1 // SPDX-License-Identifier: GPL-2.0
3 * Scheduler topology setup/handling methods
7 DEFINE_MUTEX(sched_domains_mutex
);
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask
;
11 static cpumask_var_t sched_domains_tmpmask2
;
13 #ifdef CONFIG_SCHED_DEBUG
15 static int __init
sched_debug_setup(char *str
)
17 sched_debug_enabled
= true;
21 early_param("sched_debug", sched_debug_setup
);
23 static inline bool sched_debug(void)
25 return sched_debug_enabled
;
28 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
29 struct cpumask
*groupmask
)
31 struct sched_group
*group
= sd
->groups
;
33 cpumask_clear(groupmask
);
35 printk(KERN_DEBUG
"%*s domain-%d: ", level
, "", level
);
37 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
38 printk("does not load-balance\n");
40 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
44 printk(KERN_CONT
"span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd
)), sd
->name
);
47 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
48 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
50 if (group
&& !cpumask_test_cpu(cpu
, sched_group_span(group
))) {
51 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
54 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
58 printk(KERN_ERR
"ERROR: group is NULL\n");
62 if (!cpumask_weight(sched_group_span(group
))) {
63 printk(KERN_CONT
"\n");
64 printk(KERN_ERR
"ERROR: empty group\n");
68 if (!(sd
->flags
& SD_OVERLAP
) &&
69 cpumask_intersects(groupmask
, sched_group_span(group
))) {
70 printk(KERN_CONT
"\n");
71 printk(KERN_ERR
"ERROR: repeated CPUs\n");
75 cpumask_or(groupmask
, groupmask
, sched_group_span(group
));
77 printk(KERN_CONT
" %d:{ span=%*pbl",
79 cpumask_pr_args(sched_group_span(group
)));
81 if ((sd
->flags
& SD_OVERLAP
) &&
82 !cpumask_equal(group_balance_mask(group
), sched_group_span(group
))) {
83 printk(KERN_CONT
" mask=%*pbl",
84 cpumask_pr_args(group_balance_mask(group
)));
87 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
)
88 printk(KERN_CONT
" cap=%lu", group
->sgc
->capacity
);
90 if (group
== sd
->groups
&& sd
->child
&&
91 !cpumask_equal(sched_domain_span(sd
->child
),
92 sched_group_span(group
))) {
93 printk(KERN_ERR
"ERROR: domain->groups does not match domain->child\n");
96 printk(KERN_CONT
" }");
100 if (group
!= sd
->groups
)
101 printk(KERN_CONT
",");
103 } while (group
!= sd
->groups
);
104 printk(KERN_CONT
"\n");
106 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
107 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
110 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
111 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
115 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
119 if (!sched_debug_enabled
)
123 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
127 printk(KERN_DEBUG
"CPU%d attaching sched-domain(s):\n", cpu
);
130 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
138 #else /* !CONFIG_SCHED_DEBUG */
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
146 #endif /* CONFIG_SCHED_DEBUG */
148 static int sd_degenerate(struct sched_domain
*sd
)
150 if (cpumask_weight(sched_domain_span(sd
)) == 1)
153 /* Following flags need at least 2 groups */
154 if (sd
->flags
& (SD_LOAD_BALANCE
|
158 SD_SHARE_CPUCAPACITY
|
159 SD_ASYM_CPUCAPACITY
|
160 SD_SHARE_PKG_RESOURCES
|
161 SD_SHARE_POWERDOMAIN
)) {
162 if (sd
->groups
!= sd
->groups
->next
)
166 /* Following flags don't use groups */
167 if (sd
->flags
& (SD_WAKE_AFFINE
))
174 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
176 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
178 if (sd_degenerate(parent
))
181 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
184 /* Flags needing groups don't count if only 1 group in parent */
185 if (parent
->groups
== parent
->groups
->next
) {
186 pflags
&= ~(SD_LOAD_BALANCE
|
190 SD_ASYM_CPUCAPACITY
|
191 SD_SHARE_CPUCAPACITY
|
192 SD_SHARE_PKG_RESOURCES
|
194 SD_SHARE_POWERDOMAIN
);
195 if (nr_node_ids
== 1)
196 pflags
&= ~SD_SERIALIZE
;
198 if (~cflags
& pflags
)
204 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
205 DEFINE_STATIC_KEY_FALSE(sched_energy_present
);
206 unsigned int sysctl_sched_energy_aware
= 1;
207 DEFINE_MUTEX(sched_energy_mutex
);
208 bool sched_energy_update
;
210 #ifdef CONFIG_PROC_SYSCTL
211 int sched_energy_aware_handler(struct ctl_table
*table
, int write
,
212 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
216 if (write
&& !capable(CAP_SYS_ADMIN
))
219 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
221 state
= static_branch_unlikely(&sched_energy_present
);
222 if (state
!= sysctl_sched_energy_aware
) {
223 mutex_lock(&sched_energy_mutex
);
224 sched_energy_update
= 1;
225 rebuild_sched_domains();
226 sched_energy_update
= 0;
227 mutex_unlock(&sched_energy_mutex
);
235 static void free_pd(struct perf_domain
*pd
)
237 struct perf_domain
*tmp
;
246 static struct perf_domain
*find_pd(struct perf_domain
*pd
, int cpu
)
249 if (cpumask_test_cpu(cpu
, perf_domain_span(pd
)))
257 static struct perf_domain
*pd_init(int cpu
)
259 struct em_perf_domain
*obj
= em_cpu_get(cpu
);
260 struct perf_domain
*pd
;
264 pr_info("%s: no EM found for CPU%d\n", __func__
, cpu
);
268 pd
= kzalloc(sizeof(*pd
), GFP_KERNEL
);
276 static void perf_domain_debug(const struct cpumask
*cpu_map
,
277 struct perf_domain
*pd
)
279 if (!sched_debug() || !pd
)
282 printk(KERN_DEBUG
"root_domain %*pbl:", cpumask_pr_args(cpu_map
));
285 printk(KERN_CONT
" pd%d:{ cpus=%*pbl nr_cstate=%d }",
286 cpumask_first(perf_domain_span(pd
)),
287 cpumask_pr_args(perf_domain_span(pd
)),
288 em_pd_nr_cap_states(pd
->em_pd
));
292 printk(KERN_CONT
"\n");
295 static void destroy_perf_domain_rcu(struct rcu_head
*rp
)
297 struct perf_domain
*pd
;
299 pd
= container_of(rp
, struct perf_domain
, rcu
);
303 static void sched_energy_set(bool has_eas
)
305 if (!has_eas
&& static_branch_unlikely(&sched_energy_present
)) {
307 pr_info("%s: stopping EAS\n", __func__
);
308 static_branch_disable_cpuslocked(&sched_energy_present
);
309 } else if (has_eas
&& !static_branch_unlikely(&sched_energy_present
)) {
311 pr_info("%s: starting EAS\n", __func__
);
312 static_branch_enable_cpuslocked(&sched_energy_present
);
317 * EAS can be used on a root domain if it meets all the following conditions:
318 * 1. an Energy Model (EM) is available;
319 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
320 * 3. no SMT is detected.
