Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / mm / khugepaged.c
blobcd280afb246e2cd7ad61bbd06072fb9ed8db8517
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
26 enum scan_result {
27 SCAN_FAIL,
28 SCAN_SUCCEED,
29 SCAN_PMD_NULL,
30 SCAN_EXCEED_NONE_PTE,
31 SCAN_PTE_NON_PRESENT,
32 SCAN_PTE_UFFD_WP,
33 SCAN_PAGE_RO,
34 SCAN_LACK_REFERENCED_PAGE,
35 SCAN_PAGE_NULL,
36 SCAN_SCAN_ABORT,
37 SCAN_PAGE_COUNT,
38 SCAN_PAGE_LRU,
39 SCAN_PAGE_LOCK,
40 SCAN_PAGE_ANON,
41 SCAN_PAGE_COMPOUND,
42 SCAN_ANY_PROCESS,
43 SCAN_VMA_NULL,
44 SCAN_VMA_CHECK,
45 SCAN_ADDRESS_RANGE,
46 SCAN_SWAP_CACHE_PAGE,
47 SCAN_DEL_PAGE_LRU,
48 SCAN_ALLOC_HUGE_PAGE_FAIL,
49 SCAN_CGROUP_CHARGE_FAIL,
50 SCAN_EXCEED_SWAP_PTE,
51 SCAN_TRUNCATED,
52 SCAN_PAGE_HAS_PRIVATE,
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/huge_memory.h>
58 /* default scan 8*512 pte (or vmas) every 30 second */
59 static unsigned int khugepaged_pages_to_scan __read_mostly;
60 static unsigned int khugepaged_pages_collapsed;
61 static unsigned int khugepaged_full_scans;
62 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
63 /* during fragmentation poll the hugepage allocator once every minute */
64 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
65 static unsigned long khugepaged_sleep_expire;
66 static DEFINE_SPINLOCK(khugepaged_mm_lock);
67 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
69 * default collapse hugepages if there is at least one pte mapped like
70 * it would have happened if the vma was large enough during page
71 * fault.
73 static unsigned int khugepaged_max_ptes_none __read_mostly;
74 static unsigned int khugepaged_max_ptes_swap __read_mostly;
76 #define MM_SLOTS_HASH_BITS 10
77 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
79 static struct kmem_cache *mm_slot_cache __read_mostly;
81 #define MAX_PTE_MAPPED_THP 8
83 /**
84 * struct mm_slot - hash lookup from mm to mm_slot
85 * @hash: hash collision list
86 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
87 * @mm: the mm that this information is valid for
89 struct mm_slot {
90 struct hlist_node hash;
91 struct list_head mm_node;
92 struct mm_struct *mm;
94 /* pte-mapped THP in this mm */
95 int nr_pte_mapped_thp;
96 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
99 /**
100 * struct khugepaged_scan - cursor for scanning
101 * @mm_head: the head of the mm list to scan
102 * @mm_slot: the current mm_slot we are scanning
103 * @address: the next address inside that to be scanned
105 * There is only the one khugepaged_scan instance of this cursor structure.
107 struct khugepaged_scan {
108 struct list_head mm_head;
109 struct mm_slot *mm_slot;
110 unsigned long address;
113 static struct khugepaged_scan khugepaged_scan = {
114 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
117 #ifdef CONFIG_SYSFS
118 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
119 struct kobj_attribute *attr,
120 char *buf)
122 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
125 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
126 struct kobj_attribute *attr,
127 const char *buf, size_t count)
129 unsigned long msecs;
130 int err;
132 err = kstrtoul(buf, 10, &msecs);
133 if (err || msecs > UINT_MAX)
134 return -EINVAL;
136 khugepaged_scan_sleep_millisecs = msecs;
137 khugepaged_sleep_expire = 0;
138 wake_up_interruptible(&khugepaged_wait);
140 return count;
142 static struct kobj_attribute scan_sleep_millisecs_attr =
143 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
144 scan_sleep_millisecs_store);
146 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
147 struct kobj_attribute *attr,
148 char *buf)
150 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
153 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
154 struct kobj_attribute *attr,
155 const char *buf, size_t count)
157 unsigned long msecs;
158 int err;
160 err = kstrtoul(buf, 10, &msecs);
161 if (err || msecs > UINT_MAX)
162 return -EINVAL;
164 khugepaged_alloc_sleep_millisecs = msecs;
165 khugepaged_sleep_expire = 0;
166 wake_up_interruptible(&khugepaged_wait);
168 return count;
170 static struct kobj_attribute alloc_sleep_millisecs_attr =
171 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
172 alloc_sleep_millisecs_store);
174 static ssize_t pages_to_scan_show(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 char *buf)
178 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
180 static ssize_t pages_to_scan_store(struct kobject *kobj,
181 struct kobj_attribute *attr,
182 const char *buf, size_t count)
184 int err;
185 unsigned long pages;
187 err = kstrtoul(buf, 10, &pages);
188 if (err || !pages || pages > UINT_MAX)
189 return -EINVAL;
191 khugepaged_pages_to_scan = pages;
193 return count;
195 static struct kobj_attribute pages_to_scan_attr =
196 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
197 pages_to_scan_store);
199 static ssize_t pages_collapsed_show(struct kobject *kobj,
200 struct kobj_attribute *attr,
201 char *buf)
203 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
205 static struct kobj_attribute pages_collapsed_attr =
206 __ATTR_RO(pages_collapsed);
208 static ssize_t full_scans_show(struct kobject *kobj,
209 struct kobj_attribute *attr,
210 char *buf)
212 return sprintf(buf, "%u\n", khugepaged_full_scans);
214 static struct kobj_attribute full_scans_attr =
215 __ATTR_RO(full_scans);
217 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
218 struct kobj_attribute *attr, char *buf)
220 return single_hugepage_flag_show(kobj, attr, buf,
221 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
223 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
224 struct kobj_attribute *attr,
225 const char *buf, size_t count)
227 return single_hugepage_flag_store(kobj, attr, buf, count,
228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
230 static struct kobj_attribute khugepaged_defrag_attr =
231 __ATTR(defrag, 0644, khugepaged_defrag_show,
232 khugepaged_defrag_store);
235 * max_ptes_none controls if khugepaged should collapse hugepages over
236 * any unmapped ptes in turn potentially increasing the memory
237 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
238 * reduce the available free memory in the system as it
239 * runs. Increasing max_ptes_none will instead potentially reduce the
240 * free memory in the system during the khugepaged scan.
242 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
243 struct kobj_attribute *attr,
244 char *buf)
246 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
248 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
249 struct kobj_attribute *attr,
250 const char *buf, size_t count)
252 int err;
253 unsigned long max_ptes_none;
255 err = kstrtoul(buf, 10, &max_ptes_none);
256 if (err || max_ptes_none > HPAGE_PMD_NR-1)
257 return -EINVAL;
259 khugepaged_max_ptes_none = max_ptes_none;
261 return count;
263 static struct kobj_attribute khugepaged_max_ptes_none_attr =
264 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
265 khugepaged_max_ptes_none_store);
267 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
268 struct kobj_attribute *attr,
269 char *buf)
271 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
274 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
275 struct kobj_attribute *attr,
276 const char *buf, size_t count)
278 int err;
279 unsigned long max_ptes_swap;
281 err = kstrtoul(buf, 10, &max_ptes_swap);
282 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
283 return -EINVAL;
285 khugepaged_max_ptes_swap = max_ptes_swap;
287 return count;
290 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
291 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
292 khugepaged_max_ptes_swap_store);
294 static struct attribute *khugepaged_attr[] = {
295 &khugepaged_defrag_attr.attr,
296 &khugepaged_max_ptes_none_attr.attr,
297 &pages_to_scan_attr.attr,
298 &pages_collapsed_attr.attr,
299 &full_scans_attr.attr,
300 &scan_sleep_millisecs_attr.attr,
301 &alloc_sleep_millisecs_attr.attr,
302 &khugepaged_max_ptes_swap_attr.attr,
303 NULL,
306 struct attribute_group khugepaged_attr_group = {
307 .attrs = khugepaged_attr,
308 .name = "khugepaged",
310 #endif /* CONFIG_SYSFS */
312 int hugepage_madvise(struct vm_area_struct *vma,
313 unsigned long *vm_flags, int advice)
315 switch (advice) {
316 case MADV_HUGEPAGE:
317 #ifdef CONFIG_S390
319 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
320 * can't handle this properly after s390_enable_sie, so we simply
321 * ignore the madvise to prevent qemu from causing a SIGSEGV.
