1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
24 #define CREATE_TRACE_POINTS
27 #include <linux/uaccess.h>
28 #include <asm/ptrace.h>
30 #include <asm/tlbflush.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpufeature.h>
34 #include <asm/kvm_arm.h>
35 #include <asm/kvm_asm.h>
36 #include <asm/kvm_mmu.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/sections.h>
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
46 __asm__(".arch_extension virt");
49 DEFINE_PER_CPU(kvm_host_data_t
, kvm_host_data
);
50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page
);
52 /* The VMID used in the VTTBR */
53 static atomic64_t kvm_vmid_gen
= ATOMIC64_INIT(1);
54 static u32 kvm_next_vmid
;
55 static DEFINE_SPINLOCK(kvm_vmid_lock
);
57 static bool vgic_present
;
59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled
);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use
);
62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
64 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
67 int kvm_arch_hardware_setup(void *opaque
)
72 int kvm_arch_check_processor_compat(void *opaque
)
77 int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
78 struct kvm_enable_cap
*cap
)
86 case KVM_CAP_ARM_NISV_TO_USER
:
88 kvm
->arch
.return_nisv_io_abort_to_user
= true;
99 * kvm_arch_init_vm - initializes a VM data structure
100 * @kvm: pointer to the KVM struct
102 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
106 ret
= kvm_arm_setup_stage2(kvm
, type
);
110 kvm
->arch
.last_vcpu_ran
= alloc_percpu(typeof(*kvm
->arch
.last_vcpu_ran
));
111 if (!kvm
->arch
.last_vcpu_ran
)
114 for_each_possible_cpu(cpu
)
115 *per_cpu_ptr(kvm
->arch
.last_vcpu_ran
, cpu
) = -1;
117 ret
= kvm_alloc_stage2_pgd(kvm
);
121 ret
= create_hyp_mappings(kvm
, kvm
+ 1, PAGE_HYP
);
123 goto out_free_stage2_pgd
;
125 kvm_vgic_early_init(kvm
);
127 /* Mark the initial VMID generation invalid */
128 kvm
->arch
.vmid
.vmid_gen
= 0;
130 /* The maximum number of VCPUs is limited by the host's GIC model */
131 kvm
->arch
.max_vcpus
= vgic_present
?
132 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS
;
136 kvm_free_stage2_pgd(kvm
);
138 free_percpu(kvm
->arch
.last_vcpu_ran
);
139 kvm
->arch
.last_vcpu_ran
= NULL
;
143 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
148 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
150 return VM_FAULT_SIGBUS
;
155 * kvm_arch_destroy_vm - destroy the VM data structure
156 * @kvm: pointer to the KVM struct
158 void kvm_arch_destroy_vm(struct kvm
*kvm
)
162 kvm_vgic_destroy(kvm
);
164 free_percpu(kvm
->arch
.last_vcpu_ran
);
165 kvm
->arch
.last_vcpu_ran
= NULL
;
167 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
169 kvm_vcpu_destroy(kvm
->vcpus
[i
]);
170 kvm
->vcpus
[i
] = NULL
;
173 atomic_set(&kvm
->online_vcpus
, 0);
176 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
180 case KVM_CAP_IRQCHIP
:
183 case KVM_CAP_IOEVENTFD
:
184 case KVM_CAP_DEVICE_CTRL
:
185 case KVM_CAP_USER_MEMORY
:
186 case KVM_CAP_SYNC_MMU
:
187 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
188 case KVM_CAP_ONE_REG
:
189 case KVM_CAP_ARM_PSCI
:
190 case KVM_CAP_ARM_PSCI_0_2
:
191 case KVM_CAP_READONLY_MEM
:
192 case KVM_CAP_MP_STATE
:
193 case KVM_CAP_IMMEDIATE_EXIT
:
194 case KVM_CAP_VCPU_EVENTS
:
195 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2
:
196 case KVM_CAP_ARM_NISV_TO_USER
:
197 case KVM_CAP_ARM_INJECT_EXT_DABT
:
200 case KVM_CAP_ARM_SET_DEVICE_ADDR
:
203 case KVM_CAP_NR_VCPUS
:
204 r
= num_online_cpus();
206 case KVM_CAP_MAX_VCPUS
:
209 case KVM_CAP_MAX_VCPU_ID
:
212 case KVM_CAP_MSI_DEVID
:
216 r
= kvm
->arch
.vgic
.msis_require_devid
;
218 case KVM_CAP_ARM_USER_IRQ
:
220 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
221 * (bump this number if adding more devices)
226 r
= kvm_arch_vm_ioctl_check_extension(kvm
, ext
);
232 long kvm_arch_dev_ioctl(struct file
*filp
,
233 unsigned int ioctl
, unsigned long arg
)
238 struct kvm
*kvm_arch_alloc_vm(void)
241 return kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
243 return vzalloc(sizeof(struct kvm
));
246 void kvm_arch_free_vm(struct kvm
*kvm
)
254 int kvm_arch_vcpu_precreate(struct kvm
*kvm
, unsigned int id
)
256 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
))
259 if (id
>= kvm
->arch
.max_vcpus
)
265 int kvm_arch_vcpu_create(struct kvm_vcpu
*vcpu
)
269 /* Force users to call KVM_ARM_VCPU_INIT */
270 vcpu
->arch
.target
= -1;
271 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
273 /* Set up the timer */
274 kvm_timer_vcpu_init(vcpu
);
276 kvm_pmu_vcpu_init(vcpu
);
278 kvm_arm_reset_debug_ptr(vcpu
);
280 kvm_arm_pvtime_vcpu_init(&vcpu
->arch
);
282 err
= kvm_vgic_vcpu_init(vcpu
);
286 return create_hyp_mappings(vcpu
, vcpu
+ 1, PAGE_HYP
);
289 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
293 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
295 if (vcpu
->arch
.has_run_once
&& unlikely(!irqchip_in_kernel(vcpu
->kvm
)))
296 static_branch_dec(&userspace_irqchip_in_use
);
298 kvm_mmu_free_memory_caches(vcpu
);
299 kvm_timer_vcpu_terminate(vcpu
);
300 kvm_pmu_vcpu_destroy(vcpu
);
302 kvm_arm_vcpu_destroy(vcpu
);
305 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
307 return kvm_timer_is_pending(vcpu
);
310 void kvm_arch_vcpu_blocking(struct kvm_vcpu
*vcpu
)
313 * If we're about to block (most likely because we've just hit a
314 * WFI), we need to sync back the state of the GIC CPU interface
315 * so that we have the latest PMR and group enables. This ensures
316 * that kvm_arch_vcpu_runnable has up-to-date data to decide
317 * whether we have pending interrupts.