321 * 4. the EM complexity is low enough to keep scheduling overheads low;
322 * 5. schedutil is driving the frequency of all CPUs of the rd;
324 * The complexity of the Energy Model is defined as:
326 * C = nr_pd * (nr_cpus + nr_cs)
328 * with parameters defined as:
329 * - nr_pd: the number of performance domains
330 * - nr_cpus: the number of CPUs
331 * - nr_cs: the sum of the number of capacity states of all performance
332 * domains (for example, on a system with 2 performance domains,
333 * with 10 capacity states each, nr_cs = 2 * 10 = 20).
335 * It is generally not a good idea to use such a model in the wake-up path on
336 * very complex platforms because of the associated scheduling overheads. The
337 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
338 * with per-CPU DVFS and less than 8 capacity states each, for example.
340 #define EM_MAX_COMPLEXITY 2048
342 extern struct cpufreq_governor schedutil_gov
;
343 static bool build_perf_domains(const struct cpumask
*cpu_map
)
345 int i
, nr_pd
= 0, nr_cs
= 0, nr_cpus
= cpumask_weight(cpu_map
);
346 struct perf_domain
*pd
= NULL
, *tmp
;
347 int cpu
= cpumask_first(cpu_map
);
348 struct root_domain
*rd
= cpu_rq(cpu
)->rd
;
349 struct cpufreq_policy
*policy
;
350 struct cpufreq_governor
*gov
;
352 if (!sysctl_sched_energy_aware
)
355 /* EAS is enabled for asymmetric CPU capacity topologies. */
356 if (!per_cpu(sd_asym_cpucapacity
, cpu
)) {
358 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
359 cpumask_pr_args(cpu_map
));
364 /* EAS definitely does *not* handle SMT */
365 if (sched_smt_active()) {
366 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
367 cpumask_pr_args(cpu_map
));
371 for_each_cpu(i
, cpu_map
) {
372 /* Skip already covered CPUs. */
376 /* Do not attempt EAS if schedutil is not being used. */
377 policy
= cpufreq_cpu_get(i
);
380 gov
= policy
->governor
;
381 cpufreq_cpu_put(policy
);
382 if (gov
!= &schedutil_gov
) {
384 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
385 cpumask_pr_args(cpu_map
));
389 /* Create the new pd and add it to the local list. */
397 * Count performance domains and capacity states for the
401 nr_cs
+= em_pd_nr_cap_states(pd
->em_pd
);
404 /* Bail out if the Energy Model complexity is too high. */
405 if (nr_pd
* (nr_cs
+ nr_cpus
) > EM_MAX_COMPLEXITY
) {
406 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
407 cpumask_pr_args(cpu_map
));
411 perf_domain_debug(cpu_map
, pd
);
413 /* Attach the new list of performance domains to the root domain. */
415 rcu_assign_pointer(rd
->pd
, pd
);
417 call_rcu(&tmp
->rcu
, destroy_perf_domain_rcu
);
424 rcu_assign_pointer(rd
->pd
, NULL
);
426 call_rcu(&tmp
->rcu
, destroy_perf_domain_rcu
);
431 static void free_pd(struct perf_domain
*pd
) { }
432 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
434 static void free_rootdomain(struct rcu_head
*rcu
)
436 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
438 cpupri_cleanup(&rd
->cpupri
);
439 cpudl_cleanup(&rd
->cpudl
);
440 free_cpumask_var(rd
->dlo_mask
);
441 free_cpumask_var(rd
->rto_mask
);
442 free_cpumask_var(rd
->online
);
443 free_cpumask_var(rd
->span
);
448 void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
450 struct root_domain
*old_rd
= NULL
;
453 raw_spin_lock_irqsave(&rq
->lock
, flags
);
458 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
461 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
464 * If we dont want to free the old_rd yet then
465 * set old_rd to NULL to skip the freeing later
468 if (!atomic_dec_and_test(&old_rd
->refcount
))
472 atomic_inc(&rd
->refcount
);
475 cpumask_set_cpu(rq
->cpu
, rd
->span
);
476 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
479 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
482 call_rcu(&old_rd
->rcu
, free_rootdomain
);
485 void sched_get_rd(struct root_domain
*rd
)
487 atomic_inc(&rd
->refcount
);
490 void sched_put_rd(struct root_domain
*rd
)
492 if (!atomic_dec_and_test(&rd
->refcount
))
495 call_rcu(&rd
->rcu
, free_rootdomain
);
498 static int init_rootdomain(struct root_domain
*rd
)
500 if (!zalloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
502 if (!zalloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
504 if (!zalloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
506 if (!zalloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
509 #ifdef HAVE_RT_PUSH_IPI
511 raw_spin_lock_init(&rd
->rto_lock
);
512 init_irq_work(&rd
->rto_push_work
, rto_push_irq_work_func
);
515 init_dl_bw(&rd
->dl_bw
);
516 if (cpudl_init(&rd
->cpudl
) != 0)
519 if (cpupri_init(&rd
->cpupri
) != 0)
524 cpudl_cleanup(&rd
->cpudl
);
526 free_cpumask_var(rd
->rto_mask
);
528 free_cpumask_var(rd
->dlo_mask
);
530 free_cpumask_var(rd
->online
);
532 free_cpumask_var(rd
->span
);
538 * By default the system creates a single root-domain with all CPUs as
539 * members (mimicking the global state we have today).
541 struct root_domain def_root_domain
;
543 void init_defrootdomain(void)
545 init_rootdomain(&def_root_domain
);
547 atomic_set(&def_root_domain
.refcount
, 1);
550 static struct root_domain
*alloc_rootdomain(void)
552 struct root_domain
*rd
;
554 rd
= kzalloc(sizeof(*rd
), GFP_KERNEL
);
558 if (init_rootdomain(rd
) != 0) {
566 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
568 struct sched_group
*tmp
, *first
;
577 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
580 if (atomic_dec_and_test(&sg
->ref
))
583 } while (sg
!= first
);
586 static void destroy_sched_domain(struct sched_domain
*sd
)
589 * A normal sched domain may have multiple group references, an
590 * overlapping domain, having private groups, only one. Iterate,
591 * dropping group/capacity references, freeing where none remain.
593 free_sched_groups(sd
->groups
, 1);
595 if (sd
->shared
&& atomic_dec_and_test(&sd
->shared
->ref
))
600 static void destroy_sched_domains_rcu(struct rcu_head
*rcu
)
602 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
605 struct sched_domain
*parent
= sd
->parent
;
606 destroy_sched_domain(sd
);
611 static void destroy_sched_domains(struct sched_domain
*sd
)
614 call_rcu(&sd
->rcu
, destroy_sched_domains_rcu
);
618 * Keep a special pointer to the highest sched_domain that has
619 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
620 * allows us to avoid some pointer chasing select_idle_sibling().
622 * Also keep a unique ID per domain (we use the first CPU number in
623 * the cpumask of the domain), this allows us to quickly tell if
624 * two CPUs are in the same cache domain, see cpus_share_cache().