323 if (mm_has_pgste(vma->vm_mm))
324 return 0;
325 #endif
326 *vm_flags &= ~VM_NOHUGEPAGE;
327 *vm_flags |= VM_HUGEPAGE;
329 * If the vma become good for khugepaged to scan,
330 * register it here without waiting a page fault that
331 * may not happen any time soon.
333 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
334 khugepaged_enter_vma_merge(vma, *vm_flags))
335 return -ENOMEM;
336 break;
337 case MADV_NOHUGEPAGE:
338 *vm_flags &= ~VM_HUGEPAGE;
339 *vm_flags |= VM_NOHUGEPAGE;
341 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
342 * this vma even if we leave the mm registered in khugepaged if
343 * it got registered before VM_NOHUGEPAGE was set.
345 break;
348 return 0;
351 int __init khugepaged_init(void)
353 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
354 sizeof(struct mm_slot),
355 __alignof__(struct mm_slot), 0, NULL);
356 if (!mm_slot_cache)
357 return -ENOMEM;
359 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
360 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
361 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
363 return 0;
366 void __init khugepaged_destroy(void)
368 kmem_cache_destroy(mm_slot_cache);
371 static inline struct mm_slot *alloc_mm_slot(void)
373 if (!mm_slot_cache) /* initialization failed */
374 return NULL;
375 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
378 static inline void free_mm_slot(struct mm_slot *mm_slot)
380 kmem_cache_free(mm_slot_cache, mm_slot);
383 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
385 struct mm_slot *mm_slot;
387 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
388 if (mm == mm_slot->mm)
389 return mm_slot;
391 return NULL;
394 static void insert_to_mm_slots_hash(struct mm_struct *mm,
395 struct mm_slot *mm_slot)
397 mm_slot->mm = mm;
398 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
401 static inline int khugepaged_test_exit(struct mm_struct *mm)
403 return atomic_read(&mm->mm_users) == 0;
406 static bool hugepage_vma_check(struct vm_area_struct *vma,
407 unsigned long vm_flags)
409 if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
410 (vm_flags & VM_NOHUGEPAGE) ||
411 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
412 return false;
414 if (shmem_file(vma->vm_file) ||
415 (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
416 vma->vm_file &&
417 (vm_flags & VM_DENYWRITE))) {
418 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
419 HPAGE_PMD_NR);
421 if (!vma->anon_vma || vma->vm_ops)
422 return false;
423 if (vma_is_temporary_stack(vma))
424 return false;
425 return !(vm_flags & VM_NO_KHUGEPAGED);
428 int __khugepaged_enter(struct mm_struct *mm)
430 struct mm_slot *mm_slot;
431 int wakeup;
433 mm_slot = alloc_mm_slot();
434 if (!mm_slot)
435 return -ENOMEM;
437 /* __khugepaged_exit() must not run from under us */
438 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
439 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
440 free_mm_slot(mm_slot);
441 return 0;
444 spin_lock(&khugepaged_mm_lock);
445 insert_to_mm_slots_hash(mm, mm_slot);
447 * Insert just behind the scanning cursor, to let the area settle
448 * down a little.
450 wakeup = list_empty(&khugepaged_scan.mm_head);
451 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
452 spin_unlock(&khugepaged_mm_lock);
454 mmgrab(mm);
455 if (wakeup)
456 wake_up_interruptible(&khugepaged_wait);
458 return 0;
461 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
462 unsigned long vm_flags)
464 unsigned long hstart, hend;
467 * khugepaged only supports read-only files for non-shmem files.
468 * khugepaged does not yet work on special mappings. And
469 * file-private shmem THP is not supported.
471 if (!hugepage_vma_check(vma, vm_flags))
472 return 0;
474 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
475 hend = vma->vm_end & HPAGE_PMD_MASK;
476 if (hstart < hend)
477 return khugepaged_enter(vma, vm_flags);
478 return 0;
481 void __khugepaged_exit(struct mm_struct *mm)
483 struct mm_slot *mm_slot;
484 int free = 0;
486 spin_lock(&khugepaged_mm_lock);
487 mm_slot = get_mm_slot(mm);
488 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
489 hash_del(&mm_slot->hash);
490 list_del(&mm_slot->mm_node);
491 free = 1;
493 spin_unlock(&khugepaged_mm_lock);
495 if (free) {
496 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
497 free_mm_slot(mm_slot);
498 mmdrop(mm);
499 } else if (mm_slot) {
501 * This is required to serialize against
502 * khugepaged_test_exit() (which is guaranteed to run
503 * under mmap sem read mode). Stop here (after we
504 * return all pagetables will be destroyed) until
505 * khugepaged has finished working on the pagetables
506 * under the mmap_sem.
508 down_write(&mm->mmap_sem);
509 up_write(&mm->mmap_sem);
513 static void release_pte_page(struct page *page)
515 dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_lru(page));
516 unlock_page(page);
517 putback_lru_page(page);
520 static void release_pte_pages(pte_t *pte, pte_t *_pte)
522 while (--_pte >= pte) {
523 pte_t pteval = *_pte;
524 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
525 release_pte_page(pte_page(pteval));
529 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
530 unsigned long address,
531 pte_t *pte)
533 struct page *page = NULL;
534 pte_t *_pte;
535 int none_or_zero = 0, result = 0, referenced = 0;
536 bool writable = false;
538 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
539 _pte++, address += PAGE_SIZE) {
540 pte_t pteval = *_pte;
541 if (pte_none(pteval) || (pte_present(pteval) &&
542 is_zero_pfn(pte_pfn(pteval)))) {
543 if (!userfaultfd_armed(vma) &&
544 ++none_or_zero <= khugepaged_max_ptes_none) {
545 continue;
546 } else {
547 result = SCAN_EXCEED_NONE_PTE;
548 goto out;
551 if (!pte_present(pteval)) {
552 result = SCAN_PTE_NON_PRESENT;
553 goto out;
555 page = vm_normal_page(vma, address, pteval);
556 if (unlikely(!page)) {
557 result = SCAN_PAGE_NULL;
558 goto out;
561 /* TODO: teach khugepaged to collapse THP mapped with pte */
562 if (PageCompound(page)) {
563 result = SCAN_PAGE_COMPOUND;
564 goto out;
567 VM_BUG_ON_PAGE(!PageAnon(page), page);
570 * We can do it before isolate_lru_page because the
571 * page can't be freed from under us. NOTE: PG_lock
572 * is needed to serialize against split_huge_page
573 * when invoked from the VM.
575 if (!trylock_page(page)) {
576 result = SCAN_PAGE_LOCK;
577 goto out;
581 * cannot use mapcount: can't collapse if there's a gup pin.
582 * The page must only be referenced by the scanned process
583 * and page swap cache.
