Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / mm / page_io.c
blob76965be1d40ea5a83800a03d3a4e0a31ddbe5905
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/page_io.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95,
8 * Asynchronous swapping added 30.12.95. Stephen Tweedie
9 * Removed race in async swapping. 14.4.1996. Bruno Haible
10 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/psi.h>
26 #include <linux/uio.h>
27 #include <linux/sched/task.h>
28 #include <asm/pgtable.h>
30 static struct bio *get_swap_bio(gfp_t gfp_flags,
31 struct page *page, bio_end_io_t end_io)
33 struct bio *bio;
35 bio = bio_alloc(gfp_flags, 1);
36 if (bio) {
37 struct block_device *bdev;
39 bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
40 bio_set_dev(bio, bdev);
41 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
42 bio->bi_end_io = end_io;
44 bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
46 return bio;
49 void end_swap_bio_write(struct bio *bio)
51 struct page *page = bio_first_page_all(bio);
53 if (bio->bi_status) {
54 SetPageError(page);
56 * We failed to write the page out to swap-space.
57 * Re-dirty the page in order to avoid it being reclaimed.
58 * Also print a dire warning that things will go BAD (tm)
59 * very quickly.
61 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
63 set_page_dirty(page);
64 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
65 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
66 (unsigned long long)bio->bi_iter.bi_sector);
67 ClearPageReclaim(page);
69 end_page_writeback(page);
70 bio_put(bio);
73 static void swap_slot_free_notify(struct page *page)
75 struct swap_info_struct *sis;
76 struct gendisk *disk;
77 swp_entry_t entry;
80 * There is no guarantee that the page is in swap cache - the software
81 * suspend code (at least) uses end_swap_bio_read() against a non-
82 * swapcache page. So we must check PG_swapcache before proceeding with
83 * this optimization.
85 if (unlikely(!PageSwapCache(page)))
86 return;
88 sis = page_swap_info(page);
89 if (!(sis->flags & SWP_BLKDEV))
90 return;
93 * The swap subsystem performs lazy swap slot freeing,
94 * expecting that the page will be swapped out again.
95 * So we can avoid an unnecessary write if the page
96 * isn't redirtied.
97 * This is good for real swap storage because we can
98 * reduce unnecessary I/O and enhance wear-leveling
99 * if an SSD is used as the as swap device.
100 * But if in-memory swap device (eg zram) is used,
101 * this causes a duplicated copy between uncompressed
102 * data in VM-owned memory and compressed data in
103 * zram-owned memory. So let's free zram-owned memory
104 * and make the VM-owned decompressed page *dirty*,
105 * so the page should be swapped out somewhere again if
106 * we again wish to reclaim it.
108 disk = sis->bdev->bd_disk;
109 entry.val = page_private(page);
110 if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
111 unsigned long offset;
113 offset = swp_offset(entry);
115 SetPageDirty(page);
116 disk->fops->swap_slot_free_notify(sis->bdev,
117 offset);
121 static void end_swap_bio_read(struct bio *bio)
123 struct page *page = bio_first_page_all(bio);
124 struct task_struct *waiter = bio->bi_private;
126 if (bio->bi_status) {
127 SetPageError(page);
128 ClearPageUptodate(page);
129 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
130 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
131 (unsigned long long)bio->bi_iter.bi_sector);
132 goto out;
135 SetPageUptodate(page);
136 swap_slot_free_notify(page);
137 out:
138 unlock_page(page);
139 WRITE_ONCE(bio->bi_private, NULL);
140 bio_put(bio);
141 if (waiter) {
142 blk_wake_io_task(waiter);
143 put_task_struct(waiter);
147 int generic_swapfile_activate(struct swap_info_struct *sis,
148 struct file *swap_file,
149 sector_t *span)
151 struct address_space *mapping = swap_file->f_mapping;
152 struct inode *inode = mapping->host;
153 unsigned blocks_per_page;
154 unsigned long page_no;
155 unsigned blkbits;
156 sector_t probe_block;
157 sector_t last_block;
158 sector_t lowest_block = -1;
159 sector_t highest_block = 0;
160 int nr_extents = 0;
161 int ret;
163 blkbits = inode->i_blkbits;
164 blocks_per_page = PAGE_SIZE >> blkbits;
167 * Map all the blocks into the extent tree. This code doesn't try
168 * to be very smart.
