1 // SPDX-License-Identifier: GPL-2.0
3 * sparse memory mappings.
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
23 * Permanent SPARSEMEM data:
25 * 1) mem_section - memory sections, mem_map's for valid memory
27 #ifdef CONFIG_SPARSEMEM_EXTREME
28 struct mem_section
**mem_section
;
30 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
31 ____cacheline_internodealigned_in_smp
;
33 EXPORT_SYMBOL(mem_section
);
35 #ifdef NODE_NOT_IN_PAGE_FLAGS
37 * If we did not store the node number in the page then we have to
38 * do a lookup in the section_to_node_table in order to find which
39 * node the page belongs to.
41 #if MAX_NUMNODES <= 256
42 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
44 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
47 int page_to_nid(const struct page
*page
)
49 return section_to_node_table
[page_to_section(page
)];
51 EXPORT_SYMBOL(page_to_nid
);
53 static void set_section_nid(unsigned long section_nr
, int nid
)
55 section_to_node_table
[section_nr
] = nid
;
57 #else /* !NODE_NOT_IN_PAGE_FLAGS */
58 static inline void set_section_nid(unsigned long section_nr
, int nid
)
63 #ifdef CONFIG_SPARSEMEM_EXTREME
64 static noinline
struct mem_section __ref
*sparse_index_alloc(int nid
)
66 struct mem_section
*section
= NULL
;
67 unsigned long array_size
= SECTIONS_PER_ROOT
*
68 sizeof(struct mem_section
);
70 if (slab_is_available()) {
71 section
= kzalloc_node(array_size
, GFP_KERNEL
, nid
);
73 section
= memblock_alloc_node(array_size
, SMP_CACHE_BYTES
,
76 panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 __func__
, array_size
, nid
);
83 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
85 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
86 struct mem_section
*section
;
89 * An existing section is possible in the sub-section hotplug
90 * case. First hot-add instantiates, follow-on hot-add reuses
91 * the existing section.
93 * The mem_hotplug_lock resolves the apparent race below.
95 if (mem_section
[root
])
98 section
= sparse_index_alloc(nid
);
102 mem_section
[root
] = section
;
106 #else /* !SPARSEMEM_EXTREME */
107 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
113 #ifdef CONFIG_SPARSEMEM_EXTREME
114 unsigned long __section_nr(struct mem_section
*ms
)
116 unsigned long root_nr
;
117 struct mem_section
*root
= NULL
;
119 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
120 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
124 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
130 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
133 unsigned long __section_nr(struct mem_section
*ms
)
135 return (unsigned long)(ms
- mem_section
[0]);
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node. This keeps us from having to use another data structure. The
143 * node information is cleared just before we store the real mem_map.
145 static inline unsigned long sparse_encode_early_nid(int nid
)
147 return (nid
<< SECTION_NID_SHIFT
);
150 static inline int sparse_early_nid(struct mem_section
*section
)
152 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
155 /* Validate the physical addressing limitations of the model */
156 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
157 unsigned long *end_pfn
)
159 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
162 * Sanity checks - do not allow an architecture to pass
163 * in larger pfns than the maximum scope of sparsemem:
165 if (*start_pfn
> max_sparsemem_pfn
) {
166 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
167 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
170 *start_pfn
= max_sparsemem_pfn
;
171 *end_pfn
= max_sparsemem_pfn
;
172 } else if (*end_pfn
> max_sparsemem_pfn
) {
173 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
174 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
177 *end_pfn
= max_sparsemem_pfn
;
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each. But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
187 * Keeping track of this gives us an easy way to break out of
190 unsigned long __highest_present_section_nr
;
191 static void section_mark_present(struct mem_section
*ms
)
193 unsigned long section_nr
= __section_nr(ms
);
195 if (section_nr
> __highest_present_section_nr
)
196 __highest_present_section_nr
= section_nr
;
198 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
201 #define for_each_present_section_nr(start, section_nr) \