319 * For the same reason, we want to tell GICv4 that we need
320 * doorbells to be signalled, should an interrupt become pending.
323 kvm_vgic_vmcr_sync(vcpu
);
324 vgic_v4_put(vcpu
, true);
328 void kvm_arch_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
335 #define __ptrauth_save_key(regs, key) \
337 regs[key ## KEYLO_EL1] = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
338 regs[key ## KEYHI_EL1] = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
341 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
344 kvm_host_data_t
*cpu_data
;
346 last_ran
= this_cpu_ptr(vcpu
->kvm
->arch
.last_vcpu_ran
);
347 cpu_data
= this_cpu_ptr(&kvm_host_data
);
350 * We might get preempted before the vCPU actually runs, but
351 * over-invalidation doesn't affect correctness.
353 if (*last_ran
!= vcpu
->vcpu_id
) {
354 kvm_call_hyp(__kvm_tlb_flush_local_vmid
, vcpu
);
355 *last_ran
= vcpu
->vcpu_id
;
359 vcpu
->arch
.host_cpu_context
= &cpu_data
->host_ctxt
;
362 kvm_timer_vcpu_load(vcpu
);
363 kvm_vcpu_load_sysregs(vcpu
);
364 kvm_arch_vcpu_load_fp(vcpu
);
365 kvm_vcpu_pmu_restore_guest(vcpu
);
366 if (kvm_arm_is_pvtime_enabled(&vcpu
->arch
))
367 kvm_make_request(KVM_REQ_RECORD_STEAL
, vcpu
);
369 if (single_task_running())
370 vcpu_clear_wfx_traps(vcpu
);
372 vcpu_set_wfx_traps(vcpu
);
374 if (vcpu_has_ptrauth(vcpu
)) {
375 struct kvm_cpu_context
*ctxt
= vcpu
->arch
.host_cpu_context
;
377 __ptrauth_save_key(ctxt
->sys_regs
, APIA
);
378 __ptrauth_save_key(ctxt
->sys_regs
, APIB
);
379 __ptrauth_save_key(ctxt
->sys_regs
, APDA
);
380 __ptrauth_save_key(ctxt
->sys_regs
, APDB
);
381 __ptrauth_save_key(ctxt
->sys_regs
, APGA
);
383 vcpu_ptrauth_disable(vcpu
);
387 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
389 kvm_arch_vcpu_put_fp(vcpu
);
390 kvm_vcpu_put_sysregs(vcpu
);
391 kvm_timer_vcpu_put(vcpu
);
393 kvm_vcpu_pmu_restore_host(vcpu
);
398 static void vcpu_power_off(struct kvm_vcpu
*vcpu
)
400 vcpu
->arch
.power_off
= true;
401 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
405 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
406 struct kvm_mp_state
*mp_state
)
408 if (vcpu
->arch
.power_off
)
409 mp_state
->mp_state
= KVM_MP_STATE_STOPPED
;
411 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
416 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
417 struct kvm_mp_state
*mp_state
)
421 switch (mp_state
->mp_state
) {
422 case KVM_MP_STATE_RUNNABLE
:
423 vcpu
->arch
.power_off
= false;
425 case KVM_MP_STATE_STOPPED
:
426 vcpu_power_off(vcpu
);
436 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
437 * @v: The VCPU pointer
439 * If the guest CPU is not waiting for interrupts or an interrupt line is
440 * asserted, the CPU is by definition runnable.
