2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <linux/proc_ns.h>
63 #include <linux/nsproxy.h>
64 #include <linux/file.h>
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/cgroup.h>
71 * pidlists linger the following amount before being destroyed. The goal
72 * is avoiding frequent destruction in the middle of consecutive read calls
73 * Expiring in the middle is a performance problem not a correctness one.
74 * 1 sec should be enough.
76 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
78 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
85 * css_set_lock protects task->cgroups pointer, the list of css_set
86 * objects, and the chain of tasks off each css_set.
88 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
89 * cgroup.h can use them for lockdep annotations.
91 #ifdef CONFIG_PROVE_RCU
92 DEFINE_MUTEX(cgroup_mutex
);
93 DEFINE_SPINLOCK(css_set_lock
);
94 EXPORT_SYMBOL_GPL(cgroup_mutex
);
95 EXPORT_SYMBOL_GPL(css_set_lock
);
97 static DEFINE_MUTEX(cgroup_mutex
);
98 static DEFINE_SPINLOCK(css_set_lock
);
102 * Protects cgroup_idr and css_idr so that IDs can be released without
103 * grabbing cgroup_mutex.
105 static DEFINE_SPINLOCK(cgroup_idr_lock
);
108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
109 * against file removal/re-creation across css hiding.
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
114 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
115 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
117 static DEFINE_SPINLOCK(release_agent_path_lock
);
119 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
121 #define cgroup_assert_mutex_or_rcu_locked() \
122 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
123 !lockdep_is_held(&cgroup_mutex), \
124 "cgroup_mutex or RCU read lock required");
127 * cgroup destruction makes heavy use of work items and there can be a lot
128 * of concurrent destructions. Use a separate workqueue so that cgroup
129 * destruction work items don't end up filling up max_active of system_wq
130 * which may lead to deadlock.
132 static struct workqueue_struct
*cgroup_destroy_wq
;
135 * pidlist destructions need to be flushed on cgroup destruction. Use a
136 * separate workqueue as flush domain.
138 static struct workqueue_struct
*cgroup_pidlist_destroy_wq
;
140 /* generate an array of cgroup subsystem pointers */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
142 static struct cgroup_subsys
*cgroup_subsys
[] = {
143 #include <linux/cgroup_subsys.h>
147 /* array of cgroup subsystem names */
148 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
149 static const char *cgroup_subsys_name
[] = {
150 #include <linux/cgroup_subsys.h>
154 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
156 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
157 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
158 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
159 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
160 #include <linux/cgroup_subsys.h>
163 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
164 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
165 #include <linux/cgroup_subsys.h>
169 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
170 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
171 #include <linux/cgroup_subsys.h>
176 * The default hierarchy, reserved for the subsystems that are otherwise
177 * unattached - it never has more than a single cgroup, and all tasks are
178 * part of that cgroup.
180 struct cgroup_root cgrp_dfl_root
;
181 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
184 * The default hierarchy always exists but is hidden until mounted for the
185 * first time. This is for backward compatibility.
187 static bool cgrp_dfl_visible
;
189 /* Controllers blocked by the commandline in v1 */
190 static u16 cgroup_no_v1_mask
;
192 /* some controllers are not supported in the default hierarchy */
193 static u16 cgrp_dfl_inhibit_ss_mask
;
195 /* some controllers are implicitly enabled on the default hierarchy */
196 static unsigned long cgrp_dfl_implicit_ss_mask
;
198 /* The list of hierarchy roots */
200 static LIST_HEAD(cgroup_roots
);
201 static int cgroup_root_count
;
203 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
204 static DEFINE_IDR(cgroup_hierarchy_idr
);
207 * Assign a monotonically increasing serial number to csses. It guarantees
208 * cgroups with bigger numbers are newer than those with smaller numbers.
209 * Also, as csses are always appended to the parent's ->children list, it
210 * guarantees that sibling csses are always sorted in the ascending serial
211 * number order on the list. Protected by cgroup_mutex.
213 static u64 css_serial_nr_next
= 1;
216 * These bitmask flags indicate whether tasks in the fork and exit paths have
217 * fork/exit handlers to call. This avoids us having to do extra work in the
218 * fork/exit path to check which subsystems have fork/exit callbacks.
220 static u16 have_fork_callback __read_mostly
;
221 static u16 have_exit_callback __read_mostly
;
222 static u16 have_free_callback __read_mostly
;
224 /* cgroup namespace for init task */
225 struct cgroup_namespace init_cgroup_ns
= {
226 .count
= { .counter
= 2, },
227 .user_ns
= &init_user_ns
,
228 .ns
.ops
= &cgroupns_operations
,
229 .ns
.inum
= PROC_CGROUP_INIT_INO
,
230 .root_cset
= &init_css_set
,
233 /* Ditto for the can_fork callback. */
234 static u16 have_canfork_callback __read_mostly
;
236 static struct file_system_type cgroup2_fs_type
;
237 static struct cftype cgroup_dfl_base_files
[];
238 static struct cftype cgroup_legacy_base_files
[];
240 static int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
);
241 static void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
);
242 static int cgroup_apply_control(struct cgroup
*cgrp
);
243 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
244 static void css_task_iter_advance(struct css_task_iter
*it
);
245 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
246 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
247 struct cgroup_subsys
*ss
);
248 static void css_release(struct percpu_ref
*ref
);
249 static void kill_css(struct cgroup_subsys_state
*css
);
250 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
251 struct cgroup
*cgrp
, struct cftype cfts
[],
255 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
256 * @ssid: subsys ID of interest
258 * cgroup_subsys_enabled() can only be used with literal subsys names which
259 * is fine for individual subsystems but unsuitable for cgroup core. This
260 * is slower static_key_enabled() based test indexed by @ssid.
262 static bool cgroup_ssid_enabled(int ssid
)
264 if (CGROUP_SUBSYS_COUNT
== 0)
267 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
270 static bool cgroup_ssid_no_v1(int ssid
)
272 return cgroup_no_v1_mask
& (1 << ssid
);
276 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
277 * @cgrp: the cgroup of interest
279 * The default hierarchy is the v2 interface of cgroup and this function
280 * can be used to test whether a cgroup is on the default hierarchy for
281 * cases where a subsystem should behave differnetly depending on the
284 * The set of behaviors which change on the default hierarchy are still
285 * being determined and the mount option is prefixed with __DEVEL__.
287 * List of changed behaviors:
289 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
290 * and "name" are disallowed.
292 * - When mounting an existing superblock, mount options should match.
294 * - Remount is disallowed.
296 * - rename(2) is disallowed.
298 * - "tasks" is removed. Everything should be at process granularity. Use
299 * "cgroup.procs" instead.
301 * - "cgroup.procs" is not sorted. pids will be unique unless they got
302 * recycled inbetween reads.
304 * - "release_agent" and "notify_on_release" are removed. Replacement
305 * notification mechanism will be implemented.
307 * - "cgroup.clone_children" is removed.
309 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
310 * and its descendants contain no task; otherwise, 1. The file also
311 * generates kernfs notification which can be monitored through poll and
312 * [di]notify when the value of the file changes.
314 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
315 * take masks of ancestors with non-empty cpus/mems, instead of being
316 * moved to an ancestor.
318 * - cpuset: a task can be moved into an empty cpuset, and again it takes
319 * masks of ancestors.
321 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
324 * - blkcg: blk-throttle becomes properly hierarchical.
326 * - debug: disallowed on the default hierarchy.
328 static bool cgroup_on_dfl(const struct cgroup
*cgrp
)
330 return cgrp
->root
== &cgrp_dfl_root
;
333 /* IDR wrappers which synchronize using cgroup_idr_lock */
334 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
339 idr_preload(gfp_mask
);
340 spin_lock_bh(&cgroup_idr_lock
);
341 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
342 spin_unlock_bh(&cgroup_idr_lock
);
347 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
351 spin_lock_bh(&cgroup_idr_lock
);
352 ret
= idr_replace(idr
, ptr
, id
);
353 spin_unlock_bh(&cgroup_idr_lock
);
357 static void cgroup_idr_remove(struct idr
*idr
, int id
)
359 spin_lock_bh(&cgroup_idr_lock
);
361 spin_unlock_bh(&cgroup_idr_lock
);
364 static struct cgroup
*cgroup_parent(struct cgroup
*cgrp
)
366 struct cgroup_subsys_state
*parent_css
= cgrp
->self
.parent
;
369 return container_of(parent_css
, struct cgroup
, self
);
373 /* subsystems visibly enabled on a cgroup */
374 static u16
cgroup_control(struct cgroup
*cgrp
)
376 struct cgroup
*parent
= cgroup_parent(cgrp
);
377 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
380 return parent
->subtree_control
;
382 if (cgroup_on_dfl(cgrp
))
383 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
384 cgrp_dfl_implicit_ss_mask
);
388 /* subsystems enabled on a cgroup */
389 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
391 struct cgroup
*parent
= cgroup_parent(cgrp
);
394 return parent
->subtree_ss_mask
;
396 return cgrp
->root
->subsys_mask
;
400 * cgroup_css - obtain a cgroup's css for the specified subsystem
401 * @cgrp: the cgroup of interest
402 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
404 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
405 * function must be called either under cgroup_mutex or rcu_read_lock() and
406 * the caller is responsible for pinning the returned css if it wants to
407 * keep accessing it outside the said locks. This function may return
408 * %NULL if @cgrp doesn't have @subsys_id enabled.
410 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
411 struct cgroup_subsys
*ss
)
414 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
415 lockdep_is_held(&cgroup_mutex
));
421 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
422 * @cgrp: the cgroup of interest
423 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
425 * Similar to cgroup_css() but returns the effective css, which is defined
426 * as the matching css of the nearest ancestor including self which has @ss
427 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
428 * function is guaranteed to return non-NULL css.
430 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
431 struct cgroup_subsys
*ss
)
433 lockdep_assert_held(&cgroup_mutex
);
439 * This function is used while updating css associations and thus
440 * can't test the csses directly. Test ss_mask.
442 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
443 cgrp
= cgroup_parent(cgrp
);
448 return cgroup_css(cgrp
, ss
);
452 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
453 * @cgrp: the cgroup of interest
454 * @ss: the subsystem of interest
456 * Find and get the effective css of @cgrp for @ss. The effective css is
457 * defined as the matching css of the nearest ancestor including self which
458 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
459 * the root css is returned, so this function always returns a valid css.
460 * The returned css must be put using css_put().
462 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
463 struct cgroup_subsys
*ss
)
465 struct cgroup_subsys_state
*css
;
470 css
= cgroup_css(cgrp
, ss
);
472 if (css
&& css_tryget_online(css
))
474 cgrp
= cgroup_parent(cgrp
);
477 css
= init_css_set
.subsys
[ss
->id
];
484 /* convenient tests for these bits */
485 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
487 return !(cgrp
->self
.flags
& CSS_ONLINE
);
490 static void cgroup_get(struct cgroup
*cgrp
)
492 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
493 css_get(&cgrp
->self
);
496 static bool cgroup_tryget(struct cgroup
*cgrp
)
498 return css_tryget(&cgrp
->self
);
501 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
503 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
504 struct cftype
*cft
= of_cft(of
);
507 * This is open and unprotected implementation of cgroup_css().
508 * seq_css() is only called from a kernfs file operation which has
509 * an active reference on the file. Because all the subsystem
510 * files are drained before a css is disassociated with a cgroup,
511 * the matching css from the cgroup's subsys table is guaranteed to
512 * be and stay valid until the enclosing operation is complete.
515 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
519 EXPORT_SYMBOL_GPL(of_css
);
521 static int notify_on_release(const struct cgroup
*cgrp
)
523 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
527 * for_each_css - iterate all css's of a cgroup
528 * @css: the iteration cursor
529 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
530 * @cgrp: the target cgroup to iterate css's of
532 * Should be called under cgroup_[tree_]mutex.