626 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_llc
);
627 DEFINE_PER_CPU(int, sd_llc_size
);
628 DEFINE_PER_CPU(int, sd_llc_id
);
629 DEFINE_PER_CPU(struct sched_domain_shared __rcu
*, sd_llc_shared
);
630 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_numa
);
631 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_asym_packing
);
632 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_asym_cpucapacity
);
633 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity
);
635 static void update_top_cache_domain(int cpu
)
637 struct sched_domain_shared
*sds
= NULL
;
638 struct sched_domain
*sd
;
642 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
644 id
= cpumask_first(sched_domain_span(sd
));
645 size
= cpumask_weight(sched_domain_span(sd
));
649 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
650 per_cpu(sd_llc_size
, cpu
) = size
;
651 per_cpu(sd_llc_id
, cpu
) = id
;
652 rcu_assign_pointer(per_cpu(sd_llc_shared
, cpu
), sds
);
654 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
655 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
657 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
658 rcu_assign_pointer(per_cpu(sd_asym_packing
, cpu
), sd
);
660 sd
= lowest_flag_domain(cpu
, SD_ASYM_CPUCAPACITY
);
661 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity
, cpu
), sd
);
665 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
666 * hold the hotplug lock.
669 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
671 struct rq
*rq
= cpu_rq(cpu
);
672 struct sched_domain
*tmp
;
674 /* Remove the sched domains which do not contribute to scheduling. */
675 for (tmp
= sd
; tmp
; ) {
676 struct sched_domain
*parent
= tmp
->parent
;
680 if (sd_parent_degenerate(tmp
, parent
)) {
681 tmp
->parent
= parent
->parent
;
683 parent
->parent
->child
= tmp
;
685 * Transfer SD_PREFER_SIBLING down in case of a
686 * degenerate parent; the spans match for this
687 * so the property transfers.
689 if (parent
->flags
& SD_PREFER_SIBLING
)
690 tmp
->flags
|= SD_PREFER_SIBLING
;
691 destroy_sched_domain(parent
);
696 if (sd
&& sd_degenerate(sd
)) {
699 destroy_sched_domain(tmp
);
704 sched_domain_debug(sd
, cpu
);
706 rq_attach_root(rq
, rd
);
708 rcu_assign_pointer(rq
->sd
, sd
);
709 dirty_sched_domain_sysctl(cpu
);
710 destroy_sched_domains(tmp
);
712 update_top_cache_domain(cpu
);
716 struct sched_domain
* __percpu
*sd
;
717 struct root_domain
*rd
;
728 * Return the canonical balance CPU for this group, this is the first CPU
729 * of this group that's also in the balance mask.
731 * The balance mask are all those CPUs that could actually end up at this
732 * group. See build_balance_mask().
734 * Also see should_we_balance().
736 int group_balance_cpu(struct sched_group
*sg
)
738 return cpumask_first(group_balance_mask(sg
));
743 * NUMA topology (first read the regular topology blurb below)
745 * Given a node-distance table, for example:
753 * which represents a 4 node ring topology like:
761 * We want to construct domains and groups to represent this. The way we go
762 * about doing this is to build the domains on 'hops'. For each NUMA level we
763 * construct the mask of all nodes reachable in @level hops.
765 * For the above NUMA topology that gives 3 levels:
767 * NUMA-2 0-3 0-3 0-3 0-3
768 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
770 * NUMA-1 0-1,3 0-2 1-3 0,2-3
771 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
776 * As can be seen; things don't nicely line up as with the regular topology.
777 * When we iterate a domain in child domain chunks some nodes can be
778 * represented multiple times -- hence the "overlap" naming for this part of
781 * In order to minimize this overlap, we only build enough groups to cover the
782 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
786 * - the first group of each domain is its child domain; this
787 * gets us the first 0-1,3
788 * - the only uncovered node is 2, who's child domain is 1-3.
790 * However, because of the overlap, computing a unique CPU for each group is
791 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
792 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
793 * end up at those groups (they would end up in group: 0-1,3).
795 * To correct this we have to introduce the group balance mask. This mask
796 * will contain those CPUs in the group that can reach this group given the
797 * (child) domain tree.
799 * With this we can once again compute balance_cpu and sched_group_capacity
802 * XXX include words on how balance_cpu is unique and therefore can be
803 * used for sched_group_capacity links.
806 * Another 'interesting' topology is:
814 * Which looks a little like:
822 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
825 * This leads to a few particularly weird cases where the sched_domain's are
826 * not of the same number for each CPU. Consider:
829 * groups: {0-2},{1-3} {1-3},{0-2}
831 * NUMA-1 0-2 0-3 0-3 1-3
839 * Build the balance mask; it contains only those CPUs that can arrive at this
840 * group and should be considered to continue balancing.
842 * We do this during the group creation pass, therefore the group information
843 * isn't complete yet, however since each group represents a (child) domain we
844 * can fully construct this using the sched_domain bits (which are already
848 build_balance_mask(struct sched_domain
*sd
, struct sched_group
*sg
, struct cpumask
*mask
)
850 const struct cpumask
*sg_span
= sched_group_span(sg
);
851 struct sd_data
*sdd
= sd
->private;
852 struct sched_domain
*sibling
;
857 for_each_cpu(i
, sg_span
) {
858 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
861 * Can happen in the asymmetric case, where these siblings are
862 * unused. The mask will not be empty because those CPUs that
863 * do have the top domain _should_ span the domain.
868 /* If we would not end up here, we can't continue from here */
869 if (!cpumask_equal(sg_span
, sched_domain_span(sibling
->child
)))
872 cpumask_set_cpu(i
, mask
);
875 /* We must not have empty masks here */
876 WARN_ON_ONCE(cpumask_empty(mask
));
880 * XXX: This creates per-node group entries; since the load-balancer will
881 * immediately access remote memory to construct this group's load-balance
882 * statistics having the groups node local is of dubious benefit.
884 static struct sched_group
*
885 build_group_from_child_sched_domain(struct sched_domain
*sd
, int cpu
)
887 struct sched_group
*sg
;
888 struct cpumask
*sg_span
;
890 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
891 GFP_KERNEL
, cpu_to_node(cpu
));
896 sg_span
= sched_group_span(sg
);
898 cpumask_copy(sg_span
, sched_domain_span(sd
->child
));
900 cpumask_copy(sg_span
, sched_domain_span(sd
));
902 atomic_inc(&sg
->ref
);
906 static void init_overlap_sched_group(struct sched_domain
*sd
,
907 struct sched_group
*sg
)
909 struct cpumask
*mask
= sched_domains_tmpmask2
;
910 struct sd_data
*sdd
= sd
->private;
911 struct cpumask
*sg_span
;
914 build_balance_mask(sd
, sg
, mask
);
915 cpu
= cpumask_first_and(sched_group_span(sg
), mask
);
917 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
918 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
919 cpumask_copy(group_balance_mask(sg
), mask
);
921 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg
), mask
));
924 * Initialize sgc->capacity such that even if we mess up the
925 * domains and no possible iteration will get us here, we won't
928 sg_span
= sched_group_span(sg
);
929 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
930 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
931 sg
->sgc
->max_capacity
= SCHED_CAPACITY_SCALE
;
935 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
937 struct sched_group
*first
= NULL
, *last
= NULL
, *sg
;
938 const struct cpumask
*span
= sched_domain_span(sd
);
939 struct cpumask
*covered
= sched_domains_tmpmask
;
940 struct sd_data
*sdd
= sd
->private;
941 struct sched_domain
*sibling
;
944 cpumask_clear(covered
);
946 for_each_cpu_wrap(i
, span
, cpu
) {
947 struct cpumask
*sg_span
;
949 if (cpumask_test_cpu(i
, covered
))
952 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
955 * Asymmetric node setups can result in situations where the
956 * domain tree is of unequal depth, make sure to skip domains
957 * that already cover the entire range.
