1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <kvm/iodev.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
60 #include "coalesced_mmio.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
75 module_param(halt_poll_ns
, uint
, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns
);
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow
= 2;
80 module_param(halt_poll_ns_grow
, uint
, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow
);
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start
= 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start
, uint
, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start
);
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink
;
90 module_param(halt_poll_ns_shrink
, uint
, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink
);
96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
99 DEFINE_MUTEX(kvm_lock
);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
103 static cpumask_var_t cpus_hardware_enabled
;
104 static int kvm_usage_count
;
105 static atomic_t hardware_enable_failed
;
107 static struct kmem_cache
*kvm_vcpu_cache
;
109 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
110 static DEFINE_PER_CPU(struct kvm_vcpu
*, kvm_running_vcpu
);
112 struct dentry
*kvm_debugfs_dir
;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
115 static int kvm_debugfs_num_entries
;
116 static const struct file_operations stat_fops_per_vm
;
118 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
123 #define KVM_COMPAT(c) .compat_ioctl = (c)
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
132 static long kvm_no_compat_ioctl(struct file
*file
, unsigned int ioctl
,
133 unsigned long arg
) { return -EINVAL
; }
135 static int kvm_no_compat_open(struct inode
*inode
, struct file
*file
)
137 return is_compat_task() ? -ENODEV
: 0;
139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
145 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
149 __visible
bool kvm_rebooting
;
150 EXPORT_SYMBOL_GPL(kvm_rebooting
);
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
);
155 static unsigned long long kvm_createvm_count
;
156 static unsigned long long kvm_active_vms
;
158 __weak
void kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
159 unsigned long start
, unsigned long end
)
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn
)
166 * The metadata used by is_zone_device_page() to determine whether or
167 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 * the device has been pinned, e.g. by get_user_pages(). WARN if the
169 * page_count() is zero to help detect bad usage of this helper.
171 if (!pfn_valid(pfn
) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn
))))
174 return is_zone_device_page(pfn_to_page(pfn
));
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn
)
180 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 * perspective they are "normal" pages, albeit with slightly different
185 return PageReserved(pfn_to_page(pfn
)) &&
187 !kvm_is_zone_device_pfn(pfn
);
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn
)
194 struct page
*page
= pfn_to_page(pfn
);
196 if (!PageTransCompoundMap(page
))
199 return is_transparent_hugepage(compound_head(page
));
203 * Switches to specified vcpu, until a matching vcpu_put()
205 void vcpu_load(struct kvm_vcpu
*vcpu
)
209 __this_cpu_write(kvm_running_vcpu
, vcpu
);
210 preempt_notifier_register(&vcpu
->preempt_notifier
);
211 kvm_arch_vcpu_load(vcpu
, cpu
);
214 EXPORT_SYMBOL_GPL(vcpu_load
);
216 void vcpu_put(struct kvm_vcpu
*vcpu
)
219 kvm_arch_vcpu_put(vcpu
);
220 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
221 __this_cpu_write(kvm_running_vcpu
, NULL
);
224 EXPORT_SYMBOL_GPL(vcpu_put
);
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu
*vcpu
, unsigned req
)
229 int mode
= kvm_vcpu_exiting_guest_mode(vcpu
);
232 * We need to wait for the VCPU to reenable interrupts and get out of
233 * READING_SHADOW_PAGE_TABLES mode.
235 if (req
& KVM_REQUEST_WAIT
)
236 return mode
!= OUTSIDE_GUEST_MODE
;
239 * Need to kick a running VCPU, but otherwise there is nothing to do.
241 return mode
== IN_GUEST_MODE
;
244 static void ack_flush(void *_completed
)
248 static inline bool kvm_kick_many_cpus(const struct cpumask
*cpus
, bool wait
)
251 cpus
= cpu_online_mask
;
253 if (cpumask_empty(cpus
))
256 smp_call_function_many(cpus
, ack_flush
, NULL
, wait
);
260 bool kvm_make_vcpus_request_mask(struct kvm
*kvm
, unsigned int req
,
261 struct kvm_vcpu
*except
,
262 unsigned long *vcpu_bitmap
, cpumask_var_t tmp
)
265 struct kvm_vcpu
*vcpu
;
270 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
271 if ((vcpu_bitmap
&& !test_bit(i
, vcpu_bitmap
)) ||
275 kvm_make_request(req
, vcpu
);
278 if (!(req
& KVM_REQUEST_NO_WAKEUP
) && kvm_vcpu_wake_up(vcpu
))
281 if (tmp
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
282 kvm_request_needs_ipi(vcpu
, req
))
283 __cpumask_set_cpu(cpu
, tmp
);
286 called
= kvm_kick_many_cpus(tmp
, !!(req
& KVM_REQUEST_WAIT
));
292 bool kvm_make_all_cpus_request_except(struct kvm
*kvm
, unsigned int req
,
293 struct kvm_vcpu
*except
)
298 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
300 called
= kvm_make_vcpus_request_mask(kvm
, req
, except
, NULL
, cpus
);
302 free_cpumask_var(cpus
);
306 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
308 return kvm_make_all_cpus_request_except(kvm
, req
, NULL
);
311 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
312 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
315 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
316 * kvm_make_all_cpus_request.
318 long dirty_count
= smp_load_acquire(&kvm
->tlbs_dirty
);
321 * We want to publish modifications to the page tables before reading
322 * mode. Pairs with a memory barrier in arch-specific code.
323 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
324 * and smp_mb in walk_shadow_page_lockless_begin/end.
325 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327 * There is already an smp_mb__after_atomic() before
328 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
331 if (!kvm_arch_flush_remote_tlb(kvm
)
332 || kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
333 ++kvm
->stat
.remote_tlb_flush
;
334 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
336 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
339 void kvm_reload_remote_mmus(struct kvm
*kvm
)
341 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
344 static void kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
346 mutex_init(&vcpu
->mutex
);
351 init_swait_queue_head(&vcpu
->wq
);
352 kvm_async_pf_vcpu_init(vcpu
);
355 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
357 kvm_vcpu_set_in_spin_loop(vcpu
, false);
358 kvm_vcpu_set_dy_eligible(vcpu
, false);
359 vcpu
->preempted
= false;
361 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
364 void kvm_vcpu_destroy(struct kvm_vcpu
*vcpu
)
366 kvm_arch_vcpu_destroy(vcpu
);
369 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
370 * the vcpu->pid pointer, and at destruction time all file descriptors
373 put_pid(rcu_dereference_protected(vcpu
->pid
, 1));
375 free_page((unsigned long)vcpu
->run
);
376 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
378 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy
);
380 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
381 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
383 return container_of(mn
, struct kvm
, mmu_notifier
);
386 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier
*mn
,
387 struct mm_struct
*mm
,
388 unsigned long start
, unsigned long end
)
390 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
393 idx
= srcu_read_lock(&kvm
->srcu
);
394 kvm_arch_mmu_notifier_invalidate_range(kvm
, start
, end
);
395 srcu_read_unlock(&kvm
->srcu
, idx
);
398 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
399 struct mm_struct
*mm
,
400 unsigned long address
,
403 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
406 idx
= srcu_read_lock(&kvm
->srcu
);
407 spin_lock(&kvm
->mmu_lock
);
408 kvm
->mmu_notifier_seq
++;
410 if (kvm_set_spte_hva(kvm
, address
, pte
))
411 kvm_flush_remote_tlbs(kvm
);
413 spin_unlock(&kvm
->mmu_lock
);
414 srcu_read_unlock(&kvm
->srcu
, idx
);
417 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
418 const struct mmu_notifier_range
*range
)
420 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
421 int need_tlb_flush
= 0, idx
;
423 idx
= srcu_read_lock(&kvm
->srcu
);
424 spin_lock(&kvm
->mmu_lock
);
426 * The count increase must become visible at unlock time as no
427 * spte can be established without taking the mmu_lock and
428 * count is also read inside the mmu_lock critical section.
430 kvm
->mmu_notifier_count
++;
431 need_tlb_flush
= kvm_unmap_hva_range(kvm
, range
->start
, range
->end
);
432 need_tlb_flush
|= kvm
->tlbs_dirty
;
433 /* we've to flush the tlb before the pages can be freed */
435 kvm_flush_remote_tlbs(kvm
);
437 spin_unlock(&kvm
->mmu_lock
);
438 srcu_read_unlock(&kvm
->srcu
, idx
);
443 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
444 const struct mmu_notifier_range
*range
)
446 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
448 spin_lock(&kvm
->mmu_lock
);
450 * This sequence increase will notify the kvm page fault that
451 * the page that is going to be mapped in the spte could have
454 kvm
->mmu_notifier_seq
++;
457 * The above sequence increase must be visible before the
458 * below count decrease, which is ensured by the smp_wmb above
459 * in conjunction with the smp_rmb in mmu_notifier_retry().
461 kvm
->mmu_notifier_count
--;
462 spin_unlock(&kvm
->mmu_lock
);
464 BUG_ON(kvm
->mmu_notifier_count
< 0);
467 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
468 struct mm_struct
*mm
,
472 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
475 idx
= srcu_read_lock(&kvm
->srcu
);
476 spin_lock(&kvm
->mmu_lock
);
478 young
= kvm_age_hva(kvm
, start
, end
);
480 kvm_flush_remote_tlbs(kvm
);
482 spin_unlock(&kvm
->mmu_lock
);
483 srcu_read_unlock(&kvm
->srcu
, idx
);
488 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
489 struct mm_struct
*mm
,
493 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
496 idx
= srcu_read_lock(&kvm
->srcu
);
497 spin_lock(&kvm
->mmu_lock
);
499 * Even though we do not flush TLB, this will still adversely
500 * affect performance on pre-Haswell Intel EPT, where there is
501 * no EPT Access Bit to clear so that we have to tear down EPT
502 * tables instead. If we find this unacceptable, we can always
503 * add a parameter to kvm_age_hva so that it effectively doesn't
504 * do anything on clear_young.
506 * Also note that currently we never issue secondary TLB flushes
507 * from clear_young, leaving this job up to the regular system
508 * cadence. If we find this inaccurate, we might come up with a
509 * more sophisticated heuristic later.