534 #define for_each_css(css, ssid, cgrp) \
535 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
536 if (!((css) = rcu_dereference_check( \
537 (cgrp)->subsys[(ssid)], \
538 lockdep_is_held(&cgroup_mutex)))) { } \
542 * for_each_e_css - iterate all effective css's of a cgroup
543 * @css: the iteration cursor
544 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
545 * @cgrp: the target cgroup to iterate css's of
547 * Should be called under cgroup_[tree_]mutex.
549 #define for_each_e_css(css, ssid, cgrp) \
550 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
551 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
556 * for_each_subsys - iterate all enabled cgroup subsystems
557 * @ss: the iteration cursor
558 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
560 #define for_each_subsys(ss, ssid) \
561 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
562 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
565 * do_each_subsys_mask - filter for_each_subsys with a bitmask
566 * @ss: the iteration cursor
567 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
568 * @ss_mask: the bitmask
570 * The block will only run for cases where the ssid-th bit (1 << ssid) of
573 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
574 unsigned long __ss_mask = (ss_mask); \
575 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
579 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
580 (ss) = cgroup_subsys[ssid]; \
583 #define while_each_subsys_mask() \
588 /* iterate across the hierarchies */
589 #define for_each_root(root) \
590 list_for_each_entry((root), &cgroup_roots, root_list)
592 /* iterate over child cgrps, lock should be held throughout iteration */
593 #define cgroup_for_each_live_child(child, cgrp) \
594 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
595 if (({ lockdep_assert_held(&cgroup_mutex); \
596 cgroup_is_dead(child); })) \
600 /* walk live descendants in preorder */
601 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
602 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
603 if (({ lockdep_assert_held(&cgroup_mutex); \
604 (dsct) = (d_css)->cgroup; \
605 cgroup_is_dead(dsct); })) \
609 /* walk live descendants in postorder */
610 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
611 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
612 if (({ lockdep_assert_held(&cgroup_mutex); \
613 (dsct) = (d_css)->cgroup; \
614 cgroup_is_dead(dsct); })) \
618 static void cgroup_release_agent(struct work_struct
*work
);
619 static void check_for_release(struct cgroup
*cgrp
);
622 * A cgroup can be associated with multiple css_sets as different tasks may
623 * belong to different cgroups on different hierarchies. In the other
624 * direction, a css_set is naturally associated with multiple cgroups.
625 * This M:N relationship is represented by the following link structure
626 * which exists for each association and allows traversing the associations
629 struct cgrp_cset_link
{
630 /* the cgroup and css_set this link associates */
632 struct css_set
*cset
;
634 /* list of cgrp_cset_links anchored at cgrp->cset_links */
635 struct list_head cset_link
;
637 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
638 struct list_head cgrp_link
;
642 * The default css_set - used by init and its children prior to any
643 * hierarchies being mounted. It contains a pointer to the root state
644 * for each subsystem. Also used to anchor the list of css_sets. Not
645 * reference-counted, to improve performance when child cgroups
646 * haven't been created.
648 struct css_set init_css_set
= {
649 .refcount
= ATOMIC_INIT(1),
650 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
651 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
652 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
653 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
654 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
655 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
658 static int css_set_count
= 1; /* 1 for init_css_set */
661 * css_set_populated - does a css_set contain any tasks?
662 * @cset: target css_set
664 static bool css_set_populated(struct css_set
*cset
)
666 lockdep_assert_held(&css_set_lock
);
668 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
672 * cgroup_update_populated - updated populated count of a cgroup
673 * @cgrp: the target cgroup
674 * @populated: inc or dec populated count
676 * One of the css_sets associated with @cgrp is either getting its first
677 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
678 * count is propagated towards root so that a given cgroup's populated_cnt
679 * is zero iff the cgroup and all its descendants don't contain any tasks.
681 * @cgrp's interface file "cgroup.populated" is zero if
682 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
683 * changes from or to zero, userland is notified that the content of the
684 * interface file has changed. This can be used to detect when @cgrp and
685 * its descendants become populated or empty.
687 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
689 lockdep_assert_held(&css_set_lock
);
695 trigger
= !cgrp
->populated_cnt
++;
697 trigger
= !--cgrp
->populated_cnt
;
702 check_for_release(cgrp
);
703 cgroup_file_notify(&cgrp
->events_file
);
705 cgrp
= cgroup_parent(cgrp
);
710 * css_set_update_populated - update populated state of a css_set
711 * @cset: target css_set
712 * @populated: whether @cset is populated or depopulated
714 * @cset is either getting the first task or losing the last. Update the
715 * ->populated_cnt of all associated cgroups accordingly.
717 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
719 struct cgrp_cset_link
*link
;
721 lockdep_assert_held(&css_set_lock
);
723 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
724 cgroup_update_populated(link
->cgrp
, populated
);
728 * css_set_move_task - move a task from one css_set to another
729 * @task: task being moved
730 * @from_cset: css_set @task currently belongs to (may be NULL)
731 * @to_cset: new css_set @task is being moved to (may be NULL)
732 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
734 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
735 * css_set, @from_cset can be NULL. If @task is being disassociated
736 * instead of moved, @to_cset can be NULL.
738 * This function automatically handles populated_cnt updates and
739 * css_task_iter adjustments but the caller is responsible for managing
740 * @from_cset and @to_cset's reference counts.
742 static void css_set_move_task(struct task_struct
*task
,
743 struct css_set
*from_cset
, struct css_set
*to_cset
,
746 lockdep_assert_held(&css_set_lock
);
748 if (to_cset
&& !css_set_populated(to_cset
))
749 css_set_update_populated(to_cset
, true);
752 struct css_task_iter
*it
, *pos
;
754 WARN_ON_ONCE(list_empty(&task
->cg_list
));
757 * @task is leaving, advance task iterators which are
758 * pointing to it so that they can resume at the next
759 * position. Advancing an iterator might remove it from
760 * the list, use safe walk. See css_task_iter_advance*()
763 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
765 if (it
->task_pos
== &task
->cg_list
)
766 css_task_iter_advance(it
);
768 list_del_init(&task
->cg_list
);
769 if (!css_set_populated(from_cset
))
770 css_set_update_populated(from_cset
, false);
772 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
777 * We are synchronized through cgroup_threadgroup_rwsem
778 * against PF_EXITING setting such that we can't race
779 * against cgroup_exit() changing the css_set to
780 * init_css_set and dropping the old one.
782 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
784 rcu_assign_pointer(task
->cgroups
, to_cset
);
785 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
791 * hash table for cgroup groups. This improves the performance to find
792 * an existing css_set. This hash doesn't (currently) take into
793 * account cgroups in empty hierarchies.
795 #define CSS_SET_HASH_BITS 7
796 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
798 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
800 unsigned long key
= 0UL;
801 struct cgroup_subsys
*ss
;
804 for_each_subsys(ss
, i
)
805 key
+= (unsigned long)css
[i
];
806 key
= (key
>> 16) ^ key
;
811 static void put_css_set_locked(struct css_set
*cset
)
813 struct cgrp_cset_link
*link
, *tmp_link
;
814 struct cgroup_subsys
*ss
;
817 lockdep_assert_held(&css_set_lock
);
819 if (!atomic_dec_and_test(&cset
->refcount
))
822 /* This css_set is dead. unlink it and release cgroup and css refs */
823 for_each_subsys(ss
, ssid
) {
824 list_del(&cset
->e_cset_node
[ssid
]);
825 css_put(cset
->subsys
[ssid
]);
827 hash_del(&cset
->hlist
);
830 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
831 list_del(&link
->cset_link
);
832 list_del(&link
->cgrp_link
);
833 if (cgroup_parent(link
->cgrp
))
834 cgroup_put(link
->cgrp
);
838 kfree_rcu(cset
, rcu_head
);
841 static void put_css_set(struct css_set
*cset
)
846 * Ensure that the refcount doesn't hit zero while any readers
847 * can see it. Similar to atomic_dec_and_lock(), but for an
850 if (atomic_add_unless(&cset
->refcount
, -1, 1))
853 spin_lock_irqsave(&css_set_lock
, flags
);
854 put_css_set_locked(cset
);
855 spin_unlock_irqrestore(&css_set_lock
, flags
);
859 * refcounted get/put for css_set objects
861 static inline void get_css_set(struct css_set
*cset
)
863 atomic_inc(&cset
->refcount
);
867 * compare_css_sets - helper function for find_existing_css_set().
868 * @cset: candidate css_set being tested
869 * @old_cset: existing css_set for a task
870 * @new_cgrp: cgroup that's being entered by the task
871 * @template: desired set of css pointers in css_set (pre-calculated)
873 * Returns true if "cset" matches "old_cset" except for the hierarchy
874 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
876 static bool compare_css_sets(struct css_set
*cset
,
877 struct css_set
*old_cset
,
878 struct cgroup
*new_cgrp
,
879 struct cgroup_subsys_state
*template[])
881 struct list_head
*l1
, *l2
;
884 * On the default hierarchy, there can be csets which are
885 * associated with the same set of cgroups but different csses.
886 * Let's first ensure that csses match.
888 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
892 * Compare cgroup pointers in order to distinguish between
893 * different cgroups in hierarchies. As different cgroups may
894 * share the same effective css, this comparison is always
897 l1
= &cset
->cgrp_links
;
898 l2
= &old_cset
->cgrp_links
;
900 struct cgrp_cset_link
*link1
, *link2
;
901 struct cgroup
*cgrp1
, *cgrp2
;
905 /* See if we reached the end - both lists are equal length. */
906 if (l1
== &cset
->cgrp_links
) {
907 BUG_ON(l2
!= &old_cset
->cgrp_links
);
910 BUG_ON(l2
== &old_cset
->cgrp_links
);
912 /* Locate the cgroups associated with these links. */
913 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
914 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
917 /* Hierarchies should be linked in the same order. */
918 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
921 * If this hierarchy is the hierarchy of the cgroup
922 * that's changing, then we need to check that this
923 * css_set points to the new cgroup; if it's any other
924 * hierarchy, then this css_set should point to the
925 * same cgroup as the old css_set.
927 if (cgrp1
->root
== new_cgrp
->root
) {
928 if (cgrp1
!= new_cgrp
)
939 * find_existing_css_set - init css array and find the matching css_set
940 * @old_cset: the css_set that we're using before the cgroup transition
941 * @cgrp: the cgroup that we're moving into
942 * @template: out param for the new set of csses, should be clear on entry
944 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
946 struct cgroup_subsys_state
*template[])
948 struct cgroup_root
*root
= cgrp
->root
;
949 struct cgroup_subsys
*ss
;
950 struct css_set
*cset
;
955 * Build the set of subsystem state objects that we want to see in the
956 * new css_set. while subsystems can change globally, the entries here
957 * won't change, so no need for locking.
959 for_each_subsys(ss
, i
) {
960 if (root
->subsys_mask
& (1UL << i
)) {
962 * @ss is in this hierarchy, so we want the
963 * effective css from @cgrp.
965 template[i
] = cgroup_e_css(cgrp
, ss
);
968 * @ss is not in this hierarchy, so we don't want
971 template[i
] = old_cset
->subsys
[i
];
975 key
= css_set_hash(template);
976 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
977 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
980 /* This css_set matches what we need */
984 /* No existing cgroup group matched */
988 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
990 struct cgrp_cset_link
*link
, *tmp_link
;
992 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
993 list_del(&link
->cset_link
);
999 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1000 * @count: the number of links to allocate
1001 * @tmp_links: list_head the allocated links are put on
1003 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1004 * through ->cset_link. Returns 0 on success or -errno.
