1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Scheduler internal types and methods:
5 #include <linux/sched.h>
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
36 #include <uapi/linux/sched/types.h>
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
76 #include "cpudeadline.h"
78 #ifdef CONFIG_SCHED_DEBUG
79 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
81 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
87 /* task_struct::on_rq states: */
88 #define TASK_ON_RQ_QUEUED 1
89 #define TASK_ON_RQ_MIGRATING 2
91 extern __read_mostly
int scheduler_running
;
93 extern unsigned long calc_load_update
;
94 extern atomic_long_t calc_load_tasks
;
96 extern void calc_global_load_tick(struct rq
*this_rq
);
97 extern long calc_load_fold_active(struct rq
*this_rq
, long adjust
);
100 * Helpers for converting nanosecond timing to jiffy resolution
102 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 * Increase resolution of nice-level calculations for 64-bit architectures.
106 * The extra resolution improves shares distribution and load balancing of
107 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
108 * hierarchies, especially on larger systems. This is not a user-visible change
109 * and does not change the user-interface for setting shares/weights.
111 * We increase resolution only if we have enough bits to allow this increased
112 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
113 * are pretty high and the returns do not justify the increased costs.
115 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
116 * increase coverage and consistency always enable it on 64-bit platforms.
119 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
120 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
121 # define scale_load_down(w) \
123 unsigned long __w = (w); \
125 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
129 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
130 # define scale_load(w) (w)
131 # define scale_load_down(w) (w)
135 * Task weight (visible to users) and its load (invisible to users) have
136 * independent resolution, but they should be well calibrated. We use
137 * scale_load() and scale_load_down(w) to convert between them. The
138 * following must be true:
140 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
143 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
146 * Single value that decides SCHED_DEADLINE internal math precision.
147 * 10 -> just above 1us
148 * 9 -> just above 0.5us
153 * Single value that denotes runtime == period, ie unlimited time.
155 #define RUNTIME_INF ((u64)~0ULL)
157 static inline int idle_policy(int policy
)
159 return policy
== SCHED_IDLE
;
161 static inline int fair_policy(int policy
)
163 return policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
;
166 static inline int rt_policy(int policy
)
168 return policy
== SCHED_FIFO
|| policy
== SCHED_RR
;
171 static inline int dl_policy(int policy
)
173 return policy
== SCHED_DEADLINE
;
175 static inline bool valid_policy(int policy
)
177 return idle_policy(policy
) || fair_policy(policy
) ||
178 rt_policy(policy
) || dl_policy(policy
);
181 static inline int task_has_idle_policy(struct task_struct
*p
)
183 return idle_policy(p
->policy
);
186 static inline int task_has_rt_policy(struct task_struct
*p
)
188 return rt_policy(p
->policy
);
191 static inline int task_has_dl_policy(struct task_struct
*p
)
193 return dl_policy(p
->policy
);
196 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
198 static inline void update_avg(u64
*avg
, u64 sample
)
200 s64 diff
= sample
- *avg
;
205 * !! For sched_setattr_nocheck() (kernel) only !!
207 * This is actually gross. :(
209 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
210 * tasks, but still be able to sleep. We need this on platforms that cannot
211 * atomically change clock frequency. Remove once fast switching will be
212 * available on such platforms.
214 * SUGOV stands for SchedUtil GOVernor.
216 #define SCHED_FLAG_SUGOV 0x10000000
218 static inline bool dl_entity_is_special(struct sched_dl_entity
*dl_se
)
220 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
221 return unlikely(dl_se
->flags
& SCHED_FLAG_SUGOV
);
228 * Tells if entity @a should preempt entity @b.
231 dl_entity_preempt(struct sched_dl_entity
*a
, struct sched_dl_entity
*b
)
233 return dl_entity_is_special(a
) ||
234 dl_time_before(a
->deadline
, b
->deadline
);
238 * This is the priority-queue data structure of the RT scheduling class:
240 struct rt_prio_array
{
241 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
242 struct list_head queue
[MAX_RT_PRIO
];
245 struct rt_bandwidth
{
246 /* nests inside the rq lock: */
247 raw_spinlock_t rt_runtime_lock
;
250 struct hrtimer rt_period_timer
;
251 unsigned int rt_period_active
;
254 void __dl_clear_params(struct task_struct
*p
);
257 * To keep the bandwidth of -deadline tasks and groups under control
258 * we need some place where:
259 * - store the maximum -deadline bandwidth of the system (the group);
260 * - cache the fraction of that bandwidth that is currently allocated.
262 * This is all done in the data structure below. It is similar to the
263 * one used for RT-throttling (rt_bandwidth), with the main difference
264 * that, since here we are only interested in admission control, we
265 * do not decrease any runtime while the group "executes", neither we
266 * need a timer to replenish it.
268 * With respect to SMP, the bandwidth is given on a per-CPU basis,
270 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
271 * - dl_total_bw array contains, in the i-eth element, the currently
272 * allocated bandwidth on the i-eth CPU.
273 * Moreover, groups consume bandwidth on each CPU, while tasks only
274 * consume bandwidth on the CPU they're running on.
275 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
276 * that will be shown the next time the proc or cgroup controls will
277 * be red. It on its turn can be changed by writing on its own
280 struct dl_bandwidth
{
281 raw_spinlock_t dl_runtime_lock
;
286 static inline int dl_bandwidth_enabled(void)
288 return sysctl_sched_rt_runtime
>= 0;
297 static inline void __dl_update(struct dl_bw
*dl_b
, s64 bw
);
300 void __dl_sub(struct dl_bw
*dl_b
, u64 tsk_bw
, int cpus
)
302 dl_b
->total_bw
-= tsk_bw
;
303 __dl_update(dl_b
, (s32
)tsk_bw
/ cpus
);
307 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
, int cpus
)
309 dl_b
->total_bw
+= tsk_bw
;
310 __dl_update(dl_b
, -((s32
)tsk_bw
/ cpus
));
314 bool __dl_overflow(struct dl_bw
*dl_b
, int cpus
, u64 old_bw
, u64 new_bw
)
316 return dl_b
->bw
!= -1 &&
317 dl_b
->bw
* cpus
< dl_b
->total_bw
- old_bw
+ new_bw
;
320 extern void init_dl_bw(struct dl_bw
*dl_b
);
321 extern int sched_dl_global_validate(void);
322 extern void sched_dl_do_global(void);
323 extern int sched_dl_overflow(struct task_struct
*p
, int policy
, const struct sched_attr
*attr
);
324 extern void __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
);
325 extern void __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
);
326 extern bool __checkparam_dl(const struct sched_attr
*attr
);
327 extern bool dl_param_changed(struct task_struct
*p
, const struct sched_attr
*attr
);
328 extern int dl_task_can_attach(struct task_struct
*p
, const struct cpumask
*cs_cpus_allowed
);
329 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask
*cur
, const struct cpumask
*trial
);
330 extern bool dl_cpu_busy(unsigned int cpu
);
332 #ifdef CONFIG_CGROUP_SCHED
334 #include <linux/cgroup.h>
335 #include <linux/psi.h>
340 extern struct list_head task_groups
;
342 struct cfs_bandwidth
{
343 #ifdef CONFIG_CFS_BANDWIDTH
348 s64 hierarchical_quota
;
352 u8 distribute_running
;
354 struct hrtimer period_timer
;
355 struct hrtimer slack_timer
;
356 struct list_head throttled_cfs_rq
;
365 /* Task group related information */
367 struct cgroup_subsys_state css
;
369 #ifdef CONFIG_FAIR_GROUP_SCHED
370 /* schedulable entities of this group on each CPU */
371 struct sched_entity
**se
;
372 /* runqueue "owned" by this group on each CPU */
373 struct cfs_rq
**cfs_rq
;
374 unsigned long shares
;
378 * load_avg can be heavily contended at clock tick time, so put
379 * it in its own cacheline separated from the fields above which
380 * will also be accessed at each tick.