511 young
= kvm_age_hva(kvm
, start
, end
);
512 spin_unlock(&kvm
->mmu_lock
);
513 srcu_read_unlock(&kvm
->srcu
, idx
);
518 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
519 struct mm_struct
*mm
,
520 unsigned long address
)
522 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
525 idx
= srcu_read_lock(&kvm
->srcu
);
526 spin_lock(&kvm
->mmu_lock
);
527 young
= kvm_test_age_hva(kvm
, address
);
528 spin_unlock(&kvm
->mmu_lock
);
529 srcu_read_unlock(&kvm
->srcu
, idx
);
534 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
535 struct mm_struct
*mm
)
537 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
540 idx
= srcu_read_lock(&kvm
->srcu
);
541 kvm_arch_flush_shadow_all(kvm
);
542 srcu_read_unlock(&kvm
->srcu
, idx
);
545 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
546 .invalidate_range
= kvm_mmu_notifier_invalidate_range
,
547 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
548 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
549 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
550 .clear_young
= kvm_mmu_notifier_clear_young
,
551 .test_young
= kvm_mmu_notifier_test_young
,
552 .change_pte
= kvm_mmu_notifier_change_pte
,
553 .release
= kvm_mmu_notifier_release
,
556 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
558 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
559 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
562 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
564 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
569 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
571 static struct kvm_memslots
*kvm_alloc_memslots(void)
574 struct kvm_memslots
*slots
;
576 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL_ACCOUNT
);
580 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
581 slots
->id_to_index
[i
] = -1;
586 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
588 if (!memslot
->dirty_bitmap
)
591 kvfree(memslot
->dirty_bitmap
);
592 memslot
->dirty_bitmap
= NULL
;
595 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
)
597 kvm_destroy_dirty_bitmap(slot
);
599 kvm_arch_free_memslot(kvm
, slot
);
605 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
607 struct kvm_memory_slot
*memslot
;
612 kvm_for_each_memslot(memslot
, slots
)
613 kvm_free_memslot(kvm
, memslot
);
618 static void kvm_destroy_vm_debugfs(struct kvm
*kvm
)
622 if (!kvm
->debugfs_dentry
)
625 debugfs_remove_recursive(kvm
->debugfs_dentry
);
627 if (kvm
->debugfs_stat_data
) {
628 for (i
= 0; i
< kvm_debugfs_num_entries
; i
++)
629 kfree(kvm
->debugfs_stat_data
[i
]);
630 kfree(kvm
->debugfs_stat_data
);
634 static int kvm_create_vm_debugfs(struct kvm
*kvm
, int fd
)
636 char dir_name
[ITOA_MAX_LEN
* 2];
637 struct kvm_stat_data
*stat_data
;
638 struct kvm_stats_debugfs_item
*p
;
640 if (!debugfs_initialized())
643 snprintf(dir_name
, sizeof(dir_name
), "%d-%d", task_pid_nr(current
), fd
);
644 kvm
->debugfs_dentry
= debugfs_create_dir(dir_name
, kvm_debugfs_dir
);
646 kvm
->debugfs_stat_data
= kcalloc(kvm_debugfs_num_entries
,
647 sizeof(*kvm
->debugfs_stat_data
),
649 if (!kvm
->debugfs_stat_data
)
652 for (p
= debugfs_entries
; p
->name
; p
++) {
653 stat_data
= kzalloc(sizeof(*stat_data
), GFP_KERNEL_ACCOUNT
);
657 stat_data
->kvm
= kvm
;
658 stat_data
->dbgfs_item
= p
;
659 kvm
->debugfs_stat_data
[p
- debugfs_entries
] = stat_data
;
660 debugfs_create_file(p
->name
, KVM_DBGFS_GET_MODE(p
),
661 kvm
->debugfs_dentry
, stat_data
,
668 * Called after the VM is otherwise initialized, but just before adding it to
671 int __weak
kvm_arch_post_init_vm(struct kvm
*kvm
)
677 * Called just after removing the VM from the vm_list, but before doing any
680 void __weak
kvm_arch_pre_destroy_vm(struct kvm
*kvm
)
684 static struct kvm
*kvm_create_vm(unsigned long type
)
686 struct kvm
*kvm
= kvm_arch_alloc_vm();
691 return ERR_PTR(-ENOMEM
);
693 spin_lock_init(&kvm
->mmu_lock
);
695 kvm
->mm
= current
->mm
;
696 kvm_eventfd_init(kvm
);
697 mutex_init(&kvm
->lock
);
698 mutex_init(&kvm
->irq_lock
);
699 mutex_init(&kvm
->slots_lock
);
700 INIT_LIST_HEAD(&kvm
->devices
);
702 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
704 if (init_srcu_struct(&kvm
->srcu
))
705 goto out_err_no_srcu
;
706 if (init_srcu_struct(&kvm
->irq_srcu
))
707 goto out_err_no_irq_srcu
;
709 refcount_set(&kvm
->users_count
, 1);
710 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
711 struct kvm_memslots
*slots
= kvm_alloc_memslots();
714 goto out_err_no_arch_destroy_vm
;
715 /* Generations must be different for each address space. */
716 slots
->generation
= i
;
717 rcu_assign_pointer(kvm
->memslots
[i
], slots
);
720 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
721 rcu_assign_pointer(kvm
->buses
[i
],
722 kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL_ACCOUNT
));
724 goto out_err_no_arch_destroy_vm
;
727 r
= kvm_arch_init_vm(kvm
, type
);
729 goto out_err_no_arch_destroy_vm
;
731 r
= hardware_enable_all();
733 goto out_err_no_disable
;
735 #ifdef CONFIG_HAVE_KVM_IRQFD
736 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
739 r
= kvm_init_mmu_notifier(kvm
);
741 goto out_err_no_mmu_notifier
;
743 r
= kvm_arch_post_init_vm(kvm
);
747 mutex_lock(&kvm_lock
);
748 list_add(&kvm
->vm_list
, &vm_list
);
749 mutex_unlock(&kvm_lock
);
751 preempt_notifier_inc();
756 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
757 if (kvm
->mmu_notifier
.ops
)
758 mmu_notifier_unregister(&kvm
->mmu_notifier
, current
->mm
);
760 out_err_no_mmu_notifier
:
761 hardware_disable_all();
763 kvm_arch_destroy_vm(kvm
);
764 out_err_no_arch_destroy_vm
:
765 WARN_ON_ONCE(!refcount_dec_and_test(&kvm
->users_count
));
766 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
767 kfree(kvm_get_bus(kvm
, i
));
768 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
769 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
770 cleanup_srcu_struct(&kvm
->irq_srcu
);
772 cleanup_srcu_struct(&kvm
->srcu
);
774 kvm_arch_free_vm(kvm
);
779 static void kvm_destroy_devices(struct kvm
*kvm
)
781 struct kvm_device
*dev
, *tmp
;
784 * We do not need to take the kvm->lock here, because nobody else
785 * has a reference to the struct kvm at this point and therefore
786 * cannot access the devices list anyhow.
788 list_for_each_entry_safe(dev
, tmp
, &kvm
->devices
, vm_node
) {
789 list_del(&dev
->vm_node
);
790 dev
->ops
->destroy(dev
);
794 static void kvm_destroy_vm(struct kvm
*kvm
)
797 struct mm_struct
*mm
= kvm
->mm
;
799 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM
, kvm
);
800 kvm_destroy_vm_debugfs(kvm
);
801 kvm_arch_sync_events(kvm
);
802 mutex_lock(&kvm_lock
);
803 list_del(&kvm
->vm_list
);
804 mutex_unlock(&kvm_lock
);
805 kvm_arch_pre_destroy_vm(kvm
);
807 kvm_free_irq_routing(kvm
);
808 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
809 struct kvm_io_bus
*bus
= kvm_get_bus(kvm
, i
);
812 kvm_io_bus_destroy(bus
);
813 kvm
->buses
[i
] = NULL
;
815 kvm_coalesced_mmio_free(kvm
);
816 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
817 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
819 kvm_arch_flush_shadow_all(kvm
);
821 kvm_arch_destroy_vm(kvm
);
822 kvm_destroy_devices(kvm
);
823 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
824 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
825 cleanup_srcu_struct(&kvm
->irq_srcu
);
826 cleanup_srcu_struct(&kvm
->srcu
);
827 kvm_arch_free_vm(kvm
);
828 preempt_notifier_dec();
829 hardware_disable_all();
833 void kvm_get_kvm(struct kvm
*kvm
)
835 refcount_inc(&kvm
->users_count
);
837 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
839 void kvm_put_kvm(struct kvm
*kvm
)
841 if (refcount_dec_and_test(&kvm
->users_count
))
844 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
847 * Used to put a reference that was taken on behalf of an object associated
848 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
849 * of the new file descriptor fails and the reference cannot be transferred to
850 * its final owner. In such cases, the caller is still actively using @kvm and
851 * will fail miserably if the refcount unexpectedly hits zero.
853 void kvm_put_kvm_no_destroy(struct kvm
*kvm
)
855 WARN_ON(refcount_dec_and_test(&kvm
->users_count
));
857 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy
);
859 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
861 struct kvm
*kvm
= filp
->private_data
;
863 kvm_irqfd_release(kvm
);
870 * Allocation size is twice as large as the actual dirty bitmap size.
871 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
873 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot
*memslot
)
875 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
877 memslot
->dirty_bitmap
= kvzalloc(dirty_bytes
, GFP_KERNEL_ACCOUNT
);
878 if (!memslot
->dirty_bitmap
)
885 * Delete a memslot by decrementing the number of used slots and shifting all
886 * other entries in the array forward one spot.
888 static inline void kvm_memslot_delete(struct kvm_memslots
*slots
,
889 struct kvm_memory_slot
*memslot
)
891 struct kvm_memory_slot
*mslots
= slots
->memslots
;
894 if (WARN_ON(slots
->id_to_index
[memslot
->id
] == -1))
899 if (atomic_read(&slots
->lru_slot
) >= slots
->used_slots
)
900 atomic_set(&slots
->lru_slot
, 0);
902 for (i
= slots
->id_to_index
[memslot
->id
]; i
< slots
->used_slots
; i
++) {
903 mslots
[i
] = mslots
[i
+ 1];
904 slots
->id_to_index
[mslots
[i
].id
] = i
;
906 mslots
[i
] = *memslot
;
907 slots
->id_to_index
[memslot
->id
] = -1;
911 * "Insert" a new memslot by incrementing the number of used slots. Returns
912 * the new slot's initial index into the memslots array.
914 static inline int kvm_memslot_insert_back(struct kvm_memslots
*slots
)
916 return slots
->used_slots
++;
920 * Move a changed memslot backwards in the array by shifting existing slots
921 * with a higher GFN toward the front of the array. Note, the changed memslot
922 * itself is not preserved in the array, i.e. not swapped at this time, only
923 * its new index into the array is tracked. Returns the changed memslot's
924 * current index into the memslots array.
926 static inline int kvm_memslot_move_backward(struct kvm_memslots
*slots
,
927 struct kvm_memory_slot
*memslot
)
929 struct kvm_memory_slot
*mslots
= slots
->memslots
;
932 if (WARN_ON_ONCE(slots
->id_to_index
[memslot
->id
] == -1) ||
933 WARN_ON_ONCE(!slots
->used_slots
))
937 * Move the target memslot backward in the array by shifting existing
938 * memslots with a higher GFN (than the target memslot) towards the
939 * front of the array.
941 for (i
= slots
->id_to_index
[memslot
->id
]; i
< slots
->used_slots
- 1; i
++) {
942 if (memslot
->base_gfn
> mslots
[i
+ 1].base_gfn
)
945 WARN_ON_ONCE(memslot
->base_gfn
== mslots
[i
+ 1].base_gfn
);
947 /* Shift the next memslot forward one and update its index. */
948 mslots
[i
] = mslots
[i
+ 1];
949 slots
->id_to_index
[mslots
[i
].id
] = i
;
955 * Move a changed memslot forwards in the array by shifting existing slots with
956 * a lower GFN toward the back of the array. Note, the changed memslot itself
957 * is not preserved in the array, i.e. not swapped at this time, only its new
958 * index into the array is tracked. Returns the changed memslot's final index
959 * into the memslots array.
961 static inline int kvm_memslot_move_forward(struct kvm_memslots
*slots
,
962 struct kvm_memory_slot
*memslot
,
965 struct kvm_memory_slot
*mslots
= slots
->memslots
;
968 for (i
= start
; i
> 0; i
--) {
969 if (memslot
->base_gfn
< mslots
[i
- 1].base_gfn
)
972 WARN_ON_ONCE(memslot
->base_gfn
== mslots
[i
- 1].base_gfn
);
974 /* Shift the next memslot back one and update its index. */
975 mslots
[i
] = mslots
[i
- 1];
976 slots
->id_to_index
[mslots
[i
].id
] = i
;
982 * Re-sort memslots based on their GFN to account for an added, deleted, or
983 * moved memslot. Sorting memslots by GFN allows using a binary search during
986 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
987 * at memslots[0] has the highest GFN.
989 * The sorting algorithm takes advantage of having initially sorted memslots
990 * and knowing the position of the changed memslot. Sorting is also optimized
991 * by not swapping the updated memslot and instead only shifting other memslots
992 * and tracking the new index for the update memslot. Only once its final
993 * index is known is the updated memslot copied into its position in the array.
995 * - When deleting a memslot, the deleted memslot simply needs to be moved to
996 * the end of the array.
998 * - When creating a memslot, the algorithm "inserts" the new memslot at the
999 * end of the array and then it forward to its correct location.
1001 * - When moving a memslot, the algorithm first moves the updated memslot
1002 * backward to handle the scenario where the memslot's GFN was changed to a
1003 * lower value. update_memslots() then falls through and runs the same flow
1004 * as creating a memslot to move the memslot forward to handle the scenario
1005 * where its GFN was changed to a higher value.
1007 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1008 * historical reasons. Originally, invalid memslots where denoted by having
1009 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1010 * to the end of the array. The current algorithm uses dedicated logic to
1011 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1013 * The other historical motiviation for highest->lowest was to improve the
1014 * performance of memslot lookup. KVM originally used a linear search starting
1015 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1016 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1017 * single memslot above the 4gb boundary. As the largest memslot is also the
1018 * most likely to be referenced, sorting it to the front of the array was
1019 * advantageous. The current binary search starts from the middle of the array
1020 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1022 static void update_memslots(struct kvm_memslots
*slots
,
1023 struct kvm_memory_slot
*memslot
,
1024 enum kvm_mr_change change
)
1028 if (change
== KVM_MR_DELETE
) {
1029 kvm_memslot_delete(slots
, memslot
);
1031 if (change
== KVM_MR_CREATE
)
1032 i
= kvm_memslot_insert_back(slots
);
1034 i
= kvm_memslot_move_backward(slots
, memslot
);
1035 i
= kvm_memslot_move_forward(slots
, memslot
, i
);
1038 * Copy the memslot to its new position in memslots and update
1039 * its index accordingly.
1041 slots
->memslots
[i
] = *memslot
;
1042 slots
->id_to_index
[memslot
->id
] = i
;
1046 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
1048 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
1050 #ifdef __KVM_HAVE_READONLY_MEM
1051 valid_flags
|= KVM_MEM_READONLY
;
1054 if (mem
->flags
& ~valid_flags
)
1060 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
1061 int as_id
, struct kvm_memslots
*slots
)
1063 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
1064 u64 gen
= old_memslots
->generation
;
1066 WARN_ON(gen
& KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS
);
1067 slots
->generation
= gen
| KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS
;
1069 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
1070 synchronize_srcu_expedited(&kvm
->srcu
);
1073 * Increment the new memslot generation a second time, dropping the
1074 * update in-progress flag and incrementing the generation based on
1075 * the number of address spaces. This provides a unique and easily
1076 * identifiable generation number while the memslots are in flux.
1078 gen
= slots
->generation
& ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS
;
1081 * Generations must be unique even across address spaces. We do not need
1082 * a global counter for that, instead the generation space is evenly split
1083 * across address spaces. For example, with two address spaces, address
1084 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1085 * use generations 1, 3, 5, ...
1087 gen
+= KVM_ADDRESS_SPACE_NUM
;
1089 kvm_arch_memslots_updated(kvm
, gen
);
1091 slots
->generation
= gen
;
1093 return old_memslots
;
1097 * Note, at a minimum, the current number of used slots must be allocated, even
1098 * when deleting a memslot, as we need a complete duplicate of the memslots for
1099 * use when invalidating a memslot prior to deleting/moving the memslot.