1006 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1008 struct cgrp_cset_link
*link
;
1011 INIT_LIST_HEAD(tmp_links
);
1013 for (i
= 0; i
< count
; i
++) {
1014 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1016 free_cgrp_cset_links(tmp_links
);
1019 list_add(&link
->cset_link
, tmp_links
);
1025 * link_css_set - a helper function to link a css_set to a cgroup
1026 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1027 * @cset: the css_set to be linked
1028 * @cgrp: the destination cgroup
1030 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1031 struct cgroup
*cgrp
)
1033 struct cgrp_cset_link
*link
;
1035 BUG_ON(list_empty(tmp_links
));
1037 if (cgroup_on_dfl(cgrp
))
1038 cset
->dfl_cgrp
= cgrp
;
1040 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1045 * Always add links to the tail of the lists so that the lists are
1046 * in choronological order.
1048 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1049 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1051 if (cgroup_parent(cgrp
))
1056 * find_css_set - return a new css_set with one cgroup updated
1057 * @old_cset: the baseline css_set
1058 * @cgrp: the cgroup to be updated
1060 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1061 * substituted into the appropriate hierarchy.
1063 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1064 struct cgroup
*cgrp
)
1066 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1067 struct css_set
*cset
;
1068 struct list_head tmp_links
;
1069 struct cgrp_cset_link
*link
;
1070 struct cgroup_subsys
*ss
;
1074 lockdep_assert_held(&cgroup_mutex
);
1076 /* First see if we already have a cgroup group that matches
1077 * the desired set */
1078 spin_lock_irq(&css_set_lock
);
1079 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1082 spin_unlock_irq(&css_set_lock
);
1087 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1091 /* Allocate all the cgrp_cset_link objects that we'll need */
1092 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1097 atomic_set(&cset
->refcount
, 1);
1098 INIT_LIST_HEAD(&cset
->cgrp_links
);
1099 INIT_LIST_HEAD(&cset
->tasks
);
1100 INIT_LIST_HEAD(&cset
->mg_tasks
);
1101 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1102 INIT_LIST_HEAD(&cset
->mg_node
);
1103 INIT_LIST_HEAD(&cset
->task_iters
);
1104 INIT_HLIST_NODE(&cset
->hlist
);
1106 /* Copy the set of subsystem state objects generated in
1107 * find_existing_css_set() */
1108 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1110 spin_lock_irq(&css_set_lock
);
1111 /* Add reference counts and links from the new css_set. */
1112 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1113 struct cgroup
*c
= link
->cgrp
;
1115 if (c
->root
== cgrp
->root
)
1117 link_css_set(&tmp_links
, cset
, c
);
1120 BUG_ON(!list_empty(&tmp_links
));
1124 /* Add @cset to the hash table */
1125 key
= css_set_hash(cset
->subsys
);
1126 hash_add(css_set_table
, &cset
->hlist
, key
);
1128 for_each_subsys(ss
, ssid
) {
1129 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1131 list_add_tail(&cset
->e_cset_node
[ssid
],
1132 &css
->cgroup
->e_csets
[ssid
]);
1136 spin_unlock_irq(&css_set_lock
);
1141 static struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1143 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1145 return root_cgrp
->root
;
1148 static int cgroup_init_root_id(struct cgroup_root
*root
)
1152 lockdep_assert_held(&cgroup_mutex
);
1154 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1158 root
->hierarchy_id
= id
;
1162 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1164 lockdep_assert_held(&cgroup_mutex
);
1166 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1169 static void cgroup_free_root(struct cgroup_root
*root
)
1172 idr_destroy(&root
->cgroup_idr
);
1177 static void cgroup_destroy_root(struct cgroup_root
*root
)
1179 struct cgroup
*cgrp
= &root
->cgrp
;
1180 struct cgrp_cset_link
*link
, *tmp_link
;
1182 trace_cgroup_destroy_root(root
);
1184 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1186 BUG_ON(atomic_read(&root
->nr_cgrps
));
1187 BUG_ON(!list_empty(&cgrp
->self
.children
));
1189 /* Rebind all subsystems back to the default hierarchy */
1190 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1193 * Release all the links from cset_links to this hierarchy's
1196 spin_lock_irq(&css_set_lock
);
1198 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1199 list_del(&link
->cset_link
);
1200 list_del(&link
->cgrp_link
);
1204 spin_unlock_irq(&css_set_lock
);
1206 if (!list_empty(&root
->root_list
)) {
1207 list_del(&root
->root_list
);
1208 cgroup_root_count
--;
1211 cgroup_exit_root_id(root
);
1213 mutex_unlock(&cgroup_mutex
);
1215 kernfs_destroy_root(root
->kf_root
);
1216 cgroup_free_root(root
);
1220 * look up cgroup associated with current task's cgroup namespace on the
1221 * specified hierarchy
1223 static struct cgroup
*
1224 current_cgns_cgroup_from_root(struct cgroup_root
*root
)
1226 struct cgroup
*res
= NULL
;
1227 struct css_set
*cset
;
1229 lockdep_assert_held(&css_set_lock
);
1233 cset
= current
->nsproxy
->cgroup_ns
->root_cset
;
1234 if (cset
== &init_css_set
) {
1237 struct cgrp_cset_link
*link
;
1239 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1240 struct cgroup
*c
= link
->cgrp
;
1242 if (c
->root
== root
) {
1254 /* look up cgroup associated with given css_set on the specified hierarchy */
1255 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1256 struct cgroup_root
*root
)
1258 struct cgroup
*res
= NULL
;
1260 lockdep_assert_held(&cgroup_mutex
);
1261 lockdep_assert_held(&css_set_lock
);
1263 if (cset
== &init_css_set
) {
1266 struct cgrp_cset_link
*link
;
1268 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1269 struct cgroup
*c
= link
->cgrp
;
1271 if (c
->root
== root
) {
1283 * Return the cgroup for "task" from the given hierarchy. Must be
1284 * called with cgroup_mutex and css_set_lock held.
1286 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1287 struct cgroup_root
*root
)
1290 * No need to lock the task - since we hold cgroup_mutex the
1291 * task can't change groups, so the only thing that can happen
1292 * is that it exits and its css is set back to init_css_set.
1294 return cset_cgroup_from_root(task_css_set(task
), root
);
1298 * A task must hold cgroup_mutex to modify cgroups.
1300 * Any task can increment and decrement the count field without lock.
1301 * So in general, code holding cgroup_mutex can't rely on the count
1302 * field not changing. However, if the count goes to zero, then only
1303 * cgroup_attach_task() can increment it again. Because a count of zero
1304 * means that no tasks are currently attached, therefore there is no
1305 * way a task attached to that cgroup can fork (the other way to
1306 * increment the count). So code holding cgroup_mutex can safely
1307 * assume that if the count is zero, it will stay zero. Similarly, if
1308 * a task holds cgroup_mutex on a cgroup with zero count, it
1309 * knows that the cgroup won't be removed, as cgroup_rmdir()
1312 * A cgroup can only be deleted if both its 'count' of using tasks
1313 * is zero, and its list of 'children' cgroups is empty. Since all
1314 * tasks in the system use _some_ cgroup, and since there is always at
1315 * least one task in the system (init, pid == 1), therefore, root cgroup
1316 * always has either children cgroups and/or using tasks. So we don't
1317 * need a special hack to ensure that root cgroup cannot be deleted.
1319 * P.S. One more locking exception. RCU is used to guard the
1320 * update of a tasks cgroup pointer by cgroup_attach_task()
1323 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1324 static const struct file_operations proc_cgroupstats_operations
;
1326 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1329 struct cgroup_subsys
*ss
= cft
->ss
;
1331 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1332 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1333 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1334 cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1337 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1342 * cgroup_file_mode - deduce file mode of a control file
1343 * @cft: the control file in question
1345 * S_IRUGO for read, S_IWUSR for write.
1347 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1351 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1354 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1355 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1365 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1366 * @subtree_control: the new subtree_control mask to consider
1367 * @this_ss_mask: available subsystems
1369 * On the default hierarchy, a subsystem may request other subsystems to be
1370 * enabled together through its ->depends_on mask. In such cases, more
1371 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1373 * This function calculates which subsystems need to be enabled if
1374 * @subtree_control is to be applied while restricted to @this_ss_mask.
1376 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1378 u16 cur_ss_mask
= subtree_control
;
1379 struct cgroup_subsys
*ss
;
1382 lockdep_assert_held(&cgroup_mutex
);
1384 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1387 u16 new_ss_mask
= cur_ss_mask
;
1389 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1390 new_ss_mask
|= ss
->depends_on
;
1391 } while_each_subsys_mask();
1394 * Mask out subsystems which aren't available. This can
1395 * happen only if some depended-upon subsystems were bound
1396 * to non-default hierarchies.
1398 new_ss_mask
&= this_ss_mask
;
1400 if (new_ss_mask
== cur_ss_mask
)
1402 cur_ss_mask
= new_ss_mask
;
1409 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1410 * @kn: the kernfs_node being serviced
1412 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1413 * the method finishes if locking succeeded. Note that once this function
1414 * returns the cgroup returned by cgroup_kn_lock_live() may become
1415 * inaccessible any time. If the caller intends to continue to access the
1416 * cgroup, it should pin it before invoking this function.
1418 static void cgroup_kn_unlock(struct kernfs_node
*kn
)
1420 struct cgroup
*cgrp
;
1422 if (kernfs_type(kn
) == KERNFS_DIR
)
1425 cgrp
= kn
->parent
->priv
;
1427 mutex_unlock(&cgroup_mutex
);
1429 kernfs_unbreak_active_protection(kn
);
1434 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1435 * @kn: the kernfs_node being serviced
1436 * @drain_offline: perform offline draining on the cgroup
1438 * This helper is to be used by a cgroup kernfs method currently servicing
1439 * @kn. It breaks the active protection, performs cgroup locking and
1440 * verifies that the associated cgroup is alive. Returns the cgroup if
1441 * alive; otherwise, %NULL. A successful return should be undone by a
1442 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1443 * cgroup is drained of offlining csses before return.
1445 * Any cgroup kernfs method implementation which requires locking the
1446 * associated cgroup should use this helper. It avoids nesting cgroup
1447 * locking under kernfs active protection and allows all kernfs operations
1448 * including self-removal.
1450 static struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
,
1453 struct cgroup
*cgrp
;
1455 if (kernfs_type(kn
) == KERNFS_DIR
)
1458 cgrp
= kn
->parent
->priv
;
1461 * We're gonna grab cgroup_mutex which nests outside kernfs
1462 * active_ref. cgroup liveliness check alone provides enough
1463 * protection against removal. Ensure @cgrp stays accessible and
1464 * break the active_ref protection.
1466 if (!cgroup_tryget(cgrp
))
1468 kernfs_break_active_protection(kn
);
1471 cgroup_lock_and_drain_offline(cgrp
);
1473 mutex_lock(&cgroup_mutex
);
1475 if (!cgroup_is_dead(cgrp
))
1478 cgroup_kn_unlock(kn
);
1482 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1484 char name
[CGROUP_FILE_NAME_MAX
];
1486 lockdep_assert_held(&cgroup_mutex
);
1488 if (cft
->file_offset
) {
1489 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1490 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1492 spin_lock_irq(&cgroup_file_kn_lock
);
1494 spin_unlock_irq(&cgroup_file_kn_lock
);
1497 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1501 * css_clear_dir - remove subsys files in a cgroup directory
1504 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1506 struct cgroup
*cgrp
= css
->cgroup
;
1507 struct cftype
*cfts
;
1509 if (!(css
->flags
& CSS_VISIBLE
))
1512 css
->flags
&= ~CSS_VISIBLE
;
1514 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1515 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1519 * css_populate_dir - create subsys files in a cgroup directory
1522 * On failure, no file is added.