959 * In that case build_sched_domains() will have terminated the
960 * iteration early and our sibling sd spans will be empty.
961 * Domains should always include the CPU they're built on, so
964 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
967 sg
= build_group_from_child_sched_domain(sibling
, cpu
);
971 sg_span
= sched_group_span(sg
);
972 cpumask_or(covered
, covered
, sg_span
);
974 init_overlap_sched_group(sd
, sg
);
988 free_sched_groups(first
, 0);
995 * Package topology (also see the load-balance blurb in fair.c)
997 * The scheduler builds a tree structure to represent a number of important
998 * topology features. By default (default_topology[]) these include:
1000 * - Simultaneous multithreading (SMT)
1001 * - Multi-Core Cache (MC)
1004 * Where the last one more or less denotes everything up to a NUMA node.
1006 * The tree consists of 3 primary data structures:
1008 * sched_domain -> sched_group -> sched_group_capacity
1012 * The sched_domains are per-CPU and have a two way link (parent & child) and
1013 * denote the ever growing mask of CPUs belonging to that level of topology.
1015 * Each sched_domain has a circular (double) linked list of sched_group's, each
1016 * denoting the domains of the level below (or individual CPUs in case of the
1017 * first domain level). The sched_group linked by a sched_domain includes the
1018 * CPU of that sched_domain [*].
1020 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1022 * CPU 0 1 2 3 4 5 6 7
1026 * SMT [ ] [ ] [ ] [ ]
1030 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1031 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1032 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1034 * CPU 0 1 2 3 4 5 6 7
1036 * One way to think about it is: sched_domain moves you up and down among these
1037 * topology levels, while sched_group moves you sideways through it, at child
1038 * domain granularity.
1040 * sched_group_capacity ensures each unique sched_group has shared storage.
1042 * There are two related construction problems, both require a CPU that
1043 * uniquely identify each group (for a given domain):
1045 * - The first is the balance_cpu (see should_we_balance() and the
1046 * load-balance blub in fair.c); for each group we only want 1 CPU to
1047 * continue balancing at a higher domain.
1049 * - The second is the sched_group_capacity; we want all identical groups
1050 * to share a single sched_group_capacity.
1052 * Since these topologies are exclusive by construction. That is, its
1053 * impossible for an SMT thread to belong to multiple cores, and cores to
1054 * be part of multiple caches. There is a very clear and unique location
1055 * for each CPU in the hierarchy.
1057 * Therefore computing a unique CPU for each group is trivial (the iteration
1058 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1059 * group), we can simply pick the first CPU in each group.
1062 * [*] in other words, the first group of each domain is its child domain.
1065 static struct sched_group
*get_group(int cpu
, struct sd_data
*sdd
)
1067 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1068 struct sched_domain
*child
= sd
->child
;
1069 struct sched_group
*sg
;
1070 bool already_visited
;
1073 cpu
= cpumask_first(sched_domain_span(child
));
1075 sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
1076 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
1078 /* Increase refcounts for claim_allocations: */
1079 already_visited
= atomic_inc_return(&sg
->ref
) > 1;
1080 /* sgc visits should follow a similar trend as sg */
1081 WARN_ON(already_visited
!= (atomic_inc_return(&sg
->sgc
->ref
) > 1));
1083 /* If we have already visited that group, it's already initialized. */
1084 if (already_visited
)
1088 cpumask_copy(sched_group_span(sg
), sched_domain_span(child
));
1089 cpumask_copy(group_balance_mask(sg
), sched_group_span(sg
));
1091 cpumask_set_cpu(cpu
, sched_group_span(sg
));
1092 cpumask_set_cpu(cpu
, group_balance_mask(sg
));
1095 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sched_group_span(sg
));
1096 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
1097 sg
->sgc
->max_capacity
= SCHED_CAPACITY_SCALE
;
1103 * build_sched_groups will build a circular linked list of the groups
1104 * covered by the given span, will set each group's ->cpumask correctly,
1105 * and will initialize their ->sgc.
1107 * Assumes the sched_domain tree is fully constructed
1110 build_sched_groups(struct sched_domain
*sd
, int cpu
)
1112 struct sched_group
*first
= NULL
, *last
= NULL
;
1113 struct sd_data
*sdd
= sd
->private;
1114 const struct cpumask
*span
= sched_domain_span(sd
);
1115 struct cpumask
*covered
;
1118 lockdep_assert_held(&sched_domains_mutex
);
1119 covered
= sched_domains_tmpmask
;
1121 cpumask_clear(covered
);
1123 for_each_cpu_wrap(i
, span
, cpu
) {
1124 struct sched_group
*sg
;
1126 if (cpumask_test_cpu(i
, covered
))
1129 sg
= get_group(i
, sdd
);
1131 cpumask_or(covered
, covered
, sched_group_span(sg
));
1146 * Initialize sched groups cpu_capacity.
1148 * cpu_capacity indicates the capacity of sched group, which is used while
1149 * distributing the load between different sched groups in a sched domain.
1150 * Typically cpu_capacity for all the groups in a sched domain will be same
1151 * unless there are asymmetries in the topology. If there are asymmetries,
1152 * group having more cpu_capacity will pickup more load compared to the
1153 * group having less cpu_capacity.
