[PATCH] uml: add -ffreestanding to CFLAGS
[linux/fpc-iii.git] / kernel / timer.c
blob9e49deed468cd8b2e63f2033d2971d961edeb110
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/div64.h>
41 #include <asm/timex.h>
42 #include <asm/io.h>
44 #ifdef CONFIG_TIME_INTERPOLATION
45 static void time_interpolator_update(long delta_nsec);
46 #else
47 #define time_interpolator_update(x)
48 #endif
50 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
52 EXPORT_SYMBOL(jiffies_64);
55 * per-CPU timer vector definitions:
57 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
58 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
59 #define TVN_SIZE (1 << TVN_BITS)
60 #define TVR_SIZE (1 << TVR_BITS)
61 #define TVN_MASK (TVN_SIZE - 1)
62 #define TVR_MASK (TVR_SIZE - 1)
64 typedef struct tvec_s {
65 struct list_head vec[TVN_SIZE];
66 } tvec_t;
68 typedef struct tvec_root_s {
69 struct list_head vec[TVR_SIZE];
70 } tvec_root_t;
72 struct tvec_t_base_s {
73 spinlock_t lock;
74 struct timer_list *running_timer;
75 unsigned long timer_jiffies;
76 tvec_root_t tv1;
77 tvec_t tv2;
78 tvec_t tv3;
79 tvec_t tv4;
80 tvec_t tv5;
81 } ____cacheline_aligned_in_smp;
83 typedef struct tvec_t_base_s tvec_base_t;
85 tvec_base_t boot_tvec_bases;
86 EXPORT_SYMBOL(boot_tvec_bases);
87 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases };
89 static inline void set_running_timer(tvec_base_t *base,
90 struct timer_list *timer)
92 #ifdef CONFIG_SMP
93 base->running_timer = timer;
94 #endif
97 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
99 unsigned long expires = timer->expires;
100 unsigned long idx = expires - base->timer_jiffies;
101 struct list_head *vec;
103 if (idx < TVR_SIZE) {
104 int i = expires & TVR_MASK;
105 vec = base->tv1.vec + i;
106 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
107 int i = (expires >> TVR_BITS) & TVN_MASK;
108 vec = base->tv2.vec + i;
109 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
110 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
111 vec = base->tv3.vec + i;
112 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
113 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
114 vec = base->tv4.vec + i;
115 } else if ((signed long) idx < 0) {
117 * Can happen if you add a timer with expires == jiffies,
118 * or you set a timer to go off in the past
120 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
121 } else {
122 int i;
123 /* If the timeout is larger than 0xffffffff on 64-bit
124 * architectures then we use the maximum timeout:
126 if (idx > 0xffffffffUL) {
127 idx = 0xffffffffUL;
128 expires = idx + base->timer_jiffies;
130 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
131 vec = base->tv5.vec + i;
134 * Timers are FIFO:
136 list_add_tail(&timer->entry, vec);
139 /***
140 * init_timer - initialize a timer.
141 * @timer: the timer to be initialized
143 * init_timer() must be done to a timer prior calling *any* of the
144 * other timer functions.
146 void fastcall init_timer(struct timer_list *timer)
148 timer->entry.next = NULL;
149 timer->base = per_cpu(tvec_bases, raw_smp_processor_id());
151 EXPORT_SYMBOL(init_timer);
153 static inline void detach_timer(struct timer_list *timer,
154 int clear_pending)
156 struct list_head *entry = &timer->entry;
158 __list_del(entry->prev, entry->next);
159 if (clear_pending)
160 entry->next = NULL;
161 entry->prev = LIST_POISON2;
165 * We are using hashed locking: holding per_cpu(tvec_bases).lock
166 * means that all timers which are tied to this base via timer->base are
167 * locked, and the base itself is locked too.
169 * So __run_timers/migrate_timers can safely modify all timers which could
170 * be found on ->tvX lists.
172 * When the timer's base is locked, and the timer removed from list, it is
173 * possible to set timer->base = NULL and drop the lock: the timer remains
174 * locked.
176 static tvec_base_t *lock_timer_base(struct timer_list *timer,
177 unsigned long *flags)
179 tvec_base_t *base;
181 for (;;) {
182 base = timer->base;
183 if (likely(base != NULL)) {
184 spin_lock_irqsave(&base->lock, *flags);
185 if (likely(base == timer->base))
186 return base;
187 /* The timer has migrated to another CPU */
188 spin_unlock_irqrestore(&base->lock, *flags);
190 cpu_relax();
194 int __mod_timer(struct timer_list *timer, unsigned long expires)
196 tvec_base_t *base, *new_base;
197 unsigned long flags;
198 int ret = 0;
200 BUG_ON(!timer->function);
202 base = lock_timer_base(timer, &flags);
204 if (timer_pending(timer)) {
205 detach_timer(timer, 0);
206 ret = 1;
209 new_base = __get_cpu_var(tvec_bases);
211 if (base != new_base) {
213 * We are trying to schedule the timer on the local CPU.
214 * However we can't change timer's base while it is running,
215 * otherwise del_timer_sync() can't detect that the timer's
216 * handler yet has not finished. This also guarantees that
217 * the timer is serialized wrt itself.