1101 static struct kvm_memslots
*kvm_dup_memslots(struct kvm_memslots
*old
,
1102 enum kvm_mr_change change
)
1104 struct kvm_memslots
*slots
;
1105 size_t old_size
, new_size
;
1107 old_size
= sizeof(struct kvm_memslots
) +
1108 (sizeof(struct kvm_memory_slot
) * old
->used_slots
);
1110 if (change
== KVM_MR_CREATE
)
1111 new_size
= old_size
+ sizeof(struct kvm_memory_slot
);
1113 new_size
= old_size
;
1115 slots
= kvzalloc(new_size
, GFP_KERNEL_ACCOUNT
);
1117 memcpy(slots
, old
, old_size
);
1122 static int kvm_set_memslot(struct kvm
*kvm
,
1123 const struct kvm_userspace_memory_region
*mem
,
1124 struct kvm_memory_slot
*old
,
1125 struct kvm_memory_slot
*new, int as_id
,
1126 enum kvm_mr_change change
)
1128 struct kvm_memory_slot
*slot
;
1129 struct kvm_memslots
*slots
;
1132 slots
= kvm_dup_memslots(__kvm_memslots(kvm
, as_id
), change
);
1136 if (change
== KVM_MR_DELETE
|| change
== KVM_MR_MOVE
) {
1138 * Note, the INVALID flag needs to be in the appropriate entry
1139 * in the freshly allocated memslots, not in @old or @new.
1141 slot
= id_to_memslot(slots
, old
->id
);
1142 slot
->flags
|= KVM_MEMSLOT_INVALID
;
1145 * We can re-use the old memslots, the only difference from the
1146 * newly installed memslots is the invalid flag, which will get
1147 * dropped by update_memslots anyway. We'll also revert to the
1148 * old memslots if preparing the new memory region fails.
1150 slots
= install_new_memslots(kvm
, as_id
, slots
);
1152 /* From this point no new shadow pages pointing to a deleted,
1153 * or moved, memslot will be created.
1155 * validation of sp->gfn happens in:
1156 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1157 * - kvm_is_visible_gfn (mmu_check_root)
1159 kvm_arch_flush_shadow_memslot(kvm
, slot
);
1162 r
= kvm_arch_prepare_memory_region(kvm
, new, mem
, change
);
1166 update_memslots(slots
, new, change
);
1167 slots
= install_new_memslots(kvm
, as_id
, slots
);
1169 kvm_arch_commit_memory_region(kvm
, mem
, old
, new, change
);
1175 if (change
== KVM_MR_DELETE
|| change
== KVM_MR_MOVE
)
1176 slots
= install_new_memslots(kvm
, as_id
, slots
);
1181 static int kvm_delete_memslot(struct kvm
*kvm
,
1182 const struct kvm_userspace_memory_region
*mem
,
1183 struct kvm_memory_slot
*old
, int as_id
)
1185 struct kvm_memory_slot
new;
1191 memset(&new, 0, sizeof(new));
1194 r
= kvm_set_memslot(kvm
, mem
, old
, &new, as_id
, KVM_MR_DELETE
);
1198 kvm_free_memslot(kvm
, old
);
1203 * Allocate some memory and give it an address in the guest physical address
1206 * Discontiguous memory is allowed, mostly for framebuffers.
1208 * Must be called holding kvm->slots_lock for write.
1210 int __kvm_set_memory_region(struct kvm
*kvm
,
1211 const struct kvm_userspace_memory_region
*mem
)
1213 struct kvm_memory_slot old
, new;
1214 struct kvm_memory_slot
*tmp
;
1215 enum kvm_mr_change change
;
1219 r
= check_memory_region_flags(mem
);
1223 as_id
= mem
->slot
>> 16;
1224 id
= (u16
)mem
->slot
;
1226 /* General sanity checks */
1227 if (mem
->memory_size
& (PAGE_SIZE
- 1))
1229 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
1231 /* We can read the guest memory with __xxx_user() later on. */
1232 if ((id
< KVM_USER_MEM_SLOTS
) &&
1233 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
1234 !access_ok((void __user
*)(unsigned long)mem
->userspace_addr
,
1237 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
1239 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
1243 * Make a full copy of the old memslot, the pointer will become stale
1244 * when the memslots are re-sorted by update_memslots(), and the old
1245 * memslot needs to be referenced after calling update_memslots(), e.g.
1246 * to free its resources and for arch specific behavior.
1248 tmp
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
1253 memset(&old
, 0, sizeof(old
));
1257 if (!mem
->memory_size
)
1258 return kvm_delete_memslot(kvm
, mem
, &old
, as_id
);
1261 new.base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
1262 new.npages
= mem
->memory_size
>> PAGE_SHIFT
;
1263 new.flags
= mem
->flags
;
1264 new.userspace_addr
= mem
->userspace_addr
;
1266 if (new.npages
> KVM_MEM_MAX_NR_PAGES
)
1270 change
= KVM_MR_CREATE
;
1271 new.dirty_bitmap
= NULL
;
1272 memset(&new.arch
, 0, sizeof(new.arch
));
1273 } else { /* Modify an existing slot. */
1274 if ((new.userspace_addr
!= old
.userspace_addr
) ||
1275 (new.npages
!= old
.npages
) ||
1276 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
1279 if (new.base_gfn
!= old
.base_gfn
)
1280 change
= KVM_MR_MOVE
;
1281 else if (new.flags
!= old
.flags
)
1282 change
= KVM_MR_FLAGS_ONLY
;
1283 else /* Nothing to change. */
1286 /* Copy dirty_bitmap and arch from the current memslot. */
1287 new.dirty_bitmap
= old
.dirty_bitmap
;
1288 memcpy(&new.arch
, &old
.arch
, sizeof(new.arch
));
1291 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
1292 /* Check for overlaps */
1293 kvm_for_each_memslot(tmp
, __kvm_memslots(kvm
, as_id
)) {
1296 if (!((new.base_gfn
+ new.npages
<= tmp
->base_gfn
) ||
1297 (new.base_gfn
>= tmp
->base_gfn
+ tmp
->npages
)))
1302 /* Allocate/free page dirty bitmap as needed */
1303 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
1304 new.dirty_bitmap
= NULL
;
1305 else if (!new.dirty_bitmap
) {
1306 r
= kvm_alloc_dirty_bitmap(&new);
1310 if (kvm_dirty_log_manual_protect_and_init_set(kvm
))
1311 bitmap_set(new.dirty_bitmap
, 0, new.npages
);
1314 r
= kvm_set_memslot(kvm
, mem
, &old
, &new, as_id
, change
);
1318 if (old
.dirty_bitmap
&& !new.dirty_bitmap
)
1319 kvm_destroy_dirty_bitmap(&old
);
1323 if (new.dirty_bitmap
&& !old
.dirty_bitmap
)
1324 kvm_destroy_dirty_bitmap(&new);
1327 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1329 int kvm_set_memory_region(struct kvm
*kvm
,
1330 const struct kvm_userspace_memory_region
*mem
)
1334 mutex_lock(&kvm
->slots_lock
);
1335 r
= __kvm_set_memory_region(kvm
, mem
);
1336 mutex_unlock(&kvm
->slots_lock
);
1339 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1341 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1342 struct kvm_userspace_memory_region
*mem
)
1344 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1347 return kvm_set_memory_region(kvm
, mem
);
1350 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1352 * kvm_get_dirty_log - get a snapshot of dirty pages
1353 * @kvm: pointer to kvm instance
1354 * @log: slot id and address to which we copy the log
1355 * @is_dirty: set to '1' if any dirty pages were found
1356 * @memslot: set to the associated memslot, always valid on success
1358 int kvm_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
,
1359 int *is_dirty
, struct kvm_memory_slot
**memslot
)
1361 struct kvm_memslots
*slots
;
1364 unsigned long any
= 0;
1369 as_id
= log
->slot
>> 16;
1370 id
= (u16
)log
->slot
;
1371 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1374 slots
= __kvm_memslots(kvm
, as_id
);
1375 *memslot
= id_to_memslot(slots
, id
);
1376 if (!(*memslot
) || !(*memslot
)->dirty_bitmap
)
1379 kvm_arch_sync_dirty_log(kvm
, *memslot
);
1381 n
= kvm_dirty_bitmap_bytes(*memslot
);
1383 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1384 any
= (*memslot
)->dirty_bitmap
[i
];
1386 if (copy_to_user(log
->dirty_bitmap
, (*memslot
)->dirty_bitmap
, n
))
1393 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1395 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1397 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1398 * and reenable dirty page tracking for the corresponding pages.
1399 * @kvm: pointer to kvm instance
1400 * @log: slot id and address to which we copy the log
1402 * We need to keep it in mind that VCPU threads can write to the bitmap
1403 * concurrently. So, to avoid losing track of dirty pages we keep the
1406 * 1. Take a snapshot of the bit and clear it if needed.
1407 * 2. Write protect the corresponding page.
1408 * 3. Copy the snapshot to the userspace.
1409 * 4. Upon return caller flushes TLB's if needed.
1411 * Between 2 and 4, the guest may write to the page using the remaining TLB
1412 * entry. This is not a problem because the page is reported dirty using
1413 * the snapshot taken before and step 4 ensures that writes done after
1414 * exiting to userspace will be logged for the next call.
1417 static int kvm_get_dirty_log_protect(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
1419 struct kvm_memslots
*slots
;
1420 struct kvm_memory_slot
*memslot
;
1423 unsigned long *dirty_bitmap
;
1424 unsigned long *dirty_bitmap_buffer
;
1427 as_id
= log
->slot
>> 16;
1428 id
= (u16
)log
->slot
;
1429 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1432 slots
= __kvm_memslots(kvm
, as_id
);
1433 memslot
= id_to_memslot(slots
, id
);
1434 if (!memslot
|| !memslot
->dirty_bitmap
)
1437 dirty_bitmap
= memslot
->dirty_bitmap
;
1439 kvm_arch_sync_dirty_log(kvm
, memslot
);
1441 n
= kvm_dirty_bitmap_bytes(memslot
);
1443 if (kvm
->manual_dirty_log_protect
) {
1445 * Unlike kvm_get_dirty_log, we always return false in *flush,
1446 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1447 * is some code duplication between this function and
1448 * kvm_get_dirty_log, but hopefully all architecture
1449 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1450 * can be eliminated.
1452 dirty_bitmap_buffer
= dirty_bitmap
;
1454 dirty_bitmap_buffer
= kvm_second_dirty_bitmap(memslot
);
1455 memset(dirty_bitmap_buffer
, 0, n
);
1457 spin_lock(&kvm
->mmu_lock
);
1458 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1462 if (!dirty_bitmap
[i
])
1466 mask
= xchg(&dirty_bitmap
[i
], 0);
1467 dirty_bitmap_buffer
[i
] = mask
;
1469 offset
= i
* BITS_PER_LONG
;
1470 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1473 spin_unlock(&kvm
->mmu_lock
);
1477 kvm_arch_flush_remote_tlbs_memslot(kvm
, memslot
);
1479 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1486 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1487 * @kvm: kvm instance
1488 * @log: slot id and address to which we copy the log
1490 * Steps 1-4 below provide general overview of dirty page logging. See
1491 * kvm_get_dirty_log_protect() function description for additional details.
1493 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1494 * always flush the TLB (step 4) even if previous step failed and the dirty
1495 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1496 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1497 * writes will be marked dirty for next log read.
1499 * 1. Take a snapshot of the bit and clear it if needed.
1500 * 2. Write protect the corresponding page.
1501 * 3. Copy the snapshot to the userspace.
1502 * 4. Flush TLB's if needed.
1504 static int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1505 struct kvm_dirty_log
*log
)
1509 mutex_lock(&kvm
->slots_lock
);
1511 r
= kvm_get_dirty_log_protect(kvm
, log
);
1513 mutex_unlock(&kvm
->slots_lock
);
1518 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1519 * and reenable dirty page tracking for the corresponding pages.
1520 * @kvm: pointer to kvm instance
1521 * @log: slot id and address from which to fetch the bitmap of dirty pages
1523 static int kvm_clear_dirty_log_protect(struct kvm
*kvm
,
1524 struct kvm_clear_dirty_log
*log
)
1526 struct kvm_memslots
*slots
;
1527 struct kvm_memory_slot
*memslot
;
1531 unsigned long *dirty_bitmap
;
1532 unsigned long *dirty_bitmap_buffer
;
1535 as_id
= log
->slot
>> 16;
1536 id
= (u16
)log
->slot
;
1537 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1540 if (log
->first_page
& 63)
1543 slots
= __kvm_memslots(kvm
, as_id
);
1544 memslot
= id_to_memslot(slots
, id
);
1545 if (!memslot
|| !memslot
->dirty_bitmap
)
1548 dirty_bitmap
= memslot
->dirty_bitmap
;
1550 n
= ALIGN(log
->num_pages
, BITS_PER_LONG
) / 8;
1552 if (log
->first_page
> memslot
->npages
||
1553 log
->num_pages
> memslot
->npages
- log
->first_page
||
1554 (log
->num_pages
< memslot
->npages
- log
->first_page
&& (log
->num_pages
& 63)))
1557 kvm_arch_sync_dirty_log(kvm
, memslot
);
1560 dirty_bitmap_buffer
= kvm_second_dirty_bitmap(memslot
);
1561 if (copy_from_user(dirty_bitmap_buffer
, log
->dirty_bitmap
, n
))
1564 spin_lock(&kvm
->mmu_lock
);
1565 for (offset
= log
->first_page
, i
= offset
/ BITS_PER_LONG
,
1566 n
= DIV_ROUND_UP(log
->num_pages
, BITS_PER_LONG
); n
--;
1567 i
++, offset
+= BITS_PER_LONG
) {
1568 unsigned long mask
= *dirty_bitmap_buffer
++;
1569 atomic_long_t
*p
= (atomic_long_t
*) &dirty_bitmap
[i
];
1573 mask
&= atomic_long_fetch_andnot(mask
, p
);
1576 * mask contains the bits that really have been cleared. This
1577 * never includes any bits beyond the length of the memslot (if
1578 * the length is not aligned to 64 pages), therefore it is not
1579 * a problem if userspace sets them in log->dirty_bitmap.
