Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / kernel / sched / topology.c
blob8344757bba6e651ed50e53e2e1c9190eedddd339
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5 #include "sched.h"
7 DEFINE_MUTEX(sched_domains_mutex);
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
13 #ifdef CONFIG_SCHED_DEBUG
15 static int __init sched_debug_setup(char *str)
17 sched_debug_enabled = true;
19 return 0;
21 early_param("sched_debug", sched_debug_setup);
23 static inline bool sched_debug(void)
25 return sched_debug_enabled;
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 struct cpumask *groupmask)
31 struct sched_group *group = sd->groups;
33 cpumask_clear(groupmask);
35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
37 if (!(sd->flags & SD_LOAD_BALANCE)) {
38 printk("does not load-balance\n");
39 if (sd->parent)
40 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41 return -1;
44 printk(KERN_CONT "span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd)), sd->name);
47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
54 printk(KERN_DEBUG "%*s groups:", level + 1, "");
55 do {
56 if (!group) {
57 printk("\n");
58 printk(KERN_ERR "ERROR: group is NULL\n");
59 break;
62 if (!cpumask_weight(sched_group_span(group))) {
63 printk(KERN_CONT "\n");
64 printk(KERN_ERR "ERROR: empty group\n");
65 break;
68 if (!(sd->flags & SD_OVERLAP) &&
69 cpumask_intersects(groupmask, sched_group_span(group))) {
70 printk(KERN_CONT "\n");
71 printk(KERN_ERR "ERROR: repeated CPUs\n");
72 break;
75 cpumask_or(groupmask, groupmask, sched_group_span(group));
77 printk(KERN_CONT " %d:{ span=%*pbl",
78 group->sgc->id,
79 cpumask_pr_args(sched_group_span(group)));
81 if ((sd->flags & SD_OVERLAP) &&
82 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83 printk(KERN_CONT " mask=%*pbl",
84 cpumask_pr_args(group_balance_mask(group)));
87 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
90 if (group == sd->groups && sd->child &&
91 !cpumask_equal(sched_domain_span(sd->child),
92 sched_group_span(group))) {
93 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
96 printk(KERN_CONT " }");
98 group = group->next;
100 if (group != sd->groups)
101 printk(KERN_CONT ",");
103 } while (group != sd->groups);
104 printk(KERN_CONT "\n");
106 if (!cpumask_equal(sched_domain_span(sd), groupmask))
107 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
109 if (sd->parent &&
110 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
111 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112 return 0;
115 static void sched_domain_debug(struct sched_domain *sd, int cpu)
117 int level = 0;
119 if (!sched_debug_enabled)
120 return;
122 if (!sd) {
123 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124 return;
127 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
129 for (;;) {
130 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131 break;
132 level++;
133 sd = sd->parent;
134 if (!sd)
135 break;
138 #else /* !CONFIG_SCHED_DEBUG */
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
144 return false;
146 #endif /* CONFIG_SCHED_DEBUG */
148 static int sd_degenerate(struct sched_domain *sd)
150 if (cpumask_weight(sched_domain_span(sd)) == 1)
151 return 1;
153 /* Following flags need at least 2 groups */
154 if (sd->flags & (SD_LOAD_BALANCE |
155 SD_BALANCE_NEWIDLE |
156 SD_BALANCE_FORK |
157 SD_BALANCE_EXEC |
158 SD_SHARE_CPUCAPACITY |
159 SD_ASYM_CPUCAPACITY |
160 SD_SHARE_PKG_RESOURCES |
161 SD_SHARE_POWERDOMAIN)) {
162 if (sd->groups != sd->groups->next)
163 return 0;
166 /* Following flags don't use groups */
167 if (sd->flags & (SD_WAKE_AFFINE))
168 return 0;
170 return 1;
173 static int
174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
176 unsigned long cflags = sd->flags, pflags = parent->flags;
178 if (sd_degenerate(parent))
179 return 1;
181 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182 return 0;
184 /* Flags needing groups don't count if only 1 group in parent */
185 if (parent->groups == parent->groups->next) {
186 pflags &= ~(SD_LOAD_BALANCE |
187 SD_BALANCE_NEWIDLE |
188 SD_BALANCE_FORK |
189 SD_BALANCE_EXEC |
190 SD_ASYM_CPUCAPACITY |
191 SD_SHARE_CPUCAPACITY |
192 SD_SHARE_PKG_RESOURCES |
193 SD_PREFER_SIBLING |
194 SD_SHARE_POWERDOMAIN);
195 if (nr_node_ids == 1)
196 pflags &= ~SD_SERIALIZE;
198 if (~cflags & pflags)
199 return 0;
201 return 1;
204 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
205 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
206 unsigned int sysctl_sched_energy_aware = 1;
207 DEFINE_MUTEX(sched_energy_mutex);
208 bool sched_energy_update;
210 #ifdef CONFIG_PROC_SYSCTL
211 int sched_energy_aware_handler(struct ctl_table *table, int write,
212 void __user *buffer, size_t *lenp, loff_t *ppos)
214 int ret, state;
216 if (write && !capable(CAP_SYS_ADMIN))
217 return -EPERM;
219 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
220 if (!ret && write) {
221 state = static_branch_unlikely(&sched_energy_present);
222 if (state != sysctl_sched_energy_aware) {
223 mutex_lock(&sched_energy_mutex);
224 sched_energy_update = 1;
225 rebuild_sched_domains();
226 sched_energy_update = 0;
227 mutex_unlock(&sched_energy_mutex);
231 return ret;
233 #endif
235 static void free_pd(struct perf_domain *pd)
237 struct perf_domain *tmp;
239 while (pd) {
240 tmp = pd->next;
241 kfree(pd);
242 pd = tmp;
246 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
248 while (pd) {
249 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
250 return pd;
251 pd = pd->next;
254 return NULL;
257 static struct perf_domain *pd_init(int cpu)
259 struct em_perf_domain *obj = em_cpu_get(cpu);
260 struct perf_domain *pd;
262 if (!obj) {
263 if (sched_debug())
264 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
265 return NULL;
268 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
269 if (!pd)
270 return NULL;
271 pd->em_pd = obj;
273 return pd;
276 static void perf_domain_debug(const struct cpumask *cpu_map,
277 struct perf_domain *pd)
279 if (!sched_debug() || !pd)
280 return;
282 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
284 while (pd) {
285 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
286 cpumask_first(perf_domain_span(pd)),
287 cpumask_pr_args(perf_domain_span(pd)),
288 em_pd_nr_cap_states(pd->em_pd));
289 pd = pd->next;
292 printk(KERN_CONT "\n");
295 static void destroy_perf_domain_rcu(struct rcu_head *rp)
297 struct perf_domain *pd;
299 pd = container_of(rp, struct perf_domain, rcu);
300 free_pd(pd);
303 static void sched_energy_set(bool has_eas)
305 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
306 if (sched_debug())
307 pr_info("%s: stopping EAS\n", __func__);
308 static_branch_disable_cpuslocked(&sched_energy_present);
309 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
310 if (sched_debug())
311 pr_info("%s: starting EAS\n", __func__);
312 static_branch_enable_cpuslocked(&sched_energy_present);
317 * EAS can be used on a root domain if it meets all the following conditions:
318 * 1. an Energy Model (EM) is available;
319 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
320 * 3. no SMT is detected.