219 if (likely(base->running_timer != timer)) {
220 /* See the comment in lock_timer_base() */
221 timer->base = NULL;
222 spin_unlock(&base->lock);
223 base = new_base;
224 spin_lock(&base->lock);
225 timer->base = base;
229 timer->expires = expires;
230 internal_add_timer(base, timer);
231 spin_unlock_irqrestore(&base->lock, flags);
233 return ret;
236 EXPORT_SYMBOL(__mod_timer);
238 /***
239 * add_timer_on - start a timer on a particular CPU
240 * @timer: the timer to be added
241 * @cpu: the CPU to start it on
243 * This is not very scalable on SMP. Double adds are not possible.
245 void add_timer_on(struct timer_list *timer, int cpu)
247 tvec_base_t *base = per_cpu(tvec_bases, cpu);
248 unsigned long flags;
250 BUG_ON(timer_pending(timer) || !timer->function);
251 spin_lock_irqsave(&base->lock, flags);
252 timer->base = base;
253 internal_add_timer(base, timer);
254 spin_unlock_irqrestore(&base->lock, flags);
258 /***
259 * mod_timer - modify a timer's timeout
260 * @timer: the timer to be modified
262 * mod_timer is a more efficient way to update the expire field of an
263 * active timer (if the timer is inactive it will be activated)
265 * mod_timer(timer, expires) is equivalent to:
267 * del_timer(timer); timer->expires = expires; add_timer(timer);
269 * Note that if there are multiple unserialized concurrent users of the
270 * same timer, then mod_timer() is the only safe way to modify the timeout,
271 * since add_timer() cannot modify an already running timer.
273 * The function returns whether it has modified a pending timer or not.
274 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
275 * active timer returns 1.)
277 int mod_timer(struct timer_list *timer, unsigned long expires)
279 BUG_ON(!timer->function);
282 * This is a common optimization triggered by the
283 * networking code - if the timer is re-modified
284 * to be the same thing then just return:
286 if (timer->expires == expires && timer_pending(timer))
287 return 1;
289 return __mod_timer(timer, expires);
292 EXPORT_SYMBOL(mod_timer);
294 /***
295 * del_timer - deactive a timer.
296 * @timer: the timer to be deactivated
298 * del_timer() deactivates a timer - this works on both active and inactive
299 * timers.
301 * The function returns whether it has deactivated a pending timer or not.
302 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
303 * active timer returns 1.)
305 int del_timer(struct timer_list *timer)
307 tvec_base_t *base;
308 unsigned long flags;
309 int ret = 0;
311 if (timer_pending(timer)) {
312 base = lock_timer_base(timer, &flags);
313 if (timer_pending(timer)) {
314 detach_timer(timer, 1);
315 ret = 1;
317 spin_unlock_irqrestore(&base->lock, flags);
320 return ret;
323 EXPORT_SYMBOL(del_timer);
325 #ifdef CONFIG_SMP
327 * This function tries to deactivate a timer. Upon successful (ret >= 0)
328 * exit the timer is not queued and the handler is not running on any CPU.
330 * It must not be called from interrupt contexts.
332 int try_to_del_timer_sync(struct timer_list *timer)
334 tvec_base_t *base;
335 unsigned long flags;
336 int ret = -1;
338 base = lock_timer_base(timer, &flags);
340 if (base->running_timer == timer)
341 goto out;
343 ret = 0;
344 if (timer_pending(timer)) {
345 detach_timer(timer, 1);
346 ret = 1;
348 out:
349 spin_unlock_irqrestore(&base->lock, flags);
351 return ret;
354 /***
355 * del_timer_sync - deactivate a timer and wait for the handler to finish.
356 * @timer: the timer to be deactivated
358 * This function only differs from del_timer() on SMP: besides deactivating
359 * the timer it also makes sure the handler has finished executing on other
360 * CPUs.
362 * Synchronization rules: callers must prevent restarting of the timer,
363 * otherwise this function is meaningless. It must not be called from
364 * interrupt contexts. The caller must not hold locks which would prevent
365 * completion of the timer's handler. The timer's handler must not call
366 * add_timer_on(). Upon exit the timer is not queued and the handler is
367 * not running on any CPU.
369 * The function returns whether it has deactivated a pending timer or not.
371 int del_timer_sync(struct timer_list *timer)
373 for (;;) {
374 int ret = try_to_del_timer_sync(timer);
375 if (ret >= 0)
376 return ret;
380 EXPORT_SYMBOL(del_timer_sync);
381 #endif
383 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
385 /* cascade all the timers from tv up one level */
386 struct list_head *head, *curr;
388 head = tv->vec + index;
389 curr = head->next;
391 * We are removing _all_ timers from the list, so we don't have to
392 * detach them individually, just clear the list afterwards.
394 while (curr != head) {
395 struct timer_list *tmp;
397 tmp = list_entry(curr, struct timer_list, entry);
398 BUG_ON(tmp->base != base);
399 curr = curr->next;
400 internal_add_timer(base, tmp);
402 INIT_LIST_HEAD(head);
404 return index;
407 /***
408 * __run_timers - run all expired timers (if any) on this CPU.
409 * @base: the timer vector to be processed.
411 * This function cascades all vectors and executes all expired timer
412 * vectors.