202 for (section_nr = next_present_section_nr(start-1); \
203 ((section_nr != -1) && \
204 (section_nr <= __highest_present_section_nr)); \
205 section_nr = next_present_section_nr(section_nr))
207 static inline unsigned long first_present_section_nr(void)
209 return next_present_section_nr(-1);
212 #ifdef CONFIG_SPARSEMEM_VMEMMAP
213 static void subsection_mask_set(unsigned long *map
, unsigned long pfn
,
214 unsigned long nr_pages
)
216 int idx
= subsection_map_index(pfn
);
217 int end
= subsection_map_index(pfn
+ nr_pages
- 1);
219 bitmap_set(map
, idx
, end
- idx
+ 1);
222 void __init
subsection_map_init(unsigned long pfn
, unsigned long nr_pages
)
224 int end_sec
= pfn_to_section_nr(pfn
+ nr_pages
- 1);
225 unsigned long nr
, start_sec
= pfn_to_section_nr(pfn
);
230 for (nr
= start_sec
; nr
<= end_sec
; nr
++) {
231 struct mem_section
*ms
;
234 pfns
= min(nr_pages
, PAGES_PER_SECTION
235 - (pfn
& ~PAGE_SECTION_MASK
));
236 ms
= __nr_to_section(nr
);
237 subsection_mask_set(ms
->usage
->subsection_map
, pfn
, pfns
);
239 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__
, nr
,
240 pfns
, subsection_map_index(pfn
),
241 subsection_map_index(pfn
+ pfns
- 1));
248 void __init
subsection_map_init(unsigned long pfn
, unsigned long nr_pages
)
253 /* Record a memory area against a node. */
254 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
258 #ifdef CONFIG_SPARSEMEM_EXTREME
259 if (unlikely(!mem_section
)) {
260 unsigned long size
, align
;
262 size
= sizeof(struct mem_section
*) * NR_SECTION_ROOTS
;
263 align
= 1 << (INTERNODE_CACHE_SHIFT
);
264 mem_section
= memblock_alloc(size
, align
);
266 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
267 __func__
, size
, align
);
271 start
&= PAGE_SECTION_MASK
;
272 mminit_validate_memmodel_limits(&start
, &end
);
273 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
274 unsigned long section
= pfn_to_section_nr(pfn
);
275 struct mem_section
*ms
;
277 sparse_index_init(section
, nid
);
278 set_section_nid(section
, nid
);
280 ms
= __nr_to_section(section
);
281 if (!ms
->section_mem_map
) {
282 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
284 section_mark_present(ms
);
290 * Mark all memblocks as present using memory_present(). This is a
291 * convienence function that is useful for a number of arches
292 * to mark all of the systems memory as present during initialization.
294 void __init
memblocks_present(void)
296 struct memblock_region
*reg
;
298 for_each_memblock(memory
, reg
) {
299 memory_present(memblock_get_region_node(reg
),
300 memblock_region_memory_base_pfn(reg
),
301 memblock_region_memory_end_pfn(reg
));
306 * Subtle, we encode the real pfn into the mem_map such that
307 * the identity pfn - section_mem_map will return the actual
308 * physical page frame number.
310 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
312 unsigned long coded_mem_map
=
313 (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
314 BUILD_BUG_ON(SECTION_MAP_LAST_BIT
> (1UL<<PFN_SECTION_SHIFT
));
315 BUG_ON(coded_mem_map
& ~SECTION_MAP_MASK
);
316 return coded_mem_map
;
320 * Decode mem_map from the coded memmap
322 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
324 /* mask off the extra low bits of information */
325 coded_mem_map
&= SECTION_MAP_MASK
;
326 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
329 static void __meminit
sparse_init_one_section(struct mem_section
*ms
,
330 unsigned long pnum
, struct page
*mem_map
,
331 struct mem_section_usage
*usage
, unsigned long flags
)
333 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
334 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
)
335 | SECTION_HAS_MEM_MAP
| flags
;
339 static unsigned long usemap_size(void)
341 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS
) * sizeof(unsigned long);
344 size_t mem_section_usage_size(void)
346 return sizeof(struct mem_section_usage
) + usemap_size();
349 #ifdef CONFIG_MEMORY_HOTREMOVE
350 static struct mem_section_usage
* __init
351 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
354 struct mem_section_usage
*usage
;
355 unsigned long goal
, limit
;
358 * A page may contain usemaps for other sections preventing the
359 * page being freed and making a section unremovable while
360 * other sections referencing the usemap remain active. Similarly,
361 * a pgdat can prevent a section being removed. If section A