321 * 4. the EM complexity is low enough to keep scheduling overheads low;
322 * 5. schedutil is driving the frequency of all CPUs of the rd;
324 * The complexity of the Energy Model is defined as:
326 * C = nr_pd * (nr_cpus + nr_cs)
328 * with parameters defined as:
329 * - nr_pd: the number of performance domains
330 * - nr_cpus: the number of CPUs
331 * - nr_cs: the sum of the number of capacity states of all performance
332 * domains (for example, on a system with 2 performance domains,
333 * with 10 capacity states each, nr_cs = 2 * 10 = 20).
335 * It is generally not a good idea to use such a model in the wake-up path on
336 * very complex platforms because of the associated scheduling overheads. The
337 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
338 * with per-CPU DVFS and less than 8 capacity states each, for example.
340 #define EM_MAX_COMPLEXITY 2048
342 extern struct cpufreq_governor schedutil_gov;
343 static bool build_perf_domains(const struct cpumask *cpu_map)
345 int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
346 struct perf_domain *pd = NULL, *tmp;
347 int cpu = cpumask_first(cpu_map);
348 struct root_domain *rd = cpu_rq(cpu)->rd;
349 struct cpufreq_policy *policy;
350 struct cpufreq_governor *gov;
352 if (!sysctl_sched_energy_aware)
353 goto free;
355 /* EAS is enabled for asymmetric CPU capacity topologies. */
356 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
357 if (sched_debug()) {
358 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
359 cpumask_pr_args(cpu_map));
361 goto free;
364 /* EAS definitely does *not* handle SMT */
365 if (sched_smt_active()) {
366 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
367 cpumask_pr_args(cpu_map));
368 goto free;
371 for_each_cpu(i, cpu_map) {
372 /* Skip already covered CPUs. */
373 if (find_pd(pd, i))
374 continue;
376 /* Do not attempt EAS if schedutil is not being used. */
377 policy = cpufreq_cpu_get(i);
378 if (!policy)
379 goto free;
380 gov = policy->governor;
381 cpufreq_cpu_put(policy);
382 if (gov != &schedutil_gov) {
383 if (rd->pd)
384 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
385 cpumask_pr_args(cpu_map));
386 goto free;
389 /* Create the new pd and add it to the local list. */
390 tmp = pd_init(i);
391 if (!tmp)
392 goto free;
393 tmp->next = pd;
394 pd = tmp;
397 * Count performance domains and capacity states for the
398 * complexity check.
400 nr_pd++;
401 nr_cs += em_pd_nr_cap_states(pd->em_pd);
404 /* Bail out if the Energy Model complexity is too high. */
405 if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
406 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
407 cpumask_pr_args(cpu_map));
408 goto free;
411 perf_domain_debug(cpu_map, pd);
413 /* Attach the new list of performance domains to the root domain. */
414 tmp = rd->pd;
415 rcu_assign_pointer(rd->pd, pd);
416 if (tmp)
417 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
419 return !!pd;
421 free:
422 free_pd(pd);
423 tmp = rd->pd;
424 rcu_assign_pointer(rd->pd, NULL);
425 if (tmp)
426 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
428 return false;
430 #else
431 static void free_pd(struct perf_domain *pd) { }
432 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
434 static void free_rootdomain(struct rcu_head *rcu)
436 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
438 cpupri_cleanup(&rd->cpupri);
439 cpudl_cleanup(&rd->cpudl);
440 free_cpumask_var(rd->dlo_mask);
441 free_cpumask_var(rd->rto_mask);
442 free_cpumask_var(rd->online);
443 free_cpumask_var(rd->span);
444 free_pd(rd->pd);
445 kfree(rd);
448 void rq_attach_root(struct rq *rq, struct root_domain *rd)
450 struct root_domain *old_rd = NULL;
451 unsigned long flags;
453 raw_spin_lock_irqsave(&rq->lock, flags);
455 if (rq->rd) {
456 old_rd = rq->rd;
458 if (cpumask_test_cpu(rq->cpu, old_rd->online))
459 set_rq_offline(rq);
461 cpumask_clear_cpu(rq->cpu, old_rd->span);
464 * If we dont want to free the old_rd yet then
465 * set old_rd to NULL to skip the freeing later
466 * in this function:
468 if (!atomic_dec_and_test(&old_rd->refcount))
469 old_rd = NULL;
472 atomic_inc(&rd->refcount);
473 rq->rd = rd;
475 cpumask_set_cpu(rq->cpu, rd->span);
476 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
477 set_rq_online(rq);
479 raw_spin_unlock_irqrestore(&rq->lock, flags);
481 if (old_rd)
482 call_rcu(&old_rd->rcu, free_rootdomain);
485 void sched_get_rd(struct root_domain *rd)
487 atomic_inc(&rd->refcount);
490 void sched_put_rd(struct root_domain *rd)
492 if (!atomic_dec_and_test(&rd->refcount))
493 return;
495 call_rcu(&rd->rcu, free_rootdomain);
498 static int init_rootdomain(struct root_domain *rd)
500 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
501 goto out;
502 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
503 goto free_span;
504 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
505 goto free_online;
506 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
507 goto free_dlo_mask;
509 #ifdef HAVE_RT_PUSH_IPI
510 rd->rto_cpu = -1;
511 raw_spin_lock_init(&rd->rto_lock);
512 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
513 #endif
515 init_dl_bw(&rd->dl_bw);
516 if (cpudl_init(&rd->cpudl) != 0)
517 goto free_rto_mask;
519 if (cpupri_init(&rd->cpupri) != 0)
520 goto free_cpudl;
521 return 0;
523 free_cpudl:
524 cpudl_cleanup(&rd->cpudl);
525 free_rto_mask:
526 free_cpumask_var(rd->rto_mask);
527 free_dlo_mask:
528 free_cpumask_var(rd->dlo_mask);
529 free_online:
530 free_cpumask_var(rd->online);
531 free_span:
532 free_cpumask_var(rd->span);
533 out:
534 return -ENOMEM;
538 * By default the system creates a single root-domain with all CPUs as
539 * members (mimicking the global state we have today).
541 struct root_domain def_root_domain;
543 void init_defrootdomain(void)
545 init_rootdomain(&def_root_domain);
547 atomic_set(&def_root_domain.refcount, 1);
550 static struct root_domain *alloc_rootdomain(void)
552 struct root_domain *rd;
554 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
555 if (!rd)
556 return NULL;
558 if (init_rootdomain(rd) != 0) {
559 kfree(rd);
560 return NULL;
563 return rd;
566 static void free_sched_groups(struct sched_group *sg, int free_sgc)
568 struct sched_group *tmp, *first;
570 if (!sg)
571 return;
573 first = sg;
574 do {
575 tmp = sg->next;
577 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
578 kfree(sg->sgc);
580 if (atomic_dec_and_test(&sg->ref))
581 kfree(sg);
582 sg = tmp;
583 } while (sg != first);
586 static void destroy_sched_domain(struct sched_domain *sd)
589 * A normal sched domain may have multiple group references, an
590 * overlapping domain, having private groups, only one. Iterate,
591 * dropping group/capacity references, freeing where none remain.
593 free_sched_groups(sd->groups, 1);
595 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
596 kfree(sd->shared);
597 kfree(sd);
600 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
602 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
604 while (sd) {
605 struct sched_domain *parent = sd->parent;
606 destroy_sched_domain(sd);
607 sd = parent;
611 static void destroy_sched_domains(struct sched_domain *sd)
613 if (sd)
614 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
618 * Keep a special pointer to the highest sched_domain that has
619 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
620 * allows us to avoid some pointer chasing select_idle_sibling().
622 * Also keep a unique ID per domain (we use the first CPU number in
623 * the cpumask of the domain), this allows us to quickly tell if
624 * two CPUs are in the same cache domain, see cpus_share_cache().