442 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*v
)
444 bool irq_lines
= *vcpu_hcr(v
) & (HCR_VI
| HCR_VF
);
445 return ((irq_lines
|| kvm_vgic_vcpu_pending_irq(v
))
446 && !v
->arch
.power_off
&& !v
->arch
.pause
);
449 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
451 return vcpu_mode_priv(vcpu
);
454 /* Just ensure a guest exit from a particular CPU */
455 static void exit_vm_noop(void *info
)
459 void force_vm_exit(const cpumask_t
*mask
)
462 smp_call_function_many(mask
, exit_vm_noop
, NULL
, true);
467 * need_new_vmid_gen - check that the VMID is still valid
468 * @vmid: The VMID to check
470 * return true if there is a new generation of VMIDs being used
472 * The hardware supports a limited set of values with the value zero reserved
473 * for the host, so we check if an assigned value belongs to a previous
474 * generation, which which requires us to assign a new value. If we're the
475 * first to use a VMID for the new generation, we must flush necessary caches
476 * and TLBs on all CPUs.
478 static bool need_new_vmid_gen(struct kvm_vmid
*vmid
)
480 u64 current_vmid_gen
= atomic64_read(&kvm_vmid_gen
);
481 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
482 return unlikely(READ_ONCE(vmid
->vmid_gen
) != current_vmid_gen
);
486 * update_vmid - Update the vmid with a valid VMID for the current generation
487 * @kvm: The guest that struct vmid belongs to
488 * @vmid: The stage-2 VMID information struct
490 static void update_vmid(struct kvm_vmid
*vmid
)
492 if (!need_new_vmid_gen(vmid
))
495 spin_lock(&kvm_vmid_lock
);
498 * We need to re-check the vmid_gen here to ensure that if another vcpu
499 * already allocated a valid vmid for this vm, then this vcpu should
502 if (!need_new_vmid_gen(vmid
)) {
503 spin_unlock(&kvm_vmid_lock
);
507 /* First user of a new VMID generation? */
508 if (unlikely(kvm_next_vmid
== 0)) {
509 atomic64_inc(&kvm_vmid_gen
);
513 * On SMP we know no other CPUs can use this CPU's or each
514 * other's VMID after force_vm_exit returns since the
515 * kvm_vmid_lock blocks them from reentry to the guest.
517 force_vm_exit(cpu_all_mask
);
519 * Now broadcast TLB + ICACHE invalidation over the inner
520 * shareable domain to make sure all data structures are
523 kvm_call_hyp(__kvm_flush_vm_context
);
526 vmid
->vmid
= kvm_next_vmid
;
528 kvm_next_vmid
&= (1 << kvm_get_vmid_bits()) - 1;
531 WRITE_ONCE(vmid
->vmid_gen
, atomic64_read(&kvm_vmid_gen
));
533 spin_unlock(&kvm_vmid_lock
);
536 static int kvm_vcpu_first_run_init(struct kvm_vcpu
*vcpu
)
538 struct kvm
*kvm
= vcpu
->kvm
;
541 if (likely(vcpu
->arch
.has_run_once
))
544 if (!kvm_arm_vcpu_is_finalized(vcpu
))
547 vcpu
->arch
.has_run_once
= true;
549 if (likely(irqchip_in_kernel(kvm
))) {
551 * Map the VGIC hardware resources before running a vcpu the
552 * first time on this VM.
554 if (unlikely(!vgic_ready(kvm
))) {
555 ret
= kvm_vgic_map_resources(kvm
);
561 * Tell the rest of the code that there are userspace irqchip
564 static_branch_inc(&userspace_irqchip_in_use
);
567 ret
= kvm_timer_enable(vcpu
);
571 ret
= kvm_arm_pmu_v3_enable(vcpu
);
576 bool kvm_arch_intc_initialized(struct kvm
*kvm
)
578 return vgic_initialized(kvm
);
581 void kvm_arm_halt_guest(struct kvm
*kvm
)
584 struct kvm_vcpu
*vcpu
;
586 kvm_for_each_vcpu(i
, vcpu
, kvm
)
587 vcpu
->arch
.pause
= true;
588 kvm_make_all_cpus_request(kvm
, KVM_REQ_SLEEP
);
591 void kvm_arm_resume_guest(struct kvm
*kvm
)
594 struct kvm_vcpu
*vcpu
;
596 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
597 vcpu
->arch
.pause
= false;
598 swake_up_one(kvm_arch_vcpu_wq(vcpu
));
602 static void vcpu_req_sleep(struct kvm_vcpu
*vcpu
)
604 struct swait_queue_head
*wq
= kvm_arch_vcpu_wq(vcpu
);
606 swait_event_interruptible_exclusive(*wq
, ((!vcpu
->arch
.power_off
) &&
607 (!vcpu
->arch
.pause
)));
609 if (vcpu
->arch
.power_off
|| vcpu
->arch
.pause
) {
610 /* Awaken to handle a signal, request we sleep again later. */
611 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
615 * Make sure we will observe a potential reset request if we've
616 * observed a change to the power state. Pairs with the smp_wmb() in
617 * kvm_psci_vcpu_on().