414 #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
416 static inline void __run_timers(tvec_base_t *base)
418 struct timer_list *timer;
420 spin_lock_irq(&base->lock);
421 while (time_after_eq(jiffies, base->timer_jiffies)) {
422 struct list_head work_list = LIST_HEAD_INIT(work_list);
423 struct list_head *head = &work_list;
424 int index = base->timer_jiffies & TVR_MASK;
427 * Cascade timers:
429 if (!index &&
430 (!cascade(base, &base->tv2, INDEX(0))) &&
431 (!cascade(base, &base->tv3, INDEX(1))) &&
432 !cascade(base, &base->tv4, INDEX(2)))
433 cascade(base, &base->tv5, INDEX(3));
434 ++base->timer_jiffies;
435 list_splice_init(base->tv1.vec + index, &work_list);
436 while (!list_empty(head)) {
437 void (*fn)(unsigned long);
438 unsigned long data;
440 timer = list_entry(head->next,struct timer_list,entry);
441 fn = timer->function;
442 data = timer->data;
444 set_running_timer(base, timer);
445 detach_timer(timer, 1);
446 spin_unlock_irq(&base->lock);
448 int preempt_count = preempt_count();
449 fn(data);
450 if (preempt_count != preempt_count()) {
451 printk(KERN_WARNING "huh, entered %p "
452 "with preempt_count %08x, exited"
453 " with %08x?\n",
454 fn, preempt_count,
455 preempt_count());
456 BUG();
459 spin_lock_irq(&base->lock);
462 set_running_timer(base, NULL);
463 spin_unlock_irq(&base->lock);
466 #ifdef CONFIG_NO_IDLE_HZ
468 * Find out when the next timer event is due to happen. This
469 * is used on S/390 to stop all activity when a cpus is idle.
470 * This functions needs to be called disabled.
472 unsigned long next_timer_interrupt(void)
474 tvec_base_t *base;
475 struct list_head *list;
476 struct timer_list *nte;
477 unsigned long expires;
478 unsigned long hr_expires = MAX_JIFFY_OFFSET;
479 ktime_t hr_delta;
480 tvec_t *varray[4];
481 int i, j;
483 hr_delta = hrtimer_get_next_event();
484 if (hr_delta.tv64 != KTIME_MAX) {
485 struct timespec tsdelta;
486 tsdelta = ktime_to_timespec(hr_delta);
487 hr_expires = timespec_to_jiffies(&tsdelta);
488 if (hr_expires < 3)
489 return hr_expires + jiffies;
491 hr_expires += jiffies;
493 base = __get_cpu_var(tvec_bases);
494 spin_lock(&base->lock);
495 expires = base->timer_jiffies + (LONG_MAX >> 1);
496 list = NULL;
498 /* Look for timer events in tv1. */
499 j = base->timer_jiffies & TVR_MASK;
500 do {
501 list_for_each_entry(nte, base->tv1.vec + j, entry) {
502 expires = nte->expires;
503 if (j < (base->timer_jiffies & TVR_MASK))
504 list = base->tv2.vec + (INDEX(0));
505 goto found;
507 j = (j + 1) & TVR_MASK;
508 } while (j != (base->timer_jiffies & TVR_MASK));
510 /* Check tv2-tv5. */
511 varray[0] = &base->tv2;
512 varray[1] = &base->tv3;
513 varray[2] = &base->tv4;
514 varray[3] = &base->tv5;
515 for (i = 0; i < 4; i++) {
516 j = INDEX(i);
517 do {
518 if (list_empty(varray[i]->vec + j)) {
519 j = (j + 1) & TVN_MASK;
520 continue;
522 list_for_each_entry(nte, varray[i]->vec + j, entry)
523 if (time_before(nte->expires, expires))
524 expires = nte->expires;
525 if (j < (INDEX(i)) && i < 3)
526 list = varray[i + 1]->vec + (INDEX(i + 1));
527 goto found;
528 } while (j != (INDEX(i)));
530 found:
531 if (list) {
533 * The search wrapped. We need to look at the next list
534 * from next tv element that would cascade into tv element
535 * where we found the timer element.
537 list_for_each_entry(nte, list, entry) {
538 if (time_before(nte->expires, expires))
539 expires = nte->expires;
542 spin_unlock(&base->lock);
545 * It can happen that other CPUs service timer IRQs and increment
546 * jiffies, but we have not yet got a local timer tick to process
547 * the timer wheels. In that case, the expiry time can be before
548 * jiffies, but since the high-resolution timer here is relative to
549 * jiffies, the default expression when high-resolution timers are
550 * not active,
552 * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
554 * would falsely evaluate to true. If that is the case, just
555 * return jiffies so that we can immediately fire the local timer
557 if (time_before(expires, jiffies))
558 return jiffies;
560 if (time_before(hr_expires, expires))
561 return hr_expires;
563 return expires;
565 #endif
567 /******************************************************************/
570 * Timekeeping variables
572 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
573 unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
576 * The current time
577 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
578 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
579 * at zero at system boot time, so wall_to_monotonic will be negative,
580 * however, we will ALWAYS keep the tv_nsec part positive so we can use
581 * the usual normalization.
583 struct timespec xtime __attribute__ ((aligned (16)));
584 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
586 EXPORT_SYMBOL(xtime);
588 /* Don't completely fail for HZ > 500. */
589 int tickadj = 500/HZ ? : 1; /* microsecs */
593 * phase-lock loop variables
595 /* TIME_ERROR prevents overwriting the CMOS clock */
596 int time_state = TIME_OK; /* clock synchronization status */
597 int time_status = STA_UNSYNC; /* clock status bits */
598 long time_offset; /* time adjustment (us) */
599 long time_constant = 2; /* pll time constant */
600 long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
601 long time_precision = 1; /* clock precision (us) */
602 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
603 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
604 static long time_phase; /* phase offset (scaled us) */
605 long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
606 /* frequency offset (scaled ppm)*/
607 static long time_adj; /* tick adjust (scaled 1 / HZ) */
608 long time_reftime; /* time at last adjustment (s) */
609 long time_adjust;
610 long time_next_adjust;
613 * this routine handles the overflow of the microsecond field
615 * The tricky bits of code to handle the accurate clock support
616 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
617 * They were originally developed for SUN and DEC kernels.