1155 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
1157 struct sched_group
*sg
= sd
->groups
;
1162 int cpu
, max_cpu
= -1;
1164 sg
->group_weight
= cpumask_weight(sched_group_span(sg
));
1166 if (!(sd
->flags
& SD_ASYM_PACKING
))
1169 for_each_cpu(cpu
, sched_group_span(sg
)) {
1172 else if (sched_asym_prefer(cpu
, max_cpu
))
1175 sg
->asym_prefer_cpu
= max_cpu
;
1179 } while (sg
!= sd
->groups
);
1181 if (cpu
!= group_balance_cpu(sg
))
1184 update_group_capacity(sd
, cpu
);
1188 * Initializers for schedule domains
1189 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1192 static int default_relax_domain_level
= -1;
1193 int sched_domain_level_max
;
1195 static int __init
setup_relax_domain_level(char *str
)
1197 if (kstrtoint(str
, 0, &default_relax_domain_level
))
1198 pr_warn("Unable to set relax_domain_level\n");
1202 __setup("relax_domain_level=", setup_relax_domain_level
);
1204 static void set_domain_attribute(struct sched_domain
*sd
,
1205 struct sched_domain_attr
*attr
)
1209 if (!attr
|| attr
->relax_domain_level
< 0) {
1210 if (default_relax_domain_level
< 0)
1212 request
= default_relax_domain_level
;
1214 request
= attr
->relax_domain_level
;
1216 if (sd
->level
> request
) {
1217 /* Turn off idle balance on this domain: */
1218 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
1222 static void __sdt_free(const struct cpumask
*cpu_map
);
1223 static int __sdt_alloc(const struct cpumask
*cpu_map
);
1225 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
1226 const struct cpumask
*cpu_map
)
1230 if (!atomic_read(&d
->rd
->refcount
))
1231 free_rootdomain(&d
->rd
->rcu
);
1237 __sdt_free(cpu_map
);
1245 __visit_domain_allocation_hell(struct s_data
*d
, const struct cpumask
*cpu_map
)
1247 memset(d
, 0, sizeof(*d
));
1249 if (__sdt_alloc(cpu_map
))
1250 return sa_sd_storage
;
1251 d
->sd
= alloc_percpu(struct sched_domain
*);
1253 return sa_sd_storage
;
1254 d
->rd
= alloc_rootdomain();
1258 return sa_rootdomain
;
1262 * NULL the sd_data elements we've used to build the sched_domain and
1263 * sched_group structure so that the subsequent __free_domain_allocs()
1264 * will not free the data we're using.
1266 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
1268 struct sd_data
*sdd
= sd
->private;
1270 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
1271 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
1273 if (atomic_read(&(*per_cpu_ptr(sdd
->sds
, cpu
))->ref
))
1274 *per_cpu_ptr(sdd
->sds
, cpu
) = NULL
;
1276 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
1277 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
1279 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
1280 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
1284 enum numa_topology_type sched_numa_topology_type
;
1286 static int sched_domains_numa_levels
;
1287 static int sched_domains_curr_level
;
1289 int sched_max_numa_distance
;
1290 static int *sched_domains_numa_distance
;
1291 static struct cpumask
***sched_domains_numa_masks
;
1292 int __read_mostly node_reclaim_distance
= RECLAIM_DISTANCE
;
1296 * SD_flags allowed in topology descriptions.
1298 * These flags are purely descriptive of the topology and do not prescribe
1299 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1302 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1303 * SD_SHARE_PKG_RESOURCES - describes shared caches
1304 * SD_NUMA - describes NUMA topologies
1305 * SD_SHARE_POWERDOMAIN - describes shared power domain
1307 * Odd one out, which beside describing the topology has a quirk also
1308 * prescribes the desired behaviour that goes along with it:
1310 * SD_ASYM_PACKING - describes SMT quirks
1312 #define TOPOLOGY_SD_FLAGS \
1313 (SD_SHARE_CPUCAPACITY | \
1314 SD_SHARE_PKG_RESOURCES | \
1317 SD_SHARE_POWERDOMAIN)
1319 static struct sched_domain
*
1320 sd_init(struct sched_domain_topology_level
*tl
,
1321 const struct cpumask
*cpu_map
,
1322 struct sched_domain
*child
, int dflags
, int cpu
)
1324 struct sd_data
*sdd
= &tl
->data
;
1325 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1326 int sd_id
, sd_weight
, sd_flags
= 0;
1330 * Ugly hack to pass state to sd_numa_mask()...
1332 sched_domains_curr_level
= tl
->numa_level
;
1335 sd_weight
= cpumask_weight(tl
->mask(cpu
));
1338 sd_flags
= (*tl
->sd_flags
)();
1339 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
1340 "wrong sd_flags in topology description\n"))
1341 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
1343 /* Apply detected topology flags */
1346 *sd
= (struct sched_domain
){
1347 .min_interval
= sd_weight
,
1348 .max_interval
= 2*sd_weight
,
1350 .imbalance_pct
= 125,
1352 .cache_nice_tries
= 0,
1354 .flags
= 1*SD_LOAD_BALANCE
1355 | 1*SD_BALANCE_NEWIDLE
1360 | 0*SD_SHARE_CPUCAPACITY
1361 | 0*SD_SHARE_PKG_RESOURCES
1363 | 1*SD_PREFER_SIBLING
1368 .last_balance
= jiffies
,
1369 .balance_interval
= sd_weight
,
1370 .max_newidle_lb_cost
= 0,
1371 .next_decay_max_lb_cost
= jiffies
,
1373 #ifdef CONFIG_SCHED_DEBUG
1378 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
1379 sd_id
= cpumask_first(sched_domain_span(sd
));
1382 * Convert topological properties into behaviour.
1385 /* Don't attempt to spread across CPUs of different capacities. */
1386 if ((sd
->flags
& SD_ASYM_CPUCAPACITY
) && sd
->child
)
1387 sd
->child
->flags
&= ~SD_PREFER_SIBLING
;
1389 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
1390 sd
->imbalance_pct
= 110;
1392 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1393 sd
->imbalance_pct
= 117;
1394 sd
->cache_nice_tries
= 1;
1397 } else if (sd
->flags
& SD_NUMA
) {
1398 sd
->cache_nice_tries
= 2;
1400 sd
->flags
&= ~SD_PREFER_SIBLING
;
1401 sd
->flags
|= SD_SERIALIZE
;
1402 if (sched_domains_numa_distance
[tl
->numa_level
] > node_reclaim_distance
) {
1403 sd
->flags
&= ~(SD_BALANCE_EXEC
|
1410 sd
->cache_nice_tries
= 1;
1414 * For all levels sharing cache; connect a sched_domain_shared
1417 if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1418 sd
->shared
= *per_cpu_ptr(sdd
->sds
, sd_id
);
1419 atomic_inc(&sd
->shared
->ref
);
1420 atomic_set(&sd
->shared
->nr_busy_cpus
, sd_weight
);
1429 * Topology list, bottom-up.
1431 static struct sched_domain_topology_level default_topology
[] = {
1432 #ifdef CONFIG_SCHED_SMT
1433 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
1435 #ifdef CONFIG_SCHED_MC
1436 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
1438 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
1442 static struct sched_domain_topology_level
*sched_domain_topology
=
1445 #define for_each_sd_topology(tl) \
1446 for (tl = sched_domain_topology; tl->mask; tl++)
1448 void set_sched_topology(struct sched_domain_topology_level
*tl
)
1450 if (WARN_ON_ONCE(sched_smp_initialized
))
1453 sched_domain_topology
= tl
;
1458 static const struct cpumask
*sd_numa_mask(int cpu
)
1460 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
1463 static void sched_numa_warn(const char *str
)
1465 static int done
= false;
1473 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
1475 for (i
= 0; i
< nr_node_ids
; i
++) {
1476 printk(KERN_WARNING
" ");
1477 for (j
= 0; j
< nr_node_ids
; j
++)
1478 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
1479 printk(KERN_CONT
"\n");
1481 printk(KERN_WARNING
"\n");
1484 bool find_numa_distance(int distance
)
1488 if (distance
== node_distance(0, 0))
1491 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1492 if (sched_domains_numa_distance
[i
] == distance
)
1500 * A system can have three types of NUMA topology:
1501 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1502 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1503 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1505 * The difference between a glueless mesh topology and a backplane
1506 * topology lies in whether communication between not directly
1507 * connected nodes goes through intermediary nodes (where programs
1508 * could run), or through backplane controllers. This affects
1509 * placement of programs.