622 static int kvm_vcpu_initialized(struct kvm_vcpu
*vcpu
)
624 return vcpu
->arch
.target
>= 0;
627 static void check_vcpu_requests(struct kvm_vcpu
*vcpu
)
629 if (kvm_request_pending(vcpu
)) {
630 if (kvm_check_request(KVM_REQ_SLEEP
, vcpu
))
631 vcpu_req_sleep(vcpu
);
633 if (kvm_check_request(KVM_REQ_VCPU_RESET
, vcpu
))
634 kvm_reset_vcpu(vcpu
);
637 * Clear IRQ_PENDING requests that were made to guarantee
638 * that a VCPU sees new virtual interrupts.
640 kvm_check_request(KVM_REQ_IRQ_PENDING
, vcpu
);
642 if (kvm_check_request(KVM_REQ_RECORD_STEAL
, vcpu
))
643 kvm_update_stolen_time(vcpu
);
645 if (kvm_check_request(KVM_REQ_RELOAD_GICv4
, vcpu
)) {
646 /* The distributor enable bits were changed */
648 vgic_v4_put(vcpu
, false);
656 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
657 * @vcpu: The VCPU pointer
658 * @run: The kvm_run structure pointer used for userspace state exchange
660 * This function is called through the VCPU_RUN ioctl called from user space. It
661 * will execute VM code in a loop until the time slice for the process is used
662 * or some emulation is needed from user space in which case the function will
663 * return with return value 0 and with the kvm_run structure filled in with the
664 * required data for the requested emulation.
666 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
670 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
673 ret
= kvm_vcpu_first_run_init(vcpu
);
677 if (run
->exit_reason
== KVM_EXIT_MMIO
) {
678 ret
= kvm_handle_mmio_return(vcpu
, vcpu
->run
);
683 if (run
->immediate_exit
)
688 kvm_sigset_activate(vcpu
);
691 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
694 * Check conditions before entering the guest
698 update_vmid(&vcpu
->kvm
->arch
.vmid
);
700 check_vcpu_requests(vcpu
);
703 * Preparing the interrupts to be injected also
704 * involves poking the GIC, which must be done in a
705 * non-preemptible context.
709 kvm_pmu_flush_hwstate(vcpu
);
713 kvm_vgic_flush_hwstate(vcpu
);
716 * Exit if we have a signal pending so that we can deliver the
717 * signal to user space.
719 if (signal_pending(current
)) {
721 run
->exit_reason
= KVM_EXIT_INTR
;
725 * If we're using a userspace irqchip, then check if we need
726 * to tell a userspace irqchip about timer or PMU level
727 * changes and if so, exit to userspace (the actual level
728 * state gets updated in kvm_timer_update_run and
729 * kvm_pmu_update_run below).
731 if (static_branch_unlikely(&userspace_irqchip_in_use
)) {
732 if (kvm_timer_should_notify_user(vcpu
) ||
733 kvm_pmu_should_notify_user(vcpu
)) {
735 run
->exit_reason
= KVM_EXIT_INTR
;
740 * Ensure we set mode to IN_GUEST_MODE after we disable
741 * interrupts and before the final VCPU requests check.
742 * See the comment in kvm_vcpu_exiting_guest_mode() and
743 * Documentation/virt/kvm/vcpu-requests.rst
745 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
747 if (ret
<= 0 || need_new_vmid_gen(&vcpu
->kvm
->arch
.vmid
) ||
748 kvm_request_pending(vcpu
)) {
749 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
750 isb(); /* Ensure work in x_flush_hwstate is committed */
751 kvm_pmu_sync_hwstate(vcpu
);
752 if (static_branch_unlikely(&userspace_irqchip_in_use
))
753 kvm_timer_sync_hwstate(vcpu
);
754 kvm_vgic_sync_hwstate(vcpu
);
760 kvm_arm_setup_debug(vcpu
);
762 /**************************************************************
765 trace_kvm_entry(*vcpu_pc(vcpu
));
766 guest_enter_irqoff();
769 ret
= kvm_vcpu_run_vhe(vcpu
);
771 ret
= kvm_call_hyp_ret(__kvm_vcpu_run_nvhe
, vcpu
);
774 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
778 *************************************************************/
780 kvm_arm_clear_debug(vcpu
);
783 * We must sync the PMU state before the vgic state so
784 * that the vgic can properly sample the updated state of the
787 kvm_pmu_sync_hwstate(vcpu
);
790 * Sync the vgic state before syncing the timer state because
791 * the timer code needs to know if the virtual timer
792 * interrupts are active.
794 kvm_vgic_sync_hwstate(vcpu
);
797 * Sync the timer hardware state before enabling interrupts as
798 * we don't want vtimer interrupts to race with syncing the
799 * timer virtual interrupt state.
801 if (static_branch_unlikely(&userspace_irqchip_in_use
))
802 kvm_timer_sync_hwstate(vcpu
);
804 kvm_arch_vcpu_ctxsync_fp(vcpu
);
807 * We may have taken a host interrupt in HYP mode (ie
808 * while executing the guest). This interrupt is still
809 * pending, as we haven't serviced it yet!