382 atomic_long_t load_avg ____cacheline_aligned
;
386 #ifdef CONFIG_RT_GROUP_SCHED
387 struct sched_rt_entity
**rt_se
;
388 struct rt_rq
**rt_rq
;
390 struct rt_bandwidth rt_bandwidth
;
394 struct list_head list
;
396 struct task_group
*parent
;
397 struct list_head siblings
;
398 struct list_head children
;
400 #ifdef CONFIG_SCHED_AUTOGROUP
401 struct autogroup
*autogroup
;
404 struct cfs_bandwidth cfs_bandwidth
;
406 #ifdef CONFIG_UCLAMP_TASK_GROUP
407 /* The two decimal precision [%] value requested from user-space */
408 unsigned int uclamp_pct
[UCLAMP_CNT
];
409 /* Clamp values requested for a task group */
410 struct uclamp_se uclamp_req
[UCLAMP_CNT
];
411 /* Effective clamp values used for a task group */
412 struct uclamp_se uclamp
[UCLAMP_CNT
];
417 #ifdef CONFIG_FAIR_GROUP_SCHED
418 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
421 * A weight of 0 or 1 can cause arithmetics problems.
422 * A weight of a cfs_rq is the sum of weights of which entities
423 * are queued on this cfs_rq, so a weight of a entity should not be
424 * too large, so as the shares value of a task group.
425 * (The default weight is 1024 - so there's no practical
426 * limitation from this.)
428 #define MIN_SHARES (1UL << 1)
429 #define MAX_SHARES (1UL << 18)
432 typedef int (*tg_visitor
)(struct task_group
*, void *);
434 extern int walk_tg_tree_from(struct task_group
*from
,
435 tg_visitor down
, tg_visitor up
, void *data
);
438 * Iterate the full tree, calling @down when first entering a node and @up when
439 * leaving it for the final time.
441 * Caller must hold rcu_lock or sufficient equivalent.
443 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
445 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
448 extern int tg_nop(struct task_group
*tg
, void *data
);
450 extern void free_fair_sched_group(struct task_group
*tg
);
451 extern int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
);
452 extern void online_fair_sched_group(struct task_group
*tg
);
453 extern void unregister_fair_sched_group(struct task_group
*tg
);
454 extern void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
455 struct sched_entity
*se
, int cpu
,
456 struct sched_entity
*parent
);
457 extern void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
459 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
);
460 extern void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
461 extern void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
);
463 extern void free_rt_sched_group(struct task_group
*tg
);
464 extern int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
);
465 extern void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
466 struct sched_rt_entity
*rt_se
, int cpu
,
467 struct sched_rt_entity
*parent
);
468 extern int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
);
469 extern int sched_group_set_rt_period(struct task_group
*tg
, u64 rt_period_us
);
470 extern long sched_group_rt_runtime(struct task_group
*tg
);
471 extern long sched_group_rt_period(struct task_group
*tg
);
472 extern int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
);
474 extern struct task_group
*sched_create_group(struct task_group
*parent
);
475 extern void sched_online_group(struct task_group
*tg
,
476 struct task_group
*parent
);
477 extern void sched_destroy_group(struct task_group
*tg
);
478 extern void sched_offline_group(struct task_group
*tg
);
480 extern void sched_move_task(struct task_struct
*tsk
);
482 #ifdef CONFIG_FAIR_GROUP_SCHED
483 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
486 extern void set_task_rq_fair(struct sched_entity
*se
,
487 struct cfs_rq
*prev
, struct cfs_rq
*next
);
488 #else /* !CONFIG_SMP */
489 static inline void set_task_rq_fair(struct sched_entity
*se
,
490 struct cfs_rq
*prev
, struct cfs_rq
*next
) { }
491 #endif /* CONFIG_SMP */
492 #endif /* CONFIG_FAIR_GROUP_SCHED */
494 #else /* CONFIG_CGROUP_SCHED */
496 struct cfs_bandwidth
{ };
498 #endif /* CONFIG_CGROUP_SCHED */
500 /* CFS-related fields in a runqueue */
502 struct load_weight load
;
503 unsigned int nr_running
;
504 unsigned int h_nr_running
; /* SCHED_{NORMAL,BATCH,IDLE} */
505 unsigned int idle_h_nr_running
; /* SCHED_IDLE */
510 u64 min_vruntime_copy
;
513 struct rb_root_cached tasks_timeline
;
516 * 'curr' points to currently running entity on this cfs_rq.
517 * It is set to NULL otherwise (i.e when none are currently running).
519 struct sched_entity
*curr
;
520 struct sched_entity
*next
;
521 struct sched_entity
*last
;
522 struct sched_entity
*skip
;
524 #ifdef CONFIG_SCHED_DEBUG
525 unsigned int nr_spread_over
;
532 struct sched_avg avg
;
534 u64 load_last_update_time_copy
;
537 raw_spinlock_t lock ____cacheline_aligned
;
539 unsigned long load_avg
;
540 unsigned long util_avg
;
541 unsigned long runnable_avg
;
544 #ifdef CONFIG_FAIR_GROUP_SCHED
545 unsigned long tg_load_avg_contrib
;
547 long prop_runnable_sum
;
550 * h_load = weight * f(tg)
552 * Where f(tg) is the recursive weight fraction assigned to
555 unsigned long h_load
;
556 u64 last_h_load_update
;
557 struct sched_entity
*h_load_next
;
558 #endif /* CONFIG_FAIR_GROUP_SCHED */
559 #endif /* CONFIG_SMP */
561 #ifdef CONFIG_FAIR_GROUP_SCHED
562 struct rq
*rq
; /* CPU runqueue to which this cfs_rq is attached */
565 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
566 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
567 * (like users, containers etc.)
569 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
570 * This list is used during load balance.
573 struct list_head leaf_cfs_rq_list
;
574 struct task_group
*tg
; /* group that "owns" this runqueue */
576 #ifdef CONFIG_CFS_BANDWIDTH
578 s64 runtime_remaining
;
581 u64 throttled_clock_task
;
582 u64 throttled_clock_task_time
;
585 struct list_head throttled_list
;
586 #endif /* CONFIG_CFS_BANDWIDTH */
587 #endif /* CONFIG_FAIR_GROUP_SCHED */
590 static inline int rt_bandwidth_enabled(void)
592 return sysctl_sched_rt_runtime
>= 0;
595 /* RT IPI pull logic requires IRQ_WORK */
596 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
597 # define HAVE_RT_PUSH_IPI
600 /* Real-Time classes' related field in a runqueue: */
602 struct rt_prio_array active
;
603 unsigned int rt_nr_running
;
604 unsigned int rr_nr_running
;
605 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
607 int curr
; /* highest queued rt task prio */
609 int next
; /* next highest */
614 unsigned long rt_nr_migratory
;
615 unsigned long rt_nr_total
;
617 struct plist_head pushable_tasks
;
619 #endif /* CONFIG_SMP */
625 /* Nests inside the rq lock: */
626 raw_spinlock_t rt_runtime_lock
;
628 #ifdef CONFIG_RT_GROUP_SCHED
629 unsigned long rt_nr_boosted
;
632 struct task_group
*tg
;
636 static inline bool rt_rq_is_runnable(struct rt_rq
*rt_rq
)
638 return rt_rq
->rt_queued
&& rt_rq
->rt_nr_running
;
641 /* Deadline class' related fields in a runqueue */
643 /* runqueue is an rbtree, ordered by deadline */
644 struct rb_root_cached root
;
646 unsigned long dl_nr_running
;
650 * Deadline values of the currently executing and the
651 * earliest ready task on this rq. Caching these facilitates
652 * the decision whether or not a ready but not running task
653 * should migrate somewhere else.
660 unsigned long dl_nr_migratory
;
664 * Tasks on this rq that can be pushed away. They are kept in
665 * an rb-tree, ordered by tasks' deadlines, with caching
666 * of the leftmost (earliest deadline) element.
668 struct rb_root_cached pushable_dl_tasks_root
;
673 * "Active utilization" for this runqueue: increased when a
674 * task wakes up (becomes TASK_RUNNING) and decreased when a
680 * Utilization of the tasks "assigned" to this runqueue (including
681 * the tasks that are in runqueue and the tasks that executed on this
682 * CPU and blocked). Increased when a task moves to this runqueue, and
683 * decreased when the task moves away (migrates, changes scheduling
684 * policy, or terminates).
685 * This is needed to compute the "inactive utilization" for the
686 * runqueue (inactive utilization = this_bw - running_bw).
692 * Inverse of the fraction of CPU utilization that can be reclaimed
693 * by the GRUB algorithm.