618 * All the kudos should go to Dave for this stuff.
621 static void second_overflow(void)
623 long ltemp;
625 /* Bump the maxerror field */
626 time_maxerror += time_tolerance >> SHIFT_USEC;
627 if (time_maxerror > NTP_PHASE_LIMIT) {
628 time_maxerror = NTP_PHASE_LIMIT;
629 time_status |= STA_UNSYNC;
633 * Leap second processing. If in leap-insert state at the end of the
634 * day, the system clock is set back one second; if in leap-delete
635 * state, the system clock is set ahead one second. The microtime()
636 * routine or external clock driver will insure that reported time is
637 * always monotonic. The ugly divides should be replaced.
639 switch (time_state) {
640 case TIME_OK:
641 if (time_status & STA_INS)
642 time_state = TIME_INS;
643 else if (time_status & STA_DEL)
644 time_state = TIME_DEL;
645 break;
646 case TIME_INS:
647 if (xtime.tv_sec % 86400 == 0) {
648 xtime.tv_sec--;
649 wall_to_monotonic.tv_sec++;
651 * The timer interpolator will make time change
652 * gradually instead of an immediate jump by one second
654 time_interpolator_update(-NSEC_PER_SEC);
655 time_state = TIME_OOP;
656 clock_was_set();
657 printk(KERN_NOTICE "Clock: inserting leap second "
658 "23:59:60 UTC\n");
660 break;
661 case TIME_DEL:
662 if ((xtime.tv_sec + 1) % 86400 == 0) {
663 xtime.tv_sec++;
664 wall_to_monotonic.tv_sec--;
666 * Use of time interpolator for a gradual change of
667 * time
669 time_interpolator_update(NSEC_PER_SEC);
670 time_state = TIME_WAIT;
671 clock_was_set();
672 printk(KERN_NOTICE "Clock: deleting leap second "
673 "23:59:59 UTC\n");
675 break;
676 case TIME_OOP:
677 time_state = TIME_WAIT;
678 break;
679 case TIME_WAIT:
680 if (!(time_status & (STA_INS | STA_DEL)))
681 time_state = TIME_OK;
685 * Compute the phase adjustment for the next second. In PLL mode, the
686 * offset is reduced by a fixed factor times the time constant. In FLL
687 * mode the offset is used directly. In either mode, the maximum phase
688 * adjustment for each second is clamped so as to spread the adjustment
689 * over not more than the number of seconds between updates.
691 ltemp = time_offset;
692 if (!(time_status & STA_FLL))
693 ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
694 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
695 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
696 time_offset -= ltemp;
697 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
700 * Compute the frequency estimate and additional phase adjustment due
701 * to frequency error for the next second.
703 ltemp = time_freq;
704 time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
706 #if HZ == 100
708 * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
709 * get 128.125; => only 0.125% error (p. 14)
711 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
712 #endif
713 #if HZ == 250
715 * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
716 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
718 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
719 #endif
720 #if HZ == 1000
722 * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
723 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
725 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
726 #endif
730 * Returns how many microseconds we need to add to xtime this tick
731 * in doing an adjustment requested with adjtime.
733 static long adjtime_adjustment(void)
735 long time_adjust_step;
737 time_adjust_step = time_adjust;
738 if (time_adjust_step) {
740 * We are doing an adjtime thing. Prepare time_adjust_step to
741 * be within bounds. Note that a positive time_adjust means we
742 * want the clock to run faster.
744 * Limit the amount of the step to be in the range
745 * -tickadj .. +tickadj
747 time_adjust_step = min(time_adjust_step, (long)tickadj);
748 time_adjust_step = max(time_adjust_step, (long)-tickadj);
750 return time_adjust_step;
753 /* in the NTP reference this is called "hardclock()" */
754 static void update_wall_time_one_tick(void)
756 long time_adjust_step, delta_nsec;
758 time_adjust_step = adjtime_adjustment();
759 if (time_adjust_step)
760 /* Reduce by this step the amount of time left */
761 time_adjust -= time_adjust_step;
762 delta_nsec = tick_nsec + time_adjust_step * 1000;
764 * Advance the phase, once it gets to one microsecond, then
765 * advance the tick more.
767 time_phase += time_adj;
768 if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
769 long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
770 time_phase -= ltemp << (SHIFT_SCALE - 10);
771 delta_nsec += ltemp;
773 xtime.tv_nsec += delta_nsec;
774 time_interpolator_update(delta_nsec);
776 /* Changes by adjtime() do not take effect till next tick. */
777 if (time_next_adjust != 0) {
778 time_adjust = time_next_adjust;
779 time_next_adjust = 0;
784 * Return how long ticks are at the moment, that is, how much time
785 * update_wall_time_one_tick will add to xtime next time we call it
786 * (assuming no calls to do_adjtimex in the meantime).
787 * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10
788 * bits to the right of the binary point.
789 * This function has no side-effects.