626 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
627 DEFINE_PER_CPU(int, sd_llc_size);
628 DEFINE_PER_CPU(int, sd_llc_id);
629 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
630 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
631 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
632 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
633 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
635 static void update_top_cache_domain(int cpu)
637 struct sched_domain_shared *sds = NULL;
638 struct sched_domain *sd;
639 int id = cpu;
640 int size = 1;
642 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
643 if (sd) {
644 id = cpumask_first(sched_domain_span(sd));
645 size = cpumask_weight(sched_domain_span(sd));
646 sds = sd->shared;
649 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
650 per_cpu(sd_llc_size, cpu) = size;
651 per_cpu(sd_llc_id, cpu) = id;
652 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
654 sd = lowest_flag_domain(cpu, SD_NUMA);
655 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
657 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
658 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
660 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
661 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
665 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
666 * hold the hotplug lock.
668 static void
669 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
671 struct rq *rq = cpu_rq(cpu);
672 struct sched_domain *tmp;
674 /* Remove the sched domains which do not contribute to scheduling. */
675 for (tmp = sd; tmp; ) {
676 struct sched_domain *parent = tmp->parent;
677 if (!parent)
678 break;
680 if (sd_parent_degenerate(tmp, parent)) {
681 tmp->parent = parent->parent;
682 if (parent->parent)
683 parent->parent->child = tmp;
685 * Transfer SD_PREFER_SIBLING down in case of a
686 * degenerate parent; the spans match for this
687 * so the property transfers.
689 if (parent->flags & SD_PREFER_SIBLING)
690 tmp->flags |= SD_PREFER_SIBLING;
691 destroy_sched_domain(parent);
692 } else
693 tmp = tmp->parent;
696 if (sd && sd_degenerate(sd)) {
697 tmp = sd;
698 sd = sd->parent;
699 destroy_sched_domain(tmp);
700 if (sd)
701 sd->child = NULL;
704 sched_domain_debug(sd, cpu);
706 rq_attach_root(rq, rd);
707 tmp = rq->sd;
708 rcu_assign_pointer(rq->sd, sd);
709 dirty_sched_domain_sysctl(cpu);
710 destroy_sched_domains(tmp);
712 update_top_cache_domain(cpu);
715 struct s_data {
716 struct sched_domain * __percpu *sd;
717 struct root_domain *rd;
720 enum s_alloc {
721 sa_rootdomain,
722 sa_sd,
723 sa_sd_storage,
724 sa_none,
728 * Return the canonical balance CPU for this group, this is the first CPU
729 * of this group that's also in the balance mask.
731 * The balance mask are all those CPUs that could actually end up at this
732 * group. See build_balance_mask().
734 * Also see should_we_balance().
736 int group_balance_cpu(struct sched_group *sg)
738 return cpumask_first(group_balance_mask(sg));
743 * NUMA topology (first read the regular topology blurb below)
745 * Given a node-distance table, for example:
747 * node 0 1 2 3
748 * 0: 10 20 30 20
749 * 1: 20 10 20 30
750 * 2: 30 20 10 20
751 * 3: 20 30 20 10
753 * which represents a 4 node ring topology like:
755 * 0 ----- 1
756 * | |
757 * | |
758 * | |
759 * 3 ----- 2
761 * We want to construct domains and groups to represent this. The way we go
762 * about doing this is to build the domains on 'hops'. For each NUMA level we
763 * construct the mask of all nodes reachable in @level hops.
765 * For the above NUMA topology that gives 3 levels:
767 * NUMA-2 0-3 0-3 0-3 0-3
768 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
770 * NUMA-1 0-1,3 0-2 1-3 0,2-3
771 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
773 * NUMA-0 0 1 2 3
776 * As can be seen; things don't nicely line up as with the regular topology.
777 * When we iterate a domain in child domain chunks some nodes can be
778 * represented multiple times -- hence the "overlap" naming for this part of
779 * the topology.
781 * In order to minimize this overlap, we only build enough groups to cover the
782 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
784 * Because:
786 * - the first group of each domain is its child domain; this
787 * gets us the first 0-1,3
788 * - the only uncovered node is 2, who's child domain is 1-3.
790 * However, because of the overlap, computing a unique CPU for each group is
791 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
792 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
793 * end up at those groups (they would end up in group: 0-1,3).
795 * To correct this we have to introduce the group balance mask. This mask
796 * will contain those CPUs in the group that can reach this group given the
797 * (child) domain tree.
799 * With this we can once again compute balance_cpu and sched_group_capacity
800 * relations.
802 * XXX include words on how balance_cpu is unique and therefore can be
803 * used for sched_group_capacity links.
806 * Another 'interesting' topology is:
808 * node 0 1 2 3
809 * 0: 10 20 20 30
810 * 1: 20 10 20 20
811 * 2: 20 20 10 20
812 * 3: 30 20 20 10
814 * Which looks a little like:
816 * 0 ----- 1
817 * | / |
818 * | / |
819 * | / |
820 * 2 ----- 3
822 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
823 * are not.
825 * This leads to a few particularly weird cases where the sched_domain's are
826 * not of the same number for each CPU. Consider:
828 * NUMA-2 0-3 0-3
829 * groups: {0-2},{1-3} {1-3},{0-2}
831 * NUMA-1 0-2 0-3 0-3 1-3
833 * NUMA-0 0 1 2 3
839 * Build the balance mask; it contains only those CPUs that can arrive at this
840 * group and should be considered to continue balancing.
842 * We do this during the group creation pass, therefore the group information
843 * isn't complete yet, however since each group represents a (child) domain we
844 * can fully construct this using the sched_domain bits (which are already
845 * complete).
847 static void
848 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
850 const struct cpumask *sg_span = sched_group_span(sg);
851 struct sd_data *sdd = sd->private;
852 struct sched_domain *sibling;
853 int i;
855 cpumask_clear(mask);
857 for_each_cpu(i, sg_span) {
858 sibling = *per_cpu_ptr(sdd->sd, i);
861 * Can happen in the asymmetric case, where these siblings are
862 * unused. The mask will not be empty because those CPUs that
863 * do have the top domain _should_ span the domain.
865 if (!sibling->child)
866 continue;
868 /* If we would not end up here, we can't continue from here */
869 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
870 continue;
872 cpumask_set_cpu(i, mask);
875 /* We must not have empty masks here */
876 WARN_ON_ONCE(cpumask_empty(mask));
880 * XXX: This creates per-node group entries; since the load-balancer will
881 * immediately access remote memory to construct this group's load-balance
882 * statistics having the groups node local is of dubious benefit.
884 static struct sched_group *
885 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
887 struct sched_group *sg;
888 struct cpumask *sg_span;
890 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
891 GFP_KERNEL, cpu_to_node(cpu));
893 if (!sg)
894 return NULL;
896 sg_span = sched_group_span(sg);
897 if (sd->child)
898 cpumask_copy(sg_span, sched_domain_span(sd->child));
899 else
900 cpumask_copy(sg_span, sched_domain_span(sd));
902 atomic_inc(&sg->ref);
903 return sg;
906 static void init_overlap_sched_group(struct sched_domain *sd,
907 struct sched_group *sg)
909 struct cpumask *mask = sched_domains_tmpmask2;
910 struct sd_data *sdd = sd->private;
911 struct cpumask *sg_span;
912 int cpu;
914 build_balance_mask(sd, sg, mask);
915 cpu = cpumask_first_and(sched_group_span(sg), mask);
917 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
918 if (atomic_inc_return(&sg->sgc->ref) == 1)
919 cpumask_copy(group_balance_mask(sg), mask);
920 else
921 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
924 * Initialize sgc->capacity such that even if we mess up the
925 * domains and no possible iteration will get us here, we won't
926 * die on a /0 trap.