585 if (page_count(page) != 1 + PageSwapCache(page)) {
586 unlock_page(page);
587 result = SCAN_PAGE_COUNT;
588 goto out;
590 if (pte_write(pteval)) {
591 writable = true;
592 } else {
593 if (PageSwapCache(page) &&
594 !reuse_swap_page(page, NULL)) {
595 unlock_page(page);
596 result = SCAN_SWAP_CACHE_PAGE;
597 goto out;
600 * Page is not in the swap cache. It can be collapsed
601 * into a THP.
606 * Isolate the page to avoid collapsing an hugepage
607 * currently in use by the VM.
609 if (isolate_lru_page(page)) {
610 unlock_page(page);
611 result = SCAN_DEL_PAGE_LRU;
612 goto out;
614 inc_node_page_state(page,
615 NR_ISOLATED_ANON + page_is_file_lru(page));
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(PageLRU(page), page);
619 /* There should be enough young pte to collapse the page */
620 if (pte_young(pteval) ||
621 page_is_young(page) || PageReferenced(page) ||
622 mmu_notifier_test_young(vma->vm_mm, address))
623 referenced++;
625 if (likely(writable)) {
626 if (likely(referenced)) {
627 result = SCAN_SUCCEED;
628 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
629 referenced, writable, result);
630 return 1;
632 } else {
633 result = SCAN_PAGE_RO;
636 out:
637 release_pte_pages(pte, _pte);
638 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
639 referenced, writable, result);
640 return 0;
643 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
644 struct vm_area_struct *vma,
645 unsigned long address,
646 spinlock_t *ptl)
648 pte_t *_pte;
649 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
650 _pte++, page++, address += PAGE_SIZE) {
651 pte_t pteval = *_pte;
652 struct page *src_page;
654 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
655 clear_user_highpage(page, address);
656 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
657 if (is_zero_pfn(pte_pfn(pteval))) {
659 * ptl mostly unnecessary.
661 spin_lock(ptl);
663 * paravirt calls inside pte_clear here are
664 * superfluous.
666 pte_clear(vma->vm_mm, address, _pte);
667 spin_unlock(ptl);
669 } else {
670 src_page = pte_page(pteval);
671 copy_user_highpage(page, src_page, address, vma);
672 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
673 release_pte_page(src_page);
675 * ptl mostly unnecessary, but preempt has to
676 * be disabled to update the per-cpu stats
677 * inside page_remove_rmap().
679 spin_lock(ptl);
681 * paravirt calls inside pte_clear here are
682 * superfluous.
684 pte_clear(vma->vm_mm, address, _pte);
685 page_remove_rmap(src_page, false);
686 spin_unlock(ptl);
687 free_page_and_swap_cache(src_page);
692 static void khugepaged_alloc_sleep(void)
694 DEFINE_WAIT(wait);
696 add_wait_queue(&khugepaged_wait, &wait);
697 freezable_schedule_timeout_interruptible(
698 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
699 remove_wait_queue(&khugepaged_wait, &wait);
702 static int khugepaged_node_load[MAX_NUMNODES];
704 static bool khugepaged_scan_abort(int nid)
706 int i;
709 * If node_reclaim_mode is disabled, then no extra effort is made to
710 * allocate memory locally.
712 if (!node_reclaim_mode)
713 return false;
715 /* If there is a count for this node already, it must be acceptable */
716 if (khugepaged_node_load[nid])
717 return false;
719 for (i = 0; i < MAX_NUMNODES; i++) {
720 if (!khugepaged_node_load[i])
721 continue;
722 if (node_distance(nid, i) > node_reclaim_distance)
723 return true;
725 return false;
728 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
729 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
731 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
734 #ifdef CONFIG_NUMA
735 static int khugepaged_find_target_node(void)
737 static int last_khugepaged_target_node = NUMA_NO_NODE;
738 int nid, target_node = 0, max_value = 0;
740 /* find first node with max normal pages hit */
741 for (nid = 0; nid < MAX_NUMNODES; nid++)
742 if (khugepaged_node_load[nid] > max_value) {
743 max_value = khugepaged_node_load[nid];
744 target_node = nid;
747 /* do some balance if several nodes have the same hit record */
748 if (target_node <= last_khugepaged_target_node)
749 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
750 nid++)
751 if (max_value == khugepaged_node_load[nid]) {
752 target_node = nid;
753 break;
756 last_khugepaged_target_node = target_node;
757 return target_node;
760 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
762 if (IS_ERR(*hpage)) {
763 if (!*wait)
764 return false;
766 *wait = false;
767 *hpage = NULL;
768 khugepaged_alloc_sleep();
769 } else if (*hpage) {
770 put_page(*hpage);
771 *hpage = NULL;
774 return true;
777 static struct page *
778 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
780 VM_BUG_ON_PAGE(*hpage, *hpage);
782 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
783 if (unlikely(!*hpage)) {
784 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
785 *hpage = ERR_PTR(-ENOMEM);
786 return NULL;
789 prep_transhuge_page(*hpage);
790 count_vm_event(THP_COLLAPSE_ALLOC);
791 return *hpage;
793 #else
794 static int khugepaged_find_target_node(void)
796 return 0;
799 static inline struct page *alloc_khugepaged_hugepage(void)
801 struct page *page;
803 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
804 HPAGE_PMD_ORDER);
805 if (page)
806 prep_transhuge_page(page);
807 return page;
810 static struct page *khugepaged_alloc_hugepage(bool *wait)
812 struct page *hpage;
814 do {
815 hpage = alloc_khugepaged_hugepage();
816 if (!hpage) {
817 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
818 if (!*wait)
819 return NULL;
821 *wait = false;
822 khugepaged_alloc_sleep();
823 } else
824 count_vm_event(THP_COLLAPSE_ALLOC);
825 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
827 return hpage;
830 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
832 if (!*hpage)
833 *hpage = khugepaged_alloc_hugepage(wait);
835 if (unlikely(!*hpage))
836 return false;
838 return true;
841 static struct page *
842 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
844 VM_BUG_ON(!*hpage);
846 return *hpage;
848 #endif
851 * If mmap_sem temporarily dropped, revalidate vma
852 * before taking mmap_sem.
853 * Return 0 if succeeds, otherwise return none-zero
854 * value (scan code).
857 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
858 struct vm_area_struct **vmap)
860 struct vm_area_struct *vma;
861 unsigned long hstart, hend;
863 if (unlikely(khugepaged_test_exit(mm)))
864 return SCAN_ANY_PROCESS;
866 *vmap = vma = find_vma(mm, address);
867 if (!vma)
868 return SCAN_VMA_NULL;
870 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
871 hend = vma->vm_end & HPAGE_PMD_MASK;
872 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
873 return SCAN_ADDRESS_RANGE;
874 if (!hugepage_vma_check(vma, vma->vm_flags))
875 return SCAN_VMA_CHECK;
876 return 0;
880 * Bring missing pages in from swap, to complete THP collapse.
881 * Only done if khugepaged_scan_pmd believes it is worthwhile.
883 * Called and returns without pte mapped or spinlocks held,
884 * but with mmap_sem held to protect against vma changes.