698 #ifdef CONFIG_FAIR_GROUP_SCHED
699 /* An entity is a task if it doesn't "own" a runqueue */
700 #define entity_is_task(se) (!se->my_q)
702 static inline void se_update_runnable(struct sched_entity
*se
)
704 if (!entity_is_task(se
))
705 se
->runnable_weight
= se
->my_q
->h_nr_running
;
708 static inline long se_runnable(struct sched_entity
*se
)
710 if (entity_is_task(se
))
713 return se
->runnable_weight
;
717 #define entity_is_task(se) 1
719 static inline void se_update_runnable(struct sched_entity
*se
) {}
721 static inline long se_runnable(struct sched_entity
*se
)
729 * XXX we want to get rid of these helpers and use the full load resolution.
731 static inline long se_weight(struct sched_entity
*se
)
733 return scale_load_down(se
->load
.weight
);
737 static inline bool sched_asym_prefer(int a
, int b
)
739 return arch_asym_cpu_priority(a
) > arch_asym_cpu_priority(b
);
743 struct em_perf_domain
*em_pd
;
744 struct perf_domain
*next
;
748 /* Scheduling group status flags */
749 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
750 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
753 * We add the notion of a root-domain which will be used to define per-domain
754 * variables. Each exclusive cpuset essentially defines an island domain by
755 * fully partitioning the member CPUs from any other cpuset. Whenever a new
756 * exclusive cpuset is created, we also create and attach a new root-domain
765 cpumask_var_t online
;
768 * Indicate pullable load on at least one CPU, e.g:
769 * - More than one runnable task
770 * - Running task is misfit
774 /* Indicate one or more cpus over-utilized (tipping point) */
778 * The bit corresponding to a CPU gets set here if such CPU has more
779 * than one runnable -deadline task (as it is below for RT tasks).
781 cpumask_var_t dlo_mask
;
786 #ifdef HAVE_RT_PUSH_IPI
788 * For IPI pull requests, loop across the rto_mask.
790 struct irq_work rto_push_work
;
791 raw_spinlock_t rto_lock
;
792 /* These are only updated and read within rto_lock */
795 /* These atomics are updated outside of a lock */
796 atomic_t rto_loop_next
;
797 atomic_t rto_loop_start
;
800 * The "RT overload" flag: it gets set if a CPU has more than
801 * one runnable RT task.
803 cpumask_var_t rto_mask
;
804 struct cpupri cpupri
;
806 unsigned long max_cpu_capacity
;
809 * NULL-terminated list of performance domains intersecting with the
810 * CPUs of the rd. Protected by RCU.
812 struct perf_domain __rcu
*pd
;
815 extern void init_defrootdomain(void);
816 extern int sched_init_domains(const struct cpumask
*cpu_map
);
817 extern void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
);
818 extern void sched_get_rd(struct root_domain
*rd
);
819 extern void sched_put_rd(struct root_domain
*rd
);
821 #ifdef HAVE_RT_PUSH_IPI
822 extern void rto_push_irq_work_func(struct irq_work
*work
);
824 #endif /* CONFIG_SMP */
826 #ifdef CONFIG_UCLAMP_TASK
828 * struct uclamp_bucket - Utilization clamp bucket
829 * @value: utilization clamp value for tasks on this clamp bucket
830 * @tasks: number of RUNNABLE tasks on this clamp bucket
832 * Keep track of how many tasks are RUNNABLE for a given utilization
835 struct uclamp_bucket
{
836 unsigned long value
: bits_per(SCHED_CAPACITY_SCALE
);
837 unsigned long tasks
: BITS_PER_LONG
- bits_per(SCHED_CAPACITY_SCALE
);
841 * struct uclamp_rq - rq's utilization clamp
842 * @value: currently active clamp values for a rq
843 * @bucket: utilization clamp buckets affecting a rq
845 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
846 * A clamp value is affecting a rq when there is at least one task RUNNABLE
847 * (or actually running) with that value.
849 * There are up to UCLAMP_CNT possible different clamp values, currently there
850 * are only two: minimum utilization and maximum utilization.
852 * All utilization clamping values are MAX aggregated, since:
853 * - for util_min: we want to run the CPU at least at the max of the minimum
854 * utilization required by its currently RUNNABLE tasks.
855 * - for util_max: we want to allow the CPU to run up to the max of the
856 * maximum utilization allowed by its currently RUNNABLE tasks.
858 * Since on each system we expect only a limited number of different
859 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
860 * the metrics required to compute all the per-rq utilization clamp values.
864 struct uclamp_bucket bucket
[UCLAMP_BUCKETS
];
866 #endif /* CONFIG_UCLAMP_TASK */
869 * This is the main, per-CPU runqueue data structure.
871 * Locking rule: those places that want to lock multiple runqueues
872 * (such as the load balancing or the thread migration code), lock
873 * acquire operations must be ordered by ascending &runqueue.
880 * nr_running and cpu_load should be in the same cacheline because
881 * remote CPUs use both these fields when doing load calculation.
883 unsigned int nr_running
;
884 #ifdef CONFIG_NUMA_BALANCING
885 unsigned int nr_numa_running
;
886 unsigned int nr_preferred_running
;
887 unsigned int numa_migrate_on
;
889 #ifdef CONFIG_NO_HZ_COMMON
891 unsigned long last_blocked_load_update_tick
;
892 unsigned int has_blocked_load
;
893 #endif /* CONFIG_SMP */
894 unsigned int nohz_tick_stopped
;
896 #endif /* CONFIG_NO_HZ_COMMON */
898 unsigned long nr_load_updates
;
901 #ifdef CONFIG_UCLAMP_TASK
902 /* Utilization clamp values based on CPU's RUNNABLE tasks */
903 struct uclamp_rq uclamp
[UCLAMP_CNT
] ____cacheline_aligned
;
904 unsigned int uclamp_flags
;
905 #define UCLAMP_FLAG_IDLE 0x01
912 #ifdef CONFIG_FAIR_GROUP_SCHED
913 /* list of leaf cfs_rq on this CPU: */
914 struct list_head leaf_cfs_rq_list
;
915 struct list_head
*tmp_alone_branch
;
916 #endif /* CONFIG_FAIR_GROUP_SCHED */
919 * This is part of a global counter where only the total sum
920 * over all CPUs matters. A task can increase this counter on
921 * one CPU and if it got migrated afterwards it may decrease
922 * it on another CPU. Always updated under the runqueue lock:
924 unsigned long nr_uninterruptible
;
926 struct task_struct __rcu
*curr
;
927 struct task_struct
*idle
;
928 struct task_struct
*stop
;
929 unsigned long next_balance
;
930 struct mm_struct
*prev_mm
;
932 unsigned int clock_update_flags
;
934 /* Ensure that all clocks are in the same cache line */
935 u64 clock_task ____cacheline_aligned
;
937 unsigned long lost_idle_time
;
941 #ifdef CONFIG_MEMBARRIER
942 int membarrier_state
;
946 struct root_domain
*rd
;
947 struct sched_domain __rcu
*sd
;
949 unsigned long cpu_capacity
;
950 unsigned long cpu_capacity_orig
;
952 struct callback_head
*balance_callback
;
954 unsigned char idle_balance
;
956 unsigned long misfit_task_load
;
958 /* For active balancing */
961 struct cpu_stop_work active_balance_work
;
963 /* CPU of this runqueue: */
967 struct list_head cfs_tasks
;
969 struct sched_avg avg_rt
;
970 struct sched_avg avg_dl
;
971 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
972 struct sched_avg avg_irq
;
974 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
975 struct sched_avg avg_thermal
;
980 /* This is used to determine avg_idle's max value */
981 u64 max_idle_balance_cost
;
984 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
987 #ifdef CONFIG_PARAVIRT
990 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
991 u64 prev_steal_time_rq
;
994 /* calc_load related fields */
995 unsigned long calc_load_update
;
996 long calc_load_active
;
998 #ifdef CONFIG_SCHED_HRTICK
1000 call_single_data_t hrtick_csd
;
1002 struct hrtimer hrtick_timer
;
1005 #ifdef CONFIG_SCHEDSTATS
1007 struct sched_info rq_sched_info
;
1008 unsigned long long rq_cpu_time
;
1009 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1011 /* sys_sched_yield() stats */
1012 unsigned int yld_count
;
1014 /* schedule() stats */
1015 unsigned int sched_count
;
1016 unsigned int sched_goidle
;
1018 /* try_to_wake_up() stats */
1019 unsigned int ttwu_count
;
1020 unsigned int ttwu_local
;
1024 struct llist_head wake_list
;
1027 #ifdef CONFIG_CPU_IDLE
1028 /* Must be inspected within a rcu lock section */
1029 struct cpuidle_state
*idle_state
;
1033 #ifdef CONFIG_FAIR_GROUP_SCHED
1035 /* CPU runqueue to which this cfs_rq is attached */
1036 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
1043 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
1045 return container_of(cfs_rq
, struct rq
, cfs
);
1049 static inline int cpu_of(struct rq
*rq
)
1059 #ifdef CONFIG_SCHED_SMT
1060 extern void __update_idle_core(struct rq
*rq
);
1062 static inline void update_idle_core(struct rq
*rq
)
1064 if (static_branch_unlikely(&sched_smt_present
))
1065 __update_idle_core(rq
);
1069 static inline void update_idle_core(struct rq
*rq
) { }
1072 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
1074 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1075 #define this_rq() this_cpu_ptr(&runqueues)
1076 #define task_rq(p) cpu_rq(task_cpu(p))
1077 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1078 #define raw_rq() raw_cpu_ptr(&runqueues)
1080 extern void update_rq_clock(struct rq
*rq
);
1082 static inline u64
__rq_clock_broken(struct rq
*rq
)
1084 return READ_ONCE(rq
->clock
);
1088 * rq::clock_update_flags bits
1090 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1091 * call to __schedule(). This is an optimisation to avoid
1092 * neighbouring rq clock updates.