811 * We're now back in SVC mode, with interrupts
812 * disabled. Enabling the interrupts now will have
813 * the effect of taking the interrupt again, in SVC
819 * We do local_irq_enable() before calling guest_exit() so
820 * that if a timer interrupt hits while running the guest we
821 * account that tick as being spent in the guest. We enable
822 * preemption after calling guest_exit() so that if we get
823 * preempted we make sure ticks after that is not counted as
827 trace_kvm_exit(ret
, kvm_vcpu_trap_get_class(vcpu
), *vcpu_pc(vcpu
));
829 /* Exit types that need handling before we can be preempted */
830 handle_exit_early(vcpu
, run
, ret
);
834 ret
= handle_exit(vcpu
, run
, ret
);
837 /* Tell userspace about in-kernel device output levels */
838 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
))) {
839 kvm_timer_update_run(vcpu
);
840 kvm_pmu_update_run(vcpu
);
843 kvm_sigset_deactivate(vcpu
);
849 static int vcpu_interrupt_line(struct kvm_vcpu
*vcpu
, int number
, bool level
)
855 if (number
== KVM_ARM_IRQ_CPU_IRQ
)
856 bit_index
= __ffs(HCR_VI
);
857 else /* KVM_ARM_IRQ_CPU_FIQ */
858 bit_index
= __ffs(HCR_VF
);
860 hcr
= vcpu_hcr(vcpu
);
862 set
= test_and_set_bit(bit_index
, hcr
);
864 set
= test_and_clear_bit(bit_index
, hcr
);
867 * If we didn't change anything, no need to wake up or kick other CPUs
873 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
874 * trigger a world-switch round on the running physical CPU to set the
875 * virtual IRQ/FIQ fields in the HCR appropriately.
877 kvm_make_request(KVM_REQ_IRQ_PENDING
, vcpu
);
883 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_level
,
886 u32 irq
= irq_level
->irq
;
887 unsigned int irq_type
, vcpu_idx
, irq_num
;
888 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
889 struct kvm_vcpu
*vcpu
= NULL
;
890 bool level
= irq_level
->level
;
892 irq_type
= (irq
>> KVM_ARM_IRQ_TYPE_SHIFT
) & KVM_ARM_IRQ_TYPE_MASK
;
893 vcpu_idx
= (irq
>> KVM_ARM_IRQ_VCPU_SHIFT
) & KVM_ARM_IRQ_VCPU_MASK
;
894 vcpu_idx
+= ((irq
>> KVM_ARM_IRQ_VCPU2_SHIFT
) & KVM_ARM_IRQ_VCPU2_MASK
) * (KVM_ARM_IRQ_VCPU_MASK
+ 1);
895 irq_num
= (irq
>> KVM_ARM_IRQ_NUM_SHIFT
) & KVM_ARM_IRQ_NUM_MASK
;
897 trace_kvm_irq_line(irq_type
, vcpu_idx
, irq_num
, irq_level
->level
);
900 case KVM_ARM_IRQ_TYPE_CPU
:
901 if (irqchip_in_kernel(kvm
))
904 if (vcpu_idx
>= nrcpus
)
907 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
911 if (irq_num
> KVM_ARM_IRQ_CPU_FIQ
)
914 return vcpu_interrupt_line(vcpu
, irq_num
, level
);
915 case KVM_ARM_IRQ_TYPE_PPI
:
916 if (!irqchip_in_kernel(kvm
))
919 if (vcpu_idx
>= nrcpus
)
922 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
926 if (irq_num
< VGIC_NR_SGIS
|| irq_num
>= VGIC_NR_PRIVATE_IRQS
)
929 return kvm_vgic_inject_irq(kvm
, vcpu
->vcpu_id
, irq_num
, level
, NULL
);
930 case KVM_ARM_IRQ_TYPE_SPI
:
931 if (!irqchip_in_kernel(kvm
))
934 if (irq_num
< VGIC_NR_PRIVATE_IRQS
)
937 return kvm_vgic_inject_irq(kvm
, 0, irq_num
, level
, NULL
);
943 static int kvm_vcpu_set_target(struct kvm_vcpu
*vcpu
,
944 const struct kvm_vcpu_init
*init
)
947 int phys_target
= kvm_target_cpu();
949 if (init
->target
!= phys_target
)
953 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
954 * use the same target.
956 if (vcpu
->arch
.target
!= -1 && vcpu
->arch
.target
!= init
->target
)
959 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
960 for (i
= 0; i
< sizeof(init
->features
) * 8; i
++) {
961 bool set
= (init
->features
[i
/ 32] & (1 << (i
% 32)));
963 if (set
&& i
>= KVM_VCPU_MAX_FEATURES
)
967 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
968 * use the same feature set.
970 if (vcpu
->arch
.target
!= -1 && i
< KVM_VCPU_MAX_FEATURES
&&
971 test_bit(i
, vcpu
->arch
.features
) != set
)
975 set_bit(i
, vcpu
->arch
.features
);
978 vcpu
->arch
.target
= phys_target
;
980 /* Now we know what it is, we can reset it. */
981 ret
= kvm_reset_vcpu(vcpu
);
983 vcpu
->arch
.target
= -1;
984 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
990 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu
*vcpu
,
991 struct kvm_vcpu_init
*init
)
995 ret
= kvm_vcpu_set_target(vcpu
, init
);
1000 * Ensure a rebooted VM will fault in RAM pages and detect if the
1001 * guest MMU is turned off and flush the caches as needed.