1524 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1526 struct cgroup
*cgrp
= css
->cgroup
;
1527 struct cftype
*cfts
, *failed_cfts
;
1530 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1534 if (cgroup_on_dfl(cgrp
))
1535 cfts
= cgroup_dfl_base_files
;
1537 cfts
= cgroup_legacy_base_files
;
1539 return cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1542 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1543 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1550 css
->flags
|= CSS_VISIBLE
;
1554 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1555 if (cfts
== failed_cfts
)
1557 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1562 static int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1564 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1565 struct cgroup_subsys
*ss
;
1568 lockdep_assert_held(&cgroup_mutex
);
1570 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1572 * If @ss has non-root csses attached to it, can't move.
1573 * If @ss is an implicit controller, it is exempt from this
1574 * rule and can be stolen.
1576 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1577 !ss
->implicit_on_dfl
)
1580 /* can't move between two non-dummy roots either */
1581 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1583 } while_each_subsys_mask();
1585 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1586 struct cgroup_root
*src_root
= ss
->root
;
1587 struct cgroup
*scgrp
= &src_root
->cgrp
;
1588 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1589 struct css_set
*cset
;
1591 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1593 /* disable from the source */
1594 src_root
->subsys_mask
&= ~(1 << ssid
);
1595 WARN_ON(cgroup_apply_control(scgrp
));
1596 cgroup_finalize_control(scgrp
, 0);
1599 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1600 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1601 ss
->root
= dst_root
;
1602 css
->cgroup
= dcgrp
;
1604 spin_lock_irq(&css_set_lock
);
1605 hash_for_each(css_set_table
, i
, cset
, hlist
)
1606 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1607 &dcgrp
->e_csets
[ss
->id
]);
1608 spin_unlock_irq(&css_set_lock
);
1610 /* default hierarchy doesn't enable controllers by default */
1611 dst_root
->subsys_mask
|= 1 << ssid
;
1612 if (dst_root
== &cgrp_dfl_root
) {
1613 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1615 dcgrp
->subtree_control
|= 1 << ssid
;
1616 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1619 ret
= cgroup_apply_control(dcgrp
);
1621 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1626 } while_each_subsys_mask();
1628 kernfs_activate(dcgrp
->kn
);
1632 static int cgroup_show_path(struct seq_file
*sf
, struct kernfs_node
*kf_node
,
1633 struct kernfs_root
*kf_root
)
1637 struct cgroup_root
*kf_cgroot
= cgroup_root_from_kf(kf_root
);
1638 struct cgroup
*ns_cgroup
;
1640 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1644 spin_lock_irq(&css_set_lock
);
1645 ns_cgroup
= current_cgns_cgroup_from_root(kf_cgroot
);
1646 len
= kernfs_path_from_node(kf_node
, ns_cgroup
->kn
, buf
, PATH_MAX
);
1647 spin_unlock_irq(&css_set_lock
);
1649 if (len
>= PATH_MAX
)
1652 seq_escape(sf
, buf
, " \t\n\\");
1659 static int cgroup_show_options(struct seq_file
*seq
,
1660 struct kernfs_root
*kf_root
)
1662 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1663 struct cgroup_subsys
*ss
;
1666 if (root
!= &cgrp_dfl_root
)
1667 for_each_subsys(ss
, ssid
)
1668 if (root
->subsys_mask
& (1 << ssid
))
1669 seq_show_option(seq
, ss
->legacy_name
, NULL
);
1670 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1671 seq_puts(seq
, ",noprefix");
1672 if (root
->flags
& CGRP_ROOT_XATTR
)
1673 seq_puts(seq
, ",xattr");
1675 spin_lock(&release_agent_path_lock
);
1676 if (strlen(root
->release_agent_path
))
1677 seq_show_option(seq
, "release_agent",
1678 root
->release_agent_path
);
1679 spin_unlock(&release_agent_path_lock
);
1681 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
))
1682 seq_puts(seq
, ",clone_children");
1683 if (strlen(root
->name
))
1684 seq_show_option(seq
, "name", root
->name
);
1688 struct cgroup_sb_opts
{
1691 char *release_agent
;
1692 bool cpuset_clone_children
;
1694 /* User explicitly requested empty subsystem */
1698 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1700 char *token
, *o
= data
;
1701 bool all_ss
= false, one_ss
= false;
1703 struct cgroup_subsys
*ss
;
1707 #ifdef CONFIG_CPUSETS
1708 mask
= ~((u16
)1 << cpuset_cgrp_id
);
1711 memset(opts
, 0, sizeof(*opts
));
1713 while ((token
= strsep(&o
, ",")) != NULL
) {
1718 if (!strcmp(token
, "none")) {
1719 /* Explicitly have no subsystems */
1723 if (!strcmp(token
, "all")) {
1724 /* Mutually exclusive option 'all' + subsystem name */
1730 if (!strcmp(token
, "noprefix")) {
1731 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1734 if (!strcmp(token
, "clone_children")) {
1735 opts
->cpuset_clone_children
= true;
1738 if (!strcmp(token
, "xattr")) {
1739 opts
->flags
|= CGRP_ROOT_XATTR
;
1742 if (!strncmp(token
, "release_agent=", 14)) {
1743 /* Specifying two release agents is forbidden */
1744 if (opts
->release_agent
)
1746 opts
->release_agent
=
1747 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1748 if (!opts
->release_agent
)
1752 if (!strncmp(token
, "name=", 5)) {
1753 const char *name
= token
+ 5;
1754 /* Can't specify an empty name */
1757 /* Must match [\w.-]+ */
1758 for (i
= 0; i
< strlen(name
); i
++) {
1762 if ((c
== '.') || (c
== '-') || (c
== '_'))
1766 /* Specifying two names is forbidden */
1769 opts
->name
= kstrndup(name
,
1770 MAX_CGROUP_ROOT_NAMELEN
- 1,
1778 for_each_subsys(ss
, i
) {
1779 if (strcmp(token
, ss
->legacy_name
))
1781 if (!cgroup_ssid_enabled(i
))
1783 if (cgroup_ssid_no_v1(i
))
1786 /* Mutually exclusive option 'all' + subsystem name */
1789 opts
->subsys_mask
|= (1 << i
);
1794 if (i
== CGROUP_SUBSYS_COUNT
)
1799 * If the 'all' option was specified select all the subsystems,
1800 * otherwise if 'none', 'name=' and a subsystem name options were
1801 * not specified, let's default to 'all'
1803 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1804 for_each_subsys(ss
, i
)
1805 if (cgroup_ssid_enabled(i
) && !cgroup_ssid_no_v1(i
))
1806 opts
->subsys_mask
|= (1 << i
);
1809 * We either have to specify by name or by subsystems. (So all
1810 * empty hierarchies must have a name).
1812 if (!opts
->subsys_mask
&& !opts
->name
)
1816 * Option noprefix was introduced just for backward compatibility
1817 * with the old cpuset, so we allow noprefix only if mounting just
1818 * the cpuset subsystem.
1820 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1823 /* Can't specify "none" and some subsystems */
1824 if (opts
->subsys_mask
&& opts
->none
)
1830 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1833 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1834 struct cgroup_sb_opts opts
;
1835 u16 added_mask
, removed_mask
;
1837 if (root
== &cgrp_dfl_root
) {
1838 pr_err("remount is not allowed\n");
1842 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1844 /* See what subsystems are wanted */
1845 ret
= parse_cgroupfs_options(data
, &opts
);
1849 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1850 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1851 task_tgid_nr(current
), current
->comm
);
1853 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1854 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1856 /* Don't allow flags or name to change at remount */
1857 if ((opts
.flags
^ root
->flags
) ||
1858 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1859 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1860 opts
.flags
, opts
.name
?: "", root
->flags
, root
->name
);
1865 /* remounting is not allowed for populated hierarchies */
1866 if (!list_empty(&root
->cgrp
.self
.children
)) {
1871 ret
= rebind_subsystems(root
, added_mask
);
1875 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, removed_mask
));
1877 if (opts
.release_agent
) {
1878 spin_lock(&release_agent_path_lock
);
1879 strcpy(root
->release_agent_path
, opts
.release_agent
);
1880 spin_unlock(&release_agent_path_lock
);
1883 trace_cgroup_remount(root
);
1886 kfree(opts
.release_agent
);
1888 mutex_unlock(&cgroup_mutex
);
1893 * To reduce the fork() overhead for systems that are not actually using
1894 * their cgroups capability, we don't maintain the lists running through
1895 * each css_set to its tasks until we see the list actually used - in other
1896 * words after the first mount.
1898 static bool use_task_css_set_links __read_mostly
;
1900 static void cgroup_enable_task_cg_lists(void)
1902 struct task_struct
*p
, *g
;
1904 spin_lock_irq(&css_set_lock
);
1906 if (use_task_css_set_links
)
1909 use_task_css_set_links
= true;
1912 * We need tasklist_lock because RCU is not safe against
1913 * while_each_thread(). Besides, a forking task that has passed
1914 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1915 * is not guaranteed to have its child immediately visible in the
1916 * tasklist if we walk through it with RCU.
1918 read_lock(&tasklist_lock
);
1919 do_each_thread(g
, p
) {
1920 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1921 task_css_set(p
) != &init_css_set
);
1924 * We should check if the process is exiting, otherwise
1925 * it will race with cgroup_exit() in that the list
1926 * entry won't be deleted though the process has exited.
1927 * Do it while holding siglock so that we don't end up
1928 * racing against cgroup_exit().
1930 * Interrupts were already disabled while acquiring
1931 * the css_set_lock, so we do not need to disable it
1932 * again when acquiring the sighand->siglock here.
1934 spin_lock(&p
->sighand
->siglock
);
1935 if (!(p
->flags
& PF_EXITING
)) {
1936 struct css_set
*cset
= task_css_set(p
);
1938 if (!css_set_populated(cset
))
1939 css_set_update_populated(cset
, true);
1940 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1943 spin_unlock(&p
->sighand
->siglock
);
1944 } while_each_thread(g
, p
);
1945 read_unlock(&tasklist_lock
);
1947 spin_unlock_irq(&css_set_lock
);
1950 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1952 struct cgroup_subsys
*ss
;
1955 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1956 INIT_LIST_HEAD(&cgrp
->self
.children
);
1957 INIT_LIST_HEAD(&cgrp
->cset_links
);
1958 INIT_LIST_HEAD(&cgrp
->pidlists
);
1959 mutex_init(&cgrp
->pidlist_mutex
);
1960 cgrp
->self
.cgroup
= cgrp
;
1961 cgrp
->self
.flags
|= CSS_ONLINE
;
1963 for_each_subsys(ss
, ssid
)
1964 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1966 init_waitqueue_head(&cgrp
->offline_waitq
);
1967 INIT_WORK(&cgrp
->release_agent_work
, cgroup_release_agent
);
1970 static void init_cgroup_root(struct cgroup_root
*root
,
1971 struct cgroup_sb_opts
*opts
)
1973 struct cgroup
*cgrp
= &root
->cgrp
;
1975 INIT_LIST_HEAD(&root
->root_list
);
1976 atomic_set(&root
->nr_cgrps
, 1);
1978 init_cgroup_housekeeping(cgrp
);
1979 idr_init(&root
->cgroup_idr
);
1981 root
->flags
= opts
->flags
;
1982 if (opts
->release_agent
)
1983 strcpy(root
->release_agent_path
, opts
->release_agent
);
1985 strcpy(root
->name
, opts
->name
);
1986 if (opts
->cpuset_clone_children
)
1987 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1990 static int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
)
1992 LIST_HEAD(tmp_links
);
1993 struct cgroup
*root_cgrp
= &root
->cgrp
;
1994 struct css_set
*cset
;
1997 lockdep_assert_held(&cgroup_mutex
);
1999 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
2002 root_cgrp
->id
= ret
;
2003 root_cgrp
->ancestor_ids
[0] = ret
;
2005 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
, 0,
2011 * We're accessing css_set_count without locking css_set_lock here,
2012 * but that's OK - it can only be increased by someone holding
2013 * cgroup_lock, and that's us. Later rebinding may disable
2014 * controllers on the default hierarchy and thus create new csets,
2015 * which can't be more than the existing ones. Allocate 2x.