887 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
888 struct vm_area_struct *vma,
889 unsigned long address, pmd_t *pmd,
890 int referenced)
892 int swapped_in = 0;
893 vm_fault_t ret = 0;
894 struct vm_fault vmf = {
895 .vma = vma,
896 .address = address,
897 .flags = FAULT_FLAG_ALLOW_RETRY,
898 .pmd = pmd,
899 .pgoff = linear_page_index(vma, address),
902 /* we only decide to swapin, if there is enough young ptes */
903 if (referenced < HPAGE_PMD_NR/2) {
904 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
905 return false;
907 vmf.pte = pte_offset_map(pmd, address);
908 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
909 vmf.pte++, vmf.address += PAGE_SIZE) {
910 vmf.orig_pte = *vmf.pte;
911 if (!is_swap_pte(vmf.orig_pte))
912 continue;
913 swapped_in++;
914 ret = do_swap_page(&vmf);
916 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
917 if (ret & VM_FAULT_RETRY) {
918 down_read(&mm->mmap_sem);
919 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
920 /* vma is no longer available, don't continue to swapin */
921 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
922 return false;
924 /* check if the pmd is still valid */
925 if (mm_find_pmd(mm, address) != pmd) {
926 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
927 return false;
930 if (ret & VM_FAULT_ERROR) {
931 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
932 return false;
934 /* pte is unmapped now, we need to map it */
935 vmf.pte = pte_offset_map(pmd, vmf.address);
937 vmf.pte--;
938 pte_unmap(vmf.pte);
939 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
940 return true;
943 static void collapse_huge_page(struct mm_struct *mm,
944 unsigned long address,
945 struct page **hpage,
946 int node, int referenced)
948 pmd_t *pmd, _pmd;
949 pte_t *pte;
950 pgtable_t pgtable;
951 struct page *new_page;
952 spinlock_t *pmd_ptl, *pte_ptl;
953 int isolated = 0, result = 0;
954 struct mem_cgroup *memcg;
955 struct vm_area_struct *vma;
956 struct mmu_notifier_range range;
957 gfp_t gfp;
959 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
961 /* Only allocate from the target node */
962 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
965 * Before allocating the hugepage, release the mmap_sem read lock.
966 * The allocation can take potentially a long time if it involves
967 * sync compaction, and we do not need to hold the mmap_sem during
968 * that. We will recheck the vma after taking it again in write mode.
970 up_read(&mm->mmap_sem);
971 new_page = khugepaged_alloc_page(hpage, gfp, node);
972 if (!new_page) {
973 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
974 goto out_nolock;
977 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
978 result = SCAN_CGROUP_CHARGE_FAIL;
979 goto out_nolock;
982 down_read(&mm->mmap_sem);
983 result = hugepage_vma_revalidate(mm, address, &vma);
984 if (result) {
985 mem_cgroup_cancel_charge(new_page, memcg, true);
986 up_read(&mm->mmap_sem);
987 goto out_nolock;
990 pmd = mm_find_pmd(mm, address);
991 if (!pmd) {
992 result = SCAN_PMD_NULL;
993 mem_cgroup_cancel_charge(new_page, memcg, true);
994 up_read(&mm->mmap_sem);
995 goto out_nolock;
999 * __collapse_huge_page_swapin always returns with mmap_sem locked.
1000 * If it fails, we release mmap_sem and jump out_nolock.
1001 * Continuing to collapse causes inconsistency.
1003 if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1004 mem_cgroup_cancel_charge(new_page, memcg, true);
1005 up_read(&mm->mmap_sem);
1006 goto out_nolock;
1009 up_read(&mm->mmap_sem);
1011 * Prevent all access to pagetables with the exception of
1012 * gup_fast later handled by the ptep_clear_flush and the VM
1013 * handled by the anon_vma lock + PG_lock.
1015 down_write(&mm->mmap_sem);
1016 result = SCAN_ANY_PROCESS;
1017 if (!mmget_still_valid(mm))
1018 goto out;
1019 result = hugepage_vma_revalidate(mm, address, &vma);
1020 if (result)
1021 goto out;
1022 /* check if the pmd is still valid */
1023 if (mm_find_pmd(mm, address) != pmd)
1024 goto out;
1026 anon_vma_lock_write(vma->anon_vma);
1028 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1029 address, address + HPAGE_PMD_SIZE);
1030 mmu_notifier_invalidate_range_start(&range);
1032 pte = pte_offset_map(pmd, address);
1033 pte_ptl = pte_lockptr(mm, pmd);
1035 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1037 * After this gup_fast can't run anymore. This also removes
1038 * any huge TLB entry from the CPU so we won't allow
1039 * huge and small TLB entries for the same virtual address
1040 * to avoid the risk of CPU bugs in that area.
1042 _pmd = pmdp_collapse_flush(vma, address, pmd);
1043 spin_unlock(pmd_ptl);
1044 mmu_notifier_invalidate_range_end(&range);
1046 spin_lock(pte_ptl);
1047 isolated = __collapse_huge_page_isolate(vma, address, pte);
1048 spin_unlock(pte_ptl);
1050 if (unlikely(!isolated)) {
1051 pte_unmap(pte);
1052 spin_lock(pmd_ptl);
1053 BUG_ON(!pmd_none(*pmd));
1055 * We can only use set_pmd_at when establishing
1056 * hugepmds and never for establishing regular pmds that
1057 * points to regular pagetables. Use pmd_populate for that
1059 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1060 spin_unlock(pmd_ptl);
1061 anon_vma_unlock_write(vma->anon_vma);
1062 result = SCAN_FAIL;
1063 goto out;
1067 * All pages are isolated and locked so anon_vma rmap
1068 * can't run anymore.
1070 anon_vma_unlock_write(vma->anon_vma);
1072 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1073 pte_unmap(pte);
1074 __SetPageUptodate(new_page);
1075 pgtable = pmd_pgtable(_pmd);
1077 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1078 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1081 * spin_lock() below is not the equivalent of smp_wmb(), so
1082 * this is needed to avoid the copy_huge_page writes to become
1083 * visible after the set_pmd_at() write.
1085 smp_wmb();
1087 spin_lock(pmd_ptl);
1088 BUG_ON(!pmd_none(*pmd));
1089 page_add_new_anon_rmap(new_page, vma, address, true);
1090 mem_cgroup_commit_charge(new_page, memcg, false, true);
1091 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1092 lru_cache_add_active_or_unevictable(new_page, vma);
1093 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1094 set_pmd_at(mm, address, pmd, _pmd);
1095 update_mmu_cache_pmd(vma, address, pmd);
1096 spin_unlock(pmd_ptl);
1098 *hpage = NULL;
1100 khugepaged_pages_collapsed++;
1101 result = SCAN_SUCCEED;
1102 out_up_write:
1103 up_write(&mm->mmap_sem);
1104 out_nolock:
1105 trace_mm_collapse_huge_page(mm, isolated, result);
1106 return;
1107 out:
1108 mem_cgroup_cancel_charge(new_page, memcg, true);
1109 goto out_up_write;
1112 static int khugepaged_scan_pmd(struct mm_struct *mm,
1113 struct vm_area_struct *vma,
1114 unsigned long address,
1115 struct page **hpage)
1117 pmd_t *pmd;
1118 pte_t *pte, *_pte;
1119 int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1120 struct page *page = NULL;
1121 unsigned long _address;
1122 spinlock_t *ptl;
1123 int node = NUMA_NO_NODE, unmapped = 0;
1124 bool writable = false;
1126 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1128 pmd = mm_find_pmd(mm, address);
1129 if (!pmd) {
1130 result = SCAN_PMD_NULL;
1131 goto out;
1134 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1135 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1136 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1137 _pte++, _address += PAGE_SIZE) {
1138 pte_t pteval = *_pte;
1139 if (is_swap_pte(pteval)) {
1140 if (++unmapped <= khugepaged_max_ptes_swap) {
1142 * Always be strict with uffd-wp
1143 * enabled swap entries. Please see
1144 * comment below for pte_uffd_wp().