791 u64 current_tick_length(void)
793 long delta_nsec;
795 delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
796 return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
800 * Using a loop looks inefficient, but "ticks" is
801 * usually just one (we shouldn't be losing ticks,
802 * we're doing this this way mainly for interrupt
803 * latency reasons, not because we think we'll
804 * have lots of lost timer ticks
806 static void update_wall_time(unsigned long ticks)
808 do {
809 ticks--;
810 update_wall_time_one_tick();
811 if (xtime.tv_nsec >= 1000000000) {
812 xtime.tv_nsec -= 1000000000;
813 xtime.tv_sec++;
814 second_overflow();
816 } while (ticks);
820 * Called from the timer interrupt handler to charge one tick to the current
821 * process. user_tick is 1 if the tick is user time, 0 for system.
823 void update_process_times(int user_tick)
825 struct task_struct *p = current;
826 int cpu = smp_processor_id();
828 /* Note: this timer irq context must be accounted for as well. */
829 if (user_tick)
830 account_user_time(p, jiffies_to_cputime(1));
831 else
832 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
833 run_local_timers();
834 if (rcu_pending(cpu))
835 rcu_check_callbacks(cpu, user_tick);
836 scheduler_tick();
837 run_posix_cpu_timers(p);
841 * Nr of active tasks - counted in fixed-point numbers
843 static unsigned long count_active_tasks(void)
845 return nr_active() * FIXED_1;
849 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
850 * imply that avenrun[] is the standard name for this kind of thing.
851 * Nothing else seems to be standardized: the fractional size etc
852 * all seem to differ on different machines.
854 * Requires xtime_lock to access.
856 unsigned long avenrun[3];
858 EXPORT_SYMBOL(avenrun);
861 * calc_load - given tick count, update the avenrun load estimates.
862 * This is called while holding a write_lock on xtime_lock.
864 static inline void calc_load(unsigned long ticks)
866 unsigned long active_tasks; /* fixed-point */
867 static int count = LOAD_FREQ;
869 count -= ticks;
870 if (count < 0) {
871 count += LOAD_FREQ;
872 active_tasks = count_active_tasks();
873 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
874 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
875 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
879 /* jiffies at the most recent update of wall time */
880 unsigned long wall_jiffies = INITIAL_JIFFIES;
883 * This read-write spinlock protects us from races in SMP while
884 * playing with xtime and avenrun.
886 #ifndef ARCH_HAVE_XTIME_LOCK
887 seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
889 EXPORT_SYMBOL(xtime_lock);
890 #endif
893 * This function runs timers and the timer-tq in bottom half context.
895 static void run_timer_softirq(struct softirq_action *h)
897 tvec_base_t *base = __get_cpu_var(tvec_bases);
899 hrtimer_run_queues();
900 if (time_after_eq(jiffies, base->timer_jiffies))
901 __run_timers(base);
905 * Called by the local, per-CPU timer interrupt on SMP.
907 void run_local_timers(void)
909 raise_softirq(TIMER_SOFTIRQ);
910 softlockup_tick();
914 * Called by the timer interrupt. xtime_lock must already be taken
915 * by the timer IRQ!
917 static inline void update_times(void)
919 unsigned long ticks;
921 ticks = jiffies - wall_jiffies;
922 if (ticks) {
923 wall_jiffies += ticks;
924 update_wall_time(ticks);
926 calc_load(ticks);
930 * The 64-bit jiffies value is not atomic - you MUST NOT read it
931 * without sampling the sequence number in xtime_lock.
932 * jiffies is defined in the linker script...
935 void do_timer(struct pt_regs *regs)
937 jiffies_64++;
938 /* prevent loading jiffies before storing new jiffies_64 value. */
939 barrier();
940 update_times();
943 #ifdef __ARCH_WANT_SYS_ALARM
946 * For backwards compatibility? This can be done in libc so Alpha
947 * and all newer ports shouldn't need it.
949 asmlinkage unsigned long sys_alarm(unsigned int seconds)
951 return alarm_setitimer(seconds);
954 #endif
956 #ifndef __alpha__
959 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
960 * should be moved into arch/i386 instead?
964 * sys_getpid - return the thread group id of the current process
966 * Note, despite the name, this returns the tgid not the pid. The tgid and
967 * the pid are identical unless CLONE_THREAD was specified on clone() in
968 * which case the tgid is the same in all threads of the same group.
970 * This is SMP safe as current->tgid does not change.
972 asmlinkage long sys_getpid(void)
974 return current->tgid;
978 * Accessing ->group_leader->real_parent is not SMP-safe, it could
979 * change from under us. However, rather than getting any lock
980 * we can use an optimistic algorithm: get the parent
981 * pid, and go back and check that the parent is still
982 * the same. If it has changed (which is extremely unlikely
983 * indeed), we just try again..
985 * NOTE! This depends on the fact that even if we _do_
986 * get an old value of "parent", we can happily dereference
987 * the pointer (it was and remains a dereferencable kernel pointer
988 * no matter what): we just can't necessarily trust the result
989 * until we know that the parent pointer is valid.
991 * NOTE2: ->group_leader never changes from under us.