1094 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1095 * in effect and calls to update_rq_clock() are being ignored.
1097 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1098 * made to update_rq_clock() since the last time rq::lock was pinned.
1100 * If inside of __schedule(), clock_update_flags will have been
1101 * shifted left (a left shift is a cheap operation for the fast path
1102 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1104 * if (rq-clock_update_flags >= RQCF_UPDATED)
1106 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1107 * one position though, because the next rq_unpin_lock() will shift it
1110 #define RQCF_REQ_SKIP 0x01
1111 #define RQCF_ACT_SKIP 0x02
1112 #define RQCF_UPDATED 0x04
1114 static inline void assert_clock_updated(struct rq
*rq
)
1117 * The only reason for not seeing a clock update since the
1118 * last rq_pin_lock() is if we're currently skipping updates.
1120 SCHED_WARN_ON(rq
->clock_update_flags
< RQCF_ACT_SKIP
);
1123 static inline u64
rq_clock(struct rq
*rq
)
1125 lockdep_assert_held(&rq
->lock
);
1126 assert_clock_updated(rq
);
1131 static inline u64
rq_clock_task(struct rq
*rq
)
1133 lockdep_assert_held(&rq
->lock
);
1134 assert_clock_updated(rq
);
1136 return rq
->clock_task
;
1140 * By default the decay is the default pelt decay period.
1141 * The decay shift can change the decay period in
1143 * Decay shift Decay period(ms)
1150 extern int sched_thermal_decay_shift
;
1152 static inline u64
rq_clock_thermal(struct rq
*rq
)
1154 return rq_clock_task(rq
) >> sched_thermal_decay_shift
;
1157 static inline void rq_clock_skip_update(struct rq
*rq
)
1159 lockdep_assert_held(&rq
->lock
);
1160 rq
->clock_update_flags
|= RQCF_REQ_SKIP
;
1164 * See rt task throttling, which is the only time a skip
1165 * request is cancelled.
1167 static inline void rq_clock_cancel_skipupdate(struct rq
*rq
)
1169 lockdep_assert_held(&rq
->lock
);
1170 rq
->clock_update_flags
&= ~RQCF_REQ_SKIP
;
1174 unsigned long flags
;
1175 struct pin_cookie cookie
;
1176 #ifdef CONFIG_SCHED_DEBUG
1178 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1179 * current pin context is stashed here in case it needs to be
1180 * restored in rq_repin_lock().
1182 unsigned int clock_update_flags
;
1186 static inline void rq_pin_lock(struct rq
*rq
, struct rq_flags
*rf
)
1188 rf
->cookie
= lockdep_pin_lock(&rq
->lock
);
1190 #ifdef CONFIG_SCHED_DEBUG
1191 rq
->clock_update_flags
&= (RQCF_REQ_SKIP
|RQCF_ACT_SKIP
);
1192 rf
->clock_update_flags
= 0;
1196 static inline void rq_unpin_lock(struct rq
*rq
, struct rq_flags
*rf
)
1198 #ifdef CONFIG_SCHED_DEBUG
1199 if (rq
->clock_update_flags
> RQCF_ACT_SKIP
)
1200 rf
->clock_update_flags
= RQCF_UPDATED
;
1203 lockdep_unpin_lock(&rq
->lock
, rf
->cookie
);
1206 static inline void rq_repin_lock(struct rq
*rq
, struct rq_flags
*rf
)
1208 lockdep_repin_lock(&rq
->lock
, rf
->cookie
);
1210 #ifdef CONFIG_SCHED_DEBUG
1212 * Restore the value we stashed in @rf for this pin context.
1214 rq
->clock_update_flags
|= rf
->clock_update_flags
;
1218 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
1219 __acquires(rq
->lock
);
1221 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
1222 __acquires(p
->pi_lock
)
1223 __acquires(rq
->lock
);
1225 static inline void __task_rq_unlock(struct rq
*rq
, struct rq_flags
*rf
)
1226 __releases(rq
->lock
)
1228 rq_unpin_lock(rq
, rf
);
1229 raw_spin_unlock(&rq
->lock
);
1233 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
1234 __releases(rq
->lock
)
1235 __releases(p
->pi_lock
)
1237 rq_unpin_lock(rq
, rf
);
1238 raw_spin_unlock(&rq
->lock
);
1239 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
1243 rq_lock_irqsave(struct rq
*rq
, struct rq_flags
*rf
)
1244 __acquires(rq
->lock
)
1246 raw_spin_lock_irqsave(&rq
->lock
, rf
->flags
);
1247 rq_pin_lock(rq
, rf
);
1251 rq_lock_irq(struct rq
*rq
, struct rq_flags
*rf
)
1252 __acquires(rq
->lock
)
1254 raw_spin_lock_irq(&rq
->lock
);
1255 rq_pin_lock(rq
, rf
);
1259 rq_lock(struct rq
*rq
, struct rq_flags
*rf
)
1260 __acquires(rq
->lock
)
1262 raw_spin_lock(&rq
->lock
);
1263 rq_pin_lock(rq
, rf
);
1267 rq_relock(struct rq
*rq
, struct rq_flags
*rf
)
1268 __acquires(rq
->lock
)
1270 raw_spin_lock(&rq
->lock
);
1271 rq_repin_lock(rq
, rf
);
1275 rq_unlock_irqrestore(struct rq
*rq
, struct rq_flags
*rf
)
1276 __releases(rq
->lock
)
1278 rq_unpin_lock(rq
, rf
);
1279 raw_spin_unlock_irqrestore(&rq
->lock
, rf
->flags
);
1283 rq_unlock_irq(struct rq
*rq
, struct rq_flags
*rf
)
1284 __releases(rq
->lock
)
1286 rq_unpin_lock(rq
, rf
);
1287 raw_spin_unlock_irq(&rq
->lock
);
1291 rq_unlock(struct rq
*rq
, struct rq_flags
*rf
)
1292 __releases(rq
->lock
)
1294 rq_unpin_lock(rq
, rf
);
1295 raw_spin_unlock(&rq
->lock
);
1298 static inline struct rq
*
1299 this_rq_lock_irq(struct rq_flags
*rf
)
1300 __acquires(rq
->lock
)
1304 local_irq_disable();
1311 enum numa_topology_type
{
1316 extern enum numa_topology_type sched_numa_topology_type
;
1317 extern int sched_max_numa_distance
;
1318 extern bool find_numa_distance(int distance
);
1319 extern void sched_init_numa(void);
1320 extern void sched_domains_numa_masks_set(unsigned int cpu
);
1321 extern void sched_domains_numa_masks_clear(unsigned int cpu
);
1322 extern int sched_numa_find_closest(const struct cpumask
*cpus
, int cpu
);
1324 static inline void sched_init_numa(void) { }
1325 static inline void sched_domains_numa_masks_set(unsigned int cpu
) { }
1326 static inline void sched_domains_numa_masks_clear(unsigned int cpu
) { }
1327 static inline int sched_numa_find_closest(const struct cpumask
*cpus
, int cpu
)
1333 #ifdef CONFIG_NUMA_BALANCING
1334 /* The regions in numa_faults array from task_struct */
1335 enum numa_faults_stats
{
1341 extern void sched_setnuma(struct task_struct
*p
, int node
);
1342 extern int migrate_task_to(struct task_struct
*p
, int cpu
);
1343 extern int migrate_swap(struct task_struct
*p
, struct task_struct
*t
,
1345 extern void init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
);
1348 init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
)
1351 #endif /* CONFIG_NUMA_BALANCING */
1356 queue_balance_callback(struct rq
*rq
,
1357 struct callback_head
*head
,
1358 void (*func
)(struct rq
*rq
))
1360 lockdep_assert_held(&rq
->lock
);
1362 if (unlikely(head
->next
))
1365 head
->func
= (void (*)(struct callback_head
*))func
;
1366 head
->next
= rq
->balance_callback
;
1367 rq
->balance_callback
= head
;
1370 extern void sched_ttwu_pending(void);
1372 #define rcu_dereference_check_sched_domain(p) \
1373 rcu_dereference_check((p), \
1374 lockdep_is_held(&sched_domains_mutex))
1377 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1378 * See destroy_sched_domains: call_rcu for details.