1583 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1587 spin_unlock(&kvm
->mmu_lock
);
1590 kvm_arch_flush_remote_tlbs_memslot(kvm
, memslot
);
1595 static int kvm_vm_ioctl_clear_dirty_log(struct kvm
*kvm
,
1596 struct kvm_clear_dirty_log
*log
)
1600 mutex_lock(&kvm
->slots_lock
);
1602 r
= kvm_clear_dirty_log_protect(kvm
, log
);
1604 mutex_unlock(&kvm
->slots_lock
);
1607 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1609 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1611 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1613 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1615 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1617 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1620 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1622 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1624 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1625 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1630 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1632 unsigned long kvm_host_page_size(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1634 struct vm_area_struct
*vma
;
1635 unsigned long addr
, size
;
1639 addr
= kvm_vcpu_gfn_to_hva_prot(vcpu
, gfn
, NULL
);
1640 if (kvm_is_error_hva(addr
))
1643 down_read(¤t
->mm
->mmap_sem
);
1644 vma
= find_vma(current
->mm
, addr
);
1648 size
= vma_kernel_pagesize(vma
);
1651 up_read(¤t
->mm
->mmap_sem
);
1656 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1658 return slot
->flags
& KVM_MEM_READONLY
;
1661 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1662 gfn_t
*nr_pages
, bool write
)
1664 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1665 return KVM_HVA_ERR_BAD
;
1667 if (memslot_is_readonly(slot
) && write
)
1668 return KVM_HVA_ERR_RO_BAD
;
1671 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1673 return __gfn_to_hva_memslot(slot
, gfn
);
1676 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1679 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1682 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1685 return gfn_to_hva_many(slot
, gfn
, NULL
);
1687 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1689 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1691 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1693 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1695 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1697 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1699 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1702 * Return the hva of a @gfn and the R/W attribute if possible.
1704 * @slot: the kvm_memory_slot which contains @gfn
1705 * @gfn: the gfn to be translated
1706 * @writable: used to return the read/write attribute of the @slot if the hva
1707 * is valid and @writable is not NULL
1709 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1710 gfn_t gfn
, bool *writable
)
1712 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1714 if (!kvm_is_error_hva(hva
) && writable
)
1715 *writable
= !memslot_is_readonly(slot
);
1720 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1722 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1724 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1727 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1729 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1731 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1734 static inline int check_user_page_hwpoison(unsigned long addr
)
1736 int rc
, flags
= FOLL_HWPOISON
| FOLL_WRITE
;
1738 rc
= get_user_pages(addr
, 1, flags
, NULL
, NULL
);
1739 return rc
== -EHWPOISON
;
1743 * The fast path to get the writable pfn which will be stored in @pfn,
1744 * true indicates success, otherwise false is returned. It's also the
1745 * only part that runs if we can in atomic context.
1747 static bool hva_to_pfn_fast(unsigned long addr
, bool write_fault
,
1748 bool *writable
, kvm_pfn_t
*pfn
)
1750 struct page
*page
[1];
1754 * Fast pin a writable pfn only if it is a write fault request
1755 * or the caller allows to map a writable pfn for a read fault
1758 if (!(write_fault
|| writable
))
1761 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1763 *pfn
= page_to_pfn(page
[0]);
1774 * The slow path to get the pfn of the specified host virtual address,
1775 * 1 indicates success, -errno is returned if error is detected.
1777 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1778 bool *writable
, kvm_pfn_t
*pfn
)
1780 unsigned int flags
= FOLL_HWPOISON
;
1787 *writable
= write_fault
;
1790 flags
|= FOLL_WRITE
;
1792 flags
|= FOLL_NOWAIT
;
1794 npages
= get_user_pages_unlocked(addr
, 1, &page
, flags
);
1798 /* map read fault as writable if possible */
1799 if (unlikely(!write_fault
) && writable
) {
1802 if (__get_user_pages_fast(addr
, 1, 1, &wpage
) == 1) {
1808 *pfn
= page_to_pfn(page
);
1812 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1814 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1817 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1823 static int hva_to_pfn_remapped(struct vm_area_struct
*vma
,
1824 unsigned long addr
, bool *async
,
1825 bool write_fault
, bool *writable
,
1831 r
= follow_pfn(vma
, addr
, &pfn
);
1834 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1835 * not call the fault handler, so do it here.
1837 bool unlocked
= false;
1838 r
= fixup_user_fault(current
, current
->mm
, addr
,
1839 (write_fault
? FAULT_FLAG_WRITE
: 0),
1846 r
= follow_pfn(vma
, addr
, &pfn
);
1856 * Get a reference here because callers of *hva_to_pfn* and
1857 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1858 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1859 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1860 * simply do nothing for reserved pfns.
1862 * Whoever called remap_pfn_range is also going to call e.g.
1863 * unmap_mapping_range before the underlying pages are freed,
1864 * causing a call to our MMU notifier.
1873 * Pin guest page in memory and return its pfn.
1874 * @addr: host virtual address which maps memory to the guest
1875 * @atomic: whether this function can sleep
1876 * @async: whether this function need to wait IO complete if the
1877 * host page is not in the memory
1878 * @write_fault: whether we should get a writable host page
1879 * @writable: whether it allows to map a writable host page for !@write_fault
1881 * The function will map a writable host page for these two cases:
1882 * 1): @write_fault = true
1883 * 2): @write_fault = false && @writable, @writable will tell the caller
1884 * whether the mapping is writable.
1886 static kvm_pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1887 bool write_fault
, bool *writable
)
1889 struct vm_area_struct
*vma
;
1893 /* we can do it either atomically or asynchronously, not both */
1894 BUG_ON(atomic
&& async
);
1896 if (hva_to_pfn_fast(addr
, write_fault
, writable
, &pfn
))
1900 return KVM_PFN_ERR_FAULT
;
1902 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1906 down_read(¤t
->mm
->mmap_sem
);
1907 if (npages
== -EHWPOISON
||
1908 (!async
&& check_user_page_hwpoison(addr
))) {
1909 pfn
= KVM_PFN_ERR_HWPOISON
;
1914 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1917 pfn
= KVM_PFN_ERR_FAULT
;
1918 else if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) {
1919 r
= hva_to_pfn_remapped(vma
, addr
, async
, write_fault
, writable
, &pfn
);
1923 pfn
= KVM_PFN_ERR_FAULT
;
1925 if (async
&& vma_is_valid(vma
, write_fault
))
1927 pfn
= KVM_PFN_ERR_FAULT
;
1930 up_read(¤t
->mm
->mmap_sem
);
1934 kvm_pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1935 bool atomic
, bool *async
, bool write_fault
,
1938 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1940 if (addr
== KVM_HVA_ERR_RO_BAD
) {
1943 return KVM_PFN_ERR_RO_FAULT
;
1946 if (kvm_is_error_hva(addr
)) {
1949 return KVM_PFN_NOSLOT
;
1952 /* Do not map writable pfn in the readonly memslot. */
1953 if (writable
&& memslot_is_readonly(slot
)) {
1958 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1961 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1963 kvm_pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1966 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1967 write_fault
, writable
);
1969 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1971 kvm_pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1973 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1975 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1977 kvm_pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1979 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1981 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1983 kvm_pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1985 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1987 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1989 kvm_pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1991 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1993 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1995 kvm_pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1997 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1999 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
2001 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
2002 struct page
**pages
, int nr_pages
)
2007 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
2008 if (kvm_is_error_hva(addr
))
2011 if (entry
< nr_pages
)
2014 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
2016 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
2018 static struct page
*kvm_pfn_to_page(kvm_pfn_t pfn
)
2020 if (is_error_noslot_pfn(pfn
))
2021 return KVM_ERR_PTR_BAD_PAGE
;
2023 if (kvm_is_reserved_pfn(pfn
)) {
2025 return KVM_ERR_PTR_BAD_PAGE
;
2028 return pfn_to_page(pfn
);
2031 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
2035 pfn
= gfn_to_pfn(kvm
, gfn
);
2037 return kvm_pfn_to_page(pfn
);
2039 EXPORT_SYMBOL_GPL(gfn_to_page
);
2041 void kvm_release_pfn(kvm_pfn_t pfn
, bool dirty
, struct gfn_to_pfn_cache
*cache
)
2047 cache
->pfn
= cache
->gfn
= 0;
2050 kvm_release_pfn_dirty(pfn
);
2052 kvm_release_pfn_clean(pfn
);
2055 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot
*slot
, gfn_t gfn
,
2056 struct gfn_to_pfn_cache
*cache
, u64 gen
)
2058 kvm_release_pfn(cache
->pfn
, cache
->dirty
, cache
);
2060 cache
->pfn
= gfn_to_pfn_memslot(slot
, gfn
);
2062 cache
->dirty
= false;
2063 cache
->generation
= gen
;
2066 static int __kvm_map_gfn(struct kvm_memslots
*slots
, gfn_t gfn
,
2067 struct kvm_host_map
*map
,
2068 struct gfn_to_pfn_cache
*cache
,
2073 struct page
*page
= KVM_UNMAPPED_PAGE
;
2074 struct kvm_memory_slot
*slot
= __gfn_to_memslot(slots
, gfn
);
2075 u64 gen
= slots
->generation
;
2081 if (!cache
->pfn
|| cache
->gfn
!= gfn
||
2082 cache
->generation
!= gen
) {
2085 kvm_cache_gfn_to_pfn(slot
, gfn
, cache
, gen
);
2091 pfn
= gfn_to_pfn_memslot(slot
, gfn
);
2093 if (is_error_noslot_pfn(pfn
))
2096 if (pfn_valid(pfn
)) {
2097 page
= pfn_to_page(pfn
);
2099 hva
= kmap_atomic(page
);
2102 #ifdef CONFIG_HAS_IOMEM
2103 } else if (!atomic
) {
2104 hva
= memremap(pfn_to_hpa(pfn
), PAGE_SIZE
, MEMREMAP_WB
);
2121 int kvm_map_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
, struct kvm_host_map
*map
,
2122 struct gfn_to_pfn_cache
*cache
, bool atomic
)
2124 return __kvm_map_gfn(kvm_memslots(vcpu
->kvm
), gfn
, map
,
2127 EXPORT_SYMBOL_GPL(kvm_map_gfn
);
2129 int kvm_vcpu_map(struct kvm_vcpu
*vcpu
, gfn_t gfn
, struct kvm_host_map
*map
)
2131 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu
), gfn
, map
,
2134 EXPORT_SYMBOL_GPL(kvm_vcpu_map
);
2136 static void __kvm_unmap_gfn(struct kvm_memory_slot
*memslot
,
2137 struct kvm_host_map
*map
,
2138 struct gfn_to_pfn_cache
*cache
,
2139 bool dirty
, bool atomic
)
2147 if (map
->page
!= KVM_UNMAPPED_PAGE
) {
2149 kunmap_atomic(map
->hva
);
2153 #ifdef CONFIG_HAS_IOMEM
2157 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2161 mark_page_dirty_in_slot(memslot
, map
->gfn
);
2164 cache
->dirty
|= dirty
;
2166 kvm_release_pfn(map
->pfn
, dirty
, NULL
);
2172 int kvm_unmap_gfn(struct kvm_vcpu
*vcpu
, struct kvm_host_map
*map
,
2173 struct gfn_to_pfn_cache
*cache
, bool dirty
, bool atomic
)
2175 __kvm_unmap_gfn(gfn_to_memslot(vcpu
->kvm
, map
->gfn
), map
,
2176 cache
, dirty
, atomic
);
2179 EXPORT_SYMBOL_GPL(kvm_unmap_gfn
);
2181 void kvm_vcpu_unmap(struct kvm_vcpu
*vcpu
, struct kvm_host_map
*map
, bool dirty
)
2183 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu
, map
->gfn
), map
, NULL
,
2186 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap
);
2188 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2192 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
2194 return kvm_pfn_to_page(pfn
);
2196 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
2198 void kvm_release_page_clean(struct page
*page
)
2200 WARN_ON(is_error_page(page
));
2202 kvm_release_pfn_clean(page_to_pfn(page
));
2204 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
2206 void kvm_release_pfn_clean(kvm_pfn_t pfn
)
2208 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
2209 put_page(pfn_to_page(pfn
));
2211 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
2213 void kvm_release_page_dirty(struct page
*page
)
2215 WARN_ON(is_error_page(page
));
2217 kvm_release_pfn_dirty(page_to_pfn(page
));
2219 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
2221 void kvm_release_pfn_dirty(kvm_pfn_t pfn
)
2223 kvm_set_pfn_dirty(pfn
);
2224 kvm_release_pfn_clean(pfn
);
2226 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
2228 void kvm_set_pfn_dirty(kvm_pfn_t pfn
)
2230 if (!kvm_is_reserved_pfn(pfn
) && !kvm_is_zone_device_pfn(pfn
))
2231 SetPageDirty(pfn_to_page(pfn
));
2233 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
2235 void kvm_set_pfn_accessed(kvm_pfn_t pfn
)
2237 if (!kvm_is_reserved_pfn(pfn
) && !kvm_is_zone_device_pfn(pfn
))
2238 mark_page_accessed(pfn_to_page(pfn
));
2240 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
2242 void kvm_get_pfn(kvm_pfn_t pfn
)
2244 if (!kvm_is_reserved_pfn(pfn
))
2245 get_page(pfn_to_page(pfn
));
2247 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
2249 static int next_segment(unsigned long len
, int offset
)
2251 if (len
> PAGE_SIZE
- offset
)
2252 return PAGE_SIZE
- offset
;
2257 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
2258 void *data
, int offset
, int len
)
2263 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
2264 if (kvm_is_error_hva(addr
))
2266 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
2272 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
2275 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
2277 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
2279 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
2281 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
2282 int offset
, int len
)
2284 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2286 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
2288 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
2290 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
2292 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2294 int offset
= offset_in_page(gpa
);
2297 while ((seg
= next_segment(len
, offset
)) != 0) {
2298 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
2308 EXPORT_SYMBOL_GPL(kvm_read_guest
);
2310 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
2312 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2314 int offset
= offset_in_page(gpa
);
2317 while ((seg
= next_segment(len
, offset
)) != 0) {
2318 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
2328 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
2330 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
2331 void *data
, int offset
, unsigned long len
)
2336 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
2337 if (kvm_is_error_hva(addr
))
2339 pagefault_disable();
2340 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
2347 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2348 void *data
, unsigned long len
)
2350 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2351 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2352 int offset
= offset_in_page(gpa
);
2354 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
2356 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
2358 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
2359 const void *data
, int offset
, int len
)
2364 addr
= gfn_to_hva_memslot(memslot
, gfn
);
2365 if (kvm_is_error_hva(addr
))
2367 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
2370 mark_page_dirty_in_slot(memslot
, gfn
);
2374 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
2375 const void *data
, int offset
, int len
)
2377 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
2379 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
2381 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
2383 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2384 const void *data
, int offset
, int len
)
2386 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2388 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
2390 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
2392 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
2395 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2397 int offset
= offset_in_page(gpa
);
2400 while ((seg
= next_segment(len
, offset
)) != 0) {
2401 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
2411 EXPORT_SYMBOL_GPL(kvm_write_guest
);
2413 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
2416 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2418 int offset
= offset_in_page(gpa
);
2421 while ((seg
= next_segment(len
, offset
)) != 0) {
2422 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
2432 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
2434 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots
*slots
,
2435 struct gfn_to_hva_cache
*ghc
,
2436 gpa_t gpa
, unsigned long len
)
2438 int offset
= offset_in_page(gpa
);
2439 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
2440 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
2441 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
2442 gfn_t nr_pages_avail
;
2444 /* Update ghc->generation before performing any error checks. */
2445 ghc
->generation
= slots
->generation
;
2447 if (start_gfn
> end_gfn
) {
2448 ghc
->hva
= KVM_HVA_ERR_BAD
;
2453 * If the requested region crosses two memslots, we still
2454 * verify that the entire region is valid here.