362 * contains a pgdat and section B contains the usemap, both
363 * sections become inter-dependent. This allocates usemaps
364 * from the same section as the pgdat where possible to avoid
367 goal
= __pa(pgdat
) & (PAGE_SECTION_MASK
<< PAGE_SHIFT
);
368 limit
= goal
+ (1UL << PA_SECTION_SHIFT
);
369 nid
= early_pfn_to_nid(goal
>> PAGE_SHIFT
);
371 usage
= memblock_alloc_try_nid(size
, SMP_CACHE_BYTES
, goal
, limit
, nid
);
372 if (!usage
&& limit
) {
379 static void __init
check_usemap_section_nr(int nid
,
380 struct mem_section_usage
*usage
)
382 unsigned long usemap_snr
, pgdat_snr
;
383 static unsigned long old_usemap_snr
;
384 static unsigned long old_pgdat_snr
;
385 struct pglist_data
*pgdat
= NODE_DATA(nid
);
389 if (!old_usemap_snr
) {
390 old_usemap_snr
= NR_MEM_SECTIONS
;
391 old_pgdat_snr
= NR_MEM_SECTIONS
;
394 usemap_snr
= pfn_to_section_nr(__pa(usage
) >> PAGE_SHIFT
);
395 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
396 if (usemap_snr
== pgdat_snr
)
399 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
400 /* skip redundant message */
403 old_usemap_snr
= usemap_snr
;
404 old_pgdat_snr
= pgdat_snr
;
406 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
407 if (usemap_nid
!= nid
) {
408 pr_info("node %d must be removed before remove section %ld\n",
413 * There is a circular dependency.
414 * Some platforms allow un-removable section because they will just
415 * gather other removable sections for dynamic partitioning.
416 * Just notify un-removable section's number here.
418 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
419 usemap_snr
, pgdat_snr
, nid
);
422 static struct mem_section_usage
* __init
423 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
426 return memblock_alloc_node(size
, SMP_CACHE_BYTES
, pgdat
->node_id
);
429 static void __init
check_usemap_section_nr(int nid
,
430 struct mem_section_usage
*usage
)
433 #endif /* CONFIG_MEMORY_HOTREMOVE */
435 #ifdef CONFIG_SPARSEMEM_VMEMMAP
436 static unsigned long __init
section_map_size(void)
438 return ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
, PMD_SIZE
);
442 static unsigned long __init
section_map_size(void)
444 return PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
);
447 struct page __init
*__populate_section_memmap(unsigned long pfn
,
448 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
450 unsigned long size
= section_map_size();
451 struct page
*map
= sparse_buffer_alloc(size
);
452 phys_addr_t addr
= __pa(MAX_DMA_ADDRESS
);
457 map
= memblock_alloc_try_nid_raw(size
, size
, addr
,
458 MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
460 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
461 __func__
, size
, PAGE_SIZE
, nid
, &addr
);
465 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
467 static void *sparsemap_buf __meminitdata
;
468 static void *sparsemap_buf_end __meminitdata
;
470 static inline void __meminit
sparse_buffer_free(unsigned long size
)
472 WARN_ON(!sparsemap_buf
|| size
== 0);
473 memblock_free_early(__pa(sparsemap_buf
), size
);
476 static void __init
sparse_buffer_init(unsigned long size
, int nid
)
478 phys_addr_t addr
= __pa(MAX_DMA_ADDRESS
);
479 WARN_ON(sparsemap_buf
); /* forgot to call sparse_buffer_fini()? */
481 * Pre-allocated buffer is mainly used by __populate_section_memmap
482 * and we want it to be properly aligned to the section size - this is
483 * especially the case for VMEMMAP which maps memmap to PMDs
485 sparsemap_buf
= memblock_alloc_exact_nid_raw(size
, section_map_size(),
486 addr
, MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
487 sparsemap_buf_end
= sparsemap_buf
+ size
;
490 static void __init
sparse_buffer_fini(void)
492 unsigned long size
= sparsemap_buf_end
- sparsemap_buf
;
494 if (sparsemap_buf
&& size
> 0)
495 sparse_buffer_free(size
);
496 sparsemap_buf
= NULL
;
499 void * __meminit
sparse_buffer_alloc(unsigned long size
)
504 ptr
= (void *) roundup((unsigned long)sparsemap_buf
, size
);
505 if (ptr
+ size
> sparsemap_buf_end
)
508 /* Free redundant aligned space */
509 if ((unsigned long)(ptr
- sparsemap_buf
) > 0)
510 sparse_buffer_free((unsigned long)(ptr
- sparsemap_buf
));
511 sparsemap_buf
= ptr
+ size
;
517 void __weak __meminit
vmemmap_populate_print_last(void)
522 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
523 * And number of present sections in this node is map_count.