170 probe_block = 0;
171 page_no = 0;
172 last_block = i_size_read(inode) >> blkbits;
173 while ((probe_block + blocks_per_page) <= last_block &&
174 page_no < sis->max) {
175 unsigned block_in_page;
176 sector_t first_block;
178 cond_resched();
180 first_block = probe_block;
181 ret = bmap(inode, &first_block);
182 if (ret || !first_block)
183 goto bad_bmap;
186 * It must be PAGE_SIZE aligned on-disk
188 if (first_block & (blocks_per_page - 1)) {
189 probe_block++;
190 goto reprobe;
193 for (block_in_page = 1; block_in_page < blocks_per_page;
194 block_in_page++) {
195 sector_t block;
197 block = probe_block + block_in_page;
198 ret = bmap(inode, &block);
199 if (ret || !block)
200 goto bad_bmap;
202 if (block != first_block + block_in_page) {
203 /* Discontiguity */
204 probe_block++;
205 goto reprobe;
209 first_block >>= (PAGE_SHIFT - blkbits);
210 if (page_no) { /* exclude the header page */
211 if (first_block < lowest_block)
212 lowest_block = first_block;
213 if (first_block > highest_block)
214 highest_block = first_block;
218 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
220 ret = add_swap_extent(sis, page_no, 1, first_block);
221 if (ret < 0)
222 goto out;
223 nr_extents += ret;
224 page_no++;
225 probe_block += blocks_per_page;
226 reprobe:
227 continue;
229 ret = nr_extents;
230 *span = 1 + highest_block - lowest_block;
231 if (page_no == 0)
232 page_no = 1; /* force Empty message */
233 sis->max = page_no;
234 sis->pages = page_no - 1;
235 sis->highest_bit = page_no - 1;
236 out:
237 return ret;
238 bad_bmap:
239 pr_err("swapon: swapfile has holes\n");
240 ret = -EINVAL;
241 goto out;
245 * We may have stale swap cache pages in memory: notice
246 * them here and get rid of the unnecessary final write.
248 int swap_writepage(struct page *page, struct writeback_control *wbc)
250 int ret = 0;
252 if (try_to_free_swap(page)) {
253 unlock_page(page);
254 goto out;
256 if (frontswap_store(page) == 0) {
257 set_page_writeback(page);
258 unlock_page(page);
259 end_page_writeback(page);
260 goto out;
262 ret = __swap_writepage(page, wbc, end_swap_bio_write);
263 out:
264 return ret;
267 static sector_t swap_page_sector(struct page *page)
269 return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
272 static inline void count_swpout_vm_event(struct page *page)
274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
275 if (unlikely(PageTransHuge(page)))
276 count_vm_event(THP_SWPOUT);
277 #endif
278 count_vm_events(PSWPOUT, hpage_nr_pages(page));
281 int __swap_writepage(struct page *page, struct writeback_control *wbc,
282 bio_end_io_t end_write_func)
284 struct bio *bio;
285 int ret;
286 struct swap_info_struct *sis = page_swap_info(page);
288 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
289 if (sis->flags & SWP_FS) {
290 struct kiocb kiocb;
291 struct file *swap_file = sis->swap_file;
292 struct address_space *mapping = swap_file->f_mapping;
293 struct bio_vec bv = {
294 .bv_page = page,
295 .bv_len = PAGE_SIZE,
296 .bv_offset = 0
298 struct iov_iter from;
300 iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
301 init_sync_kiocb(&kiocb, swap_file);
302 kiocb.ki_pos = page_file_offset(page);
304 set_page_writeback(page);
305 unlock_page(page);
306 ret = mapping->a_ops->direct_IO(&kiocb, &from);
307 if (ret == PAGE_SIZE) {
308 count_vm_event(PSWPOUT);
309 ret = 0;
310 } else {
312 * In the case of swap-over-nfs, this can be a
313 * temporary failure if the system has limited
314 * memory for allocating transmit buffers.