1003 if (vcpu
->arch
.has_run_once
)
1004 stage2_unmap_vm(vcpu
->kvm
);
1006 vcpu_reset_hcr(vcpu
);
1009 * Handle the "start in power-off" case.
1011 if (test_bit(KVM_ARM_VCPU_POWER_OFF
, vcpu
->arch
.features
))
1012 vcpu_power_off(vcpu
);
1014 vcpu
->arch
.power_off
= false;
1019 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu
*vcpu
,
1020 struct kvm_device_attr
*attr
)
1024 switch (attr
->group
) {
1026 ret
= kvm_arm_vcpu_arch_set_attr(vcpu
, attr
);
1033 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu
*vcpu
,
1034 struct kvm_device_attr
*attr
)
1038 switch (attr
->group
) {
1040 ret
= kvm_arm_vcpu_arch_get_attr(vcpu
, attr
);
1047 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu
*vcpu
,
1048 struct kvm_device_attr
*attr
)
1052 switch (attr
->group
) {
1054 ret
= kvm_arm_vcpu_arch_has_attr(vcpu
, attr
);
1061 static int kvm_arm_vcpu_get_events(struct kvm_vcpu
*vcpu
,
1062 struct kvm_vcpu_events
*events
)
1064 memset(events
, 0, sizeof(*events
));
1066 return __kvm_arm_vcpu_get_events(vcpu
, events
);
1069 static int kvm_arm_vcpu_set_events(struct kvm_vcpu
*vcpu
,
1070 struct kvm_vcpu_events
*events
)
1074 /* check whether the reserved field is zero */
1075 for (i
= 0; i
< ARRAY_SIZE(events
->reserved
); i
++)
1076 if (events
->reserved
[i
])
1079 /* check whether the pad field is zero */
1080 for (i
= 0; i
< ARRAY_SIZE(events
->exception
.pad
); i
++)
1081 if (events
->exception
.pad
[i
])
1084 return __kvm_arm_vcpu_set_events(vcpu
, events
);
1087 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1088 unsigned int ioctl
, unsigned long arg
)
1090 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1091 void __user
*argp
= (void __user
*)arg
;
1092 struct kvm_device_attr attr
;
1096 case KVM_ARM_VCPU_INIT
: {
1097 struct kvm_vcpu_init init
;
1100 if (copy_from_user(&init
, argp
, sizeof(init
)))
1103 r
= kvm_arch_vcpu_ioctl_vcpu_init(vcpu
, &init
);
1106 case KVM_SET_ONE_REG
:
1107 case KVM_GET_ONE_REG
: {
1108 struct kvm_one_reg reg
;
1111 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1115 if (copy_from_user(®
, argp
, sizeof(reg
)))
1118 if (ioctl
== KVM_SET_ONE_REG
)
1119 r
= kvm_arm_set_reg(vcpu
, ®
);
1121 r
= kvm_arm_get_reg(vcpu
, ®
);
1124 case KVM_GET_REG_LIST
: {
1125 struct kvm_reg_list __user
*user_list
= argp
;
1126 struct kvm_reg_list reg_list
;
1130 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1134 if (!kvm_arm_vcpu_is_finalized(vcpu
))
1138 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
1141 reg_list
.n
= kvm_arm_num_regs(vcpu
);
1142 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
1147 r
= kvm_arm_copy_reg_indices(vcpu
, user_list
->reg
);
1150 case KVM_SET_DEVICE_ATTR
: {
1152 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1154 r
= kvm_arm_vcpu_set_attr(vcpu
, &attr
);
1157 case KVM_GET_DEVICE_ATTR
: {
1159 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1161 r
= kvm_arm_vcpu_get_attr(vcpu
, &attr
);
1164 case KVM_HAS_DEVICE_ATTR
: {
1166 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1168 r
= kvm_arm_vcpu_has_attr(vcpu
, &attr
);
1171 case KVM_GET_VCPU_EVENTS
: {
1172 struct kvm_vcpu_events events
;
1174 if (kvm_arm_vcpu_get_events(vcpu
, &events
))
1177 if (copy_to_user(argp
, &events
, sizeof(events
)))
1182 case KVM_SET_VCPU_EVENTS
: {
1183 struct kvm_vcpu_events events
;
1185 if (copy_from_user(&events
, argp
, sizeof(events
)))
1188 return kvm_arm_vcpu_set_events(vcpu
, &events
);
1190 case KVM_ARM_VCPU_FINALIZE
: {
1193 if (!kvm_vcpu_initialized(vcpu
))
1196 if (get_user(what
, (const int __user
*)argp
))
1199 return kvm_arm_vcpu_finalize(vcpu
, what
);
1208 void kvm_arch_sync_dirty_log(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
)
1213 void kvm_arch_flush_remote_tlbs_memslot(struct kvm
*kvm
,