525 static void __init
sparse_init_nid(int nid
, unsigned long pnum_begin
,
526 unsigned long pnum_end
,
527 unsigned long map_count
)
529 struct mem_section_usage
*usage
;
533 usage
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid
),
534 mem_section_usage_size() * map_count
);
536 pr_err("%s: node[%d] usemap allocation failed", __func__
, nid
);
539 sparse_buffer_init(map_count
* section_map_size(), nid
);
540 for_each_present_section_nr(pnum_begin
, pnum
) {
541 unsigned long pfn
= section_nr_to_pfn(pnum
);
543 if (pnum
>= pnum_end
)
546 map
= __populate_section_memmap(pfn
, PAGES_PER_SECTION
,
549 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
554 check_usemap_section_nr(nid
, usage
);
555 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
, usage
,
557 usage
= (void *) usage
+ mem_section_usage_size();
559 sparse_buffer_fini();
562 /* We failed to allocate, mark all the following pnums as not present */
563 for_each_present_section_nr(pnum_begin
, pnum
) {
564 struct mem_section
*ms
;
566 if (pnum
>= pnum_end
)
568 ms
= __nr_to_section(pnum
);
569 ms
->section_mem_map
= 0;
574 * Allocate the accumulated non-linear sections, allocate a mem_map
575 * for each and record the physical to section mapping.
577 void __init
sparse_init(void)
579 unsigned long pnum_begin
= first_present_section_nr();
580 int nid_begin
= sparse_early_nid(__nr_to_section(pnum_begin
));
581 unsigned long pnum_end
, map_count
= 1;
583 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
584 set_pageblock_order();
586 for_each_present_section_nr(pnum_begin
+ 1, pnum_end
) {
587 int nid
= sparse_early_nid(__nr_to_section(pnum_end
));
589 if (nid
== nid_begin
) {
593 /* Init node with sections in range [pnum_begin, pnum_end) */
594 sparse_init_nid(nid_begin
, pnum_begin
, pnum_end
, map_count
);
596 pnum_begin
= pnum_end
;
599 /* cover the last node */
600 sparse_init_nid(nid_begin
, pnum_begin
, pnum_end
, map_count
);
601 vmemmap_populate_print_last();
604 #ifdef CONFIG_MEMORY_HOTPLUG
606 /* Mark all memory sections within the pfn range as online */
607 void online_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
611 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
612 unsigned long section_nr
= pfn_to_section_nr(pfn
);
613 struct mem_section
*ms
;
615 /* onlining code should never touch invalid ranges */
616 if (WARN_ON(!valid_section_nr(section_nr
)))
619 ms
= __nr_to_section(section_nr
);
620 ms
->section_mem_map
|= SECTION_IS_ONLINE
;
624 #ifdef CONFIG_MEMORY_HOTREMOVE
625 /* Mark all memory sections within the pfn range as offline */
626 void offline_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
630 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
631 unsigned long section_nr
= pfn_to_section_nr(pfn
);
632 struct mem_section
*ms
;
635 * TODO this needs some double checking. Offlining code makes
636 * sure to check pfn_valid but those checks might be just bogus
638 if (WARN_ON(!valid_section_nr(section_nr
)))
641 ms
= __nr_to_section(section_nr
);
642 ms
->section_mem_map
&= ~SECTION_IS_ONLINE
;
647 #ifdef CONFIG_SPARSEMEM_VMEMMAP
648 static struct page
* __meminit
populate_section_memmap(unsigned long pfn
,
649 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
651 return __populate_section_memmap(pfn
, nr_pages
, nid
, altmap
);
654 static void depopulate_section_memmap(unsigned long pfn
, unsigned long nr_pages
,
655 struct vmem_altmap
*altmap
)
657 unsigned long start
= (unsigned long) pfn_to_page(pfn
);
658 unsigned long end
= start
+ nr_pages
* sizeof(struct page
);
660 vmemmap_free(start
, end
, altmap
);
662 static void free_map_bootmem(struct page
*memmap
)
664 unsigned long start
= (unsigned long)memmap
;
665 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
667 vmemmap_free(start
, end
, NULL
);
670 static int clear_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
672 DECLARE_BITMAP(map
, SUBSECTIONS_PER_SECTION
) = { 0 };
673 DECLARE_BITMAP(tmp
, SUBSECTIONS_PER_SECTION
) = { 0 };
674 struct mem_section
*ms
= __pfn_to_section(pfn