315 * Mark the page dirty and avoid
316 * rotate_reclaimable_page but rate-limit the
317 * messages but do not flag PageError like
318 * the normal direct-to-bio case as it could
319 * be temporary.
321 set_page_dirty(page);
322 ClearPageReclaim(page);
323 pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
324 page_file_offset(page));
326 end_page_writeback(page);
327 return ret;
330 ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
331 if (!ret) {
332 count_swpout_vm_event(page);
333 return 0;
336 ret = 0;
337 bio = get_swap_bio(GFP_NOIO, page, end_write_func);
338 if (bio == NULL) {
339 set_page_dirty(page);
340 unlock_page(page);
341 ret = -ENOMEM;
342 goto out;
344 bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
345 bio_associate_blkg_from_page(bio, page);
346 count_swpout_vm_event(page);
347 set_page_writeback(page);
348 unlock_page(page);
349 submit_bio(bio);
350 out:
351 return ret;
354 int swap_readpage(struct page *page, bool synchronous)
356 struct bio *bio;
357 int ret = 0;
358 struct swap_info_struct *sis = page_swap_info(page);
359 blk_qc_t qc;
360 struct gendisk *disk;
361 unsigned long pflags;
363 VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
364 VM_BUG_ON_PAGE(!PageLocked(page), page);
365 VM_BUG_ON_PAGE(PageUptodate(page), page);
368 * Count submission time as memory stall. When the device is congested,
369 * or the submitting cgroup IO-throttled, submission can be a
370 * significant part of overall IO time.
372 psi_memstall_enter(&pflags);
374 if (frontswap_load(page) == 0) {
375 SetPageUptodate(page);
376 unlock_page(page);
377 goto out;
380 if (sis->flags & SWP_FS) {
381 struct file *swap_file = sis->swap_file;
382 struct address_space *mapping = swap_file->f_mapping;
384 ret = mapping->a_ops->readpage(swap_file, page);
385 if (!ret)
386 count_vm_event(PSWPIN);
387 goto out;
390 ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
391 if (!ret) {
392 if (trylock_page(page)) {
393 swap_slot_free_notify(page);
394 unlock_page(page);
397 count_vm_event(PSWPIN);
398 goto out;
401 ret = 0;
402 bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
403 if (bio == NULL) {
404 unlock_page(page);
405 ret = -ENOMEM;
406 goto out;
408 disk = bio->bi_disk;
410 * Keep this task valid during swap readpage because the oom killer may
411 * attempt to access it in the page fault retry time check.
413 bio_set_op_attrs(bio, REQ_OP_READ, 0);
414 if (synchronous) {
415 bio->bi_opf |= REQ_HIPRI;
416 get_task_struct(current);
417 bio->bi_private = current;
419 count_vm_event(PSWPIN);
420 bio_get(bio);
421 qc = submit_bio(bio);
422 while (synchronous) {
423 set_current_state(TASK_UNINTERRUPTIBLE);
424 if (!READ_ONCE(bio->bi_private))
425 break;
427 if (!blk_poll(disk->queue, qc, true))
428 io_schedule();
430 __set_current_state(TASK_RUNNING);
431 bio_put(bio);
433 out:
434 psi_memstall_leave(&pflags);
435 return ret;
438 int swap_set_page_dirty(struct page *page)
440 struct swap_info_struct *sis = page_swap_info(page);
442 if (sis->flags & SWP_FS) {
443 struct address_space *mapping = sis->swap_file->f_mapping;
445 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
446 return mapping->a_ops->set_page_dirty(page);
447 } else {
448 return __set_page_dirty_no_writeback(page);