1146 if (pte_swp_uffd_wp(pteval)) {
1147 result = SCAN_PTE_UFFD_WP;
1148 goto out_unmap;
1150 continue;
1151 } else {
1152 result = SCAN_EXCEED_SWAP_PTE;
1153 goto out_unmap;
1156 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1157 if (!userfaultfd_armed(vma) &&
1158 ++none_or_zero <= khugepaged_max_ptes_none) {
1159 continue;
1160 } else {
1161 result = SCAN_EXCEED_NONE_PTE;
1162 goto out_unmap;
1165 if (!pte_present(pteval)) {
1166 result = SCAN_PTE_NON_PRESENT;
1167 goto out_unmap;
1169 if (pte_uffd_wp(pteval)) {
1171 * Don't collapse the page if any of the small
1172 * PTEs are armed with uffd write protection.
1173 * Here we can also mark the new huge pmd as
1174 * write protected if any of the small ones is
1175 * marked but that could bring uknown
1176 * userfault messages that falls outside of
1177 * the registered range. So, just be simple.
1179 result = SCAN_PTE_UFFD_WP;
1180 goto out_unmap;
1182 if (pte_write(pteval))
1183 writable = true;
1185 page = vm_normal_page(vma, _address, pteval);
1186 if (unlikely(!page)) {
1187 result = SCAN_PAGE_NULL;
1188 goto out_unmap;
1191 /* TODO: teach khugepaged to collapse THP mapped with pte */
1192 if (PageCompound(page)) {
1193 result = SCAN_PAGE_COMPOUND;
1194 goto out_unmap;
1198 * Record which node the original page is from and save this
1199 * information to khugepaged_node_load[].
1200 * Khupaged will allocate hugepage from the node has the max
1201 * hit record.
1203 node = page_to_nid(page);
1204 if (khugepaged_scan_abort(node)) {
1205 result = SCAN_SCAN_ABORT;
1206 goto out_unmap;
1208 khugepaged_node_load[node]++;
1209 if (!PageLRU(page)) {
1210 result = SCAN_PAGE_LRU;
1211 goto out_unmap;
1213 if (PageLocked(page)) {
1214 result = SCAN_PAGE_LOCK;
1215 goto out_unmap;
1217 if (!PageAnon(page)) {
1218 result = SCAN_PAGE_ANON;
1219 goto out_unmap;
1223 * cannot use mapcount: can't collapse if there's a gup pin.
1224 * The page must only be referenced by the scanned process
1225 * and page swap cache.
1227 if (page_count(page) != 1 + PageSwapCache(page)) {
1228 result = SCAN_PAGE_COUNT;
1229 goto out_unmap;
1231 if (pte_young(pteval) ||
1232 page_is_young(page) || PageReferenced(page) ||
1233 mmu_notifier_test_young(vma->vm_mm, address))
1234 referenced++;
1236 if (writable) {
1237 if (referenced) {
1238 result = SCAN_SUCCEED;
1239 ret = 1;
1240 } else {
1241 result = SCAN_LACK_REFERENCED_PAGE;
1243 } else {
1244 result = SCAN_PAGE_RO;
1246 out_unmap:
1247 pte_unmap_unlock(pte, ptl);
1248 if (ret) {
1249 node = khugepaged_find_target_node();
1250 /* collapse_huge_page will return with the mmap_sem released */
1251 collapse_huge_page(mm, address, hpage, node, referenced);
1253 out:
1254 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1255 none_or_zero, result, unmapped);
1256 return ret;
1259 static void collect_mm_slot(struct mm_slot *mm_slot)
1261 struct mm_struct *mm = mm_slot->mm;
1263 lockdep_assert_held(&khugepaged_mm_lock);
1265 if (khugepaged_test_exit(mm)) {
1266 /* free mm_slot */
1267 hash_del(&mm_slot->hash);
1268 list_del(&mm_slot->mm_node);
1271 * Not strictly needed because the mm exited already.
1273 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1276 /* khugepaged_mm_lock actually not necessary for the below */
1277 free_mm_slot(mm_slot);
1278 mmdrop(mm);
1282 #ifdef CONFIG_SHMEM
1284 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1285 * khugepaged should try to collapse the page table.
1287 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1288 unsigned long addr)
1290 struct mm_slot *mm_slot;
1292 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1294 spin_lock(&khugepaged_mm_lock);
1295 mm_slot = get_mm_slot(mm);
1296 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1297 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1298 spin_unlock(&khugepaged_mm_lock);
1299 return 0;
1303 * Try to collapse a pte-mapped THP for mm at address haddr.
1305 * This function checks whether all the PTEs in the PMD are pointing to the
1306 * right THP. If so, retract the page table so the THP can refault in with
1307 * as pmd-mapped.
1309 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1311 unsigned long haddr = addr & HPAGE_PMD_MASK;
1312 struct vm_area_struct *vma = find_vma(mm, haddr);
1313 struct page *hpage = NULL;
1314 pte_t *start_pte, *pte;
1315 pmd_t *pmd, _pmd;
1316 spinlock_t *ptl;
1317 int count = 0;
1318 int i;
1320 if (!vma || !vma->vm_file ||
1321 vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1322 return;
1325 * This vm_flags may not have VM_HUGEPAGE if the page was not
1326 * collapsed by this mm. But we can still collapse if the page is
1327 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1328 * will not fail the vma for missing VM_HUGEPAGE
1330 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1331 return;
1333 pmd = mm_find_pmd(mm, haddr);
1334 if (!pmd)
1335 return;
1337 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1339 /* step 1: check all mapped PTEs are to the right huge page */
1340 for (i = 0, addr = haddr, pte = start_pte;
1341 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1342 struct page *page;
1344 /* empty pte, skip */
1345 if (pte_none(*pte))
1346 continue;
1348 /* page swapped out, abort */
1349 if (!pte_present(*pte))
1350 goto abort;
1352 page = vm_normal_page(vma, addr, *pte);
1354 if (!page || !PageCompound(page))
1355 goto abort;
1357 if (!hpage) {
1358 hpage = compound_head(page);
1360 * The mapping of the THP should not change.
1362 * Note that uprobe, debugger, or MAP_PRIVATE may
1363 * change the page table, but the new page will
1364 * not pass PageCompound() check.
1366 if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping))
1367 goto abort;
1371 * Confirm the page maps to the correct subpage.
1373 * Note that uprobe, debugger, or MAP_PRIVATE may change
1374 * the page table, but the new page will not pass
1375 * PageCompound() check.
1377 if (WARN_ON(hpage + i != page))
1378 goto abort;
1379 count++;
1382 /* step 2: adjust rmap */
1383 for (i = 0, addr = haddr, pte = start_pte;
1384 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1385 struct page *page;
1387 if (pte_none(*pte))
1388 continue;
1389 page = vm_normal_page(vma, addr, *pte);
1390 page_remove_rmap(page, false);
1393 pte_unmap_unlock(start_pte, ptl);
1395 /* step 3: set proper refcount and mm_counters. */
1396 if (hpage) {
1397 page_ref_sub(hpage, count);
1398 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1401 /* step 4: collapse pmd */
1402 ptl = pmd_lock(vma->vm_mm, pmd);
1403 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1404 spin_unlock(ptl);
1405 mm_dec_nr_ptes(mm);
1406 pte_free(mm, pmd_pgtable(_pmd));
1407 return;
1409 abort:
1410 pte_unmap_unlock(start_pte, ptl);
1413 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1415 struct mm_struct *mm = mm_slot->mm;
1416 int i;
1418 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1419 return 0;
1421 if (!down_write_trylock(&mm->mmap_sem))
1422 return -EBUSY;
1424 if (unlikely(khugepaged_test_exit(mm)))
1425 goto out;
1427 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1428 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1430 out:
1431 mm_slot->nr_pte_mapped_thp = 0;
1432 up_write(&mm->mmap_sem);
1433 return 0;
1436 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1438 struct vm_area_struct *vma;
1439 unsigned long addr;
1440 pmd_t *pmd, _pmd;
1442 i_mmap_lock_write(mapping);
1443 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1445 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1446 * got written to. These VMAs are likely not worth investing
1447 * down_write(mmap_sem) as PMD-mapping is likely to be split
1448 * later.
