
7340 rcu_read_lock();
7341 tg = css_tg(seq_css(sf));
7342 util_clamp = tg->uclamp_req[clamp_id].value;
7343 rcu_read_unlock();
7345 if (util_clamp == SCHED_CAPACITY_SCALE) {
7346 seq_puts(sf, "max\n");
7347 return;
7350 percent = tg->uclamp_pct[clamp_id];
7351 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7352 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7355 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7357 cpu_uclamp_print(sf, UCLAMP_MIN);
7358 return 0;
7361 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7363 cpu_uclamp_print(sf, UCLAMP_MAX);
7364 return 0;
7366 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7368 #ifdef CONFIG_FAIR_GROUP_SCHED
7369 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7370 struct cftype *cftype, u64 shareval)
7372 if (shareval > scale_load_down(ULONG_MAX))
7373 shareval = MAX_SHARES;
7374 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7377 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7378 struct cftype *cft)
7380 struct task_group *tg = css_tg(css);
7382 return (u64) scale_load_down(tg->shares);
7385 #ifdef CONFIG_CFS_BANDWIDTH
7386 static DEFINE_MUTEX(cfs_constraints_mutex);
7388 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7389 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7390 /* More than 203 days if BW_SHIFT equals 20. */
7391 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7393 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7395 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7397 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7398 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7400 if (tg == &root_task_group)
7401 return -EINVAL;
7404 * Ensure we have at some amount of bandwidth every period. This is
7405 * to prevent reaching a state of large arrears when throttled via
7406 * entity_tick() resulting in prolonged exit starvation.
7408 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7409 return -EINVAL;
7412 * Likewise, bound things on the otherside by preventing insane quota
7413 * periods. This also allows us to normalize in computing quota
7414 * feasibility.
7416 if (period > max_cfs_quota_period)
7417 return -EINVAL;
7420 * Bound quota to defend quota against overflow during bandwidth shift.
7422 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7423 return -EINVAL;
7426 * Prevent race between setting of cfs_rq->runtime_enabled and
7427 * unthrottle_offline_cfs_rqs().
7429 get_online_cpus();
7430 mutex_lock(&cfs_constraints_mutex);
7431 ret = __cfs_schedulable(tg, period, quota);
7432 if (ret)
7433 goto out_unlock;
7435 runtime_enabled = quota != RUNTIME_INF;
7436 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7438 * If we need to toggle cfs_bandwidth_used, off->on must occur
7439 * before making related changes, and on->off must occur afterwards
7441 if (runtime_enabled && !runtime_was_enabled)
7442 cfs_bandwidth_usage_inc();
7443 raw_spin_lock_irq(&cfs_b->lock);
7444 cfs_b->period = ns_to_ktime(period);
7445 cfs_b->quota = quota;
7447 __refill_cfs_bandwidth_runtime(cfs_b);
7449 /* Restart the period timer (if active) to handle new period expiry: */
7450 if (runtime_enabled)
7451 start_cfs_bandwidth(cfs_b);
7453 raw_spin_unlock_irq(&cfs_b->lock);
7455 for_each_online_cpu(i) {
7456 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7457 struct rq *rq = cfs_rq->rq;
7458 struct rq_flags rf;
7460 rq_lock_irq(rq, &rf);
7461 cfs_rq->runtime_enabled = runtime_enabled;
7462 cfs_rq->runtime_remaining = 0;
7464 if (cfs_rq->throttled)
7465 unthrottle_cfs_rq(cfs_rq);
7466 rq_unlock_irq(rq, &rf);
7468 if (runtime_was_enabled && !runtime_enabled)
7469 cfs_bandwidth_usage_dec();
7470 out_unlock:
7471 mutex_unlock(&cfs_constraints_mutex);
7472 put_online_cpus();
7474 return ret;
7477 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7479 u64 quota, period;
7481 period = ktime_to_ns(tg->cfs_bandwidth.period);
7482 if (cfs_quota_us < 0)
7483 quota = RUNTIME_INF;
7484 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7485 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7486 else
7487 return -EINVAL;
7489 return tg_set_cfs_bandwidth(tg, period, quota);