993 asmlinkage long sys_getppid(void)
995 int pid;
996 struct task_struct *me = current;
997 struct task_struct *parent;
999 parent = me->group_leader->real_parent;
1000 for (;;) {
1001 pid = parent->tgid;
1002 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1004 struct task_struct *old = parent;
1007 * Make sure we read the pid before re-reading the
1008 * parent pointer:
1010 smp_rmb();
1011 parent = me->group_leader->real_parent;
1012 if (old != parent)
1013 continue;
1015 #endif
1016 break;
1018 return pid;
1021 asmlinkage long sys_getuid(void)
1023 /* Only we change this so SMP safe */
1024 return current->uid;
1027 asmlinkage long sys_geteuid(void)
1029 /* Only we change this so SMP safe */
1030 return current->euid;
1033 asmlinkage long sys_getgid(void)
1035 /* Only we change this so SMP safe */
1036 return current->gid;
1039 asmlinkage long sys_getegid(void)
1041 /* Only we change this so SMP safe */
1042 return current->egid;
1045 #endif
1047 static void process_timeout(unsigned long __data)
1049 wake_up_process((task_t *)__data);
1053 * schedule_timeout - sleep until timeout
1054 * @timeout: timeout value in jiffies
1056 * Make the current task sleep until @timeout jiffies have
1057 * elapsed. The routine will return immediately unless
1058 * the current task state has been set (see set_current_state()).
1060 * You can set the task state as follows -
1062 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1063 * pass before the routine returns. The routine will return 0
1065 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1066 * delivered to the current task. In this case the remaining time
1067 * in jiffies will be returned, or 0 if the timer expired in time
1069 * The current task state is guaranteed to be TASK_RUNNING when this
1070 * routine returns.
1072 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1073 * the CPU away without a bound on the timeout. In this case the return
1074 * value will be %MAX_SCHEDULE_TIMEOUT.
1076 * In all cases the return value is guaranteed to be non-negative.
1078 fastcall signed long __sched schedule_timeout(signed long timeout)
1080 struct timer_list timer;
1081 unsigned long expire;
1083 switch (timeout)
1085 case MAX_SCHEDULE_TIMEOUT:
1087 * These two special cases are useful to be comfortable
1088 * in the caller. Nothing more. We could take
1089 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1090 * but I' d like to return a valid offset (>=0) to allow
1091 * the caller to do everything it want with the retval.
1093 schedule();
1094 goto out;
1095 default:
1097 * Another bit of PARANOID. Note that the retval will be
1098 * 0 since no piece of kernel is supposed to do a check
1099 * for a negative retval of schedule_timeout() (since it
1100 * should never happens anyway). You just have the printk()
1101 * that will tell you if something is gone wrong and where.
1103 if (timeout < 0)
1105 printk(KERN_ERR "schedule_timeout: wrong timeout "
1106 "value %lx from %p\n", timeout,
1107 __builtin_return_address(0));
1108 current->state = TASK_RUNNING;
1109 goto out;
1113 expire = timeout + jiffies;
1115 setup_timer(&timer, process_timeout, (unsigned long)current);
1116 __mod_timer(&timer, expire);
1117 schedule();
1118 del_singleshot_timer_sync(&timer);
1120 timeout = expire - jiffies;
1122 out:
1123 return timeout < 0 ? 0 : timeout;
1125 EXPORT_SYMBOL(schedule_timeout);
1128 * We can use __set_current_state() here because schedule_timeout() calls
1129 * schedule() unconditionally.
1131 signed long __sched schedule_timeout_interruptible(signed long timeout)
1133 __set_current_state(TASK_INTERRUPTIBLE);
1134 return schedule_timeout(timeout);
1136 EXPORT_SYMBOL(schedule_timeout_interruptible);
1138 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1140 __set_current_state(TASK_UNINTERRUPTIBLE);
1141 return schedule_timeout(timeout);
1143 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1145 /* Thread ID - the internal kernel "pid" */
1146 asmlinkage long sys_gettid(void)
1148 return current->pid;
1152 * sys_sysinfo - fill in sysinfo struct
1154 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1156 struct sysinfo val;
1157 unsigned long mem_total, sav_total;
1158 unsigned int mem_unit, bitcount;
1159 unsigned long seq;
1161 memset((char *)&val, 0, sizeof(struct sysinfo));
1163 do {
1164 struct timespec tp;
1165 seq = read_seqbegin(&xtime_lock);
1168 * This is annoying. The below is the same thing
1169 * posix_get_clock_monotonic() does, but it wants to
1170 * take the lock which we want to cover the loads stuff
1171 * too.
1174 getnstimeofday(&tp);
1175 tp.tv_sec += wall_to_monotonic.tv_sec;
1176 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1177 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1178 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1179 tp.tv_sec++;
1181 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1183 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1184 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1185 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1187 val.procs = nr_threads;
1188 } while (read_seqretry(&xtime_lock, seq));
1190 si_meminfo(&val);
1191 si_swapinfo(&val);
1194 * If the sum of all the available memory (i.e. ram + swap)
1195 * is less than can be stored in a 32 bit unsigned long then
1196 * we can be binary compatible with 2.2.x kernels. If not,
1197 * well, in that case 2.2.x was broken anyways...
1199 * -Erik Andersen <andersee@debian.org>
1202 mem_total = val.totalram + val.totalswap;
1203 if (mem_total < val.totalram || mem_total < val.totalswap)
1204 goto out;
1205 bitcount = 0;
1206 mem_unit = val.mem_unit;
1207 while (mem_unit > 1) {
1208 bitcount++;
1209 mem_unit >>= 1;
1210 sav_total = mem_total;
1211 mem_total <<= 1;
1212 if (mem_total < sav_total)
1213 goto out;
1217 * If mem_total did not overflow, multiply all memory values by
1218 * val.mem_unit and set it to 1. This leaves things compatible
1219 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1220 * kernels...