1450 * Not that vma->anon_vma check is racy: it can be set up after
1451 * the check but before we took mmap_sem by the fault path.
1452 * But page lock would prevent establishing any new ptes of the
1453 * page, so we are safe.
1455 * An alternative would be drop the check, but check that page
1456 * table is clear before calling pmdp_collapse_flush() under
1457 * ptl. It has higher chance to recover THP for the VMA, but
1458 * has higher cost too.
1460 if (vma->anon_vma)
1461 continue;
1462 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1463 if (addr & ~HPAGE_PMD_MASK)
1464 continue;
1465 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1466 continue;
1467 pmd = mm_find_pmd(vma->vm_mm, addr);
1468 if (!pmd)
1469 continue;
1471 * We need exclusive mmap_sem to retract page table.
1473 * We use trylock due to lock inversion: we need to acquire
1474 * mmap_sem while holding page lock. Fault path does it in
1475 * reverse order. Trylock is a way to avoid deadlock.
1477 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1478 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1479 /* assume page table is clear */
1480 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1481 spin_unlock(ptl);
1482 up_write(&vma->vm_mm->mmap_sem);
1483 mm_dec_nr_ptes(vma->vm_mm);
1484 pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1485 } else {
1486 /* Try again later */
1487 khugepaged_add_pte_mapped_thp(vma->vm_mm, addr);
1490 i_mmap_unlock_write(mapping);
1494 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1496 * Basic scheme is simple, details are more complex:
1497 * - allocate and lock a new huge page;
1498 * - scan page cache replacing old pages with the new one
1499 * + swap/gup in pages if necessary;
1500 * + fill in gaps;
1501 * + keep old pages around in case rollback is required;
1502 * - if replacing succeeds:
1503 * + copy data over;
1504 * + free old pages;
1505 * + unlock huge page;
1506 * - if replacing failed;
1507 * + put all pages back and unfreeze them;
1508 * + restore gaps in the page cache;
1509 * + unlock and free huge page;
1511 static void collapse_file(struct mm_struct *mm,
1512 struct file *file, pgoff_t start,
1513 struct page **hpage, int node)
1515 struct address_space *mapping = file->f_mapping;
1516 gfp_t gfp;
1517 struct page *new_page;
1518 struct mem_cgroup *memcg;
1519 pgoff_t index, end = start + HPAGE_PMD_NR;
1520 LIST_HEAD(pagelist);
1521 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1522 int nr_none = 0, result = SCAN_SUCCEED;
1523 bool is_shmem = shmem_file(file);
1525 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1526 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1528 /* Only allocate from the target node */
1529 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1531 new_page = khugepaged_alloc_page(hpage, gfp, node);
1532 if (!new_page) {
1533 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1534 goto out;
1537 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1538 result = SCAN_CGROUP_CHARGE_FAIL;
1539 goto out;
1542 /* This will be less messy when we use multi-index entries */
1543 do {
1544 xas_lock_irq(&xas);
1545 xas_create_range(&xas);
1546 if (!xas_error(&xas))
1547 break;
1548 xas_unlock_irq(&xas);
1549 if (!xas_nomem(&xas, GFP_KERNEL)) {
1550 mem_cgroup_cancel_charge(new_page, memcg, true);
1551 result = SCAN_FAIL;
1552 goto out;
1554 } while (1);
1556 __SetPageLocked(new_page);
1557 if (is_shmem)
1558 __SetPageSwapBacked(new_page);
1559 new_page->index = start;
1560 new_page->mapping = mapping;
1563 * At this point the new_page is locked and not up-to-date.
1564 * It's safe to insert it into the page cache, because nobody would
1565 * be able to map it or use it in another way until we unlock it.
1568 xas_set(&xas, start);
1569 for (index = start; index < end; index++) {
1570 struct page *page = xas_next(&xas);
1572 VM_BUG_ON(index != xas.xa_index);
1573 if (is_shmem) {
1574 if (!page) {
1576 * Stop if extent has been truncated or
1577 * hole-punched, and is now completely
1578 * empty.
1580 if (index == start) {
1581 if (!xas_next_entry(&xas, end - 1)) {
1582 result = SCAN_TRUNCATED;
1583 goto xa_locked;
1585 xas_set(&xas, index);
1587 if (!shmem_charge(mapping->host, 1)) {
1588 result = SCAN_FAIL;
1589 goto xa_locked;
1591 xas_store(&xas, new_page);
1592 nr_none++;
1593 continue;
1596 if (xa_is_value(page) || !PageUptodate(page)) {
1597 xas_unlock_irq(&xas);
1598 /* swap in or instantiate fallocated page */
1599 if (shmem_getpage(mapping->host, index, &page,
1600 SGP_NOHUGE)) {
1601 result = SCAN_FAIL;
1602 goto xa_unlocked;
1604 } else if (trylock_page(page)) {
1605 get_page(page);
1606 xas_unlock_irq(&xas);
1607 } else {
1608 result = SCAN_PAGE_LOCK;
1609 goto xa_locked;
1611 } else { /* !is_shmem */
1612 if (!page || xa_is_value(page)) {
1613 xas_unlock_irq(&xas);
1614 page_cache_sync_readahead(mapping, &file->f_ra,
1615 file, index,
1616 PAGE_SIZE);
1617 /* drain pagevecs to help isolate_lru_page() */
1618 lru_add_drain();
1619 page = find_lock_page(mapping, index);
1620 if (unlikely(page == NULL)) {
1621 result = SCAN_FAIL;
1622 goto xa_unlocked;
1624 } else if (PageDirty(page)) {
1626 * khugepaged only works on read-only fd,
1627 * so this page is dirty because it hasn't
1628 * been flushed since first write. There
1629 * won't be new dirty pages.
1631 * Trigger async flush here and hope the
1632 * writeback is done when khugepaged
1633 * revisits this page.
1635 * This is a one-off situation. We are not
1636 * forcing writeback in loop.
1638 xas_unlock_irq(&xas);
1639 filemap_flush(mapping);
1640 result = SCAN_FAIL;
1641 goto xa_unlocked;
1642 } else if (trylock_page(page)) {
1643 get_page(page);
1644 xas_unlock_irq(&xas);
1645 } else {
1646 result = SCAN_PAGE_LOCK;
1647 goto xa_locked;
1652 * The page must be locked, so we can drop the i_pages lock
1653 * without racing with truncate.
1655 VM_BUG_ON_PAGE(!PageLocked(page), page);
1657 /* make sure the page is up to date */
1658 if (unlikely(!PageUptodate(page))) {
1659 result = SCAN_FAIL;
1660 goto out_unlock;
1664 * If file was truncated then extended, or hole-punched, before
1665 * we locked the first page, then a THP might be there already.
1667 if (PageTransCompound(page)) {
1668 result = SCAN_PAGE_COMPOUND;
1669 goto out_unlock;
1672 if (page_mapping(page) != mapping) {
1673 result = SCAN_TRUNCATED;
1674 goto out_unlock;
1677 if (!is_shmem && PageDirty(page)) {
1679 * khugepaged only works on read-only fd, so this
1680 * page is dirty because it hasn't been flushed
1681 * since first write.