928 sg_span = sched_group_span(sg);
929 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
930 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
931 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
934 static int
935 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
937 struct sched_group *first = NULL, *last = NULL, *sg;
938 const struct cpumask *span = sched_domain_span(sd);
939 struct cpumask *covered = sched_domains_tmpmask;
940 struct sd_data *sdd = sd->private;
941 struct sched_domain *sibling;
942 int i;
944 cpumask_clear(covered);
946 for_each_cpu_wrap(i, span, cpu) {
947 struct cpumask *sg_span;
949 if (cpumask_test_cpu(i, covered))
950 continue;
952 sibling = *per_cpu_ptr(sdd->sd, i);
955 * Asymmetric node setups can result in situations where the
956 * domain tree is of unequal depth, make sure to skip domains
957 * that already cover the entire range.
959 * In that case build_sched_domains() will have terminated the
960 * iteration early and our sibling sd spans will be empty.
961 * Domains should always include the CPU they're built on, so
962 * check that.
964 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
965 continue;
967 sg = build_group_from_child_sched_domain(sibling, cpu);
968 if (!sg)
969 goto fail;
971 sg_span = sched_group_span(sg);
972 cpumask_or(covered, covered, sg_span);
974 init_overlap_sched_group(sd, sg);
976 if (!first)
977 first = sg;
978 if (last)
979 last->next = sg;
980 last = sg;
981 last->next = first;
983 sd->groups = first;
985 return 0;
987 fail:
988 free_sched_groups(first, 0);
990 return -ENOMEM;
995 * Package topology (also see the load-balance blurb in fair.c)
997 * The scheduler builds a tree structure to represent a number of important
998 * topology features. By default (default_topology[]) these include:
1000 * - Simultaneous multithreading (SMT)
1001 * - Multi-Core Cache (MC)
1002 * - Package (DIE)
1004 * Where the last one more or less denotes everything up to a NUMA node.
1006 * The tree consists of 3 primary data structures:
1008 * sched_domain -> sched_group -> sched_group_capacity
1009 * ^ ^ ^ ^
1010 * `-' `-'
1012 * The sched_domains are per-CPU and have a two way link (parent & child) and
1013 * denote the ever growing mask of CPUs belonging to that level of topology.
1015 * Each sched_domain has a circular (double) linked list of sched_group's, each
1016 * denoting the domains of the level below (or individual CPUs in case of the
1017 * first domain level). The sched_group linked by a sched_domain includes the
1018 * CPU of that sched_domain [*].
1020 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1022 * CPU 0 1 2 3 4 5 6 7
1024 * DIE [ ]
1025 * MC [ ] [ ]
1026 * SMT [ ] [ ] [ ] [ ]
1028 * - or -
1030 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1031 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1032 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1034 * CPU 0 1 2 3 4 5 6 7
1036 * One way to think about it is: sched_domain moves you up and down among these
1037 * topology levels, while sched_group moves you sideways through it, at child
1038 * domain granularity.
1040 * sched_group_capacity ensures each unique sched_group has shared storage.
1042 * There are two related construction problems, both require a CPU that
1043 * uniquely identify each group (for a given domain):
1045 * - The first is the balance_cpu (see should_we_balance() and the
1046 * load-balance blub in fair.c); for each group we only want 1 CPU to
1047 * continue balancing at a higher domain.
1049 * - The second is the sched_group_capacity; we want all identical groups
1050 * to share a single sched_group_capacity.
1052 * Since these topologies are exclusive by construction. That is, its
1053 * impossible for an SMT thread to belong to multiple cores, and cores to
1054 * be part of multiple caches. There is a very clear and unique location
1055 * for each CPU in the hierarchy.
1057 * Therefore computing a unique CPU for each group is trivial (the iteration
1058 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1059 * group), we can simply pick the first CPU in each group.
1062 * [*] in other words, the first group of each domain is its child domain.
1065 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1067 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1068 struct sched_domain *child = sd->child;
1069 struct sched_group *sg;
1070 bool already_visited;
1072 if (child)
1073 cpu = cpumask_first(sched_domain_span(child));
1075 sg = *per_cpu_ptr(sdd->sg, cpu);
1076 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1078 /* Increase refcounts for claim_allocations: */
1079 already_visited = atomic_inc_return(&sg->ref) > 1;
1080 /* sgc visits should follow a similar trend as sg */
1081 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1083 /* If we have already visited that group, it's already initialized. */
1084 if (already_visited)
1085 return sg;
1087 if (child) {
1088 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1089 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1090 } else {
1091 cpumask_set_cpu(cpu, sched_group_span(sg));
1092 cpumask_set_cpu(cpu, group_balance_mask(sg));
1095 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1096 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1097 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1099 return sg;
1103 * build_sched_groups will build a circular linked list of the groups
1104 * covered by the given span, will set each group's ->cpumask correctly,
1105 * and will initialize their ->sgc.
1107 * Assumes the sched_domain tree is fully constructed
1109 static int
1110 build_sched_groups(struct sched_domain *sd, int cpu)
1112 struct sched_group *first = NULL, *last = NULL;
1113 struct sd_data *sdd = sd->private;
1114 const struct cpumask *span = sched_domain_span(sd);
1115 struct cpumask *covered;
1116 int i;
1118 lockdep_assert_held(&sched_domains_mutex);
1119 covered = sched_domains_tmpmask;
1121 cpumask_clear(covered);
1123 for_each_cpu_wrap(i, span, cpu) {
1124 struct sched_group *sg;
1126 if (cpumask_test_cpu(i, covered))
1127 continue;
1129 sg = get_group(i, sdd);
1131 cpumask_or(covered, covered, sched_group_span(sg));
1133 if (!first)
1134 first = sg;
1135 if (last)
1136 last->next = sg;
1137 last = sg;
1139 last->next = first;
1140 sd->groups = first;
1142 return 0;
1146 * Initialize sched groups cpu_capacity.
1148 * cpu_capacity indicates the capacity of sched group, which is used while
1149 * distributing the load between different sched groups in a sched domain.
1150 * Typically cpu_capacity for all the groups in a sched domain will be same
1151 * unless there are asymmetries in the topology. If there are asymmetries,
1152 * group having more cpu_capacity will pickup more load compared to the
1153 * group having less cpu_capacity.