7492 static long tg_get_cfs_quota(struct task_group *tg)
7494 u64 quota_us;
7496 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7497 return -1;
7499 quota_us = tg->cfs_bandwidth.quota;
7500 do_div(quota_us, NSEC_PER_USEC);
7502 return quota_us;
7505 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7507 u64 quota, period;
7509 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7510 return -EINVAL;
7512 period = (u64)cfs_period_us * NSEC_PER_USEC;
7513 quota = tg->cfs_bandwidth.quota;
7515 return tg_set_cfs_bandwidth(tg, period, quota);
7518 static long tg_get_cfs_period(struct task_group *tg)
7520 u64 cfs_period_us;
7522 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7523 do_div(cfs_period_us, NSEC_PER_USEC);
7525 return cfs_period_us;
7528 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7529 struct cftype *cft)
7531 return tg_get_cfs_quota(css_tg(css));
7534 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7535 struct cftype *cftype, s64 cfs_quota_us)
7537 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7540 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7541 struct cftype *cft)
7543 return tg_get_cfs_period(css_tg(css));
7546 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7547 struct cftype *cftype, u64 cfs_period_us)
7549 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7552 struct cfs_schedulable_data {
7553 struct task_group *tg;
7554 u64 period, quota;
7558 * normalize group quota/period to be quota/max_period
7559 * note: units are usecs
7561 static u64 normalize_cfs_quota(struct task_group *tg,
7562 struct cfs_schedulable_data *d)
7564 u64 quota, period;
7566 if (tg == d->tg) {
7567 period = d->period;
7568 quota = d->quota;
7569 } else {
7570 period = tg_get_cfs_period(tg);
7571 quota = tg_get_cfs_quota(tg);
7574 /* note: these should typically be equivalent */
7575 if (quota == RUNTIME_INF || quota == -1)
7576 return RUNTIME_INF;
7578 return to_ratio(period, quota);
7581 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7583 struct cfs_schedulable_data *d = data;
7584 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7585 s64 quota = 0, parent_quota = -1;
7587 if (!tg->parent) {
7588 quota = RUNTIME_INF;
7589 } else {
7590 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7592 quota = normalize_cfs_quota(tg, d);
7593 parent_quota = parent_b->hierarchical_quota;
7596 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7597 * always take the min. On cgroup1, only inherit when no
7598 * limit is set:
7600 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7601 quota = min(quota, parent_quota);
7602 } else {
7603 if (quota == RUNTIME_INF)
7604 quota = parent_quota;
7605 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7606 return -EINVAL;
7609 cfs_b->hierarchical_quota = quota;
7611 return 0;
7614 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7616 int ret;
7617 struct cfs_schedulable_data data = {
7618 .tg = tg,
7619 .period = period,
7620 .quota = quota,
7623 if (quota != RUNTIME_INF) {
7624 do_div(data.period, NSEC_PER_USEC);
7625 do_div(data.quota, NSEC_PER_USEC);
7628 rcu_read_lock();
7629 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7630 rcu_read_unlock();
7632 return ret;
7635 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7637 struct task_group *tg = css_tg(seq_css(sf));
7638 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7640 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7641 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7642 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7644 if (schedstat_enabled() && tg != &root_task_group) {
7645 u64 ws = 0;
7646 int i;
7648 for_each_possible_cpu(i)
7649 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7651 seq_printf(sf, "wait_sum %llu\n", ws);
7654 return 0;
7656 #endif /* CONFIG_CFS_BANDWIDTH */
7657 #endif /* CONFIG_FAIR_GROUP_SCHED */
7659 #ifdef CONFIG_RT_GROUP_SCHED
7660 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7661 struct cftype *cft, s64 val)
7663 return sched_group_set_rt_runtime(css_tg(css), val);
7666 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7667 struct cftype *cft)
7669 return sched_group_rt_runtime(css_tg(css));