1511 * The type of topology can be discerned with the following tests:
1512 * - If the maximum distance between any nodes is 1 hop, the system
1513 * is directly connected.
1514 * - If for two nodes A and B, located N > 1 hops away from each other,
1515 * there is an intermediary node C, which is < N hops away from both
1516 * nodes A and B, the system is a glueless mesh.
1518 static void init_numa_topology_type(void)
1522 n
= sched_max_numa_distance
;
1524 if (sched_domains_numa_levels
<= 2) {
1525 sched_numa_topology_type
= NUMA_DIRECT
;
1529 for_each_online_node(a
) {
1530 for_each_online_node(b
) {
1531 /* Find two nodes furthest removed from each other. */
1532 if (node_distance(a
, b
) < n
)
1535 /* Is there an intermediary node between a and b? */
1536 for_each_online_node(c
) {
1537 if (node_distance(a
, c
) < n
&&
1538 node_distance(b
, c
) < n
) {
1539 sched_numa_topology_type
=
1545 sched_numa_topology_type
= NUMA_BACKPLANE
;
1551 void sched_init_numa(void)
1553 int next_distance
, curr_distance
= node_distance(0, 0);
1554 struct sched_domain_topology_level
*tl
;
1558 sched_domains_numa_distance
= kzalloc(sizeof(int) * (nr_node_ids
+ 1), GFP_KERNEL
);
1559 if (!sched_domains_numa_distance
)
1562 /* Includes NUMA identity node at level 0. */
1563 sched_domains_numa_distance
[level
++] = curr_distance
;
1564 sched_domains_numa_levels
= level
;
1567 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1568 * unique distances in the node_distance() table.
1570 * Assumes node_distance(0,j) includes all distances in
1571 * node_distance(i,j) in order to avoid cubic time.
1573 next_distance
= curr_distance
;
1574 for (i
= 0; i
< nr_node_ids
; i
++) {
1575 for (j
= 0; j
< nr_node_ids
; j
++) {
1576 for (k
= 0; k
< nr_node_ids
; k
++) {
1577 int distance
= node_distance(i
, k
);
1579 if (distance
> curr_distance
&&
1580 (distance
< next_distance
||
1581 next_distance
== curr_distance
))
1582 next_distance
= distance
;
1585 * While not a strong assumption it would be nice to know
1586 * about cases where if node A is connected to B, B is not
1587 * equally connected to A.
1589 if (sched_debug() && node_distance(k
, i
) != distance
)
1590 sched_numa_warn("Node-distance not symmetric");
1592 if (sched_debug() && i
&& !find_numa_distance(distance
))
1593 sched_numa_warn("Node-0 not representative");
1595 if (next_distance
!= curr_distance
) {
1596 sched_domains_numa_distance
[level
++] = next_distance
;
1597 sched_domains_numa_levels
= level
;
1598 curr_distance
= next_distance
;
1603 * In case of sched_debug() we verify the above assumption.
1610 * 'level' contains the number of unique distances
1612 * The sched_domains_numa_distance[] array includes the actual distance
1617 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1618 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1619 * the array will contain less then 'level' members. This could be
1620 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1621 * in other functions.
1623 * We reset it to 'level' at the end of this function.
1625 sched_domains_numa_levels
= 0;
1627 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
1628 if (!sched_domains_numa_masks
)
1632 * Now for each level, construct a mask per node which contains all
1633 * CPUs of nodes that are that many hops away from us.
1635 for (i
= 0; i
< level
; i
++) {
1636 sched_domains_numa_masks
[i
] =
1637 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
1638 if (!sched_domains_numa_masks
[i
])
1641 for (j
= 0; j
< nr_node_ids
; j
++) {
1642 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
1646 sched_domains_numa_masks
[i
][j
] = mask
;
1649 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
1652 cpumask_or(mask
, mask
, cpumask_of_node(k
));
1657 /* Compute default topology size */
1658 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
1660 tl
= kzalloc((i
+ level
+ 1) *
1661 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
1666 * Copy the default topology bits..
1668 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
1669 tl
[i
] = sched_domain_topology
[i
];
1672 * Add the NUMA identity distance, aka single NODE.
1674 tl
[i
++] = (struct sched_domain_topology_level
){
1675 .mask
= sd_numa_mask
,
1681 * .. and append 'j' levels of NUMA goodness.
1683 for (j
= 1; j
< level
; i
++, j
++) {
1684 tl
[i
] = (struct sched_domain_topology_level
){
1685 .mask
= sd_numa_mask
,
1686 .sd_flags
= cpu_numa_flags
,
1687 .flags
= SDTL_OVERLAP
,
1693 sched_domain_topology
= tl
;
1695 sched_domains_numa_levels
= level
;
1696 sched_max_numa_distance
= sched_domains_numa_distance
[level
- 1];
1698 init_numa_topology_type();
1701 void sched_domains_numa_masks_set(unsigned int cpu
)
1703 int node
= cpu_to_node(cpu
);
1706 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1707 for (j
= 0; j
< nr_node_ids
; j
++) {
1708 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
1709 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1714 void sched_domains_numa_masks_clear(unsigned int cpu
)
1718 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1719 for (j
= 0; j
< nr_node_ids
; j
++)
1720 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1725 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1726 * closest to @cpu from @cpumask.
1727 * cpumask: cpumask to find a cpu from
1728 * cpu: cpu to be close to
1730 * returns: cpu, or nr_cpu_ids when nothing found.