1683 result = SCAN_FAIL;
1684 goto out_unlock;
1687 if (isolate_lru_page(page)) {
1688 result = SCAN_DEL_PAGE_LRU;
1689 goto out_unlock;
1692 if (page_has_private(page) &&
1693 !try_to_release_page(page, GFP_KERNEL)) {
1694 result = SCAN_PAGE_HAS_PRIVATE;
1695 putback_lru_page(page);
1696 goto out_unlock;
1699 if (page_mapped(page))
1700 unmap_mapping_pages(mapping, index, 1, false);
1702 xas_lock_irq(&xas);
1703 xas_set(&xas, index);
1705 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1706 VM_BUG_ON_PAGE(page_mapped(page), page);
1709 * The page is expected to have page_count() == 3:
1710 * - we hold a pin on it;
1711 * - one reference from page cache;
1712 * - one from isolate_lru_page;
1714 if (!page_ref_freeze(page, 3)) {
1715 result = SCAN_PAGE_COUNT;
1716 xas_unlock_irq(&xas);
1717 putback_lru_page(page);
1718 goto out_unlock;
1722 * Add the page to the list to be able to undo the collapse if
1723 * something go wrong.
1725 list_add_tail(&page->lru, &pagelist);
1727 /* Finally, replace with the new page. */
1728 xas_store(&xas, new_page);
1729 continue;
1730 out_unlock:
1731 unlock_page(page);
1732 put_page(page);
1733 goto xa_unlocked;
1736 if (is_shmem)
1737 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1738 else {
1739 __inc_node_page_state(new_page, NR_FILE_THPS);
1740 filemap_nr_thps_inc(mapping);
1743 if (nr_none) {
1744 struct zone *zone = page_zone(new_page);
1746 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1747 if (is_shmem)
1748 __mod_node_page_state(zone->zone_pgdat,
1749 NR_SHMEM, nr_none);
1752 xa_locked:
1753 xas_unlock_irq(&xas);
1754 xa_unlocked:
1756 if (result == SCAN_SUCCEED) {
1757 struct page *page, *tmp;
1760 * Replacing old pages with new one has succeeded, now we
1761 * need to copy the content and free the old pages.
1763 index = start;
1764 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1765 while (index < page->index) {
1766 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1767 index++;
1769 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1770 page);
1771 list_del(&page->lru);
1772 page->mapping = NULL;
1773 page_ref_unfreeze(page, 1);
1774 ClearPageActive(page);
1775 ClearPageUnevictable(page);
1776 unlock_page(page);
1777 put_page(page);
1778 index++;
1780 while (index < end) {
1781 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1782 index++;
1785 SetPageUptodate(new_page);
1786 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1787 mem_cgroup_commit_charge(new_page, memcg, false, true);
1789 if (is_shmem) {
1790 set_page_dirty(new_page);
1791 lru_cache_add_anon(new_page);
1792 } else {
1793 lru_cache_add_file(new_page);
1795 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1798 * Remove pte page tables, so we can re-fault the page as huge.
1800 retract_page_tables(mapping, start);
1801 *hpage = NULL;
1803 khugepaged_pages_collapsed++;
1804 } else {
1805 struct page *page;
1807 /* Something went wrong: roll back page cache changes */
1808 xas_lock_irq(&xas);
1809 mapping->nrpages -= nr_none;
1811 if (is_shmem)
1812 shmem_uncharge(mapping->host, nr_none);
1814 xas_set(&xas, start);
1815 xas_for_each(&xas, page, end - 1) {
1816 page = list_first_entry_or_null(&pagelist,
1817 struct page, lru);
1818 if (!page || xas.xa_index < page->index) {
1819 if (!nr_none)
1820 break;
1821 nr_none--;
1822 /* Put holes back where they were */
1823 xas_store(&xas, NULL);
1824 continue;
1827 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1829 /* Unfreeze the page. */
1830 list_del(&page->lru);
1831 page_ref_unfreeze(page, 2);
1832 xas_store(&xas, page);
1833 xas_pause(&xas);
1834 xas_unlock_irq(&xas);
1835 unlock_page(page);
1836 putback_lru_page(page);
1837 xas_lock_irq(&xas);
1839 VM_BUG_ON(nr_none);
1840 xas_unlock_irq(&xas);
1842 mem_cgroup_cancel_charge(new_page, memcg, true);
1843 new_page->mapping = NULL;
1846 unlock_page(new_page);
1847 out:
1848 VM_BUG_ON(!list_empty(&pagelist));
1849 /* TODO: tracepoints */
1852 static void khugepaged_scan_file(struct mm_struct *mm,
1853 struct file *file, pgoff_t start, struct page **hpage)
1855 struct page *page = NULL;
1856 struct address_space *mapping = file->f_mapping;
1857 XA_STATE(xas, &mapping->i_pages, start);
1858 int present, swap;
1859 int node = NUMA_NO_NODE;
1860 int result = SCAN_SUCCEED;
1862 present = 0;
1863 swap = 0;
1864 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1865 rcu_read_lock();
1866 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1867 if (xas_retry(&xas, page))
1868 continue;
1870 if (xa_is_value(page)) {
1871 if (++swap > khugepaged_max_ptes_swap) {
1872 result = SCAN_EXCEED_SWAP_PTE;
1873 break;
1875 continue;
1878 if (PageTransCompound(page)) {
1879 result = SCAN_PAGE_COMPOUND;
1880 break;
1883 node = page_to_nid(page);
1884 if (khugepaged_scan_abort(node)) {
1885 result = SCAN_SCAN_ABORT;
1886 break;
1888 khugepaged_node_load[node]++;
1890 if (!PageLRU(page)) {
1891 result = SCAN_PAGE_LRU;
1892 break;
1895 if (page_count(page) !=
1896 1 + page_mapcount(page) + page_has_private(page)) {
1897 result = SCAN_PAGE_COUNT;
1898 break;
1902 * We probably should check if the page is referenced here, but
1903 * nobody would transfer pte_young() to PageReferenced() for us.
1904 * And rmap walk here is just too costly...
1907 present++;
1909 if (need_resched()) {
1910 xas_pause(&xas);
1911 cond_resched_rcu();
1914 rcu_read_unlock();
1916 if (result == SCAN_SUCCEED) {
1917 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1918 result = SCAN_EXCEED_NONE_PTE;
1919 } else {
1920 node = khugepaged_find_target_node();
1921 collapse_file(mm, file, start, hpage, node);
1925 /* TODO: tracepoints */
1927 #else
1928 static void khugepaged_scan_file(struct mm_struct *mm,
1929 struct file *file, pgoff_t start, struct page **hpage)
1931 BUILD_BUG();
1934 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1936 return 0;
1938 #endif
1940 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1941 struct page **hpage)
1942 __releases(&khugepaged_mm_lock)
1943 __acquires(&khugepaged_mm_lock)
1945 struct mm_slot *mm_slot;
1946 struct mm_struct *mm;
1947 struct vm_area_struct *vma;
1948 int progress = 0;
1950 VM_BUG_ON(!pages);
1951 lockdep_assert_held(&khugepaged_mm_lock);
1953 if (khugepaged_scan.mm_slot)
1954 mm_slot = khugepaged_scan.mm_slot;
1955 else {
1956 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1957 struct mm_slot, mm_node);
1958 khugepaged_scan.address = 0;
1959 khugepaged_scan.mm_slot = mm_slot;
1961 spin_unlock(&khugepaged_mm_lock);
1962 khugepaged_collapse_pte_mapped_thps(mm_slot);
1964 mm = mm_slot->mm;
1966 * Don't wait for semaphore (to avoid long wait times). Just move to
1967 * the next mm on the list.