2456 for ( ; start_gfn
<= end_gfn
; start_gfn
+= nr_pages_avail
) {
2457 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
2458 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
2460 if (kvm_is_error_hva(ghc
->hva
))
2464 /* Use the slow path for cross page reads and writes. */
2465 if (nr_pages_needed
== 1)
2468 ghc
->memslot
= NULL
;
2475 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2476 gpa_t gpa
, unsigned long len
)
2478 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2479 return __kvm_gfn_to_hva_cache_init(slots
, ghc
, gpa
, len
);
2481 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
2483 int kvm_write_guest_offset_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2484 void *data
, unsigned int offset
,
2487 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2489 gpa_t gpa
= ghc
->gpa
+ offset
;
2491 BUG_ON(len
+ offset
> ghc
->len
);
2493 if (slots
->generation
!= ghc
->generation
) {
2494 if (__kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
))
2498 if (kvm_is_error_hva(ghc
->hva
))
2501 if (unlikely(!ghc
->memslot
))
2502 return kvm_write_guest(kvm
, gpa
, data
, len
);
2504 r
= __copy_to_user((void __user
*)ghc
->hva
+ offset
, data
, len
);
2507 mark_page_dirty_in_slot(ghc
->memslot
, gpa
>> PAGE_SHIFT
);
2511 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached
);
2513 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2514 void *data
, unsigned long len
)
2516 return kvm_write_guest_offset_cached(kvm
, ghc
, data
, 0, len
);
2518 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
2520 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2521 void *data
, unsigned long len
)
2523 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2526 BUG_ON(len
> ghc
->len
);
2528 if (slots
->generation
!= ghc
->generation
) {
2529 if (__kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
))
2533 if (kvm_is_error_hva(ghc
->hva
))
2536 if (unlikely(!ghc
->memslot
))
2537 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
2539 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
2545 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
2547 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
2549 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2551 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
2553 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
2555 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
2557 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2559 int offset
= offset_in_page(gpa
);
2562 while ((seg
= next_segment(len
, offset
)) != 0) {
2563 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
2572 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
2574 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
2577 if (memslot
&& memslot
->dirty_bitmap
) {
2578 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
2580 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
2584 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
2586 struct kvm_memory_slot
*memslot
;
2588 memslot
= gfn_to_memslot(kvm
, gfn
);
2589 mark_page_dirty_in_slot(memslot
, gfn
);
2591 EXPORT_SYMBOL_GPL(mark_page_dirty
);
2593 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2595 struct kvm_memory_slot
*memslot
;
2597 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2598 mark_page_dirty_in_slot(memslot
, gfn
);
2600 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
2602 void kvm_sigset_activate(struct kvm_vcpu
*vcpu
)
2604 if (!vcpu
->sigset_active
)
2608 * This does a lockless modification of ->real_blocked, which is fine
2609 * because, only current can change ->real_blocked and all readers of
2610 * ->real_blocked don't care as long ->real_blocked is always a subset
2613 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, ¤t
->real_blocked
);
2616 void kvm_sigset_deactivate(struct kvm_vcpu
*vcpu
)
2618 if (!vcpu
->sigset_active
)
2621 sigprocmask(SIG_SETMASK
, ¤t
->real_blocked
, NULL
);
2622 sigemptyset(¤t
->real_blocked
);
2625 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2627 unsigned int old
, val
, grow
, grow_start
;
2629 old
= val
= vcpu
->halt_poll_ns
;
2630 grow_start
= READ_ONCE(halt_poll_ns_grow_start
);
2631 grow
= READ_ONCE(halt_poll_ns_grow
);
2636 if (val
< grow_start
)
2639 if (val
> halt_poll_ns
)
2642 vcpu
->halt_poll_ns
= val
;
2644 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
2647 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2649 unsigned int old
, val
, shrink
;
2651 old
= val
= vcpu
->halt_poll_ns
;
2652 shrink
= READ_ONCE(halt_poll_ns_shrink
);
2658 vcpu
->halt_poll_ns
= val
;
2659 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
2662 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
2665 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2667 if (kvm_arch_vcpu_runnable(vcpu
)) {
2668 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
2671 if (kvm_cpu_has_pending_timer(vcpu
))
2673 if (signal_pending(current
))
2678 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2683 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2685 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2688 DECLARE_SWAITQUEUE(wait
);
2689 bool waited
= false;
2692 kvm_arch_vcpu_blocking(vcpu
);
2694 start
= cur
= ktime_get();
2695 if (vcpu
->halt_poll_ns
&& !kvm_arch_no_poll(vcpu
)) {
2696 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2698 ++vcpu
->stat
.halt_attempted_poll
;
2701 * This sets KVM_REQ_UNHALT if an interrupt
2704 if (kvm_vcpu_check_block(vcpu
) < 0) {
2705 ++vcpu
->stat
.halt_successful_poll
;
2706 if (!vcpu_valid_wakeup(vcpu
))
2707 ++vcpu
->stat
.halt_poll_invalid
;
2711 } while (single_task_running() && ktime_before(cur
, stop
));
2715 prepare_to_swait_exclusive(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2717 if (kvm_vcpu_check_block(vcpu
) < 0)
2724 finish_swait(&vcpu
->wq
, &wait
);
2727 kvm_arch_vcpu_unblocking(vcpu
);
2728 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2730 if (!kvm_arch_no_poll(vcpu
)) {
2731 if (!vcpu_valid_wakeup(vcpu
)) {
2732 shrink_halt_poll_ns(vcpu
);
2733 } else if (halt_poll_ns
) {
2734 if (block_ns
<= vcpu
->halt_poll_ns
)
2736 /* we had a long block, shrink polling */
2737 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2738 shrink_halt_poll_ns(vcpu
);
2739 /* we had a short halt and our poll time is too small */
2740 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2741 block_ns
< halt_poll_ns
)
2742 grow_halt_poll_ns(vcpu
);
2744 vcpu
->halt_poll_ns
= 0;
2748 trace_kvm_vcpu_wakeup(block_ns
, waited
, vcpu_valid_wakeup(vcpu
));
2749 kvm_arch_vcpu_block_finish(vcpu
);
2751 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2753 bool kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
)
2755 struct swait_queue_head
*wqp
;
2757 wqp
= kvm_arch_vcpu_wq(vcpu
);
2758 if (swq_has_sleeper(wqp
)) {
2760 WRITE_ONCE(vcpu
->ready
, true);
2761 ++vcpu
->stat
.halt_wakeup
;
2767 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up
);
2771 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2773 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2776 int cpu
= vcpu
->cpu
;
2778 if (kvm_vcpu_wake_up(vcpu
))
2782 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2783 if (kvm_arch_vcpu_should_kick(vcpu
))
2784 smp_send_reschedule(cpu
);
2787 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2788 #endif /* !CONFIG_S390 */
2790 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2793 struct task_struct
*task
= NULL
;
2797 pid
= rcu_dereference(target
->pid
);
2799 task
= get_pid_task(pid
, PIDTYPE_PID
);
2803 ret
= yield_to(task
, 1);
2804 put_task_struct(task
);
2808 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2811 * Helper that checks whether a VCPU is eligible for directed yield.
2812 * Most eligible candidate to yield is decided by following heuristics:
2814 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2815 * (preempted lock holder), indicated by @in_spin_loop.
2816 * Set at the beiginning and cleared at the end of interception/PLE handler.
2818 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2819 * chance last time (mostly it has become eligible now since we have probably
2820 * yielded to lockholder in last iteration. This is done by toggling
2821 * @dy_eligible each time a VCPU checked for eligibility.)
2823 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2824 * to preempted lock-holder could result in wrong VCPU selection and CPU
2825 * burning. Giving priority for a potential lock-holder increases lock
2828 * Since algorithm is based on heuristics, accessing another VCPU data without
2829 * locking does not harm. It may result in trying to yield to same VCPU, fail
2830 * and continue with next VCPU and so on.
2832 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2834 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2837 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2838 vcpu
->spin_loop
.dy_eligible
;
2840 if (vcpu
->spin_loop
.in_spin_loop
)
2841 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2850 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2851 * a vcpu_load/vcpu_put pair. However, for most architectures
2852 * kvm_arch_vcpu_runnable does not require vcpu_load.
2854 bool __weak
kvm_arch_dy_runnable(struct kvm_vcpu
*vcpu
)
2856 return kvm_arch_vcpu_runnable(vcpu
);
2859 static bool vcpu_dy_runnable(struct kvm_vcpu
*vcpu
)
2861 if (kvm_arch_dy_runnable(vcpu
))
2864 #ifdef CONFIG_KVM_ASYNC_PF
2865 if (!list_empty_careful(&vcpu
->async_pf
.done
))
2872 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
, bool yield_to_kernel_mode
)
2874 struct kvm
*kvm
= me
->kvm
;
2875 struct kvm_vcpu
*vcpu
;
2876 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2882 kvm_vcpu_set_in_spin_loop(me
, true);
2884 * We boost the priority of a VCPU that is runnable but not
2885 * currently running, because it got preempted by something
2886 * else and called schedule in __vcpu_run. Hopefully that
2887 * VCPU is holding the lock that we need and will release it.
2888 * We approximate round-robin by starting at the last boosted VCPU.
2890 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2891 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2892 if (!pass
&& i
<= last_boosted_vcpu
) {
2893 i
= last_boosted_vcpu
;
2895 } else if (pass
&& i
> last_boosted_vcpu
)
2897 if (!READ_ONCE(vcpu
->ready
))
2901 if (swait_active(&vcpu
->wq
) && !vcpu_dy_runnable(vcpu
))
2903 if (READ_ONCE(vcpu
->preempted
) && yield_to_kernel_mode
&&
2904 !kvm_arch_vcpu_in_kernel(vcpu
))
2906 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2909 yielded
= kvm_vcpu_yield_to(vcpu
);
2911 kvm
->last_boosted_vcpu
= i
;
2913 } else if (yielded
< 0) {
2920 kvm_vcpu_set_in_spin_loop(me
, false);
2922 /* Ensure vcpu is not eligible during next spinloop */
2923 kvm_vcpu_set_dy_eligible(me
, false);
2925 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2927 static vm_fault_t
kvm_vcpu_fault(struct vm_fault
*vmf
)
2929 struct kvm_vcpu
*vcpu
= vmf
->vma
->vm_file
->private_data
;
2932 if (vmf
->pgoff
== 0)
2933 page
= virt_to_page(vcpu
->run
);
2935 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2936 page
= virt_to_page(vcpu
->arch
.pio_data
);
2938 #ifdef CONFIG_KVM_MMIO
2939 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2940 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2943 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2949 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2950 .fault
= kvm_vcpu_fault
,
2953 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2955 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2959 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2961 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2963 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2964 kvm_put_kvm(vcpu
->kvm
);
2968 static struct file_operations kvm_vcpu_fops
= {
2969 .release
= kvm_vcpu_release
,
2970 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2971 .mmap
= kvm_vcpu_mmap
,
2972 .llseek
= noop_llseek
,
2973 KVM_COMPAT(kvm_vcpu_compat_ioctl
),
2977 * Allocates an inode for the vcpu.