1732 int sched_numa_find_closest(const struct cpumask
*cpus
, int cpu
)
1734 int i
, j
= cpu_to_node(cpu
);
1736 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1737 cpu
= cpumask_any_and(cpus
, sched_domains_numa_masks
[i
][j
]);
1738 if (cpu
< nr_cpu_ids
)
1744 #endif /* CONFIG_NUMA */
1746 static int __sdt_alloc(const struct cpumask
*cpu_map
)
1748 struct sched_domain_topology_level
*tl
;
1751 for_each_sd_topology(tl
) {
1752 struct sd_data
*sdd
= &tl
->data
;
1754 sdd
->sd
= alloc_percpu(struct sched_domain
*);
1758 sdd
->sds
= alloc_percpu(struct sched_domain_shared
*);
1762 sdd
->sg
= alloc_percpu(struct sched_group
*);
1766 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
1770 for_each_cpu(j
, cpu_map
) {
1771 struct sched_domain
*sd
;
1772 struct sched_domain_shared
*sds
;
1773 struct sched_group
*sg
;
1774 struct sched_group_capacity
*sgc
;
1776 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
1777 GFP_KERNEL
, cpu_to_node(j
));
1781 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
1783 sds
= kzalloc_node(sizeof(struct sched_domain_shared
),
1784 GFP_KERNEL
, cpu_to_node(j
));
1788 *per_cpu_ptr(sdd
->sds
, j
) = sds
;
1790 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
1791 GFP_KERNEL
, cpu_to_node(j
));
1797 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
1799 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
1800 GFP_KERNEL
, cpu_to_node(j
));
1804 #ifdef CONFIG_SCHED_DEBUG
1808 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
1815 static void __sdt_free(const struct cpumask
*cpu_map
)
1817 struct sched_domain_topology_level
*tl
;
1820 for_each_sd_topology(tl
) {
1821 struct sd_data
*sdd
= &tl
->data
;
1823 for_each_cpu(j
, cpu_map
) {
1824 struct sched_domain
*sd
;
1827 sd
= *per_cpu_ptr(sdd
->sd
, j
);
1828 if (sd
&& (sd
->flags
& SD_OVERLAP
))
1829 free_sched_groups(sd
->groups
, 0);
1830 kfree(*per_cpu_ptr(sdd
->sd
, j
));
1834 kfree(*per_cpu_ptr(sdd
->sds
, j
));
1836 kfree(*per_cpu_ptr(sdd
->sg
, j
));
1838 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
1840 free_percpu(sdd
->sd
);
1842 free_percpu(sdd
->sds
);
1844 free_percpu(sdd
->sg
);
1846 free_percpu(sdd
->sgc
);
1851 static struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
1852 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
1853 struct sched_domain
*child
, int dflags
, int cpu
)
1855 struct sched_domain
*sd
= sd_init(tl
, cpu_map
, child
, dflags
, cpu
);
1858 sd
->level
= child
->level
+ 1;
1859 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
1862 if (!cpumask_subset(sched_domain_span(child
),
1863 sched_domain_span(sd
))) {
1864 pr_err("BUG: arch topology borken\n");
1865 #ifdef CONFIG_SCHED_DEBUG
1866 pr_err(" the %s domain not a subset of the %s domain\n",
1867 child
->name
, sd
->name
);
1869 /* Fixup, ensure @sd has at least @child CPUs. */
1870 cpumask_or(sched_domain_span(sd
),
1871 sched_domain_span(sd
),
1872 sched_domain_span(child
));
1876 set_domain_attribute(sd
, attr
);
1882 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1883 * any two given CPUs at this (non-NUMA) topology level.
1885 static bool topology_span_sane(struct sched_domain_topology_level
*tl
,
1886 const struct cpumask
*cpu_map
, int cpu
)
1890 /* NUMA levels are allowed to overlap */
1891 if (tl
->flags
& SDTL_OVERLAP
)
1895 * Non-NUMA levels cannot partially overlap - they must be either
1896 * completely equal or completely disjoint. Otherwise we can end up
1897 * breaking the sched_group lists - i.e. a later get_group() pass
1898 * breaks the linking done for an earlier span.
1900 for_each_cpu(i
, cpu_map
) {
1904 * We should 'and' all those masks with 'cpu_map' to exactly
1905 * match the topology we're about to build, but that can only
1906 * remove CPUs, which only lessens our ability to detect
1909 if (!cpumask_equal(tl
->mask(cpu
), tl
->mask(i
)) &&
1910 cpumask_intersects(tl
->mask(cpu
), tl
->mask(i
)))
1918 * Find the sched_domain_topology_level where all CPU capacities are visible
1921 static struct sched_domain_topology_level
1922 *asym_cpu_capacity_level(const struct cpumask
*cpu_map
)
1924 int i
, j
, asym_level
= 0;
1926 struct sched_domain_topology_level
*tl
, *asym_tl
= NULL
;
1929 /* Is there any asymmetry? */
1930 cap
= arch_scale_cpu_capacity(cpumask_first(cpu_map
));
1932 for_each_cpu(i
, cpu_map
) {
1933 if (arch_scale_cpu_capacity(i
) != cap
) {
1943 * Examine topology from all CPU's point of views to detect the lowest
1944 * sched_domain_topology_level where a highest capacity CPU is visible
1947 for_each_cpu(i
, cpu_map
) {
1948 unsigned long max_capacity
= arch_scale_cpu_capacity(i
);
1951 for_each_sd_topology(tl
) {
1952 if (tl_id
< asym_level
)
1955 for_each_cpu_and(j
, tl
->mask(i
), cpu_map
) {
1956 unsigned long capacity
;
1958 capacity
= arch_scale_cpu_capacity(j
);
1960 if (capacity
<= max_capacity
)
1963 max_capacity
= capacity
;
1977 * Build sched domains for a given set of CPUs and attach the sched domains
1978 * to the individual CPUs
1981 build_sched_domains(const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
)
1983 enum s_alloc alloc_state
= sa_none
;
1984 struct sched_domain
*sd
;
1986 struct rq
*rq
= NULL
;
1987 int i
, ret
= -ENOMEM
;
1988 struct sched_domain_topology_level
*tl_asym
;
1989 bool has_asym
= false;
1991 if (WARN_ON(cpumask_empty(cpu_map
)))
1994 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
1995 if (alloc_state
!= sa_rootdomain
)
1998 tl_asym
= asym_cpu_capacity_level(cpu_map
);
2000 /* Set up domains for CPUs specified by the cpu_map: */
2001 for_each_cpu(i
, cpu_map
) {
2002 struct sched_domain_topology_level
*tl
;
2005 for_each_sd_topology(tl
) {
2008 if (tl
== tl_asym
) {
2009 dflags
|= SD_ASYM_CPUCAPACITY
;
2013 if (WARN_ON(!topology_span_sane(tl
, cpu_map
, i
)))
2016 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, dflags
, i
);
2018 if (tl
== sched_domain_topology
)
2019 *per_cpu_ptr(d
.sd
, i
) = sd
;
2020 if (tl
->flags
& SDTL_OVERLAP
)
2021 sd
->flags
|= SD_OVERLAP
;
2022 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
2027 /* Build the groups for the domains */
2028 for_each_cpu(i
, cpu_map
) {
2029 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
2030 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
2031 if (sd
->flags
& SD_OVERLAP
) {
2032 if (build_overlap_sched_groups(sd
, i
))
2035 if (build_sched_groups(sd
, i
))
2041 /* Calculate CPU capacity for physical packages and nodes */
2042 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
2043 if (!cpumask_test_cpu(i
, cpu_map
))
2046 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
2047 claim_allocations(i
, sd
);
2048 init_sched_groups_capacity(i
, sd
);
2052 /* Attach the domains */
2054 for_each_cpu(i
, cpu_map
) {
2056 sd
= *per_cpu_ptr(d
.sd
, i
);
2058 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2059 if (rq
->cpu_capacity_orig
> READ_ONCE(d
.rd
->max_cpu_capacity
))
2060 WRITE_ONCE(d
.rd
->max_cpu_capacity
, rq
->cpu_capacity_orig
);
2062 cpu_attach_domain(sd
, d
.rd
, i
);
2067 static_branch_inc_cpuslocked(&sched_asym_cpucapacity
);
2069 if (rq
&& sched_debug_enabled
) {
2070 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2071 cpumask_pr_args(cpu_map
), rq
->rd
->max_cpu_capacity
);
2076 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
2081 /* Current sched domains: */
2082 static cpumask_var_t
*doms_cur
;
2084 /* Number of sched domains in 'doms_cur': */
2085 static int ndoms_cur
;
2087 /* Attribues of custom domains in 'doms_cur' */
2088 static struct sched_domain_attr
*dattr_cur
;
2091 * Special case: If a kmalloc() of a doms_cur partition (array of
2092 * cpumask) fails, then fallback to a single sched domain,
2093 * as determined by the single cpumask fallback_doms.