1380 * The domain tree of any CPU may only be accessed from within
1381 * preempt-disabled sections.
1383 #define for_each_domain(cpu, __sd) \
1384 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1385 __sd; __sd = __sd->parent)
1388 * highest_flag_domain - Return highest sched_domain containing flag.
1389 * @cpu: The CPU whose highest level of sched domain is to
1391 * @flag: The flag to check for the highest sched_domain
1392 * for the given CPU.
1394 * Returns the highest sched_domain of a CPU which contains the given flag.
1396 static inline struct sched_domain
*highest_flag_domain(int cpu
, int flag
)
1398 struct sched_domain
*sd
, *hsd
= NULL
;
1400 for_each_domain(cpu
, sd
) {
1401 if (!(sd
->flags
& flag
))
1409 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
1411 struct sched_domain
*sd
;
1413 for_each_domain(cpu
, sd
) {
1414 if (sd
->flags
& flag
)
1421 DECLARE_PER_CPU(struct sched_domain __rcu
*, sd_llc
);
1422 DECLARE_PER_CPU(int, sd_llc_size
);
1423 DECLARE_PER_CPU(int, sd_llc_id
);
1424 DECLARE_PER_CPU(struct sched_domain_shared __rcu
*, sd_llc_shared
);
1425 DECLARE_PER_CPU(struct sched_domain __rcu
*, sd_numa
);
1426 DECLARE_PER_CPU(struct sched_domain __rcu
*, sd_asym_packing
);
1427 DECLARE_PER_CPU(struct sched_domain __rcu
*, sd_asym_cpucapacity
);
1428 extern struct static_key_false sched_asym_cpucapacity
;
1430 struct sched_group_capacity
{
1433 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1436 unsigned long capacity
;
1437 unsigned long min_capacity
; /* Min per-CPU capacity in group */
1438 unsigned long max_capacity
; /* Max per-CPU capacity in group */
1439 unsigned long next_update
;
1440 int imbalance
; /* XXX unrelated to capacity but shared group state */
1442 #ifdef CONFIG_SCHED_DEBUG
1446 unsigned long cpumask
[0]; /* Balance mask */
1449 struct sched_group
{
1450 struct sched_group
*next
; /* Must be a circular list */
1453 unsigned int group_weight
;
1454 struct sched_group_capacity
*sgc
;
1455 int asym_prefer_cpu
; /* CPU of highest priority in group */
1458 * The CPUs this group covers.
1460 * NOTE: this field is variable length. (Allocated dynamically
1461 * by attaching extra space to the end of the structure,
1462 * depending on how many CPUs the kernel has booted up with)
1464 unsigned long cpumask
[0];
1467 static inline struct cpumask
*sched_group_span(struct sched_group
*sg
)
1469 return to_cpumask(sg
->cpumask
);
1473 * See build_balance_mask().
1475 static inline struct cpumask
*group_balance_mask(struct sched_group
*sg
)
1477 return to_cpumask(sg
->sgc
->cpumask
);
1481 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1482 * @group: The group whose first CPU is to be returned.
1484 static inline unsigned int group_first_cpu(struct sched_group
*group
)
1486 return cpumask_first(sched_group_span(group
));
1489 extern int group_balance_cpu(struct sched_group
*sg
);
1491 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1492 void register_sched_domain_sysctl(void);
1493 void dirty_sched_domain_sysctl(int cpu
);
1494 void unregister_sched_domain_sysctl(void);
1496 static inline void register_sched_domain_sysctl(void)
1499 static inline void dirty_sched_domain_sysctl(int cpu
)
1502 static inline void unregister_sched_domain_sysctl(void)
1507 extern int newidle_balance(struct rq
*this_rq
, struct rq_flags
*rf
);
1511 static inline void sched_ttwu_pending(void) { }
1513 static inline int newidle_balance(struct rq
*this_rq
, struct rq_flags
*rf
) { return 0; }
1515 #endif /* CONFIG_SMP */
1518 #include "autogroup.h"
1520 #ifdef CONFIG_CGROUP_SCHED
1523 * Return the group to which this tasks belongs.
1525 * We cannot use task_css() and friends because the cgroup subsystem
1526 * changes that value before the cgroup_subsys::attach() method is called,
1527 * therefore we cannot pin it and might observe the wrong value.
1529 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1530 * core changes this before calling sched_move_task().
1532 * Instead we use a 'copy' which is updated from sched_move_task() while
1533 * holding both task_struct::pi_lock and rq::lock.
1535 static inline struct task_group
*task_group(struct task_struct
*p
)
1537 return p
->sched_task_group
;
1540 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1541 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
1543 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1544 struct task_group
*tg
= task_group(p
);
1547 #ifdef CONFIG_FAIR_GROUP_SCHED
1548 set_task_rq_fair(&p
->se
, p
->se
.cfs_rq
, tg
->cfs_rq
[cpu
]);
1549 p
->se
.cfs_rq
= tg
->cfs_rq
[cpu
];
1550 p
->se
.parent
= tg
->se
[cpu
];
1553 #ifdef CONFIG_RT_GROUP_SCHED
1554 p
->rt
.rt_rq
= tg
->rt_rq
[cpu
];
1555 p
->rt
.parent
= tg
->rt_se
[cpu
];
1559 #else /* CONFIG_CGROUP_SCHED */
1561 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
1562 static inline struct task_group
*task_group(struct task_struct
*p
)
1567 #endif /* CONFIG_CGROUP_SCHED */
1569 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1571 set_task_rq(p
, cpu
);
1574 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1575 * successfully executed on another CPU. We must ensure that updates of
1576 * per-task data have been completed by this moment.
1579 #ifdef CONFIG_THREAD_INFO_IN_TASK
1580 WRITE_ONCE(p
->cpu
, cpu
);
1582 WRITE_ONCE(task_thread_info(p
)->cpu
, cpu
);
1589 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1591 #ifdef CONFIG_SCHED_DEBUG
1592 # include <linux/static_key.h>
1593 # define const_debug __read_mostly
1595 # define const_debug const
1598 #define SCHED_FEAT(name, enabled) \
1599 __SCHED_FEAT_##name ,
1602 #include "features.h"
1608 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1611 * To support run-time toggling of sched features, all the translation units
1612 * (but core.c) reference the sysctl_sched_features defined in core.c.