2979 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2981 char name
[8 + 1 + ITOA_MAX_LEN
+ 1];
2983 snprintf(name
, sizeof(name
), "kvm-vcpu:%d", vcpu
->vcpu_id
);
2984 return anon_inode_getfd(name
, &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2987 static void kvm_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
2989 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2990 char dir_name
[ITOA_MAX_LEN
* 2];
2992 if (!debugfs_initialized())
2995 snprintf(dir_name
, sizeof(dir_name
), "vcpu%d", vcpu
->vcpu_id
);
2996 vcpu
->debugfs_dentry
= debugfs_create_dir(dir_name
,
2997 vcpu
->kvm
->debugfs_dentry
);
2999 kvm_arch_create_vcpu_debugfs(vcpu
);
3004 * Creates some virtual cpus. Good luck creating more than one.
3006 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
3009 struct kvm_vcpu
*vcpu
;
3012 if (id
>= KVM_MAX_VCPU_ID
)
3015 mutex_lock(&kvm
->lock
);
3016 if (kvm
->created_vcpus
== KVM_MAX_VCPUS
) {
3017 mutex_unlock(&kvm
->lock
);
3021 kvm
->created_vcpus
++;
3022 mutex_unlock(&kvm
->lock
);
3024 r
= kvm_arch_vcpu_precreate(kvm
, id
);
3026 goto vcpu_decrement
;
3028 vcpu
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
3031 goto vcpu_decrement
;
3034 BUILD_BUG_ON(sizeof(struct kvm_run
) > PAGE_SIZE
);
3035 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
3040 vcpu
->run
= page_address(page
);
3042 kvm_vcpu_init(vcpu
, kvm
, id
);
3044 r
= kvm_arch_vcpu_create(vcpu
);
3046 goto vcpu_free_run_page
;
3048 kvm_create_vcpu_debugfs(vcpu
);
3050 mutex_lock(&kvm
->lock
);
3051 if (kvm_get_vcpu_by_id(kvm
, id
)) {
3053 goto unlock_vcpu_destroy
;
3056 vcpu
->vcpu_idx
= atomic_read(&kvm
->online_vcpus
);
3057 BUG_ON(kvm
->vcpus
[vcpu
->vcpu_idx
]);
3059 /* Now it's all set up, let userspace reach it */
3061 r
= create_vcpu_fd(vcpu
);
3063 kvm_put_kvm_no_destroy(kvm
);
3064 goto unlock_vcpu_destroy
;
3067 kvm
->vcpus
[vcpu
->vcpu_idx
] = vcpu
;
3070 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3071 * before kvm->online_vcpu's incremented value.
3074 atomic_inc(&kvm
->online_vcpus
);
3076 mutex_unlock(&kvm
->lock
);
3077 kvm_arch_vcpu_postcreate(vcpu
);
3080 unlock_vcpu_destroy
:
3081 mutex_unlock(&kvm
->lock
);
3082 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
3083 kvm_arch_vcpu_destroy(vcpu
);
3085 free_page((unsigned long)vcpu
->run
);
3087 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
3089 mutex_lock(&kvm
->lock
);
3090 kvm
->created_vcpus
--;
3091 mutex_unlock(&kvm
->lock
);
3095 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
3098 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
3099 vcpu
->sigset_active
= 1;
3100 vcpu
->sigset
= *sigset
;
3102 vcpu
->sigset_active
= 0;
3106 static long kvm_vcpu_ioctl(struct file
*filp
,
3107 unsigned int ioctl
, unsigned long arg
)
3109 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3110 void __user
*argp
= (void __user
*)arg
;
3112 struct kvm_fpu
*fpu
= NULL
;
3113 struct kvm_sregs
*kvm_sregs
= NULL
;
3115 if (vcpu
->kvm
->mm
!= current
->mm
)
3118 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
3122 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3123 * execution; mutex_lock() would break them.
3125 r
= kvm_arch_vcpu_async_ioctl(filp
, ioctl
, arg
);
3126 if (r
!= -ENOIOCTLCMD
)
3129 if (mutex_lock_killable(&vcpu
->mutex
))
3137 oldpid
= rcu_access_pointer(vcpu
->pid
);
3138 if (unlikely(oldpid
!= task_pid(current
))) {
3139 /* The thread running this VCPU changed. */
3142 r
= kvm_arch_vcpu_run_pid_change(vcpu
);
3146 newpid
= get_task_pid(current
, PIDTYPE_PID
);
3147 rcu_assign_pointer(vcpu
->pid
, newpid
);
3152 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
3153 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
3156 case KVM_GET_REGS
: {
3157 struct kvm_regs
*kvm_regs
;
3160 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL_ACCOUNT
);
3163 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
3167 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
3174 case KVM_SET_REGS
: {
3175 struct kvm_regs
*kvm_regs
;
3178 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
3179 if (IS_ERR(kvm_regs
)) {
3180 r
= PTR_ERR(kvm_regs
);
3183 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
3187 case KVM_GET_SREGS
: {
3188 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
),
3189 GFP_KERNEL_ACCOUNT
);
3193 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
3197 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
3202 case KVM_SET_SREGS
: {
3203 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
3204 if (IS_ERR(kvm_sregs
)) {
3205 r
= PTR_ERR(kvm_sregs
);
3209 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
3212 case KVM_GET_MP_STATE
: {
3213 struct kvm_mp_state mp_state
;
3215 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
3219 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
3224 case KVM_SET_MP_STATE
: {
3225 struct kvm_mp_state mp_state
;
3228 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
3230 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
3233 case KVM_TRANSLATE
: {
3234 struct kvm_translation tr
;
3237 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
3239 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
3243 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
3248 case KVM_SET_GUEST_DEBUG
: {
3249 struct kvm_guest_debug dbg
;
3252 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
3254 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
3257 case KVM_SET_SIGNAL_MASK
: {
3258 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
3259 struct kvm_signal_mask kvm_sigmask
;
3260 sigset_t sigset
, *p
;
3265 if (copy_from_user(&kvm_sigmask
, argp
,
3266 sizeof(kvm_sigmask
)))
3269 if (kvm_sigmask
.len
!= sizeof(sigset
))
3272 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
3277 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
3281 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL_ACCOUNT
);
3285 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
3289 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
3295 fpu
= memdup_user(argp
, sizeof(*fpu
));
3301 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
3305 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
3308 mutex_unlock(&vcpu
->mutex
);
3314 #ifdef CONFIG_KVM_COMPAT
3315 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
3316 unsigned int ioctl
, unsigned long arg
)
3318 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3319 void __user
*argp
= compat_ptr(arg
);
3322 if (vcpu
->kvm
->mm
!= current
->mm
)
3326 case KVM_SET_SIGNAL_MASK
: {
3327 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
3328 struct kvm_signal_mask kvm_sigmask
;
3333 if (copy_from_user(&kvm_sigmask
, argp
,
3334 sizeof(kvm_sigmask
)))
3337 if (kvm_sigmask
.len
!= sizeof(compat_sigset_t
))
3340 if (get_compat_sigset(&sigset
, (void *)sigmask_arg
->sigset
))
3342 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
3344 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
3348 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
3356 static int kvm_device_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
3358 struct kvm_device
*dev
= filp
->private_data
;
3361 return dev
->ops
->mmap(dev
, vma
);
3366 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
3367 int (*accessor
)(struct kvm_device
*dev
,
3368 struct kvm_device_attr
*attr
),
3371 struct kvm_device_attr attr
;
3376 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
3379 return accessor(dev
, &attr
);
3382 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
3385 struct kvm_device
*dev
= filp
->private_data
;
3387 if (dev
->kvm
->mm
!= current
->mm
)
3391 case KVM_SET_DEVICE_ATTR
:
3392 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
3393 case KVM_GET_DEVICE_ATTR
:
3394 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
3395 case KVM_HAS_DEVICE_ATTR
:
3396 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
3398 if (dev
->ops
->ioctl
)
3399 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
3405 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
3407 struct kvm_device
*dev
= filp
->private_data
;
3408 struct kvm
*kvm
= dev
->kvm
;
3410 if (dev
->ops
->release
) {
3411 mutex_lock(&kvm
->lock
);
3412 list_del(&dev
->vm_node
);
3413 dev
->ops
->release(dev
);
3414 mutex_unlock(&kvm
->lock
);
3421 static const struct file_operations kvm_device_fops
= {
3422 .unlocked_ioctl
= kvm_device_ioctl
,
3423 .release
= kvm_device_release
,
3424 KVM_COMPAT(kvm_device_ioctl
),
3425 .mmap
= kvm_device_mmap
,
3428 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
3430 if (filp
->f_op
!= &kvm_device_fops
)
3433 return filp
->private_data
;
3436 static const struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
3437 #ifdef CONFIG_KVM_MPIC
3438 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
3439 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
3443 int kvm_register_device_ops(const struct kvm_device_ops
*ops
, u32 type
)
3445 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
3448 if (kvm_device_ops_table
[type
] != NULL
)
3451 kvm_device_ops_table
[type
] = ops
;
3455 void kvm_unregister_device_ops(u32 type
)
3457 if (kvm_device_ops_table
[type
] != NULL
)
3458 kvm_device_ops_table
[type
] = NULL
;
3461 static int kvm_ioctl_create_device(struct kvm
*kvm
,
3462 struct kvm_create_device
*cd
)
3464 const struct kvm_device_ops
*ops
= NULL
;
3465 struct kvm_device
*dev
;
3466 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
3470 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
3473 type
= array_index_nospec(cd
->type
, ARRAY_SIZE(kvm_device_ops_table
));
3474 ops
= kvm_device_ops_table
[type
];
3481 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL_ACCOUNT
);
3488 mutex_lock(&kvm
->lock
);
3489 ret
= ops
->create(dev
, type
);
3491 mutex_unlock(&kvm
->lock
);
3495 list_add(&dev
->vm_node
, &kvm
->devices
);
3496 mutex_unlock(&kvm
->lock
);
3502 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
3504 kvm_put_kvm_no_destroy(kvm
);
3505 mutex_lock(&kvm
->lock
);
3506 list_del(&dev
->vm_node
);
3507 mutex_unlock(&kvm
->lock
);
3516 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
3519 case KVM_CAP_USER_MEMORY
:
3520 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
3521 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
3522 case KVM_CAP_INTERNAL_ERROR_DATA
:
3523 #ifdef CONFIG_HAVE_KVM_MSI
3524 case KVM_CAP_SIGNAL_MSI
:
3526 #ifdef CONFIG_HAVE_KVM_IRQFD
3528 case KVM_CAP_IRQFD_RESAMPLE
:
3530 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
3531 case KVM_CAP_CHECK_EXTENSION_VM
:
3532 case KVM_CAP_ENABLE_CAP_VM
:
3534 #ifdef CONFIG_KVM_MMIO
3535 case KVM_CAP_COALESCED_MMIO
:
3536 return KVM_COALESCED_MMIO_PAGE_OFFSET
;
3537 case KVM_CAP_COALESCED_PIO
:
3540 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3541 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
:
3542 return KVM_DIRTY_LOG_MANUAL_CAPS
;
3544 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3545 case KVM_CAP_IRQ_ROUTING
:
3546 return KVM_MAX_IRQ_ROUTES
;
3548 #if KVM_ADDRESS_SPACE_NUM > 1
3549 case KVM_CAP_MULTI_ADDRESS_SPACE
:
3550 return KVM_ADDRESS_SPACE_NUM
;
3552 case KVM_CAP_NR_MEMSLOTS
:
3553 return KVM_USER_MEM_SLOTS
;
3557 return kvm_vm_ioctl_check_extension(kvm
, arg
);
3560 int __attribute__((weak
)) kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
3561 struct kvm_enable_cap
*cap
)
3566 static int kvm_vm_ioctl_enable_cap_generic(struct kvm
*kvm
,
3567 struct kvm_enable_cap
*cap
)
3570 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3571 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
: {
3572 u64 allowed_options
= KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
;
3574 if (cap
->args
[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
)
3575 allowed_options
= KVM_DIRTY_LOG_MANUAL_CAPS
;
3577 if (cap
->flags
|| (cap
->args
[0] & ~allowed_options
))
3579 kvm
->manual_dirty_log_protect
= cap
->args
[0];
3584 return kvm_vm_ioctl_enable_cap(kvm
, cap
);
3588 static long kvm_vm_ioctl(struct file
*filp
,
3589 unsigned int ioctl
, unsigned long arg
)
3591 struct kvm
*kvm
= filp
->private_data
;
3592 void __user
*argp
= (void __user
*)arg
;
3595 if (kvm
->mm
!= current
->mm
)
3598 case KVM_CREATE_VCPU
:
3599 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
3601 case KVM_ENABLE_CAP
: {
3602 struct kvm_enable_cap cap
;
3605 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3607 r
= kvm_vm_ioctl_enable_cap_generic(kvm
, &cap
);
3610 case KVM_SET_USER_MEMORY_REGION
: {
3611 struct kvm_userspace_memory_region kvm_userspace_mem
;
3614 if (copy_from_user(&kvm_userspace_mem
, argp
,
3615 sizeof(kvm_userspace_mem
)))
3618 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
3621 case KVM_GET_DIRTY_LOG
: {
3622 struct kvm_dirty_log log
;
3625 if (copy_from_user(&log
, argp
, sizeof(log
)))
3627 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3630 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3631 case KVM_CLEAR_DIRTY_LOG
: {
3632 struct kvm_clear_dirty_log log
;
3635 if (copy_from_user(&log
, argp
, sizeof(log
)))