);
675 unsigned long *subsection_map
= ms
->usage
676 ? &ms
->usage
->subsection_map
[0] : NULL
;
678 subsection_mask_set(map
, pfn
, nr_pages
);
680 bitmap_and(tmp
, map
, subsection_map
, SUBSECTIONS_PER_SECTION
);
682 if (WARN(!subsection_map
|| !bitmap_equal(tmp
, map
, SUBSECTIONS_PER_SECTION
),
683 "section already deactivated (%#lx + %ld)\n",
687 bitmap_xor(subsection_map
, map
, subsection_map
, SUBSECTIONS_PER_SECTION
);
691 static bool is_subsection_map_empty(struct mem_section
*ms
)
693 return bitmap_empty(&ms
->usage
->subsection_map
[0],
694 SUBSECTIONS_PER_SECTION
);
697 static int fill_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
699 struct mem_section
*ms
= __pfn_to_section(pfn
);
700 DECLARE_BITMAP(map
, SUBSECTIONS_PER_SECTION
) = { 0 };
701 unsigned long *subsection_map
;
704 subsection_mask_set(map
, pfn
, nr_pages
);
706 subsection_map
= &ms
->usage
->subsection_map
[0];
708 if (bitmap_empty(map
, SUBSECTIONS_PER_SECTION
))
710 else if (bitmap_intersects(map
, subsection_map
, SUBSECTIONS_PER_SECTION
))
713 bitmap_or(subsection_map
, map
, subsection_map
,
714 SUBSECTIONS_PER_SECTION
);
719 struct page
* __meminit
populate_section_memmap(unsigned long pfn
,
720 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
722 return kvmalloc_node(array_size(sizeof(struct page
),
723 PAGES_PER_SECTION
), GFP_KERNEL
, nid
);
726 static void depopulate_section_memmap(unsigned long pfn
, unsigned long nr_pages
,
727 struct vmem_altmap
*altmap
)
729 kvfree(pfn_to_page(pfn
));
732 static void free_map_bootmem(struct page
*memmap
)
734 unsigned long maps_section_nr
, removing_section_nr
, i
;
735 unsigned long magic
, nr_pages
;
736 struct page
*page
= virt_to_page(memmap
);
738 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
741 for (i
= 0; i
< nr_pages
; i
++, page
++) {
742 magic
= (unsigned long) page
->freelist
;
744 BUG_ON(magic
== NODE_INFO
);
746 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
747 removing_section_nr
= page_private(page
);
750 * When this function is called, the removing section is
751 * logical offlined state. This means all pages are isolated
752 * from page allocator. If removing section's memmap is placed
753 * on the same section, it must not be freed.
754 * If it is freed, page allocator may allocate it which will
755 * be removed physically soon.
757 if (maps_section_nr
!= removing_section_nr
)
758 put_page_bootmem(page
);
762 static int clear_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
767 static bool is_subsection_map_empty(struct mem_section
*ms
)
772 static int fill_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
776 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
779 * To deactivate a memory region, there are 3 cases to handle across
780 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
782 * 1. deactivation of a partial hot-added section (only possible in
783 * the SPARSEMEM_VMEMMAP=y case).
784 * a) section was present at memory init.
785 * b) section was hot-added post memory init.
786 * 2. deactivation of a complete hot-added section.
787 * 3. deactivation of a complete section from memory init.
789 * For 1, when subsection_map does not empty we will not be freeing the
790 * usage map, but still need to free the vmemmap range.
792 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
794 static void section_deactivate(unsigned long pfn
, unsigned long nr_pages
,
795 struct vmem_altmap
*altmap
)
797 struct mem_section
*ms
= __pfn_to_section(pfn
);
798 bool section_is_early
= early_section(ms
);
799 struct page
*memmap
= NULL
;
802 if (clear_subsection_map(pfn
, nr_pages
))
805 empty
= is_subsection_map_empty(ms
);
807 unsigned long section_nr
= pfn_to_section_nr(pfn
);
810 * When removing an early section, the usage map is kept (as the
811 * usage maps of other sections fall into the same page). It
812 * will be re-used when re-adding the section - which is then no
813 * longer an early section. If the usage map is PageReserved, it
814 * was allocated during boot.