2017 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
2021 ret
= cgroup_init_root_id(root
);
2025 root
->kf_root
= kernfs_create_root(&cgroup_kf_syscall_ops
,
2026 KERNFS_ROOT_CREATE_DEACTIVATED
,
2028 if (IS_ERR(root
->kf_root
)) {
2029 ret
= PTR_ERR(root
->kf_root
);
2032 root_cgrp
->kn
= root
->kf_root
->kn
;
2034 ret
= css_populate_dir(&root_cgrp
->self
);
2038 ret
= rebind_subsystems(root
, ss_mask
);
2042 trace_cgroup_setup_root(root
);
2045 * There must be no failure case after here, since rebinding takes
2046 * care of subsystems' refcounts, which are explicitly dropped in
2047 * the failure exit path.
2049 list_add(&root
->root_list
, &cgroup_roots
);
2050 cgroup_root_count
++;
2053 * Link the root cgroup in this hierarchy into all the css_set
2056 spin_lock_irq(&css_set_lock
);
2057 hash_for_each(css_set_table
, i
, cset
, hlist
) {
2058 link_css_set(&tmp_links
, cset
, root_cgrp
);
2059 if (css_set_populated(cset
))
2060 cgroup_update_populated(root_cgrp
, true);
2062 spin_unlock_irq(&css_set_lock
);
2064 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
2065 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
2067 kernfs_activate(root_cgrp
->kn
);
2072 kernfs_destroy_root(root
->kf_root
);
2073 root
->kf_root
= NULL
;
2075 cgroup_exit_root_id(root
);
2077 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
2079 free_cgrp_cset_links(&tmp_links
);
2083 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
2084 int flags
, const char *unused_dev_name
,
2087 bool is_v2
= fs_type
== &cgroup2_fs_type
;
2088 struct super_block
*pinned_sb
= NULL
;
2089 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
2090 struct cgroup_subsys
*ss
;
2091 struct cgroup_root
*root
;
2092 struct cgroup_sb_opts opts
;
2093 struct dentry
*dentry
;
2100 /* Check if the caller has permission to mount. */
2101 if (!ns_capable(ns
->user_ns
, CAP_SYS_ADMIN
)) {
2103 return ERR_PTR(-EPERM
);
2107 * The first time anyone tries to mount a cgroup, enable the list
2108 * linking each css_set to its tasks and fix up all existing tasks.
2110 if (!use_task_css_set_links
)
2111 cgroup_enable_task_cg_lists();
2115 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data
);
2117 return ERR_PTR(-EINVAL
);
2119 cgrp_dfl_visible
= true;
2120 root
= &cgrp_dfl_root
;
2121 cgroup_get(&root
->cgrp
);
2125 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
2127 /* First find the desired set of subsystems */
2128 ret
= parse_cgroupfs_options(data
, &opts
);
2133 * Destruction of cgroup root is asynchronous, so subsystems may
2134 * still be dying after the previous unmount. Let's drain the
2135 * dying subsystems. We just need to ensure that the ones
2136 * unmounted previously finish dying and don't care about new ones
2137 * starting. Testing ref liveliness is good enough.
2139 for_each_subsys(ss
, i
) {
2140 if (!(opts
.subsys_mask
& (1 << i
)) ||
2141 ss
->root
== &cgrp_dfl_root
)
2144 if (!percpu_ref_tryget_live(&ss
->root
->cgrp
.self
.refcnt
)) {
2145 mutex_unlock(&cgroup_mutex
);
2147 ret
= restart_syscall();
2150 cgroup_put(&ss
->root
->cgrp
);
2153 for_each_root(root
) {
2154 bool name_match
= false;
2156 if (root
== &cgrp_dfl_root
)
2160 * If we asked for a name then it must match. Also, if
2161 * name matches but sybsys_mask doesn't, we should fail.
2162 * Remember whether name matched.
2165 if (strcmp(opts
.name
, root
->name
))
2171 * If we asked for subsystems (or explicitly for no
2172 * subsystems) then they must match.
2174 if ((opts
.subsys_mask
|| opts
.none
) &&
2175 (opts
.subsys_mask
!= root
->subsys_mask
)) {
2182 if (root
->flags
^ opts
.flags
)
2183 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2186 * We want to reuse @root whose lifetime is governed by its
2187 * ->cgrp. Let's check whether @root is alive and keep it
2188 * that way. As cgroup_kill_sb() can happen anytime, we
2189 * want to block it by pinning the sb so that @root doesn't
2190 * get killed before mount is complete.
2192 * With the sb pinned, tryget_live can reliably indicate
2193 * whether @root can be reused. If it's being killed,
2194 * drain it. We can use wait_queue for the wait but this
2195 * path is super cold. Let's just sleep a bit and retry.
2197 pinned_sb
= kernfs_pin_sb(root
->kf_root
, NULL
);
2198 if (IS_ERR(pinned_sb
) ||
2199 !percpu_ref_tryget_live(&root
->cgrp
.self
.refcnt
)) {
2200 mutex_unlock(&cgroup_mutex
);
2201 if (!IS_ERR_OR_NULL(pinned_sb
))
2202 deactivate_super(pinned_sb
);
2204 ret
= restart_syscall();
2213 * No such thing, create a new one. name= matching without subsys
2214 * specification is allowed for already existing hierarchies but we
2215 * can't create new one without subsys specification.
2217 if (!opts
.subsys_mask
&& !opts
.none
) {
2222 /* Hierarchies may only be created in the initial cgroup namespace. */
2223 if (ns
!= &init_cgroup_ns
) {
2228 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
2234 init_cgroup_root(root
, &opts
);
2236 ret
= cgroup_setup_root(root
, opts
.subsys_mask
);
2238 cgroup_free_root(root
);
2241 mutex_unlock(&cgroup_mutex
);
2243 kfree(opts
.release_agent
);
2248 return ERR_PTR(ret
);
2251 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
,
2252 is_v2
? CGROUP2_SUPER_MAGIC
: CGROUP_SUPER_MAGIC
,
2256 * In non-init cgroup namespace, instead of root cgroup's
2257 * dentry, we return the dentry corresponding to the
2258 * cgroupns->root_cgrp.
2260 if (!IS_ERR(dentry
) && ns
!= &init_cgroup_ns
) {
2261 struct dentry
*nsdentry
;
2262 struct cgroup
*cgrp
;
2264 mutex_lock(&cgroup_mutex
);
2265 spin_lock_irq(&css_set_lock
);
2267 cgrp
= cset_cgroup_from_root(ns
->root_cset
, root
);
2269 spin_unlock_irq(&css_set_lock
);
2270 mutex_unlock(&cgroup_mutex
);
2272 nsdentry
= kernfs_node_dentry(cgrp
->kn
, dentry
->d_sb
);
2277 if (IS_ERR(dentry
) || !new_sb
)
2278 cgroup_put(&root
->cgrp
);
2281 * If @pinned_sb, we're reusing an existing root and holding an
2282 * extra ref on its sb. Mount is complete. Put the extra ref.
2286 deactivate_super(pinned_sb
);
2293 static void cgroup_kill_sb(struct super_block
*sb
)
2295 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2296 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2299 * If @root doesn't have any mounts or children, start killing it.
2300 * This prevents new mounts by disabling percpu_ref_tryget_live().
2301 * cgroup_mount() may wait for @root's release.
2303 * And don't kill the default root.
2305 if (!list_empty(&root
->cgrp
.self
.children
) ||
2306 root
== &cgrp_dfl_root
)
2307 cgroup_put(&root
->cgrp
);
2309 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2314 static struct file_system_type cgroup_fs_type
= {
2316 .mount
= cgroup_mount
,
2317 .kill_sb
= cgroup_kill_sb
,
2318 .fs_flags
= FS_USERNS_MOUNT
,
2321 static struct file_system_type cgroup2_fs_type
= {
2323 .mount
= cgroup_mount
,
2324 .kill_sb
= cgroup_kill_sb
,
2325 .fs_flags
= FS_USERNS_MOUNT
,
2328 static int cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2329 struct cgroup_namespace
*ns
)
2331 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2333 return kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2336 int cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2337 struct cgroup_namespace
*ns
)
2341 mutex_lock(&cgroup_mutex
);
2342 spin_lock_irq(&css_set_lock
);
2344 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2346 spin_unlock_irq(&css_set_lock
);
2347 mutex_unlock(&cgroup_mutex
);
2351 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2354 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2355 * @task: target task
2356 * @buf: the buffer to write the path into
2357 * @buflen: the length of the buffer
2359 * Determine @task's cgroup on the first (the one with the lowest non-zero
2360 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2361 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2362 * cgroup controller callbacks.
2364 * Return value is the same as kernfs_path().
2366 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2368 struct cgroup_root
*root
;
2369 struct cgroup
*cgrp
;
2370 int hierarchy_id
= 1;
2373 mutex_lock(&cgroup_mutex
);
2374 spin_lock_irq(&css_set_lock
);
2376 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2379 cgrp
= task_cgroup_from_root(task
, root
);
2380 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2382 /* if no hierarchy exists, everyone is in "/" */
2383 ret
= strlcpy(buf
, "/", buflen
);
2386 spin_unlock_irq(&css_set_lock
);
2387 mutex_unlock(&cgroup_mutex
);
2390 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2392 /* used to track tasks and other necessary states during migration */
2393 struct cgroup_taskset
{
2394 /* the src and dst cset list running through cset->mg_node */
2395 struct list_head src_csets
;
2396 struct list_head dst_csets
;
2398 /* the subsys currently being processed */
2402 * Fields for cgroup_taskset_*() iteration.
2404 * Before migration is committed, the target migration tasks are on
2405 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2406 * the csets on ->dst_csets. ->csets point to either ->src_csets
2407 * or ->dst_csets depending on whether migration is committed.
2409 * ->cur_csets and ->cur_task point to the current task position
2412 struct list_head
*csets
;
2413 struct css_set
*cur_cset
;
2414 struct task_struct
*cur_task
;
2417 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2418 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2419 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2420 .csets = &tset.src_csets, \
2424 * cgroup_taskset_add - try to add a migration target task to a taskset
2425 * @task: target task
2426 * @tset: target taskset
2428 * Add @task, which is a migration target, to @tset. This function becomes
2429 * noop if @task doesn't need to be migrated. @task's css_set should have
2430 * been added as a migration source and @task->cg_list will be moved from
2431 * the css_set's tasks list to mg_tasks one.
2433 static void cgroup_taskset_add(struct task_struct
*task
,
2434 struct cgroup_taskset
*tset
)
2436 struct css_set
*cset
;
2438 lockdep_assert_held(&css_set_lock
);
2440 /* @task either already exited or can't exit until the end */
2441 if (task
->flags
& PF_EXITING
)
2444 /* leave @task alone if post_fork() hasn't linked it yet */
2445 if (list_empty(&task
->cg_list
))
2448 cset
= task_css_set(task
);
2449 if (!cset
->mg_src_cgrp
)
2452 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2453 if (list_empty(&cset
->mg_node
))
2454 list_add_tail(&cset
->mg_node
, &tset
->src_csets
);
2455 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2456 list_move_tail(&cset
->mg_dst_cset
->mg_node
,
2461 * cgroup_taskset_first - reset taskset and return the first task
2462 * @tset: taskset of interest
2463 * @dst_cssp: output variable for the destination css
2465 * @tset iteration is initialized and the first task is returned.