1223 val.mem_unit = 1;
1224 val.totalram <<= bitcount;
1225 val.freeram <<= bitcount;
1226 val.sharedram <<= bitcount;
1227 val.bufferram <<= bitcount;
1228 val.totalswap <<= bitcount;
1229 val.freeswap <<= bitcount;
1230 val.totalhigh <<= bitcount;
1231 val.freehigh <<= bitcount;
1233 out:
1234 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1235 return -EFAULT;
1237 return 0;
1240 static int __devinit init_timers_cpu(int cpu)
1242 int j;
1243 tvec_base_t *base;
1244 static char __devinitdata tvec_base_done[NR_CPUS];
1246 if (!tvec_base_done[cpu]) {
1247 static char boot_done;
1249 if (boot_done) {
1251 * The APs use this path later in boot
1253 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1254 cpu_to_node(cpu));
1255 if (!base)
1256 return -ENOMEM;
1257 memset(base, 0, sizeof(*base));
1258 per_cpu(tvec_bases, cpu) = base;
1259 } else {
1261 * This is for the boot CPU - we use compile-time
1262 * static initialisation because per-cpu memory isn't
1263 * ready yet and because the memory allocators are not
1264 * initialised either.
1266 boot_done = 1;
1267 base = &boot_tvec_bases;
1269 tvec_base_done[cpu] = 1;
1270 } else {
1271 base = per_cpu(tvec_bases, cpu);
1274 spin_lock_init(&base->lock);
1275 for (j = 0; j < TVN_SIZE; j++) {
1276 INIT_LIST_HEAD(base->tv5.vec + j);
1277 INIT_LIST_HEAD(base->tv4.vec + j);
1278 INIT_LIST_HEAD(base->tv3.vec + j);
1279 INIT_LIST_HEAD(base->tv2.vec + j);
1281 for (j = 0; j < TVR_SIZE; j++)
1282 INIT_LIST_HEAD(base->tv1.vec + j);
1284 base->timer_jiffies = jiffies;
1285 return 0;
1288 #ifdef CONFIG_HOTPLUG_CPU
1289 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1291 struct timer_list *timer;
1293 while (!list_empty(head)) {
1294 timer = list_entry(head->next, struct timer_list, entry);
1295 detach_timer(timer, 0);
1296 timer->base = new_base;
1297 internal_add_timer(new_base, timer);
1301 static void __devinit migrate_timers(int cpu)
1303 tvec_base_t *old_base;
1304 tvec_base_t *new_base;
1305 int i;
1307 BUG_ON(cpu_online(cpu));
1308 old_base = per_cpu(tvec_bases, cpu);
1309 new_base = get_cpu_var(tvec_bases);
1311 local_irq_disable();
1312 spin_lock(&new_base->lock);
1313 spin_lock(&old_base->lock);
1315 BUG_ON(old_base->running_timer);
1317 for (i = 0; i < TVR_SIZE; i++)
1318 migrate_timer_list(new_base, old_base->tv1.vec + i);
1319 for (i = 0; i < TVN_SIZE; i++) {
1320 migrate_timer_list(new_base, old_base->tv2.vec + i);
1321 migrate_timer_list(new_base, old_base->tv3.vec + i);
1322 migrate_timer_list(new_base, old_base->tv4.vec + i);
1323 migrate_timer_list(new_base, old_base->tv5.vec + i);
1326 spin_unlock(&old_base->lock);
1327 spin_unlock(&new_base->lock);
1328 local_irq_enable();
1329 put_cpu_var(tvec_bases);
1331 #endif /* CONFIG_HOTPLUG_CPU */
1333 static int timer_cpu_notify(struct notifier_block *self,
1334 unsigned long action, void *hcpu)
1336 long cpu = (long)hcpu;
1337 switch(action) {
1338 case CPU_UP_PREPARE:
1339 if (init_timers_cpu(cpu) < 0)
1340 return NOTIFY_BAD;
1341 break;
1342 #ifdef CONFIG_HOTPLUG_CPU
1343 case CPU_DEAD:
1344 migrate_timers(cpu);
1345 break;
1346 #endif
1347 default:
1348 break;
1350 return NOTIFY_OK;
1353 static struct notifier_block timers_nb = {
1354 .notifier_call = timer_cpu_notify,
1358 void __init init_timers(void)
1360 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1361 (void *)(long)smp_processor_id());
1362 register_cpu_notifier(&timers_nb);
1363 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1366 #ifdef CONFIG_TIME_INTERPOLATION
1368 struct time_interpolator *time_interpolator __read_mostly;
1369 static struct time_interpolator *time_interpolator_list __read_mostly;
1370 static DEFINE_SPINLOCK(time_interpolator_lock);
1372 static inline u64 time_interpolator_get_cycles(unsigned int src)
1374 unsigned long (*x)(void);
1376 switch (src)
1378 case TIME_SOURCE_FUNCTION:
1379 x = time_interpolator->addr;
1380 return x();
1382 case TIME_SOURCE_MMIO64 :
1383 return readq_relaxed((void __iomem *)time_interpolator->addr);
1385 case TIME_SOURCE_MMIO32 :
1386 return readl_relaxed((void __iomem *)time_interpolator->addr);
1388 default: return get_cycles();
1392 static inline u64 time_interpolator_get_counter(int writelock)
1394 unsigned int src = time_interpolator->source;
1396 if (time_interpolator->jitter)
1398 u64 lcycle;
1399 u64 now;
1401 do {
1402 lcycle = time_interpolator->last_cycle;
1403 now = time_interpolator_get_cycles(src);
1404 if (lcycle && time_after(lcycle, now))
1405 return lcycle;
1407 /* When holding the xtime write lock, there's no need
1408 * to add the overhead of the cmpxchg. Readers are
1409 * force to retry until the write lock is released.