1614 extern const_debug
unsigned int sysctl_sched_features
;
1616 #define SCHED_FEAT(name, enabled) \
1617 static __always_inline bool static_branch_##name(struct static_key *key) \
1619 return static_key_##enabled(key); \
1622 #include "features.h"
1625 extern struct static_key sched_feat_keys
[__SCHED_FEAT_NR
];
1626 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1628 #else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1631 * Each translation unit has its own copy of sysctl_sched_features to allow
1632 * constants propagation at compile time and compiler optimization based on
1635 #define SCHED_FEAT(name, enabled) \
1636 (1UL << __SCHED_FEAT_##name) * enabled |
1637 static const_debug __maybe_unused
unsigned int sysctl_sched_features
=
1638 #include "features.h"
1642 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1644 #endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1646 extern struct static_key_false sched_numa_balancing
;
1647 extern struct static_key_false sched_schedstats
;
1649 static inline u64
global_rt_period(void)
1651 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
1654 static inline u64
global_rt_runtime(void)
1656 if (sysctl_sched_rt_runtime
< 0)
1659 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
1662 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
1664 return rq
->curr
== p
;
1667 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
1672 return task_current(rq
, p
);
1676 static inline int task_on_rq_queued(struct task_struct
*p
)
1678 return p
->on_rq
== TASK_ON_RQ_QUEUED
;
1681 static inline int task_on_rq_migrating(struct task_struct
*p
)
1683 return READ_ONCE(p
->on_rq
) == TASK_ON_RQ_MIGRATING
;
1689 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1690 #define WF_FORK 0x02 /* Child wakeup after fork */
1691 #define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1694 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1695 * of tasks with abnormal "nice" values across CPUs the contribution that
1696 * each task makes to its run queue's load is weighted according to its
1697 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1698 * scaled version of the new time slice allocation that they receive on time
1702 #define WEIGHT_IDLEPRIO 3
1703 #define WMULT_IDLEPRIO 1431655765
1705 extern const int sched_prio_to_weight
[40];
1706 extern const u32 sched_prio_to_wmult
[40];
1709 * {de,en}queue flags:
1711 * DEQUEUE_SLEEP - task is no longer runnable
1712 * ENQUEUE_WAKEUP - task just became runnable
1714 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1715 * are in a known state which allows modification. Such pairs
1716 * should preserve as much state as possible.
1718 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1721 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1722 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1723 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1727 #define DEQUEUE_SLEEP 0x01
1728 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1729 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1730 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1732 #define ENQUEUE_WAKEUP 0x01
1733 #define ENQUEUE_RESTORE 0x02
1734 #define ENQUEUE_MOVE 0x04
1735 #define ENQUEUE_NOCLOCK 0x08
1737 #define ENQUEUE_HEAD 0x10
1738 #define ENQUEUE_REPLENISH 0x20
1740 #define ENQUEUE_MIGRATED 0x40
1742 #define ENQUEUE_MIGRATED 0x00
1745 #define RETRY_TASK ((void *)-1UL)
1747 struct sched_class
{
1748 const struct sched_class
*next
;
1750 #ifdef CONFIG_UCLAMP_TASK
1754 void (*enqueue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1755 void (*dequeue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1756 void (*yield_task
) (struct rq
*rq
);
1757 bool (*yield_to_task
)(struct rq
*rq
, struct task_struct
*p
, bool preempt
);
1759 void (*check_preempt_curr
)(struct rq
*rq
, struct task_struct
*p
, int flags
);
1761 struct task_struct
*(*pick_next_task
)(struct rq
*rq
);
1763 void (*put_prev_task
)(struct rq
*rq
, struct task_struct
*p
);
1764 void (*set_next_task
)(struct rq
*rq
, struct task_struct
*p
, bool first
);
1767 int (*balance
)(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
);
1768 int (*select_task_rq
)(struct task_struct
*p
, int task_cpu
, int sd_flag
, int flags
);
1769 void (*migrate_task_rq
)(struct task_struct
*p
, int new_cpu
);
1771 void (*task_woken
)(struct rq
*this_rq
, struct task_struct
*task
);
1773 void (*set_cpus_allowed
)(struct task_struct
*p
,
1774 const struct cpumask
*newmask
);
1776 void (*rq_online
)(struct rq
*rq
);
1777 void (*rq_offline
)(struct rq
*rq
);
1780 void (*task_tick
)(struct rq
*rq
, struct task_struct
*p
, int queued
);
1781 void (*task_fork
)(struct task_struct
*p
);
1782 void (*task_dead
)(struct task_struct
*p
);
1785 * The switched_from() call is allowed to drop rq->lock, therefore we
1786 * cannot assume the switched_from/switched_to pair is serliazed by
1787 * rq->lock. They are however serialized by p->pi_lock.
1789 void (*switched_from
)(struct rq
*this_rq
, struct task_struct
*task
);
1790 void (*switched_to
) (struct rq
*this_rq
, struct task_struct
*task
);
1791 void (*prio_changed
) (struct rq
*this_rq
, struct task_struct
*task
,
1794 unsigned int (*get_rr_interval
)(struct rq
*rq
,
1795 struct task_struct
*task
);
1797 void (*update_curr
)(struct rq
*rq
);
1799 #define TASK_SET_GROUP 0
1800 #define TASK_MOVE_GROUP 1
1802 #ifdef CONFIG_FAIR_GROUP_SCHED
1803 void (*task_change_group
)(struct task_struct
*p
, int type
);
1807 static inline void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
1809 WARN_ON_ONCE(rq
->curr
!= prev
);
1810 prev
->sched_class
->put_prev_task(rq
, prev
);
1813 static inline void set_next_task(struct rq
*rq
, struct task_struct
*next
)
1815 WARN_ON_ONCE(rq
->curr
!= next
);
1816 next
->sched_class
->set_next_task(rq
, next
, false);
1820 #define sched_class_highest (&stop_sched_class)
1822 #define sched_class_highest (&dl_sched_class)
1825 #define for_class_range(class, _from, _to) \
1826 for (class = (_from); class != (_to); class = class->next)
1828 #define for_each_class(class) \
1829 for_class_range(class, sched_class_highest, NULL)
1831 extern const struct sched_class stop_sched_class
;
1832 extern const struct sched_class dl_sched_class
;
1833 extern const struct sched_class rt_sched_class
;
1834 extern const struct sched_class fair_sched_class
;
1835 extern const struct sched_class idle_sched_class
;
1837 static inline bool sched_stop_runnable(struct rq
*rq
)
1839 return rq
->stop
&& task_on_rq_queued(rq
->stop
);
1842 static inline bool sched_dl_runnable(struct rq
*rq
)
1844 return rq
->dl
.dl_nr_running
> 0;
1847 static inline bool sched_rt_runnable(struct rq
*rq
)
1849 return rq
->rt
.rt_queued
> 0;
1852 static inline bool sched_fair_runnable(struct rq
*rq
)
1854 return rq
->cfs
.nr_running
> 0;
1857 extern struct task_struct
*pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
);
1858 extern struct task_struct
*pick_next_task_idle(struct rq
*rq
);
1862 extern void update_group_capacity(struct sched_domain
*sd
, int cpu
);
1864 extern void trigger_load_balance(struct rq
*rq
);
1866 extern void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
);
1870 #ifdef CONFIG_CPU_IDLE
1871 static inline void idle_set_state(struct rq
*rq
,
1872 struct cpuidle_state
*idle_state
)
1874 rq
->idle_state
= idle_state
;
1877 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1879 SCHED_WARN_ON(!rcu_read_lock_held());
1881 return rq
->idle_state
;
1884 static inline void idle_set_state(struct rq
*rq
,
1885 struct cpuidle_state
*idle_state
)
1889 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1895 extern void schedule_idle(void);
1897 extern void sysrq_sched_debug_show(void);
1898 extern void sched_init_granularity(void);
1899 extern void update_max_interval(void);
1901 extern void init_sched_dl_class(void);
1902 extern void init_sched_rt_class(void);
1903 extern void init_sched_fair_class(void);
1905 extern void reweight_task(struct task_struct
*p
, int prio
);
1907 extern void resched_curr(struct rq
*rq
);
1908 extern void resched_cpu(int cpu
);
1910 extern struct rt_bandwidth def_rt_bandwidth
;
1911 extern void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
);
1913 extern struct dl_bandwidth def_dl_bandwidth
;
1914 extern void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
);
1915 extern void init_dl_task_timer(struct sched_dl_entity
*dl_se
);
1916 extern void init_dl_inactive_task_timer(struct sched_dl_entity
*dl_se
);
1919 #define BW_UNIT (1 << BW_SHIFT)
1920 #define RATIO_SHIFT 8
1921 #define MAX_BW_BITS (64 - BW_SHIFT)
1922 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
1923 unsigned long to_ratio(u64 period
, u64 runtime
);
1925 extern void init_entity_runnable_average(struct sched_entity
*se
);
1926 extern void post_init_entity_util_avg(struct task_struct
*p
);
1928 #ifdef CONFIG_NO_HZ_FULL
1929 extern bool sched_can_stop_tick(struct rq
*rq
);
1930 extern int __init
sched_tick_offload_init(void);
1933 * Tick may be needed by tasks in the runqueue depending on their policy and
1934 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1935 * nohz mode if necessary.