1214 struct kvm_memory_slot
*memslot
)
1216 kvm_flush_remote_tlbs(kvm
);
1219 static int kvm_vm_ioctl_set_device_addr(struct kvm
*kvm
,
1220 struct kvm_arm_device_addr
*dev_addr
)
1222 unsigned long dev_id
, type
;
1224 dev_id
= (dev_addr
->id
& KVM_ARM_DEVICE_ID_MASK
) >>
1225 KVM_ARM_DEVICE_ID_SHIFT
;
1226 type
= (dev_addr
->id
& KVM_ARM_DEVICE_TYPE_MASK
) >>
1227 KVM_ARM_DEVICE_TYPE_SHIFT
;
1230 case KVM_ARM_DEVICE_VGIC_V2
:
1233 return kvm_vgic_addr(kvm
, type
, &dev_addr
->addr
, true);
1239 long kvm_arch_vm_ioctl(struct file
*filp
,
1240 unsigned int ioctl
, unsigned long arg
)
1242 struct kvm
*kvm
= filp
->private_data
;
1243 void __user
*argp
= (void __user
*)arg
;
1246 case KVM_CREATE_IRQCHIP
: {
1250 mutex_lock(&kvm
->lock
);
1251 ret
= kvm_vgic_create(kvm
, KVM_DEV_TYPE_ARM_VGIC_V2
);
1252 mutex_unlock(&kvm
->lock
);
1255 case KVM_ARM_SET_DEVICE_ADDR
: {
1256 struct kvm_arm_device_addr dev_addr
;
1258 if (copy_from_user(&dev_addr
, argp
, sizeof(dev_addr
)))
1260 return kvm_vm_ioctl_set_device_addr(kvm
, &dev_addr
);
1262 case KVM_ARM_PREFERRED_TARGET
: {
1264 struct kvm_vcpu_init init
;
1266 err
= kvm_vcpu_preferred_target(&init
);
1270 if (copy_to_user(argp
, &init
, sizeof(init
)))
1280 static void cpu_init_hyp_mode(void)
1282 phys_addr_t pgd_ptr
;
1283 unsigned long hyp_stack_ptr
;
1284 unsigned long stack_page
;
1285 unsigned long vector_ptr
;
1287 /* Switch from the HYP stub to our own HYP init vector */
1288 __hyp_set_vectors(kvm_get_idmap_vector());
1290 pgd_ptr
= kvm_mmu_get_httbr();
1291 stack_page
= __this_cpu_read(kvm_arm_hyp_stack_page
);
1292 hyp_stack_ptr
= stack_page
+ PAGE_SIZE
;
1293 vector_ptr
= (unsigned long)kvm_get_hyp_vector();
1295 __cpu_init_hyp_mode(pgd_ptr
, hyp_stack_ptr
, vector_ptr
);
1296 __cpu_init_stage2();
1299 static void cpu_hyp_reset(void)
1301 if (!is_kernel_in_hyp_mode())
1302 __hyp_reset_vectors();
1305 static void cpu_hyp_reinit(void)
1307 kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data
)->host_ctxt
);
1311 if (is_kernel_in_hyp_mode())
1312 kvm_timer_init_vhe();
1314 cpu_init_hyp_mode();
1316 kvm_arm_init_debug();
1319 kvm_vgic_init_cpu_hardware();
1322 static void _kvm_arch_hardware_enable(void *discard
)
1324 if (!__this_cpu_read(kvm_arm_hardware_enabled
)) {
1326 __this_cpu_write(kvm_arm_hardware_enabled
, 1);
1330 int kvm_arch_hardware_enable(void)
1332 _kvm_arch_hardware_enable(NULL
);
1336 static void _kvm_arch_hardware_disable(void *discard
)
1338 if (__this_cpu_read(kvm_arm_hardware_enabled
)) {
1340 __this_cpu_write(kvm_arm_hardware_enabled
, 0);
1344 void kvm_arch_hardware_disable(void)
1346 _kvm_arch_hardware_disable(NULL
);
1349 #ifdef CONFIG_CPU_PM
1350 static int hyp_init_cpu_pm_notifier(struct notifier_block
*self
,
1355 * kvm_arm_hardware_enabled is left with its old value over
1356 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1361 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1363 * don't update kvm_arm_hardware_enabled here
1364 * so that the hardware will be re-enabled
1365 * when we resume. See below.
1370 case CPU_PM_ENTER_FAILED
:
1372 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1373 /* The hardware was enabled before suspend. */
1383 static struct notifier_block hyp_init_cpu_pm_nb
= {
1384 .notifier_call
= hyp_init_cpu_pm_notifier
,
1387 static void __init
hyp_cpu_pm_init(void)
1389 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb
);
1391 static void __init
hyp_cpu_pm_exit(void)
1393 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb
);
1396 static inline void hyp_cpu_pm_init(void)
1399 static inline void hyp_cpu_pm_exit(void)
1404 static int init_common_resources(void)
1406 kvm_set_ipa_limit();
1411 static int init_subsystems(void)
1416 * Enable hardware so that subsystem initialisation can access EL2.