2467 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2468 struct cgroup_subsys_state
**dst_cssp
)
2470 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2471 tset
->cur_task
= NULL
;
2473 return cgroup_taskset_next(tset
, dst_cssp
);
2477 * cgroup_taskset_next - iterate to the next task in taskset
2478 * @tset: taskset of interest
2479 * @dst_cssp: output variable for the destination css
2481 * Return the next task in @tset. Iteration must have been initialized
2482 * with cgroup_taskset_first().
2484 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2485 struct cgroup_subsys_state
**dst_cssp
)
2487 struct css_set
*cset
= tset
->cur_cset
;
2488 struct task_struct
*task
= tset
->cur_task
;
2490 while (&cset
->mg_node
!= tset
->csets
) {
2492 task
= list_first_entry(&cset
->mg_tasks
,
2493 struct task_struct
, cg_list
);
2495 task
= list_next_entry(task
, cg_list
);
2497 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2498 tset
->cur_cset
= cset
;
2499 tset
->cur_task
= task
;
2502 * This function may be called both before and
2503 * after cgroup_taskset_migrate(). The two cases
2504 * can be distinguished by looking at whether @cset
2505 * has its ->mg_dst_cset set.
2507 if (cset
->mg_dst_cset
)
2508 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2510 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2515 cset
= list_next_entry(cset
, mg_node
);
2523 * cgroup_taskset_migrate - migrate a taskset
2524 * @tset: taget taskset
2525 * @root: cgroup root the migration is taking place on
2527 * Migrate tasks in @tset as setup by migration preparation functions.
2528 * This function fails iff one of the ->can_attach callbacks fails and
2529 * guarantees that either all or none of the tasks in @tset are migrated.
2530 * @tset is consumed regardless of success.
2532 static int cgroup_taskset_migrate(struct cgroup_taskset
*tset
,
2533 struct cgroup_root
*root
)
2535 struct cgroup_subsys
*ss
;
2536 struct task_struct
*task
, *tmp_task
;
2537 struct css_set
*cset
, *tmp_cset
;
2538 int ssid
, failed_ssid
, ret
;
2540 /* methods shouldn't be called if no task is actually migrating */
2541 if (list_empty(&tset
->src_csets
))
2544 /* check that we can legitimately attach to the cgroup */
2545 do_each_subsys_mask(ss
, ssid
, root
->subsys_mask
) {
2546 if (ss
->can_attach
) {
2548 ret
= ss
->can_attach(tset
);
2551 goto out_cancel_attach
;
2554 } while_each_subsys_mask();
2557 * Now that we're guaranteed success, proceed to move all tasks to
2558 * the new cgroup. There are no failure cases after here, so this
2559 * is the commit point.
2561 spin_lock_irq(&css_set_lock
);
2562 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2563 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2564 struct css_set
*from_cset
= task_css_set(task
);
2565 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2567 get_css_set(to_cset
);
2568 css_set_move_task(task
, from_cset
, to_cset
, true);
2569 put_css_set_locked(from_cset
);
2572 spin_unlock_irq(&css_set_lock
);
2575 * Migration is committed, all target tasks are now on dst_csets.
2576 * Nothing is sensitive to fork() after this point. Notify
2577 * controllers that migration is complete.
2579 tset
->csets
= &tset
->dst_csets
;
2581 do_each_subsys_mask(ss
, ssid
, root
->subsys_mask
) {
2586 } while_each_subsys_mask();
2589 goto out_release_tset
;
2592 do_each_subsys_mask(ss
, ssid
, root
->subsys_mask
) {
2593 if (ssid
== failed_ssid
)
2595 if (ss
->cancel_attach
) {
2597 ss
->cancel_attach(tset
);
2599 } while_each_subsys_mask();
2601 spin_lock_irq(&css_set_lock
);
2602 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2603 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2604 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2605 list_del_init(&cset
->mg_node
);
2607 spin_unlock_irq(&css_set_lock
);
2612 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2613 * @dst_cgrp: destination cgroup to test
2615 * On the default hierarchy, except for the root, subtree_control must be
2616 * zero for migration destination cgroups with tasks so that child cgroups
2617 * don't compete against tasks.
2619 static bool cgroup_may_migrate_to(struct cgroup
*dst_cgrp
)
2621 return !cgroup_on_dfl(dst_cgrp
) || !cgroup_parent(dst_cgrp
) ||
2622 !dst_cgrp
->subtree_control
;
2626 * cgroup_migrate_finish - cleanup after attach
2627 * @preloaded_csets: list of preloaded css_sets
2629 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2630 * those functions for details.
2632 static void cgroup_migrate_finish(struct list_head
*preloaded_csets
)
2634 struct css_set
*cset
, *tmp_cset
;
2636 lockdep_assert_held(&cgroup_mutex
);
2638 spin_lock_irq(&css_set_lock
);
2639 list_for_each_entry_safe(cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2640 cset
->mg_src_cgrp
= NULL
;
2641 cset
->mg_dst_cgrp
= NULL
;
2642 cset
->mg_dst_cset
= NULL
;
2643 list_del_init(&cset
->mg_preload_node
);
2644 put_css_set_locked(cset
);
2646 spin_unlock_irq(&css_set_lock
);
2650 * cgroup_migrate_add_src - add a migration source css_set
2651 * @src_cset: the source css_set to add
2652 * @dst_cgrp: the destination cgroup
2653 * @preloaded_csets: list of preloaded css_sets
2655 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2656 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2657 * up by cgroup_migrate_finish().
2659 * This function may be called without holding cgroup_threadgroup_rwsem
2660 * even if the target is a process. Threads may be created and destroyed
2661 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2662 * into play and the preloaded css_sets are guaranteed to cover all
2665 static void cgroup_migrate_add_src(struct css_set
*src_cset
,
2666 struct cgroup
*dst_cgrp
,
2667 struct list_head
*preloaded_csets
)
2669 struct cgroup
*src_cgrp
;
2671 lockdep_assert_held(&cgroup_mutex
);
2672 lockdep_assert_held(&css_set_lock
);
2675 * If ->dead, @src_set is associated with one or more dead cgroups
2676 * and doesn't contain any migratable tasks. Ignore it early so
2677 * that the rest of migration path doesn't get confused by it.
2682 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2684 if (!list_empty(&src_cset
->mg_preload_node
))
2687 WARN_ON(src_cset
->mg_src_cgrp
);
2688 WARN_ON(src_cset
->mg_dst_cgrp
);
2689 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2690 WARN_ON(!list_empty(&src_cset
->mg_node
));
2692 src_cset
->mg_src_cgrp
= src_cgrp
;
2693 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2694 get_css_set(src_cset
);
2695 list_add(&src_cset
->mg_preload_node
, preloaded_csets
);
2699 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2700 * @preloaded_csets: list of preloaded source css_sets
2702 * Tasks are about to be moved and all the source css_sets have been
2703 * preloaded to @preloaded_csets. This function looks up and pins all
2704 * destination css_sets, links each to its source, and append them to
2707 * This function must be called after cgroup_migrate_add_src() has been
2708 * called on each migration source css_set. After migration is performed
2709 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2712 static int cgroup_migrate_prepare_dst(struct list_head
*preloaded_csets
)
2715 struct css_set
*src_cset
, *tmp_cset
;
2717 lockdep_assert_held(&cgroup_mutex
);
2719 /* look up the dst cset for each src cset and link it to src */
2720 list_for_each_entry_safe(src_cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2721 struct css_set
*dst_cset
;
2723 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2727 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2730 * If src cset equals dst, it's noop. Drop the src.
2731 * cgroup_migrate() will skip the cset too. Note that we
2732 * can't handle src == dst as some nodes are used by both.
2734 if (src_cset
== dst_cset
) {
2735 src_cset
->mg_src_cgrp
= NULL
;
2736 src_cset
->mg_dst_cgrp
= NULL
;
2737 list_del_init(&src_cset
->mg_preload_node
);
2738 put_css_set(src_cset
);
2739 put_css_set(dst_cset
);
2743 src_cset
->mg_dst_cset
= dst_cset
;
2745 if (list_empty(&dst_cset
->mg_preload_node
))
2746 list_add(&dst_cset
->mg_preload_node
, &csets
);
2748 put_css_set(dst_cset
);
2751 list_splice_tail(&csets
, preloaded_csets
);
2754 cgroup_migrate_finish(&csets
);
2759 * cgroup_migrate - migrate a process or task to a cgroup
2760 * @leader: the leader of the process or the task to migrate
2761 * @threadgroup: whether @leader points to the whole process or a single task
2762 * @root: cgroup root migration is taking place on
2764 * Migrate a process or task denoted by @leader. If migrating a process,
2765 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2766 * responsible for invoking cgroup_migrate_add_src() and
2767 * cgroup_migrate_prepare_dst() on the targets before invoking this
2768 * function and following up with cgroup_migrate_finish().
2770 * As long as a controller's ->can_attach() doesn't fail, this function is
2771 * guaranteed to succeed. This means that, excluding ->can_attach()
2772 * failure, when migrating multiple targets, the success or failure can be
2773 * decided for all targets by invoking group_migrate_prepare_dst() before
2774 * actually starting migrating.
2776 static int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2777 struct cgroup_root
*root
)
2779 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
2780 struct task_struct
*task
;
2783 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2784 * already PF_EXITING could be freed from underneath us unless we
2785 * take an rcu_read_lock.
2787 spin_lock_irq(&css_set_lock
);
2791 cgroup_taskset_add(task
, &tset
);
2794 } while_each_thread(leader
, task
);
2796 spin_unlock_irq(&css_set_lock
);
2798 return cgroup_taskset_migrate(&tset
, root
);
2802 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2803 * @dst_cgrp: the cgroup to attach to
2804 * @leader: the task or the leader of the threadgroup to be attached
2805 * @threadgroup: attach the whole threadgroup?
2807 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2809 static int cgroup_attach_task(struct cgroup
*dst_cgrp
,
2810 struct task_struct
*leader
, bool threadgroup
)
2812 LIST_HEAD(preloaded_csets
);
2813 struct task_struct
*task
;
2816 if (!cgroup_may_migrate_to(dst_cgrp
))
2819 /* look up all src csets */
2820 spin_lock_irq(&css_set_lock
);
2824 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
,
2828 } while_each_thread(leader
, task
);
2830 spin_unlock_irq(&css_set_lock
);
2832 /* prepare dst csets and commit */
2833 ret
= cgroup_migrate_prepare_dst(&preloaded_csets
);
2835 ret
= cgroup_migrate(leader
, threadgroup
, dst_cgrp
->root
);
2837 cgroup_migrate_finish(&preloaded_csets
);
2840 trace_cgroup_attach_task(dst_cgrp
, leader
, threadgroup
);
2845 static int cgroup_procs_write_permission(struct task_struct
*task
,
2846 struct cgroup
*dst_cgrp
,
2847 struct kernfs_open_file
*of
)
2849 const struct cred
*cred
= current_cred();
2850 const struct cred
*tcred
= get_task_cred(task
);
2854 * even if we're attaching all tasks in the thread group, we only
2855 * need to check permissions on one of them.
2857 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2858 !uid_eq(cred
->euid
, tcred
->uid
) &&
2859 !uid_eq(cred
->euid
, tcred
->suid
))
2862 if (!ret
&& cgroup_on_dfl(dst_cgrp
)) {
2863 struct super_block
*sb
= of
->file
->f_path
.dentry
->d_sb
;
2864 struct cgroup
*cgrp
;
2865 struct inode
*inode
;
2867 spin_lock_irq(&css_set_lock
);
2868 cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
2869 spin_unlock_irq(&css_set_lock
);
2871 while (!cgroup_is_descendant(dst_cgrp
, cgrp
))
2872 cgrp
= cgroup_parent(cgrp
);
2875 inode
= kernfs_get_inode(sb
, cgrp
->procs_file
.kn
);
2877 ret
= inode_permission(inode
, MAY_WRITE
);
2887 * Find the task_struct of the task to attach by vpid and pass it along to the
2888 * function to attach either it or all tasks in its threadgroup. Will lock
2889 * cgroup_mutex and threadgroup.