1155 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1157 struct sched_group *sg = sd->groups;
1159 WARN_ON(!sg);
1161 do {
1162 int cpu, max_cpu = -1;
1164 sg->group_weight = cpumask_weight(sched_group_span(sg));
1166 if (!(sd->flags & SD_ASYM_PACKING))
1167 goto next;
1169 for_each_cpu(cpu, sched_group_span(sg)) {
1170 if (max_cpu < 0)
1171 max_cpu = cpu;
1172 else if (sched_asym_prefer(cpu, max_cpu))
1173 max_cpu = cpu;
1175 sg->asym_prefer_cpu = max_cpu;
1177 next:
1178 sg = sg->next;
1179 } while (sg != sd->groups);
1181 if (cpu != group_balance_cpu(sg))
1182 return;
1184 update_group_capacity(sd, cpu);
1188 * Initializers for schedule domains
1189 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1192 static int default_relax_domain_level = -1;
1193 int sched_domain_level_max;
1195 static int __init setup_relax_domain_level(char *str)
1197 if (kstrtoint(str, 0, &default_relax_domain_level))
1198 pr_warn("Unable to set relax_domain_level\n");
1200 return 1;
1202 __setup("relax_domain_level=", setup_relax_domain_level);
1204 static void set_domain_attribute(struct sched_domain *sd,
1205 struct sched_domain_attr *attr)
1207 int request;
1209 if (!attr || attr->relax_domain_level < 0) {
1210 if (default_relax_domain_level < 0)
1211 return;
1212 request = default_relax_domain_level;
1213 } else
1214 request = attr->relax_domain_level;
1216 if (sd->level > request) {
1217 /* Turn off idle balance on this domain: */
1218 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1222 static void __sdt_free(const struct cpumask *cpu_map);
1223 static int __sdt_alloc(const struct cpumask *cpu_map);
1225 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1226 const struct cpumask *cpu_map)
1228 switch (what) {
1229 case sa_rootdomain:
1230 if (!atomic_read(&d->rd->refcount))
1231 free_rootdomain(&d->rd->rcu);
1232 /* Fall through */
1233 case sa_sd:
1234 free_percpu(d->sd);
1235 /* Fall through */
1236 case sa_sd_storage:
1237 __sdt_free(cpu_map);
1238 /* Fall through */
1239 case sa_none:
1240 break;
1244 static enum s_alloc
1245 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1247 memset(d, 0, sizeof(*d));
1249 if (__sdt_alloc(cpu_map))
1250 return sa_sd_storage;
1251 d->sd = alloc_percpu(struct sched_domain *);
1252 if (!d->sd)
1253 return sa_sd_storage;
1254 d->rd = alloc_rootdomain();
1255 if (!d->rd)
1256 return sa_sd;
1258 return sa_rootdomain;
1262 * NULL the sd_data elements we've used to build the sched_domain and
1263 * sched_group structure so that the subsequent __free_domain_allocs()
1264 * will not free the data we're using.
1266 static void claim_allocations(int cpu, struct sched_domain *sd)
1268 struct sd_data *sdd = sd->private;
1270 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1271 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1273 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1274 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1276 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1277 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1279 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1280 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1283 #ifdef CONFIG_NUMA
1284 enum numa_topology_type sched_numa_topology_type;
1286 static int sched_domains_numa_levels;
1287 static int sched_domains_curr_level;
1289 int sched_max_numa_distance;
1290 static int *sched_domains_numa_distance;
1291 static struct cpumask ***sched_domains_numa_masks;
1292 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
1293 #endif
1296 * SD_flags allowed in topology descriptions.
1298 * These flags are purely descriptive of the topology and do not prescribe
1299 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1300 * function:
1302 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1303 * SD_SHARE_PKG_RESOURCES - describes shared caches
1304 * SD_NUMA - describes NUMA topologies
1305 * SD_SHARE_POWERDOMAIN - describes shared power domain
1307 * Odd one out, which beside describing the topology has a quirk also
1308 * prescribes the desired behaviour that goes along with it:
1310 * SD_ASYM_PACKING - describes SMT quirks
1312 #define TOPOLOGY_SD_FLAGS \
1313 (SD_SHARE_CPUCAPACITY | \
1314 SD_SHARE_PKG_RESOURCES | \
1315 SD_NUMA | \
1316 SD_ASYM_PACKING | \
1317 SD_SHARE_POWERDOMAIN)
1319 static struct sched_domain *
1320 sd_init(struct sched_domain_topology_level *tl,
1321 const struct cpumask *cpu_map,
1322 struct sched_domain *child, int dflags, int cpu)
1324 struct sd_data *sdd = &tl->data;
1325 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1326 int sd_id, sd_weight, sd_flags = 0;
1328 #ifdef CONFIG_NUMA
1330 * Ugly hack to pass state to sd_numa_mask()...
1332 sched_domains_curr_level = tl->numa_level;
1333 #endif
1335 sd_weight = cpumask_weight(tl->mask(cpu));
1337 if (tl->sd_flags)
1338 sd_flags = (*tl->sd_flags)();
1339 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1340 "wrong sd_flags in topology description\n"))
1341 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1343 /* Apply detected topology flags */
1344 sd_flags |= dflags;
1346 *sd = (struct sched_domain){
1347 .min_interval = sd_weight,
1348 .max_interval = 2*sd_weight,
1349 .busy_factor = 32,
1350 .imbalance_pct = 125,
1352 .cache_nice_tries = 0,
1354 .flags = 1*SD_LOAD_BALANCE
1355 | 1*SD_BALANCE_NEWIDLE
1356 | 1*SD_BALANCE_EXEC
1357 | 1*SD_BALANCE_FORK
1358 | 0*SD_BALANCE_WAKE
1359 | 1*SD_WAKE_AFFINE
1360 | 0*SD_SHARE_CPUCAPACITY
1361 | 0*SD_SHARE_PKG_RESOURCES
1362 | 0*SD_SERIALIZE
1363 | 1*SD_PREFER_SIBLING
1364 | 0*SD_NUMA
1365 | sd_flags
1368 .last_balance = jiffies,
1369 .balance_interval = sd_weight,
1370 .max_newidle_lb_cost = 0,
1371 .next_decay_max_lb_cost = jiffies,
1372 .child = child,
1373 #ifdef CONFIG_SCHED_DEBUG
1374 .name = tl->name,
1375 #endif
1378 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1379 sd_id = cpumask_first(sched_domain_span(sd));
1382 * Convert topological properties into behaviour.
1385 /* Don't attempt to spread across CPUs of different capacities. */
1386 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1387 sd->child->flags &= ~SD_PREFER_SIBLING;
1389 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1390 sd->imbalance_pct = 110;
1392 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1393 sd->imbalance_pct = 117;
1394 sd->cache_nice_tries = 1;
1396 #ifdef CONFIG_NUMA
1397 } else if (sd->flags & SD_NUMA) {
1398 sd->cache_nice_tries = 2;
1400 sd->flags &= ~SD_PREFER_SIBLING;
1401 sd->flags |= SD_SERIALIZE;
1402 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1403 sd->flags &= ~(SD_BALANCE_EXEC |
1404 SD_BALANCE_FORK |
1405 SD_WAKE_AFFINE);
1408 #endif
1409 } else {
1410 sd->cache_nice_tries = 1;
1414 * For all levels sharing cache; connect a sched_domain_shared
1415 * instance.
1417 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1418 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1419 atomic_inc(&sd->shared->ref);
1420 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1423 sd->private = sdd;
1425 return sd;
1429 * Topology list, bottom-up.
1431 static struct sched_domain_topology_level default_topology[] = {
1432 #ifdef CONFIG_SCHED_SMT
1433 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1434 #endif
1435 #ifdef CONFIG_SCHED_MC
1436 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1437 #endif
1438 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1439 { NULL, },
1442 static struct sched_domain_topology_level *sched_domain_topology =
1443 default_topology;
1445 #define for_each_sd_topology(tl) \
1446 for (tl = sched_domain_topology; tl->mask; tl++)
1448 void set_sched_topology(struct sched_domain_topology_level *tl)
1450 if (WARN_ON_ONCE(sched_smp_initialized))
1451 return;
1453 sched_domain_topology = tl;
1456 #ifdef CONFIG_NUMA
1458 static const struct cpumask *sd_numa_mask(int cpu)
1460 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1463 static void sched_numa_warn(const char *str)
1465 static int done = false;
1466 int i,j;
1468 if (done)
1469 return;
1471 done = true;
1473 printk(KERN_WARNING "ERROR: %s\n\n", str);
1475 for (i = 0; i < nr_node_ids; i++) {
1476 printk(KERN_WARNING " ");
1477 for (j = 0; j < nr_node_ids; j++)
1478 printk(KERN_CONT "%02d ", node_distance(i,j));
1479 printk(KERN_CONT "\n");
1481 printk(KERN_WARNING "\n");
1484 bool find_numa_distance(int distance)
1486 int i;
1488 if (distance == node_distance(0, 0))
1489 return true;
1491 for (i = 0; i < sched_domains_numa_levels; i++) {
1492 if (sched_domains_numa_distance[i] == distance)
1493 return true;
1496 return false;
1500 * A system can have three types of NUMA topology:
1501 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1502 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1503 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1505 * The difference between a glueless mesh topology and a backplane
1506 * topology lies in whether communication between not directly
1507 * connected nodes goes through intermediary nodes (where programs
1508 * could run), or through backplane controllers. This affects
1509 * placement of programs.