7672 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7673 struct cftype *cftype, u64 rt_period_us)
7675 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7678 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7679 struct cftype *cft)
7681 return sched_group_rt_period(css_tg(css));
7683 #endif /* CONFIG_RT_GROUP_SCHED */
7685 static struct cftype cpu_legacy_files[] = {
7686 #ifdef CONFIG_FAIR_GROUP_SCHED
7688 .name = "shares",
7689 .read_u64 = cpu_shares_read_u64,
7690 .write_u64 = cpu_shares_write_u64,
7692 #endif
7693 #ifdef CONFIG_CFS_BANDWIDTH
7695 .name = "cfs_quota_us",
7696 .read_s64 = cpu_cfs_quota_read_s64,
7697 .write_s64 = cpu_cfs_quota_write_s64,
7700 .name = "cfs_period_us",
7701 .read_u64 = cpu_cfs_period_read_u64,
7702 .write_u64 = cpu_cfs_period_write_u64,
7705 .name = "stat",
7706 .seq_show = cpu_cfs_stat_show,
7708 #endif
7709 #ifdef CONFIG_RT_GROUP_SCHED
7711 .name = "rt_runtime_us",
7712 .read_s64 = cpu_rt_runtime_read,
7713 .write_s64 = cpu_rt_runtime_write,
7716 .name = "rt_period_us",
7717 .read_u64 = cpu_rt_period_read_uint,
7718 .write_u64 = cpu_rt_period_write_uint,
7720 #endif
7721 #ifdef CONFIG_UCLAMP_TASK_GROUP
7723 .name = "uclamp.min",
7724 .flags = CFTYPE_NOT_ON_ROOT,
7725 .seq_show = cpu_uclamp_min_show,
7726 .write = cpu_uclamp_min_write,
7729 .name = "uclamp.max",
7730 .flags = CFTYPE_NOT_ON_ROOT,
7731 .seq_show = cpu_uclamp_max_show,
7732 .write = cpu_uclamp_max_write,
7734 #endif
7735 { } /* Terminate */
7738 static int cpu_extra_stat_show(struct seq_file *sf,
7739 struct cgroup_subsys_state *css)
7741 #ifdef CONFIG_CFS_BANDWIDTH
7743 struct task_group *tg = css_tg(css);
7744 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7745 u64 throttled_usec;
7747 throttled_usec = cfs_b->throttled_time;
7748 do_div(throttled_usec, NSEC_PER_USEC);
7750 seq_printf(sf, "nr_periods %d\n"
7751 "nr_throttled %d\n"
7752 "throttled_usec %llu\n",
7753 cfs_b->nr_periods, cfs_b->nr_throttled,
7754 throttled_usec);
7756 #endif
7757 return 0;
7760 #ifdef CONFIG_FAIR_GROUP_SCHED
7761 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7762 struct cftype *cft)
7764 struct task_group *tg = css_tg(css);
7765 u64 weight = scale_load_down(tg->shares);
7767 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7770 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7771 struct cftype *cft, u64 weight)
7774 * cgroup weight knobs should use the common MIN, DFL and MAX
7775 * values which are 1, 100 and 10000 respectively. While it loses
7776 * a bit of range on both ends, it maps pretty well onto the shares
7777 * value used by scheduler and the round-trip conversions preserve
7778 * the original value over the entire range.
7780 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7781 return -ERANGE;
7783 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7785 return sched_group_set_shares(css_tg(css), scale_load(weight));
7788 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7789 struct cftype *cft)
7791 unsigned long weight = scale_load_down(css_tg(css)->shares);
7792 int last_delta = INT_MAX;
7793 int prio, delta;
7795 /* find the closest nice value to the current weight */
7796 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7797 delta = abs(sched_prio_to_weight[prio] - weight);
7798 if (delta >= last_delta)
7799 break;
7800 last_delta = delta;
7803 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7806 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7807 struct cftype *cft, s64 nice)
7809 unsigned long weight;
7810 int idx;
7812 if (nice < MIN_NICE || nice > MAX_NICE)
7813 return -ERANGE;
7815 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7816 idx = array_index_nospec(idx, 40);
7817 weight = sched_prio_to_weight[idx];
7819 return sched_group_set_shares(css_tg(css), scale_load(weight));
7821 #endif
7823 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7824 long period, long quota)
7826 if (quota < 0)
7827 seq_puts(sf, "max");
7828 else
7829 seq_printf(sf, "%ld", quota);
7831 seq_printf(sf, " %ld\n", period);
7834 /* caller should put the current value in *@periodp before calling */
7835 static int __maybe_unused cpu_period_quota_parse(char *buf,