1937 static inline void sched_update_tick_dependency(struct rq
*rq
)
1941 if (!tick_nohz_full_enabled())
1946 if (!tick_nohz_full_cpu(cpu
))
1949 if (sched_can_stop_tick(rq
))
1950 tick_nohz_dep_clear_cpu(cpu
, TICK_DEP_BIT_SCHED
);
1952 tick_nohz_dep_set_cpu(cpu
, TICK_DEP_BIT_SCHED
);
1955 static inline int sched_tick_offload_init(void) { return 0; }
1956 static inline void sched_update_tick_dependency(struct rq
*rq
) { }
1959 static inline void add_nr_running(struct rq
*rq
, unsigned count
)
1961 unsigned prev_nr
= rq
->nr_running
;
1963 rq
->nr_running
= prev_nr
+ count
;
1966 if (prev_nr
< 2 && rq
->nr_running
>= 2) {
1967 if (!READ_ONCE(rq
->rd
->overload
))
1968 WRITE_ONCE(rq
->rd
->overload
, 1);
1972 sched_update_tick_dependency(rq
);
1975 static inline void sub_nr_running(struct rq
*rq
, unsigned count
)
1977 rq
->nr_running
-= count
;
1978 /* Check if we still need preemption */
1979 sched_update_tick_dependency(rq
);
1982 extern void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1983 extern void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1985 extern void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
1987 extern const_debug
unsigned int sysctl_sched_nr_migrate
;
1988 extern const_debug
unsigned int sysctl_sched_migration_cost
;
1990 #ifdef CONFIG_SCHED_HRTICK
1994 * - enabled by features
1995 * - hrtimer is actually high res
1997 static inline int hrtick_enabled(struct rq
*rq
)
1999 if (!sched_feat(HRTICK
))
2001 if (!cpu_active(cpu_of(rq
)))
2003 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
2006 void hrtick_start(struct rq
*rq
, u64 delay
);
2010 static inline int hrtick_enabled(struct rq
*rq
)
2015 #endif /* CONFIG_SCHED_HRTICK */
2017 #ifndef arch_scale_freq_tick
2018 static __always_inline
2019 void arch_scale_freq_tick(void)
2024 #ifndef arch_scale_freq_capacity
2025 static __always_inline
2026 unsigned long arch_scale_freq_capacity(int cpu
)
2028 return SCHED_CAPACITY_SCALE
;
2033 #ifdef CONFIG_PREEMPTION
2035 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
2038 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2039 * way at the expense of forcing extra atomic operations in all
2040 * invocations. This assures that the double_lock is acquired using the
2041 * same underlying policy as the spinlock_t on this architecture, which
2042 * reduces latency compared to the unfair variant below. However, it
2043 * also adds more overhead and therefore may reduce throughput.
2045 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2046 __releases(this_rq
->lock
)
2047 __acquires(busiest
->lock
)
2048 __acquires(this_rq
->lock
)
2050 raw_spin_unlock(&this_rq
->lock
);
2051 double_rq_lock(this_rq
, busiest
);
2058 * Unfair double_lock_balance: Optimizes throughput at the expense of
2059 * latency by eliminating extra atomic operations when the locks are
2060 * already in proper order on entry. This favors lower CPU-ids and will
2061 * grant the double lock to lower CPUs over higher ids under contention,
2062 * regardless of entry order into the function.
2064 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2065 __releases(this_rq
->lock
)
2066 __acquires(busiest
->lock
)
2067 __acquires(this_rq
->lock
)
2071 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
2072 if (busiest
< this_rq
) {
2073 raw_spin_unlock(&this_rq
->lock
);
2074 raw_spin_lock(&busiest
->lock
);
2075 raw_spin_lock_nested(&this_rq
->lock
,
2076 SINGLE_DEPTH_NESTING
);
2079 raw_spin_lock_nested(&busiest
->lock
,
2080 SINGLE_DEPTH_NESTING
);
2085 #endif /* CONFIG_PREEMPTION */
2088 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2090 static inline int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2092 if (unlikely(!irqs_disabled())) {
2093 /* printk() doesn't work well under rq->lock */
2094 raw_spin_unlock(&this_rq
->lock
);
2098 return _double_lock_balance(this_rq
, busiest
);
2101 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2102 __releases(busiest
->lock
)
2104 raw_spin_unlock(&busiest
->lock
);
2105 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
2108 static inline void double_lock(spinlock_t
*l1
, spinlock_t
*l2
)
2114 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
2117 static inline void double_lock_irq(spinlock_t
*l1
, spinlock_t
*l2
)
2123 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
2126 static inline void double_raw_lock(raw_spinlock_t
*l1
, raw_spinlock_t
*l2
)
2132 raw_spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
2136 * double_rq_lock - safely lock two runqueues
2138 * Note this does not disable interrupts like task_rq_lock,
2139 * you need to do so manually before calling.
2141 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2142 __acquires(rq1
->lock
)
2143 __acquires(rq2
->lock
)
2145 BUG_ON(!irqs_disabled());
2147 raw_spin_lock(&rq1
->lock
);
2148 __acquire(rq2
->lock
); /* Fake it out ;) */
2151 raw_spin_lock(&rq1
->lock
);
2152 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2154 raw_spin_lock(&rq2
->lock
);
2155 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2161 * double_rq_unlock - safely unlock two runqueues
2163 * Note this does not restore interrupts like task_rq_unlock,
2164 * you need to do so manually after calling.
2166 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2167 __releases(rq1
->lock
)
2168 __releases(rq2
->lock
)
2170 raw_spin_unlock(&rq1
->lock
);
2172 raw_spin_unlock(&rq2
->lock
);
2174 __release(rq2
->lock
);
2177 extern void set_rq_online (struct rq
*rq
);
2178 extern void set_rq_offline(struct rq
*rq
);
2179 extern bool sched_smp_initialized
;
2181 #else /* CONFIG_SMP */
2184 * double_rq_lock - safely lock two runqueues
2186 * Note this does not disable interrupts like task_rq_lock,
2187 * you need to do so manually before calling.
2189 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2190 __acquires(rq1
->lock
)
2191 __acquires(rq2
->lock
)
2193 BUG_ON(!irqs_disabled());
2195 raw_spin_lock(&rq1
->lock
);
2196 __acquire(rq2
->lock
); /* Fake it out ;) */
2200 * double_rq_unlock - safely unlock two runqueues
2202 * Note this does not restore interrupts like task_rq_unlock,
2203 * you need to do so manually after calling.
2205 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2206 __releases(rq1
->lock
)
2207 __releases(rq2
->lock
)
2210 raw_spin_unlock(&rq1
->lock
);
2211 __release(rq2
->lock
);
2216 extern struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
);
2217 extern struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
);
2219 #ifdef CONFIG_SCHED_DEBUG
2220 extern bool sched_debug_enabled
;
2222 extern void print_cfs_stats(struct seq_file
*m
, int cpu
);
2223 extern void print_rt_stats(struct seq_file
*m
, int cpu
);
2224 extern void print_dl_stats(struct seq_file
*m
, int cpu
);
2225 extern void print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
);
2226 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
2227 extern void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
);
2228 #ifdef CONFIG_NUMA_BALANCING
2230 show_numa_stats(struct task_struct
*p
, struct seq_file
*m
);
2232 print_numa_stats(struct seq_file
*m
, int node
, unsigned long tsf
,
2233 unsigned long tpf
, unsigned long gsf
, unsigned long gpf
);
2234 #endif /* CONFIG_NUMA_BALANCING */
2235 #endif /* CONFIG_SCHED_DEBUG */
2237 extern void init_cfs_rq(struct cfs_rq
*cfs_rq
);
2238 extern void init_rt_rq(struct rt_rq
*rt_rq
);
2239 extern void init_dl_rq(struct dl_rq
*dl_rq
);
2241 extern void cfs_bandwidth_usage_inc(void);
2242 extern void cfs_bandwidth_usage_dec(void);
2244 #ifdef CONFIG_NO_HZ_COMMON
2245 #define NOHZ_BALANCE_KICK_BIT 0
2246 #define NOHZ_STATS_KICK_BIT 1
2248 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2249 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2251 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2253 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2255 extern void nohz_balance_exit_idle(struct rq
*rq
);
2257 static inline void nohz_balance_exit_idle(struct rq
*rq
) { }
2263 void __dl_update(struct dl_bw
*dl_b
, s64 bw
)
2265 struct root_domain
*rd
= container_of(dl_b
, struct root_domain
, dl_bw
);
2268 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2269 "sched RCU must be held");
2270 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
) {
2271 struct rq
*rq
= cpu_rq(i
);
2273 rq
->dl
.extra_bw
+= bw
;
2278 void __dl_update(struct dl_bw
*dl_b
, s64 bw
)
2280 struct dl_rq
*dl
= container_of(dl_b
, struct dl_rq
, dl_bw
);
2287 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2292 struct u64_stats_sync sync
;
2295 DECLARE_PER_CPU(struct irqtime
, cpu_irqtime
);
2298 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2299 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2300 * and never move forward.