1511 * The type of topology can be discerned with the following tests:
1512 * - If the maximum distance between any nodes is 1 hop, the system
1513 * is directly connected.
1514 * - If for two nodes A and B, located N > 1 hops away from each other,
1515 * there is an intermediary node C, which is < N hops away from both
1516 * nodes A and B, the system is a glueless mesh.
1518 static void init_numa_topology_type(void)
1520 int a, b, c, n;
1522 n = sched_max_numa_distance;
1524 if (sched_domains_numa_levels <= 2) {
1525 sched_numa_topology_type = NUMA_DIRECT;
1526 return;
1529 for_each_online_node(a) {
1530 for_each_online_node(b) {
1531 /* Find two nodes furthest removed from each other. */
1532 if (node_distance(a, b) < n)
1533 continue;
1535 /* Is there an intermediary node between a and b? */
1536 for_each_online_node(c) {
1537 if (node_distance(a, c) < n &&
1538 node_distance(b, c) < n) {
1539 sched_numa_topology_type =
1540 NUMA_GLUELESS_MESH;
1541 return;
1545 sched_numa_topology_type = NUMA_BACKPLANE;
1546 return;
1551 void sched_init_numa(void)
1553 int next_distance, curr_distance = node_distance(0, 0);
1554 struct sched_domain_topology_level *tl;
1555 int level = 0;
1556 int i, j, k;
1558 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1559 if (!sched_domains_numa_distance)
1560 return;
1562 /* Includes NUMA identity node at level 0. */
1563 sched_domains_numa_distance[level++] = curr_distance;
1564 sched_domains_numa_levels = level;
1567 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1568 * unique distances in the node_distance() table.
1570 * Assumes node_distance(0,j) includes all distances in
1571 * node_distance(i,j) in order to avoid cubic time.
1573 next_distance = curr_distance;
1574 for (i = 0; i < nr_node_ids; i++) {
1575 for (j = 0; j < nr_node_ids; j++) {
1576 for (k = 0; k < nr_node_ids; k++) {
1577 int distance = node_distance(i, k);
1579 if (distance > curr_distance &&
1580 (distance < next_distance ||
1581 next_distance == curr_distance))
1582 next_distance = distance;
1585 * While not a strong assumption it would be nice to know
1586 * about cases where if node A is connected to B, B is not
1587 * equally connected to A.
1589 if (sched_debug() && node_distance(k, i) != distance)
1590 sched_numa_warn("Node-distance not symmetric");
1592 if (sched_debug() && i && !find_numa_distance(distance))
1593 sched_numa_warn("Node-0 not representative");
1595 if (next_distance != curr_distance) {
1596 sched_domains_numa_distance[level++] = next_distance;
1597 sched_domains_numa_levels = level;
1598 curr_distance = next_distance;
1599 } else break;
1603 * In case of sched_debug() we verify the above assumption.
1605 if (!sched_debug())
1606 break;
1610 * 'level' contains the number of unique distances
1612 * The sched_domains_numa_distance[] array includes the actual distance
1613 * numbers.
1617 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1618 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1619 * the array will contain less then 'level' members. This could be
1620 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1621 * in other functions.
1623 * We reset it to 'level' at the end of this function.
1625 sched_domains_numa_levels = 0;
1627 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1628 if (!sched_domains_numa_masks)
1629 return;
1632 * Now for each level, construct a mask per node which contains all
1633 * CPUs of nodes that are that many hops away from us.
1635 for (i = 0; i < level; i++) {
1636 sched_domains_numa_masks[i] =
1637 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1638 if (!sched_domains_numa_masks[i])
1639 return;
1641 for (j = 0; j < nr_node_ids; j++) {
1642 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1643 if (!mask)
1644 return;
1646 sched_domains_numa_masks[i][j] = mask;
1648 for_each_node(k) {
1649 if (node_distance(j, k) > sched_domains_numa_distance[i])
1650 continue;
1652 cpumask_or(mask, mask, cpumask_of_node(k));
1657 /* Compute default topology size */
1658 for (i = 0; sched_domain_topology[i].mask; i++);
1660 tl = kzalloc((i + level + 1) *
1661 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1662 if (!tl)
1663 return;
1666 * Copy the default topology bits..
1668 for (i = 0; sched_domain_topology[i].mask; i++)
1669 tl[i] = sched_domain_topology[i];
1672 * Add the NUMA identity distance, aka single NODE.
1674 tl[i++] = (struct sched_domain_topology_level){
1675 .mask = sd_numa_mask,
1676 .numa_level = 0,
1677 SD_INIT_NAME(NODE)
1681 * .. and append 'j' levels of NUMA goodness.
1683 for (j = 1; j < level; i++, j++) {
1684 tl[i] = (struct sched_domain_topology_level){
1685 .mask = sd_numa_mask,
1686 .sd_flags = cpu_numa_flags,
1687 .flags = SDTL_OVERLAP,
1688 .numa_level = j,
1689 SD_INIT_NAME(NUMA)
1693 sched_domain_topology = tl;
1695 sched_domains_numa_levels = level;
1696 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1698 init_numa_topology_type();
1701 void sched_domains_numa_masks_set(unsigned int cpu)
1703 int node = cpu_to_node(cpu);
1704 int i, j;
1706 for (i = 0; i < sched_domains_numa_levels; i++) {
1707 for (j = 0; j < nr_node_ids; j++) {
1708 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1709 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1714 void sched_domains_numa_masks_clear(unsigned int cpu)
1716 int i, j;
1718 for (i = 0; i < sched_domains_numa_levels; i++) {
1719 for (j = 0; j < nr_node_ids; j++)
1720 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1725 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1726 * closest to @cpu from @cpumask.
1727 * cpumask: cpumask to find a cpu from
1728 * cpu: cpu to be close to
1730 * returns: cpu, or nr_cpu_ids when nothing found.