1969 vma = NULL;
1970 if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1971 goto breakouterloop_mmap_sem;
1972 if (likely(!khugepaged_test_exit(mm)))
1973 vma = find_vma(mm, khugepaged_scan.address);
1975 progress++;
1976 for (; vma; vma = vma->vm_next) {
1977 unsigned long hstart, hend;
1979 cond_resched();
1980 if (unlikely(khugepaged_test_exit(mm))) {
1981 progress++;
1982 break;
1984 if (!hugepage_vma_check(vma, vma->vm_flags)) {
1985 skip:
1986 progress++;
1987 continue;
1989 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1990 hend = vma->vm_end & HPAGE_PMD_MASK;
1991 if (hstart >= hend)
1992 goto skip;
1993 if (khugepaged_scan.address > hend)
1994 goto skip;
1995 if (khugepaged_scan.address < hstart)
1996 khugepaged_scan.address = hstart;
1997 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1998 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
1999 goto skip;
2001 while (khugepaged_scan.address < hend) {
2002 int ret;
2003 cond_resched();
2004 if (unlikely(khugepaged_test_exit(mm)))
2005 goto breakouterloop;
2007 VM_BUG_ON(khugepaged_scan.address < hstart ||
2008 khugepaged_scan.address + HPAGE_PMD_SIZE >
2009 hend);
2010 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2011 struct file *file = get_file(vma->vm_file);
2012 pgoff_t pgoff = linear_page_index(vma,
2013 khugepaged_scan.address);
2015 up_read(&mm->mmap_sem);
2016 ret = 1;
2017 khugepaged_scan_file(mm, file, pgoff, hpage);
2018 fput(file);
2019 } else {
2020 ret = khugepaged_scan_pmd(mm, vma,
2021 khugepaged_scan.address,
2022 hpage);
2024 /* move to next address */
2025 khugepaged_scan.address += HPAGE_PMD_SIZE;
2026 progress += HPAGE_PMD_NR;
2027 if (ret)
2028 /* we released mmap_sem so break loop */
2029 goto breakouterloop_mmap_sem;
2030 if (progress >= pages)
2031 goto breakouterloop;
2034 breakouterloop:
2035 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2036 breakouterloop_mmap_sem:
2038 spin_lock(&khugepaged_mm_lock);
2039 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2041 * Release the current mm_slot if this mm is about to die, or
2042 * if we scanned all vmas of this mm.
2044 if (khugepaged_test_exit(mm) || !vma) {
2046 * Make sure that if mm_users is reaching zero while
2047 * khugepaged runs here, khugepaged_exit will find
2048 * mm_slot not pointing to the exiting mm.
2050 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2051 khugepaged_scan.mm_slot = list_entry(
2052 mm_slot->mm_node.next,
2053 struct mm_slot, mm_node);
2054 khugepaged_scan.address = 0;
2055 } else {
2056 khugepaged_scan.mm_slot = NULL;
2057 khugepaged_full_scans++;
2060 collect_mm_slot(mm_slot);
2063 return progress;
2066 static int khugepaged_has_work(void)
2068 return !list_empty(&khugepaged_scan.mm_head) &&
2069 khugepaged_enabled();
2072 static int khugepaged_wait_event(void)
2074 return !list_empty(&khugepaged_scan.mm_head) ||
2075 kthread_should_stop();
2078 static void khugepaged_do_scan(void)
2080 struct page *hpage = NULL;
2081 unsigned int progress = 0, pass_through_head = 0;
2082 unsigned int pages = khugepaged_pages_to_scan;
2083 bool wait = true;
2085 barrier(); /* write khugepaged_pages_to_scan to local stack */
2087 while (progress < pages) {
2088 if (!khugepaged_prealloc_page(&hpage, &wait))
2089 break;
2091 cond_resched();
2093 if (unlikely(kthread_should_stop() || try_to_freeze()))
2094 break;
2096 spin_lock(&khugepaged_mm_lock);
2097 if (!khugepaged_scan.mm_slot)
2098 pass_through_head++;
2099 if (khugepaged_has_work() &&
2100 pass_through_head < 2)
2101 progress += khugepaged_scan_mm_slot(pages - progress,
2102 &hpage);
2103 else
2104 progress = pages;
2105 spin_unlock(&khugepaged_mm_lock);
2108 if (!IS_ERR_OR_NULL(hpage))
2109 put_page(hpage);
2112 static bool khugepaged_should_wakeup(void)
2114 return kthread_should_stop() ||
2115 time_after_eq(jiffies, khugepaged_sleep_expire);
2118 static void khugepaged_wait_work(void)
2120 if (khugepaged_has_work()) {
2121 const unsigned long scan_sleep_jiffies =
2122 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2124 if (!scan_sleep_jiffies)
2125 return;
2127 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2128 wait_event_freezable_timeout(khugepaged_wait,
2129 khugepaged_should_wakeup(),
2130 scan_sleep_jiffies);
2131 return;
2134 if (khugepaged_enabled())
2135 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2138 static int khugepaged(void *none)
2140 struct mm_slot *mm_slot;
2142 set_freezable();
2143 set_user_nice(current, MAX_NICE);
2145 while (!kthread_should_stop()) {
2146 khugepaged_do_scan();
2147 khugepaged_wait_work();
2150 spin_lock(&khugepaged_mm_lock);
2151 mm_slot = khugepaged_scan.mm_slot;
2152 khugepaged_scan.mm_slot = NULL;
2153 if (mm_slot)
2154 collect_mm_slot(mm_slot);
2155 spin_unlock(&khugepaged_mm_lock);
2156 return 0;
2159 static void set_recommended_min_free_kbytes(void)
2161 struct zone *zone;
2162 int nr_zones = 0;
2163 unsigned long recommended_min;
2165 for_each_populated_zone(zone) {
2167 * We don't need to worry about fragmentation of
2168 * ZONE_MOVABLE since it only has movable pages.
2170 if (zone_idx(zone) > gfp_zone(GFP_USER))
2171 continue;
2173 nr_zones++;
2176 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2177 recommended_min = pageblock_nr_pages * nr_zones * 2;
2180 * Make sure that on average at least two pageblocks are almost free
2181 * of another type, one for a migratetype to fall back to and a
2182 * second to avoid subsequent fallbacks of other types There are 3
2183 * MIGRATE_TYPES we care about.
2185 recommended_min += pageblock_nr_pages * nr_zones *
2186 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2188 /* don't ever allow to reserve more than 5% of the lowmem */
2189 recommended_min = min(recommended_min,
2190 (unsigned long) nr_free_buffer_pages() / 20);
2191 recommended_min <<= (PAGE_SHIFT-10);
2193 if (recommended_min > min_free_kbytes) {
2194 if (user_min_free_kbytes >= 0)
2195 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2196 min_free_kbytes, recommended_min);
2198 min_free_kbytes = recommended_min;
2200 setup_per_zone_wmarks();
2203 int start_stop_khugepaged(void)
2205 static struct task_struct *khugepaged_thread __read_mostly;
2206 static DEFINE_MUTEX(khugepaged_mutex);
2207 int err = 0;
2209 mutex_lock(&khugepaged_mutex);
2210 if (khugepaged_enabled()) {
2211 if (!khugepaged_thread)
2212 khugepaged_thread = kthread_run(khugepaged, NULL,
2213 "khugepaged");
2214 if (IS_ERR(khugepaged_thread)) {
2215 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2216 err = PTR_ERR(khugepaged_thread);
2217 khugepaged_thread = NULL;
2218 goto fail;
2221 if (!list_empty(&khugepaged_scan.mm_head))
2222 wake_up_interruptible(&khugepaged_wait);
2224 set_recommended_min_free_kbytes();
2225 } else if (khugepaged_thread) {
2226 kthread_stop(khugepaged_thread);
2227 khugepaged_thread = NULL;
2229 fail:
2230 mutex_unlock(&khugepaged_mutex);
2231 return err;