1418 on_each_cpu(_kvm_arch_hardware_enable
, NULL
, 1);
1421 * Register CPU lower-power notifier
1426 * Init HYP view of VGIC
1428 err
= kvm_vgic_hyp_init();
1431 vgic_present
= true;
1435 vgic_present
= false;
1443 * Init HYP architected timer support
1445 err
= kvm_timer_hyp_init(vgic_present
);
1450 kvm_coproc_table_init();
1453 on_each_cpu(_kvm_arch_hardware_disable
, NULL
, 1);
1458 static void teardown_hyp_mode(void)
1463 for_each_possible_cpu(cpu
)
1464 free_page(per_cpu(kvm_arm_hyp_stack_page
, cpu
));
1468 * Inits Hyp-mode on all online CPUs
1470 static int init_hyp_mode(void)
1476 * Allocate Hyp PGD and setup Hyp identity mapping
1478 err
= kvm_mmu_init();
1483 * Allocate stack pages for Hypervisor-mode
1485 for_each_possible_cpu(cpu
) {
1486 unsigned long stack_page
;
1488 stack_page
= __get_free_page(GFP_KERNEL
);
1494 per_cpu(kvm_arm_hyp_stack_page
, cpu
) = stack_page
;
1498 * Map the Hyp-code called directly from the host
1500 err
= create_hyp_mappings(kvm_ksym_ref(__hyp_text_start
),
1501 kvm_ksym_ref(__hyp_text_end
), PAGE_HYP_EXEC
);
1503 kvm_err("Cannot map world-switch code\n");
1507 err
= create_hyp_mappings(kvm_ksym_ref(__start_rodata
),
1508 kvm_ksym_ref(__end_rodata
), PAGE_HYP_RO
);
1510 kvm_err("Cannot map rodata section\n");
1514 err
= create_hyp_mappings(kvm_ksym_ref(__bss_start
),
1515 kvm_ksym_ref(__bss_stop
), PAGE_HYP_RO
);
1517 kvm_err("Cannot map bss section\n");
1521 err
= kvm_map_vectors();
1523 kvm_err("Cannot map vectors\n");
1528 * Map the Hyp stack pages
1530 for_each_possible_cpu(cpu
) {
1531 char *stack_page
= (char *)per_cpu(kvm_arm_hyp_stack_page
, cpu
);
1532 err
= create_hyp_mappings(stack_page
, stack_page
+ PAGE_SIZE
,
1536 kvm_err("Cannot map hyp stack\n");
1541 for_each_possible_cpu(cpu
) {
1542 kvm_host_data_t
*cpu_data
;
1544 cpu_data
= per_cpu_ptr(&kvm_host_data
, cpu
);
1545 err
= create_hyp_mappings(cpu_data
, cpu_data
+ 1, PAGE_HYP
);
1548 kvm_err("Cannot map host CPU state: %d\n", err
);
1553 err
= hyp_map_aux_data();
1555 kvm_err("Cannot map host auxiliary data: %d\n", err
);
1560 teardown_hyp_mode();
1561 kvm_err("error initializing Hyp mode: %d\n", err
);
1565 static void check_kvm_target_cpu(void *ret
)
1567 *(int *)ret
= kvm_target_cpu();
1570 struct kvm_vcpu
*kvm_mpidr_to_vcpu(struct kvm
*kvm
, unsigned long mpidr
)
1572 struct kvm_vcpu
*vcpu
;
1575 mpidr
&= MPIDR_HWID_BITMASK
;
1576 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1577 if (mpidr
== kvm_vcpu_get_mpidr_aff(vcpu
))
1583 bool kvm_arch_has_irq_bypass(void)
1588 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
1589 struct irq_bypass_producer
*prod
)
1591 struct kvm_kernel_irqfd
*irqfd
=
1592 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1594 return kvm_vgic_v4_set_forwarding(irqfd
->kvm
, prod
->irq
,
1597 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
1598 struct irq_bypass_producer
*prod
)
1600 struct kvm_kernel_irqfd
*irqfd
=
1601 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1603 kvm_vgic_v4_unset_forwarding(irqfd
->kvm
, prod
->irq
,
1607 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer
*cons
)
1609 struct kvm_kernel_irqfd
*irqfd
=
1610 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1612 kvm_arm_halt_guest(irqfd
->kvm
);
1615 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer
*cons
)
1617 struct kvm_kernel_irqfd
*irqfd
=
1618 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1620 kvm_arm_resume_guest(irqfd
->kvm
);
1624 * Initialize Hyp-mode and memory mappings on all CPUs.
1626 int kvm_arch_init(void *opaque
)
1632 if (!is_hyp_mode_available()) {
1633 kvm_info("HYP mode not available\n");
1637 in_hyp_mode
= is_kernel_in_hyp_mode();
1639 if (!in_hyp_mode
&& kvm_arch_requires_vhe()) {
1640 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1644 for_each_online_cpu(cpu
) {
1645 smp_call_function_single(cpu
, check_kvm_target_cpu
, &ret
, 1);
1647 kvm_err("Error, CPU %d not supported!\n", cpu
);
1652 err
= init_common_resources();
1656 err
= kvm_arm_init_sve();
1661 err
= init_hyp_mode();
1666 err
= init_subsystems();
1671 kvm_info("VHE mode initialized successfully\n");
1673 kvm_info("Hyp mode initialized successfully\n");
1680 teardown_hyp_mode();
1685 /* NOP: Compiling as a module not supported */
1686 void kvm_arch_exit(void)
1688 kvm_perf_teardown();
1691 static int arm_init(void)
1693 int rc
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1697 module_init(arm_init
);