3637 r
= kvm_vm_ioctl_clear_dirty_log(kvm
, &log
);
3641 #ifdef CONFIG_KVM_MMIO
3642 case KVM_REGISTER_COALESCED_MMIO
: {
3643 struct kvm_coalesced_mmio_zone zone
;
3646 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3648 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
3651 case KVM_UNREGISTER_COALESCED_MMIO
: {
3652 struct kvm_coalesced_mmio_zone zone
;
3655 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3657 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
3662 struct kvm_irqfd data
;
3665 if (copy_from_user(&data
, argp
, sizeof(data
)))
3667 r
= kvm_irqfd(kvm
, &data
);
3670 case KVM_IOEVENTFD
: {
3671 struct kvm_ioeventfd data
;
3674 if (copy_from_user(&data
, argp
, sizeof(data
)))
3676 r
= kvm_ioeventfd(kvm
, &data
);
3679 #ifdef CONFIG_HAVE_KVM_MSI
3680 case KVM_SIGNAL_MSI
: {
3684 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
3686 r
= kvm_send_userspace_msi(kvm
, &msi
);
3690 #ifdef __KVM_HAVE_IRQ_LINE
3691 case KVM_IRQ_LINE_STATUS
:
3692 case KVM_IRQ_LINE
: {
3693 struct kvm_irq_level irq_event
;
3696 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
3699 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
3700 ioctl
== KVM_IRQ_LINE_STATUS
);
3705 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3706 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
3714 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3715 case KVM_SET_GSI_ROUTING
: {
3716 struct kvm_irq_routing routing
;
3717 struct kvm_irq_routing __user
*urouting
;
3718 struct kvm_irq_routing_entry
*entries
= NULL
;
3721 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
3724 if (!kvm_arch_can_set_irq_routing(kvm
))
3726 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
3732 entries
= vmalloc(array_size(sizeof(*entries
),
3738 if (copy_from_user(entries
, urouting
->entries
,
3739 routing
.nr
* sizeof(*entries
)))
3740 goto out_free_irq_routing
;
3742 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
3744 out_free_irq_routing
:
3748 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3749 case KVM_CREATE_DEVICE
: {
3750 struct kvm_create_device cd
;
3753 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
3756 r
= kvm_ioctl_create_device(kvm
, &cd
);
3761 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
3767 case KVM_CHECK_EXTENSION
:
3768 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
3771 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
3777 #ifdef CONFIG_KVM_COMPAT
3778 struct compat_kvm_dirty_log
{
3782 compat_uptr_t dirty_bitmap
; /* one bit per page */
3787 static long kvm_vm_compat_ioctl(struct file
*filp
,
3788 unsigned int ioctl
, unsigned long arg
)
3790 struct kvm
*kvm
= filp
->private_data
;
3793 if (kvm
->mm
!= current
->mm
)
3796 case KVM_GET_DIRTY_LOG
: {
3797 struct compat_kvm_dirty_log compat_log
;
3798 struct kvm_dirty_log log
;
3800 if (copy_from_user(&compat_log
, (void __user
*)arg
,
3801 sizeof(compat_log
)))
3803 log
.slot
= compat_log
.slot
;
3804 log
.padding1
= compat_log
.padding1
;
3805 log
.padding2
= compat_log
.padding2
;
3806 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
3808 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3812 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
3818 static struct file_operations kvm_vm_fops
= {
3819 .release
= kvm_vm_release
,
3820 .unlocked_ioctl
= kvm_vm_ioctl
,
3821 .llseek
= noop_llseek
,
3822 KVM_COMPAT(kvm_vm_compat_ioctl
),
3825 static int kvm_dev_ioctl_create_vm(unsigned long type
)
3831 kvm
= kvm_create_vm(type
);
3833 return PTR_ERR(kvm
);
3834 #ifdef CONFIG_KVM_MMIO
3835 r
= kvm_coalesced_mmio_init(kvm
);
3839 r
= get_unused_fd_flags(O_CLOEXEC
);
3843 file
= anon_inode_getfile("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
3851 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3852 * already set, with ->release() being kvm_vm_release(). In error
3853 * cases it will be called by the final fput(file) and will take
3854 * care of doing kvm_put_kvm(kvm).
3856 if (kvm_create_vm_debugfs(kvm
, r
) < 0) {
3861 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM
, kvm
);
3863 fd_install(r
, file
);
3871 static long kvm_dev_ioctl(struct file
*filp
,
3872 unsigned int ioctl
, unsigned long arg
)
3877 case KVM_GET_API_VERSION
:
3880 r
= KVM_API_VERSION
;
3883 r
= kvm_dev_ioctl_create_vm(arg
);
3885 case KVM_CHECK_EXTENSION
:
3886 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3888 case KVM_GET_VCPU_MMAP_SIZE
:
3891 r
= PAGE_SIZE
; /* struct kvm_run */
3893 r
+= PAGE_SIZE
; /* pio data page */
3895 #ifdef CONFIG_KVM_MMIO
3896 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3899 case KVM_TRACE_ENABLE
:
3900 case KVM_TRACE_PAUSE
:
3901 case KVM_TRACE_DISABLE
:
3905 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3911 static struct file_operations kvm_chardev_ops
= {
3912 .unlocked_ioctl
= kvm_dev_ioctl
,
3913 .llseek
= noop_llseek
,
3914 KVM_COMPAT(kvm_dev_ioctl
),
3917 static struct miscdevice kvm_dev
= {
3923 static void hardware_enable_nolock(void *junk
)
3925 int cpu
= raw_smp_processor_id();
3928 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3931 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3933 r
= kvm_arch_hardware_enable();
3936 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3937 atomic_inc(&hardware_enable_failed
);
3938 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3942 static int kvm_starting_cpu(unsigned int cpu
)
3944 raw_spin_lock(&kvm_count_lock
);
3945 if (kvm_usage_count
)
3946 hardware_enable_nolock(NULL
);
3947 raw_spin_unlock(&kvm_count_lock
);
3951 static void hardware_disable_nolock(void *junk
)
3953 int cpu
= raw_smp_processor_id();
3955 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3957 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3958 kvm_arch_hardware_disable();
3961 static int kvm_dying_cpu(unsigned int cpu
)
3963 raw_spin_lock(&kvm_count_lock
);
3964 if (kvm_usage_count
)
3965 hardware_disable_nolock(NULL
);
3966 raw_spin_unlock(&kvm_count_lock
);
3970 static void hardware_disable_all_nolock(void)
3972 BUG_ON(!kvm_usage_count
);
3975 if (!kvm_usage_count
)
3976 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3979 static void hardware_disable_all(void)
3981 raw_spin_lock(&kvm_count_lock
);
3982 hardware_disable_all_nolock();
3983 raw_spin_unlock(&kvm_count_lock
);
3986 static int hardware_enable_all(void)
3990 raw_spin_lock(&kvm_count_lock
);
3993 if (kvm_usage_count
== 1) {
3994 atomic_set(&hardware_enable_failed
, 0);
3995 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3997 if (atomic_read(&hardware_enable_failed
)) {
3998 hardware_disable_all_nolock();
4003 raw_spin_unlock(&kvm_count_lock
);
4008 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
4012 * Some (well, at least mine) BIOSes hang on reboot if
4015 * And Intel TXT required VMX off for all cpu when system shutdown.
4017 pr_info("kvm: exiting hardware virtualization\n");
4018 kvm_rebooting
= true;
4019 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
4023 static struct notifier_block kvm_reboot_notifier
= {
4024 .notifier_call
= kvm_reboot
,
4028 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
4032 for (i
= 0; i
< bus
->dev_count
; i
++) {
4033 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
4035 kvm_iodevice_destructor(pos
);
4040 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
4041 const struct kvm_io_range
*r2
)
4043 gpa_t addr1
= r1
->addr
;
4044 gpa_t addr2
= r2
->addr
;
4049 /* If r2->len == 0, match the exact address. If r2->len != 0,
4050 * accept any overlapping write. Any order is acceptable for
4051 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4052 * we process all of them.
4065 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
4067 return kvm_io_bus_cmp(p1
, p2
);
4070 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
4071 gpa_t addr
, int len
)
4073 struct kvm_io_range
*range
, key
;
4076 key
= (struct kvm_io_range
) {
4081 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
4082 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
4086 off
= range
- bus
->range
;
4088 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
4094 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
4095 struct kvm_io_range
*range
, const void *val
)
4099 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
4103 while (idx
< bus
->dev_count
&&
4104 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
4105 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
4114 /* kvm_io_bus_write - called under kvm->slots_lock */
4115 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
4116 int len
, const void *val
)
4118 struct kvm_io_bus
*bus
;
4119 struct kvm_io_range range
;
4122 range
= (struct kvm_io_range
) {
4127 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
4130 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
4131 return r
< 0 ? r
: 0;
4133 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
4135 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4136 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
4137 gpa_t addr
, int len
, const void *val
, long cookie
)
4139 struct kvm_io_bus
*bus
;
4140 struct kvm_io_range range
;
4142 range
= (struct kvm_io_range
) {
4147 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
4151 /* First try the device referenced by cookie. */
4152 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
4153 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
4154 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
4159 * cookie contained garbage; fall back to search and return the
4160 * correct cookie value.
4162 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
4165 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
4166 struct kvm_io_range
*range
, void *val
)
4170 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
4174 while (idx
< bus
->dev_count
&&
4175 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
4176 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
4185 /* kvm_io_bus_read - called under kvm->slots_lock */
4186 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
4189 struct kvm_io_bus
*bus
;
4190 struct kvm_io_range range
;
4193 range
= (struct kvm_io_range
) {
4198 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
4201 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
4202 return r
< 0 ? r
: 0;
4205 /* Caller must hold slots_lock. */
4206 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
4207 int len
, struct kvm_io_device
*dev
)
4210 struct kvm_io_bus
*new_bus
, *bus
;
4211 struct kvm_io_range range
;
4213 bus
= kvm_get_bus(kvm
, bus_idx
);
4217 /* exclude ioeventfd which is limited by maximum fd */
4218 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
4221 new_bus
= kmalloc(struct_size(bus
, range
, bus
->dev_count
+ 1),
4222 GFP_KERNEL_ACCOUNT
);
4226 range
= (struct kvm_io_range
) {
4232 for (i
= 0; i
< bus
->dev_count
; i
++)
4233 if (kvm_io_bus_cmp(&bus
->range
[i
], &range
) > 0)
4236 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
4237 new_bus
->dev_count
++;
4238 new_bus
->range
[i
] = range
;
4239 memcpy(new_bus
->range
+ i
+ 1, bus
->range
+ i
,
4240 (bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
4241 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
4242 synchronize_srcu_expedited(&kvm
->srcu
);
4248 /* Caller must hold slots_lock. */
4249 void kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
4250 struct kvm_io_device
*dev
)
4253 struct kvm_io_bus
*new_bus
, *bus
;
4255 bus
= kvm_get_bus(kvm
, bus_idx
);
4259 for (i
= 0; i
< bus
->dev_count
; i
++)
4260 if (bus
->range
[i
].dev
== dev
) {
4264 if (i
== bus
->dev_count
)
4267 new_bus
= kmalloc(struct_size(bus
, range
, bus
->dev_count
- 1),
4268 GFP_KERNEL_ACCOUNT
);
4270 pr_err("kvm: failed to shrink bus, removing it completely\n");
4274 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
4275 new_bus
->dev_count
--;
4276 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
4277 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
4280 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
4281 synchronize_srcu_expedited(&kvm
->srcu
);
4286 struct kvm_io_device
*kvm_io_bus_get_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
4289 struct kvm_io_bus
*bus
;
4290 int dev_idx
, srcu_idx
;
4291 struct kvm_io_device
*iodev
= NULL
;
4293 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
4295 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
4299 dev_idx
= kvm_io_bus_get_first_dev(bus
, addr
, 1);
4303 iodev
= bus
->range
[dev_idx
].dev
;
4306 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
4310 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev
);
4312 static int kvm_debugfs_open(struct inode
*inode
, struct file
*file
,
4313 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
4316 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
4319 /* The debugfs files are a reference to the kvm struct which
4320 * is still valid when kvm_destroy_vm is called.
4321 * To avoid the race between open and the removal of the debugfs
4322 * directory we test against the users count.