1732 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1734 int i, j = cpu_to_node(cpu);
1736 for (i = 0; i < sched_domains_numa_levels; i++) {
1737 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1738 if (cpu < nr_cpu_ids)
1739 return cpu;
1741 return nr_cpu_ids;
1744 #endif /* CONFIG_NUMA */
1746 static int __sdt_alloc(const struct cpumask *cpu_map)
1748 struct sched_domain_topology_level *tl;
1749 int j;
1751 for_each_sd_topology(tl) {
1752 struct sd_data *sdd = &tl->data;
1754 sdd->sd = alloc_percpu(struct sched_domain *);
1755 if (!sdd->sd)
1756 return -ENOMEM;
1758 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1759 if (!sdd->sds)
1760 return -ENOMEM;
1762 sdd->sg = alloc_percpu(struct sched_group *);
1763 if (!sdd->sg)
1764 return -ENOMEM;
1766 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1767 if (!sdd->sgc)
1768 return -ENOMEM;
1770 for_each_cpu(j, cpu_map) {
1771 struct sched_domain *sd;
1772 struct sched_domain_shared *sds;
1773 struct sched_group *sg;
1774 struct sched_group_capacity *sgc;
1776 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1777 GFP_KERNEL, cpu_to_node(j));
1778 if (!sd)
1779 return -ENOMEM;
1781 *per_cpu_ptr(sdd->sd, j) = sd;
1783 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1784 GFP_KERNEL, cpu_to_node(j));
1785 if (!sds)
1786 return -ENOMEM;
1788 *per_cpu_ptr(sdd->sds, j) = sds;
1790 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1791 GFP_KERNEL, cpu_to_node(j));
1792 if (!sg)
1793 return -ENOMEM;
1795 sg->next = sg;
1797 *per_cpu_ptr(sdd->sg, j) = sg;
1799 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1800 GFP_KERNEL, cpu_to_node(j));
1801 if (!sgc)
1802 return -ENOMEM;
1804 #ifdef CONFIG_SCHED_DEBUG
1805 sgc->id = j;
1806 #endif
1808 *per_cpu_ptr(sdd->sgc, j) = sgc;
1812 return 0;
1815 static void __sdt_free(const struct cpumask *cpu_map)
1817 struct sched_domain_topology_level *tl;
1818 int j;
1820 for_each_sd_topology(tl) {
1821 struct sd_data *sdd = &tl->data;
1823 for_each_cpu(j, cpu_map) {
1824 struct sched_domain *sd;
1826 if (sdd->sd) {
1827 sd = *per_cpu_ptr(sdd->sd, j);
1828 if (sd && (sd->flags & SD_OVERLAP))
1829 free_sched_groups(sd->groups, 0);
1830 kfree(*per_cpu_ptr(sdd->sd, j));
1833 if (sdd->sds)
1834 kfree(*per_cpu_ptr(sdd->sds, j));
1835 if (sdd->sg)
1836 kfree(*per_cpu_ptr(sdd->sg, j));
1837 if (sdd->sgc)
1838 kfree(*per_cpu_ptr(sdd->sgc, j));
1840 free_percpu(sdd->sd);
1841 sdd->sd = NULL;
1842 free_percpu(sdd->sds);
1843 sdd->sds = NULL;
1844 free_percpu(sdd->sg);
1845 sdd->sg = NULL;
1846 free_percpu(sdd->sgc);
1847 sdd->sgc = NULL;
1851 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1852 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1853 struct sched_domain *child, int dflags, int cpu)
1855 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1857 if (child) {
1858 sd->level = child->level + 1;
1859 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1860 child->parent = sd;
1862 if (!cpumask_subset(sched_domain_span(child),
1863 sched_domain_span(sd))) {
1864 pr_err("BUG: arch topology borken\n");
1865 #ifdef CONFIG_SCHED_DEBUG
1866 pr_err(" the %s domain not a subset of the %s domain\n",
1867 child->name, sd->name);
1868 #endif
1869 /* Fixup, ensure @sd has at least @child CPUs. */
1870 cpumask_or(sched_domain_span(sd),
1871 sched_domain_span(sd),
1872 sched_domain_span(child));
1876 set_domain_attribute(sd, attr);
1878 return sd;
1882 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1883 * any two given CPUs at this (non-NUMA) topology level.
1885 static bool topology_span_sane(struct sched_domain_topology_level *tl,
1886 const struct cpumask *cpu_map, int cpu)
1888 int i;
1890 /* NUMA levels are allowed to overlap */
1891 if (tl->flags & SDTL_OVERLAP)
1892 return true;
1895 * Non-NUMA levels cannot partially overlap - they must be either
1896 * completely equal or completely disjoint. Otherwise we can end up
1897 * breaking the sched_group lists - i.e. a later get_group() pass
1898 * breaks the linking done for an earlier span.
1900 for_each_cpu(i, cpu_map) {
1901 if (i == cpu)
1902 continue;
1904 * We should 'and' all those masks with 'cpu_map' to exactly
1905 * match the topology we're about to build, but that can only
1906 * remove CPUs, which only lessens our ability to detect
1907 * overlaps
1909 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1910 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1911 return false;
1914 return true;
1918 * Find the sched_domain_topology_level where all CPU capacities are visible
1919 * for all CPUs.
1921 static struct sched_domain_topology_level
1922 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1924 int i, j, asym_level = 0;
1925 bool asym = false;
1926 struct sched_domain_topology_level *tl, *asym_tl = NULL;
1927 unsigned long cap;
1929 /* Is there any asymmetry? */
1930 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1932 for_each_cpu(i, cpu_map) {
1933 if (arch_scale_cpu_capacity(i) != cap) {
1934 asym = true;
1935 break;
1939 if (!asym)
1940 return NULL;
1943 * Examine topology from all CPU's point of views to detect the lowest
1944 * sched_domain_topology_level where a highest capacity CPU is visible
1945 * to everyone.
1947 for_each_cpu(i, cpu_map) {
1948 unsigned long max_capacity = arch_scale_cpu_capacity(i);
1949 int tl_id = 0;
1951 for_each_sd_topology(tl) {
1952 if (tl_id < asym_level)
1953 goto next_level;
1955 for_each_cpu_and(j, tl->mask(i), cpu_map) {
1956 unsigned long capacity;
1958 capacity = arch_scale_cpu_capacity(j);
1960 if (capacity <= max_capacity)
1961 continue;
1963 max_capacity = capacity;
1964 asym_level = tl_id;
1965 asym_tl = tl;
1967 next_level:
1968 tl_id++;
1972 return asym_tl;
1977 * Build sched domains for a given set of CPUs and attach the sched domains
1978 * to the individual CPUs
1980 static int
1981 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1983 enum s_alloc alloc_state = sa_none;
1984 struct sched_domain *sd;
1985 struct s_data d;
1986 struct rq *rq = NULL;
1987 int i, ret = -ENOMEM;
1988 struct sched_domain_topology_level *tl_asym;
1989 bool has_asym = false;
1991 if (WARN_ON(cpumask_empty(cpu_map)))
1992 goto error;
1994 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1995 if (alloc_state != sa_rootdomain)
1996 goto error;
1998 tl_asym = asym_cpu_capacity_level(cpu_map);
2000 /* Set up domains for CPUs specified by the cpu_map: */
2001 for_each_cpu(i, cpu_map) {
2002 struct sched_domain_topology_level *tl;
2004 sd = NULL;
2005 for_each_sd_topology(tl) {
2006 int dflags = 0;
2008 if (tl == tl_asym) {
2009 dflags |= SD_ASYM_CPUCAPACITY;
2010 has_asym = true;
2013 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2014 goto error;
2016 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2018 if (tl == sched_domain_topology)
2019 *per_cpu_ptr(d.sd, i) = sd;
2020 if (tl->flags & SDTL_OVERLAP)
2021 sd->flags |= SD_OVERLAP;
2022 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2023 break;
2027 /* Build the groups for the domains */
2028 for_each_cpu(i, cpu_map) {
2029 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2030 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2031 if (sd->flags & SD_OVERLAP) {
2032 if (build_overlap_sched_groups(sd, i))
2033 goto error;
2034 } else {
2035 if (build_sched_groups(sd, i))
2036 goto error;
2041 /* Calculate CPU capacity for physical packages and nodes */
2042 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2043 if (!cpumask_test_cpu(i, cpu_map))
2044 continue;
2046 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2047 claim_allocations(i, sd);
2048 init_sched_groups_capacity(i, sd);
2052 /* Attach the domains */
2053 rcu_read_lock();
2054 for_each_cpu(i, cpu_map) {
2055 rq = cpu_rq(i);
2056 sd = *per_cpu_ptr(d.sd, i);
2058 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2059 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2060 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2062 cpu_attach_domain(sd, d.rd, i);
2064 rcu_read_unlock();
2066 if (has_asym)
2067 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2069 if (rq && sched_debug_enabled) {
2070 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2071 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2074 ret = 0;
2075 error:
2076 __free_domain_allocs(&d, alloc_state, cpu_map);
2078 return ret;
2081 /* Current sched domains: */
2082 static cpumask_var_t *doms_cur;
2084 /* Number of sched domains in 'doms_cur': */
2085 static int ndoms_cur;
2087 /* Attribues of custom domains in 'doms_cur' */
2088 static struct sched_domain_attr *dattr_cur;
2091 * Special case: If a kmalloc() of a doms_cur partition (array of
2092 * cpumask) fails, then fallback to a single sched domain,
2093 * as determined by the single cpumask fallback_doms.