2891 static ssize_t
__cgroup_procs_write(struct kernfs_open_file
*of
, char *buf
,
2892 size_t nbytes
, loff_t off
, bool threadgroup
)
2894 struct task_struct
*tsk
;
2895 struct cgroup_subsys
*ss
;
2896 struct cgroup
*cgrp
;
2900 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2903 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
2907 percpu_down_write(&cgroup_threadgroup_rwsem
);
2910 tsk
= find_task_by_vpid(pid
);
2913 goto out_unlock_rcu
;
2920 tsk
= tsk
->group_leader
;
2923 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2924 * If userland migrates such a kthread to a non-root cgroup, it can
2925 * become trapped in a cpuset, or RT kthread may be born in a
2926 * cgroup with no rt_runtime allocated. Just say no.
2928 if (tsk
->no_cgroup_migration
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2930 goto out_unlock_rcu
;
2933 get_task_struct(tsk
);
2936 ret
= cgroup_procs_write_permission(tsk
, cgrp
, of
);
2938 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2940 put_task_struct(tsk
);
2941 goto out_unlock_threadgroup
;
2945 out_unlock_threadgroup
:
2946 percpu_up_write(&cgroup_threadgroup_rwsem
);
2947 for_each_subsys(ss
, ssid
)
2948 if (ss
->post_attach
)
2950 cgroup_kn_unlock(of
->kn
);
2951 return ret
?: nbytes
;
2955 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2956 * @from: attach to all cgroups of a given task
2957 * @tsk: the task to be attached
2959 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2961 struct cgroup_root
*root
;
2964 mutex_lock(&cgroup_mutex
);
2965 percpu_down_write(&cgroup_threadgroup_rwsem
);
2966 for_each_root(root
) {
2967 struct cgroup
*from_cgrp
;
2969 if (root
== &cgrp_dfl_root
)
2972 spin_lock_irq(&css_set_lock
);
2973 from_cgrp
= task_cgroup_from_root(from
, root
);
2974 spin_unlock_irq(&css_set_lock
);
2976 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2980 percpu_up_write(&cgroup_threadgroup_rwsem
);
2981 mutex_unlock(&cgroup_mutex
);
2985 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2987 static ssize_t
cgroup_tasks_write(struct kernfs_open_file
*of
,
2988 char *buf
, size_t nbytes
, loff_t off
)
2990 return __cgroup_procs_write(of
, buf
, nbytes
, off
, false);
2993 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
2994 char *buf
, size_t nbytes
, loff_t off
)
2996 return __cgroup_procs_write(of
, buf
, nbytes
, off
, true);
2999 static ssize_t
cgroup_release_agent_write(struct kernfs_open_file
*of
,
3000 char *buf
, size_t nbytes
, loff_t off
)
3002 struct cgroup
*cgrp
;
3004 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
3006 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3009 spin_lock(&release_agent_path_lock
);
3010 strlcpy(cgrp
->root
->release_agent_path
, strstrip(buf
),
3011 sizeof(cgrp
->root
->release_agent_path
));
3012 spin_unlock(&release_agent_path_lock
);
3013 cgroup_kn_unlock(of
->kn
);
3017 static int cgroup_release_agent_show(struct seq_file
*seq
, void *v
)
3019 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3021 spin_lock(&release_agent_path_lock
);
3022 seq_puts(seq
, cgrp
->root
->release_agent_path
);
3023 spin_unlock(&release_agent_path_lock
);
3024 seq_putc(seq
, '\n');
3028 static int cgroup_sane_behavior_show(struct seq_file
*seq
, void *v
)
3030 seq_puts(seq
, "0\n");
3034 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
3036 struct cgroup_subsys
*ss
;
3037 bool printed
= false;
3040 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
3043 seq_printf(seq
, "%s", ss
->name
);
3045 } while_each_subsys_mask();
3047 seq_putc(seq
, '\n');
3050 /* show controllers which are enabled from the parent */
3051 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
3053 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3055 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
3059 /* show controllers which are enabled for a given cgroup's children */
3060 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
3062 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3064 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
3069 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3070 * @cgrp: root of the subtree to update csses for
3072 * @cgrp's control masks have changed and its subtree's css associations
3073 * need to be updated accordingly. This function looks up all css_sets
3074 * which are attached to the subtree, creates the matching updated css_sets
3075 * and migrates the tasks to the new ones.
3077 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
3079 LIST_HEAD(preloaded_csets
);
3080 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
3081 struct cgroup_subsys_state
*d_css
;
3082 struct cgroup
*dsct
;
3083 struct css_set
*src_cset
;
3086 lockdep_assert_held(&cgroup_mutex
);
3088 percpu_down_write(&cgroup_threadgroup_rwsem
);
3090 /* look up all csses currently attached to @cgrp's subtree */
3091 spin_lock_irq(&css_set_lock
);
3092 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3093 struct cgrp_cset_link
*link
;
3095 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
3096 cgroup_migrate_add_src(link
->cset
, dsct
,
3099 spin_unlock_irq(&css_set_lock
);
3101 /* NULL dst indicates self on default hierarchy */
3102 ret
= cgroup_migrate_prepare_dst(&preloaded_csets
);
3106 spin_lock_irq(&css_set_lock
);
3107 list_for_each_entry(src_cset
, &preloaded_csets
, mg_preload_node
) {
3108 struct task_struct
*task
, *ntask
;
3110 /* src_csets precede dst_csets, break on the first dst_cset */
3111 if (!src_cset
->mg_src_cgrp
)
3114 /* all tasks in src_csets need to be migrated */
3115 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
3116 cgroup_taskset_add(task
, &tset
);
3118 spin_unlock_irq(&css_set_lock
);
3120 ret
= cgroup_taskset_migrate(&tset
, cgrp
->root
);
3122 cgroup_migrate_finish(&preloaded_csets
);
3123 percpu_up_write(&cgroup_threadgroup_rwsem
);
3128 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3129 * @cgrp: root of the target subtree
3131 * Because css offlining is asynchronous, userland may try to re-enable a
3132 * controller while the previous css is still around. This function grabs
3133 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3135 static void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
3136 __acquires(&cgroup_mutex
)
3138 struct cgroup
*dsct
;
3139 struct cgroup_subsys_state
*d_css
;
3140 struct cgroup_subsys
*ss
;
3144 mutex_lock(&cgroup_mutex
);
3146 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3147 for_each_subsys(ss
, ssid
) {
3148 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3151 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
3155 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
3156 TASK_UNINTERRUPTIBLE
);
3158 mutex_unlock(&cgroup_mutex
);
3160 finish_wait(&dsct
->offline_waitq
, &wait
);
3169 * cgroup_save_control - save control masks of a subtree
3170 * @cgrp: root of the target subtree
3172 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3173 * prefixed fields for @cgrp's subtree including @cgrp itself.
3175 static void cgroup_save_control(struct cgroup
*cgrp
)
3177 struct cgroup
*dsct
;
3178 struct cgroup_subsys_state
*d_css
;
3180 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3181 dsct
->old_subtree_control
= dsct
->subtree_control
;
3182 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
3187 * cgroup_propagate_control - refresh control masks of a subtree
3188 * @cgrp: root of the target subtree
3190 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3191 * ->subtree_control and propagate controller availability through the
3192 * subtree so that descendants don't have unavailable controllers enabled.
3194 static void cgroup_propagate_control(struct cgroup
*cgrp
)
3196 struct cgroup
*dsct
;
3197 struct cgroup_subsys_state
*d_css
;
3199 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3200 dsct
->subtree_control
&= cgroup_control(dsct
);
3201 dsct
->subtree_ss_mask
=
3202 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
3203 cgroup_ss_mask(dsct
));
3208 * cgroup_restore_control - restore control masks of a subtree
3209 * @cgrp: root of the target subtree
3211 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3212 * prefixed fields for @cgrp's subtree including @cgrp itself.
3214 static void cgroup_restore_control(struct cgroup
*cgrp
)
3216 struct cgroup
*dsct
;
3217 struct cgroup_subsys_state
*d_css
;
3219 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3220 dsct
->subtree_control
= dsct
->old_subtree_control
;
3221 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
3225 static bool css_visible(struct cgroup_subsys_state
*css
)
3227 struct cgroup_subsys
*ss
= css
->ss
;
3228 struct cgroup
*cgrp
= css
->cgroup
;
3230 if (cgroup_control(cgrp
) & (1 << ss
->id
))
3232 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
3234 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
3238 * cgroup_apply_control_enable - enable or show csses according to control
3239 * @cgrp: root of the target subtree
3241 * Walk @cgrp's subtree and create new csses or make the existing ones
3242 * visible. A css is created invisible if it's being implicitly enabled
3243 * through dependency. An invisible css is made visible when the userland
3244 * explicitly enables it.
3246 * Returns 0 on success, -errno on failure. On failure, csses which have
3247 * been processed already aren't cleaned up. The caller is responsible for
3248 * cleaning up with cgroup_apply_control_disble().
3250 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
3252 struct cgroup
*dsct
;
3253 struct cgroup_subsys_state
*d_css
;
3254 struct cgroup_subsys
*ss
;
3257 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3258 for_each_subsys(ss
, ssid
) {
3259 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3261 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
3263 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
3267 css
= css_create(dsct
, ss
);
3269 return PTR_ERR(css
);
3272 if (css_visible(css
)) {
3273 ret
= css_populate_dir(css
);
3284 * cgroup_apply_control_disable - kill or hide csses according to control
3285 * @cgrp: root of the target subtree
3287 * Walk @cgrp's subtree and kill and hide csses so that they match
3288 * cgroup_ss_mask() and cgroup_visible_mask().
3290 * A css is hidden when the userland requests it to be disabled while other
3291 * subsystems are still depending on it. The css must not actively control
3292 * resources and be in the vanilla state if it's made visible again later.
3293 * Controllers which may be depended upon should provide ->css_reset() for
3296 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
3298 struct cgroup
*dsct
;
3299 struct cgroup_subsys_state
*d_css
;
3300 struct cgroup_subsys
*ss
;
3303 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3304 for_each_subsys(ss
, ssid
) {
3305 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3307 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
3313 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
3315 } else if (!css_visible(css
)) {
3325 * cgroup_apply_control - apply control mask updates to the subtree
3326 * @cgrp: root of the target subtree
3328 * subsystems can be enabled and disabled in a subtree using the following
3331 * 1. Call cgroup_save_control() to stash the current state.
3332 * 2. Update ->subtree_control masks in the subtree as desired.
3333 * 3. Call cgroup_apply_control() to apply the changes.
3334 * 4. Optionally perform other related operations.
3335 * 5. Call cgroup_finalize_control() to finish up.
3337 * This function implements step 3 and propagates the mask changes
3338 * throughout @cgrp's subtree, updates csses accordingly and perform
3339 * process migrations.
3341 static int cgroup_apply_control(struct cgroup
*cgrp
)
3345 cgroup_propagate_control(cgrp
);
3347 ret
= cgroup_apply_control_enable(cgrp
);
3352 * At this point, cgroup_e_css() results reflect the new csses
3353 * making the following cgroup_update_dfl_csses() properly update
3354 * css associations of all tasks in the subtree.
3356 ret
= cgroup_update_dfl_csses(cgrp
);
3364 * cgroup_finalize_control - finalize control mask update
3365 * @cgrp: root of the target subtree
3366 * @ret: the result of the update
3368 * Finalize control mask update. See cgroup_apply_control() for more info.