1411 if (writelock) {
1412 time_interpolator->last_cycle = now;
1413 return now;
1415 /* Keep track of the last timer value returned. The use of cmpxchg here
1416 * will cause contention in an SMP environment.
1418 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1419 return now;
1421 else
1422 return time_interpolator_get_cycles(src);
1425 void time_interpolator_reset(void)
1427 time_interpolator->offset = 0;
1428 time_interpolator->last_counter = time_interpolator_get_counter(1);
1431 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1433 unsigned long time_interpolator_get_offset(void)
1435 /* If we do not have a time interpolator set up then just return zero */
1436 if (!time_interpolator)
1437 return 0;
1439 return time_interpolator->offset +
1440 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1443 #define INTERPOLATOR_ADJUST 65536
1444 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1446 static void time_interpolator_update(long delta_nsec)
1448 u64 counter;
1449 unsigned long offset;
1451 /* If there is no time interpolator set up then do nothing */
1452 if (!time_interpolator)
1453 return;
1456 * The interpolator compensates for late ticks by accumulating the late
1457 * time in time_interpolator->offset. A tick earlier than expected will
1458 * lead to a reset of the offset and a corresponding jump of the clock
1459 * forward. Again this only works if the interpolator clock is running
1460 * slightly slower than the regular clock and the tuning logic insures
1461 * that.
1464 counter = time_interpolator_get_counter(1);
1465 offset = time_interpolator->offset +
1466 GET_TI_NSECS(counter, time_interpolator);
1468 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1469 time_interpolator->offset = offset - delta_nsec;
1470 else {
1471 time_interpolator->skips++;
1472 time_interpolator->ns_skipped += delta_nsec - offset;
1473 time_interpolator->offset = 0;
1475 time_interpolator->last_counter = counter;
1477 /* Tuning logic for time interpolator invoked every minute or so.
1478 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1479 * Increase interpolator clock speed if we skip too much time.
1481 if (jiffies % INTERPOLATOR_ADJUST == 0)
1483 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1484 time_interpolator->nsec_per_cyc--;
1485 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1486 time_interpolator->nsec_per_cyc++;
1487 time_interpolator->skips = 0;
1488 time_interpolator->ns_skipped = 0;
1492 static inline int
1493 is_better_time_interpolator(struct time_interpolator *new)
1495 if (!time_interpolator)
1496 return 1;
1497 return new->frequency > 2*time_interpolator->frequency ||
1498 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1501 void
1502 register_time_interpolator(struct time_interpolator *ti)
1504 unsigned long flags;
1506 /* Sanity check */
1507 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1509 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1510 spin_lock(&time_interpolator_lock);
1511 write_seqlock_irqsave(&xtime_lock, flags);
1512 if (is_better_time_interpolator(ti)) {
1513 time_interpolator = ti;
1514 time_interpolator_reset();
1516 write_sequnlock_irqrestore(&xtime_lock, flags);
1518 ti->next = time_interpolator_list;
1519 time_interpolator_list = ti;
1520 spin_unlock(&time_interpolator_lock);
1523 void
1524 unregister_time_interpolator(struct time_interpolator *ti)
1526 struct time_interpolator *curr, **prev;
1527 unsigned long flags;
1529 spin_lock(&time_interpolator_lock);
1530 prev = &time_interpolator_list;
1531 for (curr = *prev; curr; curr = curr->next) {
1532 if (curr == ti) {
1533 *prev = curr->next;
1534 break;
1536 prev = &curr->next;
1539 write_seqlock_irqsave(&xtime_lock, flags);
1540 if (ti == time_interpolator) {
1541 /* we lost the best time-interpolator: */
1542 time_interpolator = NULL;
1543 /* find the next-best interpolator */
1544 for (curr = time_interpolator_list; curr; curr = curr->next)
1545 if (is_better_time_interpolator(curr))
1546 time_interpolator = curr;
1547 time_interpolator_reset();
1549 write_sequnlock_irqrestore(&xtime_lock, flags);
1550 spin_unlock(&time_interpolator_lock);
1552 #endif /* CONFIG_TIME_INTERPOLATION */
1555 * msleep - sleep safely even with waitqueue interruptions
1556 * @msecs: Time in milliseconds to sleep for
1558 void msleep(unsigned int msecs)
1560 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1562 while (timeout)
1563 timeout = schedule_timeout_uninterruptible(timeout);
1566 EXPORT_SYMBOL(msleep);
1569 * msleep_interruptible - sleep waiting for signals
1570 * @msecs: Time in milliseconds to sleep for
1572 unsigned long msleep_interruptible(unsigned int msecs)
1574 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1576 while (timeout && !signal_pending(current))
1577 timeout = schedule_timeout_interruptible(timeout);
1578 return jiffies_to_msecs(timeout);
1581 EXPORT_SYMBOL(msleep_interruptible);