2302 static inline u64
irq_time_read(int cpu
)
2304 struct irqtime
*irqtime
= &per_cpu(cpu_irqtime
, cpu
);
2309 seq
= __u64_stats_fetch_begin(&irqtime
->sync
);
2310 total
= irqtime
->total
;
2311 } while (__u64_stats_fetch_retry(&irqtime
->sync
, seq
));
2315 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2317 #ifdef CONFIG_CPU_FREQ
2318 DECLARE_PER_CPU(struct update_util_data __rcu
*, cpufreq_update_util_data
);
2321 * cpufreq_update_util - Take a note about CPU utilization changes.
2322 * @rq: Runqueue to carry out the update for.
2323 * @flags: Update reason flags.
2325 * This function is called by the scheduler on the CPU whose utilization is
2328 * It can only be called from RCU-sched read-side critical sections.
2330 * The way cpufreq is currently arranged requires it to evaluate the CPU
2331 * performance state (frequency/voltage) on a regular basis to prevent it from
2332 * being stuck in a completely inadequate performance level for too long.
2333 * That is not guaranteed to happen if the updates are only triggered from CFS
2334 * and DL, though, because they may not be coming in if only RT tasks are
2335 * active all the time (or there are RT tasks only).
2337 * As a workaround for that issue, this function is called periodically by the
2338 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2339 * but that really is a band-aid. Going forward it should be replaced with
2340 * solutions targeted more specifically at RT tasks.
2342 static inline void cpufreq_update_util(struct rq
*rq
, unsigned int flags
)
2344 struct update_util_data
*data
;
2346 data
= rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data
,
2349 data
->func(data
, rq_clock(rq
), flags
);
2352 static inline void cpufreq_update_util(struct rq
*rq
, unsigned int flags
) {}
2353 #endif /* CONFIG_CPU_FREQ */
2355 #ifdef CONFIG_UCLAMP_TASK
2356 unsigned long uclamp_eff_value(struct task_struct
*p
, enum uclamp_id clamp_id
);
2358 static __always_inline
2359 unsigned long uclamp_rq_util_with(struct rq
*rq
, unsigned long util
,
2360 struct task_struct
*p
)
2362 unsigned long min_util
= READ_ONCE(rq
->uclamp
[UCLAMP_MIN
].value
);
2363 unsigned long max_util
= READ_ONCE(rq
->uclamp
[UCLAMP_MAX
].value
);
2366 min_util
= max(min_util
, uclamp_eff_value(p
, UCLAMP_MIN
));
2367 max_util
= max(max_util
, uclamp_eff_value(p
, UCLAMP_MAX
));
2371 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2372 * RUNNABLE tasks with _different_ clamps, we can end up with an
2373 * inversion. Fix it now when the clamps are applied.
2375 if (unlikely(min_util
>= max_util
))
2378 return clamp(util
, min_util
, max_util
);
2380 #else /* CONFIG_UCLAMP_TASK */
2382 unsigned long uclamp_rq_util_with(struct rq
*rq
, unsigned long util
,
2383 struct task_struct
*p
)
2387 #endif /* CONFIG_UCLAMP_TASK */
2389 #ifdef arch_scale_freq_capacity
2390 # ifndef arch_scale_freq_invariant
2391 # define arch_scale_freq_invariant() true
2394 # define arch_scale_freq_invariant() false
2398 static inline unsigned long capacity_orig_of(int cpu
)
2400 return cpu_rq(cpu
)->cpu_capacity_orig
;
2405 * enum schedutil_type - CPU utilization type
2406 * @FREQUENCY_UTIL: Utilization used to select frequency
2407 * @ENERGY_UTIL: Utilization used during energy calculation
2409 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2410 * need to be aggregated differently depending on the usage made of them. This
2411 * enum is used within schedutil_freq_util() to differentiate the types of
2412 * utilization expected by the callers, and adjust the aggregation accordingly.
2414 enum schedutil_type
{
2419 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2421 unsigned long schedutil_cpu_util(int cpu
, unsigned long util_cfs
,
2422 unsigned long max
, enum schedutil_type type
,
2423 struct task_struct
*p
);
2425 static inline unsigned long cpu_bw_dl(struct rq
*rq
)
2427 return (rq
->dl
.running_bw
* SCHED_CAPACITY_SCALE
) >> BW_SHIFT
;
2430 static inline unsigned long cpu_util_dl(struct rq
*rq
)
2432 return READ_ONCE(rq
->avg_dl
.util_avg
);
2435 static inline unsigned long cpu_util_cfs(struct rq
*rq
)
2437 unsigned long util
= READ_ONCE(rq
->cfs
.avg
.util_avg
);
2439 if (sched_feat(UTIL_EST
)) {
2440 util
= max_t(unsigned long, util
,
2441 READ_ONCE(rq
->cfs
.avg
.util_est
.enqueued
));
2447 static inline unsigned long cpu_util_rt(struct rq
*rq
)
2449 return READ_ONCE(rq
->avg_rt
.util_avg
);
2451 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2452 static inline unsigned long schedutil_cpu_util(int cpu
, unsigned long util_cfs
,
2453 unsigned long max
, enum schedutil_type type
,
2454 struct task_struct
*p
)
2458 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2460 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2461 static inline unsigned long cpu_util_irq(struct rq
*rq
)
2463 return rq
->avg_irq
.util_avg
;
2467 unsigned long scale_irq_capacity(unsigned long util
, unsigned long irq
, unsigned long max
)
2469 util
*= (max
- irq
);
2476 static inline unsigned long cpu_util_irq(struct rq
*rq
)
2482 unsigned long scale_irq_capacity(unsigned long util
, unsigned long irq
, unsigned long max
)
2488 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2490 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2492 DECLARE_STATIC_KEY_FALSE(sched_energy_present
);
2494 static inline bool sched_energy_enabled(void)
2496 return static_branch_unlikely(&sched_energy_present
);
2499 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2501 #define perf_domain_span(pd) NULL
2502 static inline bool sched_energy_enabled(void) { return false; }
2504 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2506 #ifdef CONFIG_MEMBARRIER
2508 * The scheduler provides memory barriers required by membarrier between:
2509 * - prior user-space memory accesses and store to rq->membarrier_state,
2510 * - store to rq->membarrier_state and following user-space memory accesses.
2511 * In the same way it provides those guarantees around store to rq->curr.
2513 static inline void membarrier_switch_mm(struct rq
*rq
,
2514 struct mm_struct
*prev_mm
,
2515 struct mm_struct
*next_mm
)
2517 int membarrier_state
;
2519 if (prev_mm
== next_mm
)
2522 membarrier_state
= atomic_read(&next_mm
->membarrier_state
);
2523 if (READ_ONCE(rq
->membarrier_state
) == membarrier_state
)
2526 WRITE_ONCE(rq
->membarrier_state
, membarrier_state
);
2529 static inline void membarrier_switch_mm(struct rq
*rq
,
2530 struct mm_struct
*prev_mm
,
2531 struct mm_struct
*next_mm
)
2537 static inline bool is_per_cpu_kthread(struct task_struct
*p
)
2539 if (!(p
->flags
& PF_KTHREAD
))
2542 if (p
->nr_cpus_allowed
!= 1)
2549 void swake_up_all_locked(struct swait_queue_head
*q
);
2550 void __prepare_to_swait(struct swait_queue_head
*q
, struct swait_queue
*wait
);