2095 static cpumask_var_t fallback_doms
;
2098 * arch_update_cpu_topology lets virtualized architectures update the
2099 * CPU core maps. It is supposed to return 1 if the topology changed
2100 * or 0 if it stayed the same.
2102 int __weak
arch_update_cpu_topology(void)
2107 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
2110 cpumask_var_t
*doms
;
2112 doms
= kmalloc_array(ndoms
, sizeof(*doms
), GFP_KERNEL
);
2115 for (i
= 0; i
< ndoms
; i
++) {
2116 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
2117 free_sched_domains(doms
, i
);
2124 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
2127 for (i
= 0; i
< ndoms
; i
++)
2128 free_cpumask_var(doms
[i
]);
2133 * Set up scheduler domains and groups. For now this just excludes isolated
2134 * CPUs, but could be used to exclude other special cases in the future.
2136 int sched_init_domains(const struct cpumask
*cpu_map
)
2140 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_KERNEL
);
2141 zalloc_cpumask_var(&sched_domains_tmpmask2
, GFP_KERNEL
);
2142 zalloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
2144 arch_update_cpu_topology();
2146 doms_cur
= alloc_sched_domains(ndoms_cur
);
2148 doms_cur
= &fallback_doms
;
2149 cpumask_and(doms_cur
[0], cpu_map
, housekeeping_cpumask(HK_FLAG_DOMAIN
));
2150 err
= build_sched_domains(doms_cur
[0], NULL
);
2151 register_sched_domain_sysctl();
2157 * Detach sched domains from a group of CPUs specified in cpu_map
2158 * These CPUs will now be attached to the NULL domain
2160 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
2162 unsigned int cpu
= cpumask_any(cpu_map
);
2165 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity
, cpu
)))
2166 static_branch_dec_cpuslocked(&sched_asym_cpucapacity
);
2169 for_each_cpu(i
, cpu_map
)
2170 cpu_attach_domain(NULL
, &def_root_domain
, i
);
2174 /* handle null as "default" */
2175 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
2176 struct sched_domain_attr
*new, int idx_new
)
2178 struct sched_domain_attr tmp
;
2186 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
2187 new ? (new + idx_new
) : &tmp
,
2188 sizeof(struct sched_domain_attr
));
2192 * Partition sched domains as specified by the 'ndoms_new'
2193 * cpumasks in the array doms_new[] of cpumasks. This compares
2194 * doms_new[] to the current sched domain partitioning, doms_cur[].
2195 * It destroys each deleted domain and builds each new domain.
2197 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2198 * The masks don't intersect (don't overlap.) We should setup one
2199 * sched domain for each mask. CPUs not in any of the cpumasks will
2200 * not be load balanced. If the same cpumask appears both in the
2201 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2204 * The passed in 'doms_new' should be allocated using
2205 * alloc_sched_domains. This routine takes ownership of it and will
2206 * free_sched_domains it when done with it. If the caller failed the
2207 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2208 * and partition_sched_domains() will fallback to the single partition
2209 * 'fallback_doms', it also forces the domains to be rebuilt.
2211 * If doms_new == NULL it will be replaced with cpu_online_mask.
2212 * ndoms_new == 0 is a special case for destroying existing domains,
2213 * and it will not create the default domain.
2215 * Call with hotplug lock and sched_domains_mutex held
2217 void partition_sched_domains_locked(int ndoms_new
, cpumask_var_t doms_new
[],
2218 struct sched_domain_attr
*dattr_new
)
2220 bool __maybe_unused has_eas
= false;
2224 lockdep_assert_held(&sched_domains_mutex
);
2226 /* Always unregister in case we don't destroy any domains: */
2227 unregister_sched_domain_sysctl();
2229 /* Let the architecture update CPU core mappings: */
2230 new_topology
= arch_update_cpu_topology();
2233 WARN_ON_ONCE(dattr_new
);
2235 doms_new
= alloc_sched_domains(1);
2238 cpumask_and(doms_new
[0], cpu_active_mask
,
2239 housekeeping_cpumask(HK_FLAG_DOMAIN
));
2245 /* Destroy deleted domains: */
2246 for (i
= 0; i
< ndoms_cur
; i
++) {
2247 for (j
= 0; j
< n
&& !new_topology
; j
++) {
2248 if (cpumask_equal(doms_cur
[i
], doms_new
[j
]) &&
2249 dattrs_equal(dattr_cur
, i
, dattr_new
, j
)) {
2250 struct root_domain
*rd
;
2253 * This domain won't be destroyed and as such
2254 * its dl_bw->total_bw needs to be cleared. It
2255 * will be recomputed in function
2256 * update_tasks_root_domain().
2258 rd
= cpu_rq(cpumask_any(doms_cur
[i
]))->rd
;
2259 dl_clear_root_domain(rd
);
2263 /* No match - a current sched domain not in new doms_new[] */
2264 detach_destroy_domains(doms_cur
[i
]);
2272 doms_new
= &fallback_doms
;
2273 cpumask_and(doms_new
[0], cpu_active_mask
,
2274 housekeeping_cpumask(HK_FLAG_DOMAIN
));
2277 /* Build new domains: */
2278 for (i
= 0; i
< ndoms_new
; i
++) {
2279 for (j
= 0; j
< n
&& !new_topology
; j
++) {
2280 if (cpumask_equal(doms_new
[i
], doms_cur
[j
]) &&
2281 dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
2284 /* No match - add a new doms_new */
2285 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
2290 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2291 /* Build perf. domains: */
2292 for (i
= 0; i
< ndoms_new
; i
++) {
2293 for (j
= 0; j
< n
&& !sched_energy_update
; j
++) {
2294 if (cpumask_equal(doms_new
[i
], doms_cur
[j
]) &&
2295 cpu_rq(cpumask_first(doms_cur
[j
]))->rd
->pd
) {
2300 /* No match - add perf. domains for a new rd */
2301 has_eas
|= build_perf_domains(doms_new
[i
]);
2305 sched_energy_set(has_eas
);
2308 /* Remember the new sched domains: */
2309 if (doms_cur
!= &fallback_doms
)
2310 free_sched_domains(doms_cur
, ndoms_cur
);
2313 doms_cur
= doms_new
;
2314 dattr_cur
= dattr_new
;
2315 ndoms_cur
= ndoms_new
;
2317 register_sched_domain_sysctl();
2321 * Call with hotplug lock held
2323 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
2324 struct sched_domain_attr
*dattr_new
)
2326 mutex_lock(&sched_domains_mutex
);
2327 partition_sched_domains_locked(ndoms_new
, doms_new
, dattr_new
);
2328 mutex_unlock(&sched_domains_mutex
);