2095 static cpumask_var_t fallback_doms;
2098 * arch_update_cpu_topology lets virtualized architectures update the
2099 * CPU core maps. It is supposed to return 1 if the topology changed
2100 * or 0 if it stayed the same.
2102 int __weak arch_update_cpu_topology(void)
2104 return 0;
2107 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2109 int i;
2110 cpumask_var_t *doms;
2112 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2113 if (!doms)
2114 return NULL;
2115 for (i = 0; i < ndoms; i++) {
2116 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2117 free_sched_domains(doms, i);
2118 return NULL;
2121 return doms;
2124 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2126 unsigned int i;
2127 for (i = 0; i < ndoms; i++)
2128 free_cpumask_var(doms[i]);
2129 kfree(doms);
2133 * Set up scheduler domains and groups. For now this just excludes isolated
2134 * CPUs, but could be used to exclude other special cases in the future.
2136 int sched_init_domains(const struct cpumask *cpu_map)
2138 int err;
2140 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2141 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2142 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2144 arch_update_cpu_topology();
2145 ndoms_cur = 1;
2146 doms_cur = alloc_sched_domains(ndoms_cur);
2147 if (!doms_cur)
2148 doms_cur = &fallback_doms;
2149 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2150 err = build_sched_domains(doms_cur[0], NULL);
2151 register_sched_domain_sysctl();
2153 return err;
2157 * Detach sched domains from a group of CPUs specified in cpu_map
2158 * These CPUs will now be attached to the NULL domain
2160 static void detach_destroy_domains(const struct cpumask *cpu_map)
2162 unsigned int cpu = cpumask_any(cpu_map);
2163 int i;
2165 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2166 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2168 rcu_read_lock();
2169 for_each_cpu(i, cpu_map)
2170 cpu_attach_domain(NULL, &def_root_domain, i);
2171 rcu_read_unlock();
2174 /* handle null as "default" */
2175 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2176 struct sched_domain_attr *new, int idx_new)
2178 struct sched_domain_attr tmp;
2180 /* Fast path: */
2181 if (!new && !cur)
2182 return 1;
2184 tmp = SD_ATTR_INIT;
2186 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2187 new ? (new + idx_new) : &tmp,
2188 sizeof(struct sched_domain_attr));
2192 * Partition sched domains as specified by the 'ndoms_new'
2193 * cpumasks in the array doms_new[] of cpumasks. This compares
2194 * doms_new[] to the current sched domain partitioning, doms_cur[].
2195 * It destroys each deleted domain and builds each new domain.
2197 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2198 * The masks don't intersect (don't overlap.) We should setup one
2199 * sched domain for each mask. CPUs not in any of the cpumasks will
2200 * not be load balanced. If the same cpumask appears both in the
2201 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2202 * it as it is.
2204 * The passed in 'doms_new' should be allocated using
2205 * alloc_sched_domains. This routine takes ownership of it and will
2206 * free_sched_domains it when done with it. If the caller failed the
2207 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2208 * and partition_sched_domains() will fallback to the single partition
2209 * 'fallback_doms', it also forces the domains to be rebuilt.
2211 * If doms_new == NULL it will be replaced with cpu_online_mask.
2212 * ndoms_new == 0 is a special case for destroying existing domains,
2213 * and it will not create the default domain.
2215 * Call with hotplug lock and sched_domains_mutex held
2217 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2218 struct sched_domain_attr *dattr_new)
2220 bool __maybe_unused has_eas = false;
2221 int i, j, n;
2222 int new_topology;
2224 lockdep_assert_held(&sched_domains_mutex);
2226 /* Always unregister in case we don't destroy any domains: */
2227 unregister_sched_domain_sysctl();
2229 /* Let the architecture update CPU core mappings: */
2230 new_topology = arch_update_cpu_topology();
2232 if (!doms_new) {
2233 WARN_ON_ONCE(dattr_new);
2234 n = 0;
2235 doms_new = alloc_sched_domains(1);
2236 if (doms_new) {
2237 n = 1;
2238 cpumask_and(doms_new[0], cpu_active_mask,
2239 housekeeping_cpumask(HK_FLAG_DOMAIN));
2241 } else {
2242 n = ndoms_new;
2245 /* Destroy deleted domains: */
2246 for (i = 0; i < ndoms_cur; i++) {
2247 for (j = 0; j < n && !new_topology; j++) {
2248 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2249 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2250 struct root_domain *rd;
2253 * This domain won't be destroyed and as such
2254 * its dl_bw->total_bw needs to be cleared. It
2255 * will be recomputed in function
2256 * update_tasks_root_domain().
2258 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2259 dl_clear_root_domain(rd);
2260 goto match1;
2263 /* No match - a current sched domain not in new doms_new[] */
2264 detach_destroy_domains(doms_cur[i]);
2265 match1:
2269 n = ndoms_cur;
2270 if (!doms_new) {
2271 n = 0;
2272 doms_new = &fallback_doms;
2273 cpumask_and(doms_new[0], cpu_active_mask,
2274 housekeeping_cpumask(HK_FLAG_DOMAIN));
2277 /* Build new domains: */
2278 for (i = 0; i < ndoms_new; i++) {
2279 for (j = 0; j < n && !new_topology; j++) {
2280 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2281 dattrs_equal(dattr_new, i, dattr_cur, j))
2282 goto match2;
2284 /* No match - add a new doms_new */
2285 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2286 match2:
2290 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2291 /* Build perf. domains: */
2292 for (i = 0; i < ndoms_new; i++) {
2293 for (j = 0; j < n && !sched_energy_update; j++) {
2294 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2295 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2296 has_eas = true;
2297 goto match3;
2300 /* No match - add perf. domains for a new rd */
2301 has_eas |= build_perf_domains(doms_new[i]);
2302 match3:
2305 sched_energy_set(has_eas);
2306 #endif
2308 /* Remember the new sched domains: */
2309 if (doms_cur != &fallback_doms)
2310 free_sched_domains(doms_cur, ndoms_cur);
2312 kfree(dattr_cur);
2313 doms_cur = doms_new;
2314 dattr_cur = dattr_new;
2315 ndoms_cur = ndoms_new;
2317 register_sched_domain_sysctl();
2321 * Call with hotplug lock held
2323 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2324 struct sched_domain_attr *dattr_new)
2326 mutex_lock(&sched_domains_mutex);
2327 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2328 mutex_unlock(&sched_domains_mutex);