7836 u64 *periodp, u64 *quotap)
7838 char tok[21]; /* U64_MAX */
7840 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7841 return -EINVAL;
7843 *periodp *= NSEC_PER_USEC;
7845 if (sscanf(tok, "%llu", quotap))
7846 *quotap *= NSEC_PER_USEC;
7847 else if (!strcmp(tok, "max"))
7848 *quotap = RUNTIME_INF;
7849 else
7850 return -EINVAL;
7852 return 0;
7855 #ifdef CONFIG_CFS_BANDWIDTH
7856 static int cpu_max_show(struct seq_file *sf, void *v)
7858 struct task_group *tg = css_tg(seq_css(sf));
7860 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7861 return 0;
7864 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7865 char *buf, size_t nbytes, loff_t off)
7867 struct task_group *tg = css_tg(of_css(of));
7868 u64 period = tg_get_cfs_period(tg);
7869 u64 quota;
7870 int ret;
7872 ret = cpu_period_quota_parse(buf, &period, &quota);
7873 if (!ret)
7874 ret = tg_set_cfs_bandwidth(tg, period, quota);
7875 return ret ?: nbytes;
7877 #endif
7879 static struct cftype cpu_files[] = {
7880 #ifdef CONFIG_FAIR_GROUP_SCHED
7882 .name = "weight",
7883 .flags = CFTYPE_NOT_ON_ROOT,
7884 .read_u64 = cpu_weight_read_u64,
7885 .write_u64 = cpu_weight_write_u64,
7888 .name = "weight.nice",
7889 .flags = CFTYPE_NOT_ON_ROOT,
7890 .read_s64 = cpu_weight_nice_read_s64,
7891 .write_s64 = cpu_weight_nice_write_s64,
7893 #endif
7894 #ifdef CONFIG_CFS_BANDWIDTH
7896 .name = "max",
7897 .flags = CFTYPE_NOT_ON_ROOT,
7898 .seq_show = cpu_max_show,
7899 .write = cpu_max_write,
7901 #endif
7902 #ifdef CONFIG_UCLAMP_TASK_GROUP
7904 .name = "uclamp.min",
7905 .flags = CFTYPE_NOT_ON_ROOT,
7906 .seq_show = cpu_uclamp_min_show,
7907 .write = cpu_uclamp_min_write,
7910 .name = "uclamp.max",
7911 .flags = CFTYPE_NOT_ON_ROOT,
7912 .seq_show = cpu_uclamp_max_show,
7913 .write = cpu_uclamp_max_write,
7915 #endif
7916 { } /* terminate */
7919 struct cgroup_subsys cpu_cgrp_subsys = {
7920 .css_alloc = cpu_cgroup_css_alloc,
7921 .css_online = cpu_cgroup_css_online,
7922 .css_released = cpu_cgroup_css_released,
7923 .css_free = cpu_cgroup_css_free,
7924 .css_extra_stat_show = cpu_extra_stat_show,
7925 .fork = cpu_cgroup_fork,
7926 .can_attach = cpu_cgroup_can_attach,
7927 .attach = cpu_cgroup_attach,
7928 .legacy_cftypes = cpu_legacy_files,
7929 .dfl_cftypes = cpu_files,
7930 .early_init = true,
7931 .threaded = true,
7934 #endif /* CONFIG_CGROUP_SCHED */
7936 void dump_cpu_task(int cpu)
7938 pr_info("Task dump for CPU %d:\n", cpu);
7939 sched_show_task(cpu_curr(cpu));
7943 * Nice levels are multiplicative, with a gentle 10% change for every
7944 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7945 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7946 * that remained on nice 0.
7948 * The "10% effect" is relative and cumulative: from _any_ nice level,
7949 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7950 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7951 * If a task goes up by ~10% and another task goes down by ~10% then
7952 * the relative distance between them is ~25%.)
7954 const int sched_prio_to_weight[40] = {
7955 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7956 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7957 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7958 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7959 /* 0 */ 1024, 820, 655, 526, 423,
7960 /* 5 */ 335, 272, 215, 172, 137,
7961 /* 10 */ 110, 87, 70, 56, 45,
7962 /* 15 */ 36, 29, 23, 18, 15,
7966 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7968 * In cases where the weight does not change often, we can use the
7969 * precalculated inverse to speed up arithmetics by turning divisions
7970 * into multiplications:
7972 const u32 sched_prio_to_wmult[40] = {
7973 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7974 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7975 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7976 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7977 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7978 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7979 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7980 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7983 #undef CREATE_TRACE_POINTS