4324 if (!refcount_inc_not_zero(&stat_data
->kvm
->users_count
))
4327 if (simple_attr_open(inode
, file
, get
,
4328 KVM_DBGFS_GET_MODE(stat_data
->dbgfs_item
) & 0222
4331 kvm_put_kvm(stat_data
->kvm
);
4338 static int kvm_debugfs_release(struct inode
*inode
, struct file
*file
)
4340 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
4343 simple_attr_release(inode
, file
);
4344 kvm_put_kvm(stat_data
->kvm
);
4349 static int kvm_get_stat_per_vm(struct kvm
*kvm
, size_t offset
, u64
*val
)
4351 *val
= *(ulong
*)((void *)kvm
+ offset
);
4356 static int kvm_clear_stat_per_vm(struct kvm
*kvm
, size_t offset
)
4358 *(ulong
*)((void *)kvm
+ offset
) = 0;
4363 static int kvm_get_stat_per_vcpu(struct kvm
*kvm
, size_t offset
, u64
*val
)
4366 struct kvm_vcpu
*vcpu
;
4370 kvm_for_each_vcpu(i
, vcpu
, kvm
)
4371 *val
+= *(u64
*)((void *)vcpu
+ offset
);
4376 static int kvm_clear_stat_per_vcpu(struct kvm
*kvm
, size_t offset
)
4379 struct kvm_vcpu
*vcpu
;
4381 kvm_for_each_vcpu(i
, vcpu
, kvm
)
4382 *(u64
*)((void *)vcpu
+ offset
) = 0;
4387 static int kvm_stat_data_get(void *data
, u64
*val
)
4390 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
4392 switch (stat_data
->dbgfs_item
->kind
) {
4394 r
= kvm_get_stat_per_vm(stat_data
->kvm
,
4395 stat_data
->dbgfs_item
->offset
, val
);
4398 r
= kvm_get_stat_per_vcpu(stat_data
->kvm
,
4399 stat_data
->dbgfs_item
->offset
, val
);
4406 static int kvm_stat_data_clear(void *data
, u64 val
)
4409 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
4414 switch (stat_data
->dbgfs_item
->kind
) {
4416 r
= kvm_clear_stat_per_vm(stat_data
->kvm
,
4417 stat_data
->dbgfs_item
->offset
);
4420 r
= kvm_clear_stat_per_vcpu(stat_data
->kvm
,
4421 stat_data
->dbgfs_item
->offset
);
4428 static int kvm_stat_data_open(struct inode
*inode
, struct file
*file
)
4430 __simple_attr_check_format("%llu\n", 0ull);
4431 return kvm_debugfs_open(inode
, file
, kvm_stat_data_get
,
4432 kvm_stat_data_clear
, "%llu\n");
4435 static const struct file_operations stat_fops_per_vm
= {
4436 .owner
= THIS_MODULE
,
4437 .open
= kvm_stat_data_open
,
4438 .release
= kvm_debugfs_release
,
4439 .read
= simple_attr_read
,
4440 .write
= simple_attr_write
,
4441 .llseek
= no_llseek
,
4444 static int vm_stat_get(void *_offset
, u64
*val
)
4446 unsigned offset
= (long)_offset
;
4451 mutex_lock(&kvm_lock
);
4452 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4453 kvm_get_stat_per_vm(kvm
, offset
, &tmp_val
);
4456 mutex_unlock(&kvm_lock
);
4460 static int vm_stat_clear(void *_offset
, u64 val
)
4462 unsigned offset
= (long)_offset
;
4468 mutex_lock(&kvm_lock
);
4469 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4470 kvm_clear_stat_per_vm(kvm
, offset
);
4472 mutex_unlock(&kvm_lock
);
4477 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, vm_stat_clear
, "%llu\n");
4479 static int vcpu_stat_get(void *_offset
, u64
*val
)
4481 unsigned offset
= (long)_offset
;
4486 mutex_lock(&kvm_lock
);
4487 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4488 kvm_get_stat_per_vcpu(kvm
, offset
, &tmp_val
);
4491 mutex_unlock(&kvm_lock
);
4495 static int vcpu_stat_clear(void *_offset
, u64 val
)
4497 unsigned offset
= (long)_offset
;
4503 mutex_lock(&kvm_lock
);
4504 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4505 kvm_clear_stat_per_vcpu(kvm
, offset
);
4507 mutex_unlock(&kvm_lock
);
4512 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, vcpu_stat_clear
,
4515 static const struct file_operations
*stat_fops
[] = {
4516 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
4517 [KVM_STAT_VM
] = &vm_stat_fops
,
4520 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
)
4522 struct kobj_uevent_env
*env
;
4523 unsigned long long created
, active
;
4525 if (!kvm_dev
.this_device
|| !kvm
)
4528 mutex_lock(&kvm_lock
);
4529 if (type
== KVM_EVENT_CREATE_VM
) {
4530 kvm_createvm_count
++;
4532 } else if (type
== KVM_EVENT_DESTROY_VM
) {
4535 created
= kvm_createvm_count
;
4536 active
= kvm_active_vms
;
4537 mutex_unlock(&kvm_lock
);
4539 env
= kzalloc(sizeof(*env
), GFP_KERNEL_ACCOUNT
);
4543 add_uevent_var(env
, "CREATED=%llu", created
);
4544 add_uevent_var(env
, "COUNT=%llu", active
);
4546 if (type
== KVM_EVENT_CREATE_VM
) {
4547 add_uevent_var(env
, "EVENT=create");
4548 kvm
->userspace_pid
= task_pid_nr(current
);
4549 } else if (type
== KVM_EVENT_DESTROY_VM
) {
4550 add_uevent_var(env
, "EVENT=destroy");
4552 add_uevent_var(env
, "PID=%d", kvm
->userspace_pid
);
4554 if (!IS_ERR_OR_NULL(kvm
->debugfs_dentry
)) {
4555 char *tmp
, *p
= kmalloc(PATH_MAX
, GFP_KERNEL_ACCOUNT
);
4558 tmp
= dentry_path_raw(kvm
->debugfs_dentry
, p
, PATH_MAX
);
4560 add_uevent_var(env
, "STATS_PATH=%s", tmp
);
4564 /* no need for checks, since we are adding at most only 5 keys */
4565 env
->envp
[env
->envp_idx
++] = NULL
;
4566 kobject_uevent_env(&kvm_dev
.this_device
->kobj
, KOBJ_CHANGE
, env
->envp
);
4570 static void kvm_init_debug(void)
4572 struct kvm_stats_debugfs_item
*p
;
4574 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
4576 kvm_debugfs_num_entries
= 0;
4577 for (p
= debugfs_entries
; p
->name
; ++p
, kvm_debugfs_num_entries
++) {
4578 debugfs_create_file(p
->name
, KVM_DBGFS_GET_MODE(p
),
4579 kvm_debugfs_dir
, (void *)(long)p
->offset
,
4580 stat_fops
[p
->kind
]);
4584 static int kvm_suspend(void)
4586 if (kvm_usage_count
)
4587 hardware_disable_nolock(NULL
);
4591 static void kvm_resume(void)
4593 if (kvm_usage_count
) {
4594 #ifdef CONFIG_LOCKDEP
4595 WARN_ON(lockdep_is_held(&kvm_count_lock
));
4597 hardware_enable_nolock(NULL
);
4601 static struct syscore_ops kvm_syscore_ops
= {
4602 .suspend
= kvm_suspend
,
4603 .resume
= kvm_resume
,
4607 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
4609 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
4612 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
4614 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
4616 WRITE_ONCE(vcpu
->preempted
, false);
4617 WRITE_ONCE(vcpu
->ready
, false);
4619 __this_cpu_write(kvm_running_vcpu
, vcpu
);
4620 kvm_arch_sched_in(vcpu
, cpu
);
4621 kvm_arch_vcpu_load(vcpu
, cpu
);
4624 static void kvm_sched_out(struct preempt_notifier
*pn
,
4625 struct task_struct
*next
)
4627 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
4629 if (current
->state
== TASK_RUNNING
) {
4630 WRITE_ONCE(vcpu
->preempted
, true);
4631 WRITE_ONCE(vcpu
->ready
, true);
4633 kvm_arch_vcpu_put(vcpu
);
4634 __this_cpu_write(kvm_running_vcpu
, NULL
);
4638 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4640 * We can disable preemption locally around accessing the per-CPU variable,
4641 * and use the resolved vcpu pointer after enabling preemption again,
4642 * because even if the current thread is migrated to another CPU, reading
4643 * the per-CPU value later will give us the same value as we update the
4644 * per-CPU variable in the preempt notifier handlers.
4646 struct kvm_vcpu
*kvm_get_running_vcpu(void)
4648 struct kvm_vcpu
*vcpu
;
4651 vcpu
= __this_cpu_read(kvm_running_vcpu
);
4658 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4660 struct kvm_vcpu
* __percpu
*kvm_get_running_vcpus(void)
4662 return &kvm_running_vcpu
;
4665 struct kvm_cpu_compat_check
{
4670 static void check_processor_compat(void *data
)
4672 struct kvm_cpu_compat_check
*c
= data
;
4674 *c
->ret
= kvm_arch_check_processor_compat(c
->opaque
);
4677 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
4678 struct module
*module
)
4680 struct kvm_cpu_compat_check c
;
4684 r
= kvm_arch_init(opaque
);
4689 * kvm_arch_init makes sure there's at most one caller
4690 * for architectures that support multiple implementations,
4691 * like intel and amd on x86.
4692 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4693 * conflicts in case kvm is already setup for another implementation.
4695 r
= kvm_irqfd_init();
4699 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
4704 r
= kvm_arch_hardware_setup(opaque
);
4710 for_each_online_cpu(cpu
) {
4711 smp_call_function_single(cpu
, check_processor_compat
, &c
, 1);
4716 r
= cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING
, "kvm/cpu:starting",
4717 kvm_starting_cpu
, kvm_dying_cpu
);
4720 register_reboot_notifier(&kvm_reboot_notifier
);
4722 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4724 vcpu_align
= __alignof__(struct kvm_vcpu
);
4726 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size
, vcpu_align
,
4728 offsetof(struct kvm_vcpu
, arch
),
4729 sizeof_field(struct kvm_vcpu
, arch
),
4731 if (!kvm_vcpu_cache
) {
4736 r
= kvm_async_pf_init();
4740 kvm_chardev_ops
.owner
= module
;
4741 kvm_vm_fops
.owner
= module
;
4742 kvm_vcpu_fops
.owner
= module
;
4744 r
= misc_register(&kvm_dev
);
4746 pr_err("kvm: misc device register failed\n");
4750 register_syscore_ops(&kvm_syscore_ops
);
4752 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
4753 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
4757 r
= kvm_vfio_ops_init();
4763 kvm_async_pf_deinit();
4765 kmem_cache_destroy(kvm_vcpu_cache
);
4767 unregister_reboot_notifier(&kvm_reboot_notifier
);
4768 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4770 kvm_arch_hardware_unsetup();
4772 free_cpumask_var(cpus_hardware_enabled
);
4780 EXPORT_SYMBOL_GPL(kvm_init
);
4784 debugfs_remove_recursive(kvm_debugfs_dir
);
4785 misc_deregister(&kvm_dev
);
4786 kmem_cache_destroy(kvm_vcpu_cache
);
4787 kvm_async_pf_deinit();
4788 unregister_syscore_ops(&kvm_syscore_ops
);
4789 unregister_reboot_notifier(&kvm_reboot_notifier
);
4790 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4791 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
4792 kvm_arch_hardware_unsetup();
4795 free_cpumask_var(cpus_hardware_enabled
);
4796 kvm_vfio_ops_exit();
4798 EXPORT_SYMBOL_GPL(kvm_exit
);
4800 struct kvm_vm_worker_thread_context
{
4802 struct task_struct
*parent
;
4803 struct completion init_done
;
4804 kvm_vm_thread_fn_t thread_fn
;
4809 static int kvm_vm_worker_thread(void *context
)
4812 * The init_context is allocated on the stack of the parent thread, so
4813 * we have to locally copy anything that is needed beyond initialization
4815 struct kvm_vm_worker_thread_context
*init_context
= context
;
4816 struct kvm
*kvm
= init_context
->kvm
;
4817 kvm_vm_thread_fn_t thread_fn
= init_context
->thread_fn
;
4818 uintptr_t data
= init_context
->data
;
4821 err
= kthread_park(current
);
4822 /* kthread_park(current) is never supposed to return an error */
4827 err
= cgroup_attach_task_all(init_context
->parent
, current
);
4829 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4834 set_user_nice(current
, task_nice(init_context
->parent
));
4837 init_context
->err
= err
;
4838 complete(&init_context
->init_done
);
4839 init_context
= NULL
;
4844 /* Wait to be woken up by the spawner before proceeding. */
4847 if (!kthread_should_stop())
4848 err
= thread_fn(kvm
, data
);
4853 int kvm_vm_create_worker_thread(struct kvm
*kvm
, kvm_vm_thread_fn_t thread_fn
,
4854 uintptr_t data
, const char *name
,
4855 struct task_struct
**thread_ptr
)
4857 struct kvm_vm_worker_thread_context init_context
= {};
4858 struct task_struct
*thread
;
4861 init_context
.kvm
= kvm
;
4862 init_context
.parent
= current
;
4863 init_context
.thread_fn
= thread_fn
;
4864 init_context
.data
= data
;
4865 init_completion(&init_context
.init_done
);
4867 thread
= kthread_run(kvm_vm_worker_thread
, &init_context
,
4868 "%s-%d", name
, task_pid_nr(current
));
4870 return PTR_ERR(thread
);
4872 /* kthread_run is never supposed to return NULL */
4873 WARN_ON(thread
== NULL
);
4875 wait_for_completion(&init_context
.init_done
);
4877 if (!init_context
.err
)
4878 *thread_ptr
= thread
;
4880 return init_context
.err
;