816 if (!PageReserved(virt_to_page(ms
->usage
))) {
820 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
822 * Mark the section invalid so that valid_section()
823 * return false. This prevents code from dereferencing
826 ms
->section_mem_map
&= ~SECTION_HAS_MEM_MAP
;
829 if (section_is_early
&& memmap
)
830 free_map_bootmem(memmap
);
832 depopulate_section_memmap(pfn
, nr_pages
, altmap
);
835 ms
->section_mem_map
= (unsigned long)NULL
;
838 static struct page
* __meminit
section_activate(int nid
, unsigned long pfn
,
839 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
841 struct mem_section
*ms
= __pfn_to_section(pfn
);
842 struct mem_section_usage
*usage
= NULL
;
847 usage
= kzalloc(mem_section_usage_size(), GFP_KERNEL
);
849 return ERR_PTR(-ENOMEM
);
853 rc
= fill_subsection_map(pfn
, nr_pages
);
862 * The early init code does not consider partially populated
863 * initial sections, it simply assumes that memory will never be
864 * referenced. If we hot-add memory into such a section then we
865 * do not need to populate the memmap and can simply reuse what
868 if (nr_pages
< PAGES_PER_SECTION
&& early_section(ms
))
869 return pfn_to_page(pfn
);
871 memmap
= populate_section_memmap(pfn
, nr_pages
, nid
, altmap
);
873 section_deactivate(pfn
, nr_pages
, altmap
);
874 return ERR_PTR(-ENOMEM
);
881 * sparse_add_section - add a memory section, or populate an existing one
882 * @nid: The node to add section on
883 * @start_pfn: start pfn of the memory range
884 * @nr_pages: number of pfns to add in the section
885 * @altmap: device page map
887 * This is only intended for hotplug.
889 * Note that only VMEMMAP supports sub-section aligned hotplug,
890 * the proper alignment and size are gated by check_pfn_span().
895 * * -EEXIST - Section has been present.
896 * * -ENOMEM - Out of memory.
898 int __meminit
sparse_add_section(int nid
, unsigned long start_pfn
,
899 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
901 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
902 struct mem_section
*ms
;
906 ret
= sparse_index_init(section_nr
, nid
);
910 memmap
= section_activate(nid
, start_pfn
, nr_pages
, altmap
);
912 return PTR_ERR(memmap
);
915 * Poison uninitialized struct pages in order to catch invalid flags
918 page_init_poison(memmap
, sizeof(struct page
) * nr_pages
);
920 ms
= __nr_to_section(section_nr
);
921 set_section_nid(section_nr
, nid
);
922 section_mark_present(ms
);
924 /* Align memmap to section boundary in the subsection case */
925 if (section_nr_to_pfn(section_nr
) != start_pfn
)
926 memmap
= pfn_to_page(section_nr_to_pfn(section_nr
));
927 sparse_init_one_section(ms
, section_nr
, memmap
, ms
->usage
, 0);
932 #ifdef CONFIG_MEMORY_FAILURE
933 static void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
938 * A further optimization is to have per section refcounted
939 * num_poisoned_pages. But that would need more space per memmap, so
940 * for now just do a quick global check to speed up this routine in the
941 * absence of bad pages.
943 if (atomic_long_read(&num_poisoned_pages
) == 0)
946 for (i
= 0; i
< nr_pages
; i
++) {
947 if (PageHWPoison(&memmap
[i
])) {
948 num_poisoned_pages_dec();
949 ClearPageHWPoison(&memmap
[i
]);
954 static inline void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
959 void sparse_remove_section(struct mem_section
*ms
, unsigned long pfn
,
960 unsigned long nr_pages
, unsigned long map_offset
,
961 struct vmem_altmap
*altmap
)
963 clear_hwpoisoned_pages(pfn_to_page(pfn
) + map_offset
,
964 nr_pages
- map_offset
);
965 section_deactivate(pfn
, nr_pages
, altmap
);
967 #endif /* CONFIG_MEMORY_HOTPLUG */