3370 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
3373 cgroup_restore_control(cgrp
);
3374 cgroup_propagate_control(cgrp
);
3377 cgroup_apply_control_disable(cgrp
);
3380 /* change the enabled child controllers for a cgroup in the default hierarchy */
3381 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3382 char *buf
, size_t nbytes
,
3385 u16 enable
= 0, disable
= 0;
3386 struct cgroup
*cgrp
, *child
;
3387 struct cgroup_subsys
*ss
;
3392 * Parse input - space separated list of subsystem names prefixed
3393 * with either + or -.
3395 buf
= strstrip(buf
);
3396 while ((tok
= strsep(&buf
, " "))) {
3399 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3400 if (!cgroup_ssid_enabled(ssid
) ||
3401 strcmp(tok
+ 1, ss
->name
))
3405 enable
|= 1 << ssid
;
3406 disable
&= ~(1 << ssid
);
3407 } else if (*tok
== '-') {
3408 disable
|= 1 << ssid
;
3409 enable
&= ~(1 << ssid
);
3414 } while_each_subsys_mask();
3415 if (ssid
== CGROUP_SUBSYS_COUNT
)
3419 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3423 for_each_subsys(ss
, ssid
) {
3424 if (enable
& (1 << ssid
)) {
3425 if (cgrp
->subtree_control
& (1 << ssid
)) {
3426 enable
&= ~(1 << ssid
);
3430 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3434 } else if (disable
& (1 << ssid
)) {
3435 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3436 disable
&= ~(1 << ssid
);
3440 /* a child has it enabled? */
3441 cgroup_for_each_live_child(child
, cgrp
) {
3442 if (child
->subtree_control
& (1 << ssid
)) {
3450 if (!enable
&& !disable
) {
3456 * Except for the root, subtree_control must be zero for a cgroup
3457 * with tasks so that child cgroups don't compete against tasks.
3459 if (enable
&& cgroup_parent(cgrp
)) {
3460 struct cgrp_cset_link
*link
;
3463 * Because namespaces pin csets too, @cgrp->cset_links
3464 * might not be empty even when @cgrp is empty. Walk and
3467 spin_lock_irq(&css_set_lock
);
3470 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
) {
3471 if (css_set_populated(link
->cset
)) {
3477 spin_unlock_irq(&css_set_lock
);
3483 /* save and update control masks and prepare csses */
3484 cgroup_save_control(cgrp
);
3486 cgrp
->subtree_control
|= enable
;
3487 cgrp
->subtree_control
&= ~disable
;
3489 ret
= cgroup_apply_control(cgrp
);
3490 cgroup_finalize_control(cgrp
, ret
);
3494 kernfs_activate(cgrp
->kn
);
3496 cgroup_kn_unlock(of
->kn
);
3497 return ret
?: nbytes
;
3500 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3502 seq_printf(seq
, "populated %d\n",
3503 cgroup_is_populated(seq_css(seq
)->cgroup
));
3507 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3508 size_t nbytes
, loff_t off
)
3510 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3511 struct cftype
*cft
= of
->kn
->priv
;
3512 struct cgroup_subsys_state
*css
;
3516 return cft
->write(of
, buf
, nbytes
, off
);
3519 * kernfs guarantees that a file isn't deleted with operations in
3520 * flight, which means that the matching css is and stays alive and
3521 * doesn't need to be pinned. The RCU locking is not necessary
3522 * either. It's just for the convenience of using cgroup_css().
3525 css
= cgroup_css(cgrp
, cft
->ss
);
3528 if (cft
->write_u64
) {
3529 unsigned long long v
;
3530 ret
= kstrtoull(buf
, 0, &v
);
3532 ret
= cft
->write_u64(css
, cft
, v
);
3533 } else if (cft
->write_s64
) {
3535 ret
= kstrtoll(buf
, 0, &v
);
3537 ret
= cft
->write_s64(css
, cft
, v
);
3542 return ret
?: nbytes
;
3545 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3547 return seq_cft(seq
)->seq_start(seq
, ppos
);
3550 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3552 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3555 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3557 seq_cft(seq
)->seq_stop(seq
, v
);
3560 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3562 struct cftype
*cft
= seq_cft(m
);
3563 struct cgroup_subsys_state
*css
= seq_css(m
);
3566 return cft
->seq_show(m
, arg
);
3569 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3570 else if (cft
->read_s64
)
3571 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3577 static struct kernfs_ops cgroup_kf_single_ops
= {
3578 .atomic_write_len
= PAGE_SIZE
,
3579 .write
= cgroup_file_write
,
3580 .seq_show
= cgroup_seqfile_show
,
3583 static struct kernfs_ops cgroup_kf_ops
= {
3584 .atomic_write_len
= PAGE_SIZE
,
3585 .write
= cgroup_file_write
,
3586 .seq_start
= cgroup_seqfile_start
,
3587 .seq_next
= cgroup_seqfile_next
,
3588 .seq_stop
= cgroup_seqfile_stop
,
3589 .seq_show
= cgroup_seqfile_show
,
3593 * cgroup_rename - Only allow simple rename of directories in place.
3595 static int cgroup_rename(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
3596 const char *new_name_str
)
3598 struct cgroup
*cgrp
= kn
->priv
;
3601 if (kernfs_type(kn
) != KERNFS_DIR
)
3603 if (kn
->parent
!= new_parent
)
3607 * This isn't a proper migration and its usefulness is very
3608 * limited. Disallow on the default hierarchy.
3610 if (cgroup_on_dfl(cgrp
))
3614 * We're gonna grab cgroup_mutex which nests outside kernfs
3615 * active_ref. kernfs_rename() doesn't require active_ref
3616 * protection. Break them before grabbing cgroup_mutex.
3618 kernfs_break_active_protection(new_parent
);
3619 kernfs_break_active_protection(kn
);
3621 mutex_lock(&cgroup_mutex
);
3623 ret
= kernfs_rename(kn
, new_parent
, new_name_str
);
3625 trace_cgroup_rename(cgrp
);
3627 mutex_unlock(&cgroup_mutex
);
3629 kernfs_unbreak_active_protection(kn
);
3630 kernfs_unbreak_active_protection(new_parent
);
3634 /* set uid and gid of cgroup dirs and files to that of the creator */
3635 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3637 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3638 .ia_uid
= current_fsuid(),
3639 .ia_gid
= current_fsgid(), };
3641 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3642 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3645 return kernfs_setattr(kn
, &iattr
);
3648 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3651 char name
[CGROUP_FILE_NAME_MAX
];
3652 struct kernfs_node
*kn
;
3653 struct lock_class_key
*key
= NULL
;
3656 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3657 key
= &cft
->lockdep_key
;
3659 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3660 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3665 ret
= cgroup_kn_set_ugid(kn
);
3671 if (cft
->file_offset
) {
3672 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3674 spin_lock_irq(&cgroup_file_kn_lock
);
3676 spin_unlock_irq(&cgroup_file_kn_lock
);
3683 * cgroup_addrm_files - add or remove files to a cgroup directory
3684 * @css: the target css
3685 * @cgrp: the target cgroup (usually css->cgroup)
3686 * @cfts: array of cftypes to be added
3687 * @is_add: whether to add or remove
3689 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3690 * For removals, this function never fails.
3692 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3693 struct cgroup
*cgrp
, struct cftype cfts
[],
3696 struct cftype
*cft
, *cft_end
= NULL
;
3699 lockdep_assert_held(&cgroup_mutex
);
3702 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3703 /* does cft->flags tell us to skip this file on @cgrp? */
3704 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3706 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3708 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3710 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3714 ret
= cgroup_add_file(css
, cgrp
, cft
);
3716 pr_warn("%s: failed to add %s, err=%d\n",
3717 __func__
, cft
->name
, ret
);
3723 cgroup_rm_file(cgrp
, cft
);
3729 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3732 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3733 struct cgroup
*root
= &ss
->root
->cgrp
;
3734 struct cgroup_subsys_state
*css
;
3737 lockdep_assert_held(&cgroup_mutex
);
3739 /* add/rm files for all cgroups created before */
3740 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3741 struct cgroup
*cgrp
= css
->cgroup
;
3743 if (!(css
->flags
& CSS_VISIBLE
))
3746 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3752 kernfs_activate(root
->kn
);
3756 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3760 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3761 /* free copy for custom atomic_write_len, see init_cftypes() */
3762 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3767 /* revert flags set by cgroup core while adding @cfts */
3768 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3772 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3776 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3777 struct kernfs_ops
*kf_ops
;
3779 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3782 kf_ops
= &cgroup_kf_ops
;
3784 kf_ops
= &cgroup_kf_single_ops
;
3787 * Ugh... if @cft wants a custom max_write_len, we need to
3788 * make a copy of kf_ops to set its atomic_write_len.
3790 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3791 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3793 cgroup_exit_cftypes(cfts
);
3796 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3799 cft
->kf_ops
= kf_ops
;
3806 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3808 lockdep_assert_held(&cgroup_mutex
);
3810 if (!cfts
|| !cfts
[0].ss
)
3813 list_del(&cfts
->node
);
3814 cgroup_apply_cftypes(cfts
, false);
3815 cgroup_exit_cftypes(cfts
);
3820 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3821 * @cfts: zero-length name terminated array of cftypes
3823 * Unregister @cfts. Files described by @cfts are removed from all
3824 * existing cgroups and all future cgroups won't have them either. This
3825 * function can be called anytime whether @cfts' subsys is attached or not.
3827 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3830 int cgroup_rm_cftypes(struct cftype
*cfts
)
3834 mutex_lock(&cgroup_mutex
);
3835 ret
= cgroup_rm_cftypes_locked(cfts
);
3836 mutex_unlock(&cgroup_mutex
);
3841 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3842 * @ss: target cgroup subsystem
3843 * @cfts: zero-length name terminated array of cftypes
3845 * Register @cfts to @ss. Files described by @cfts are created for all
3846 * existing cgroups to which @ss is attached and all future cgroups will
3847 * have them too. This function can be called anytime whether @ss is
3850 * Returns 0 on successful registration, -errno on failure. Note that this
3851 * function currently returns 0 as long as @cfts registration is successful
3852 * even if some file creation attempts on existing cgroups fail.
3854 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3858 if (!cgroup_ssid_enabled(ss
->id
))
3861 if (!cfts
|| cfts
[0].name
[0] == '\0')
3864 ret
= cgroup_init_cftypes(ss
, cfts
);
3868 mutex_lock(&cgroup_mutex
);
3870 list_add_tail(&cfts
->node
, &ss
->cfts
);
3871 ret
= cgroup_apply_cftypes(cfts
, true);
3873 cgroup_rm_cftypes_locked(cfts
);
3875 mutex_unlock(&cgroup_mutex
);
3880 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3881 * @ss: target cgroup subsystem
3882 * @cfts: zero-length name terminated array of cftypes
3884 * Similar to cgroup_add_cftypes() but the added files are only used for
3885 * the default hierarchy.
3887 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3891 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3892 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3893 return cgroup_add_cftypes(ss
, cfts
);
3897 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3898 * @ss: target cgroup subsystem
3899 * @cfts: zero-length name terminated array of cftypes
3901 * Similar to cgroup_add_cftypes() but the added files are only used for
3902 * the legacy hierarchies.
3904 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3908 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3909 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3910 return cgroup_add_cftypes(ss
, cfts
);
3914 * cgroup_file_notify - generate a file modified event for a cgroup_file
3915 * @cfile: target cgroup_file
3917 * @cfile must have been obtained by setting cftype->file_offset.
3919 void cgroup_file_notify(struct cgroup_file
*cfile
)
3921 unsigned long flags
;
3923 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
3925 kernfs_notify(cfile
->kn
);
3926 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
3930 * cgroup_task_count - count the number of tasks in a cgroup.
3931 * @cgrp: the cgroup in question
3933 * Return the number of tasks in the cgroup. The returned number can be
3934 * higher than the actual number of tasks due to css_set references from
3935 * namespace roots and temporary usages.
3937 static int cgroup_task_count(const struct cgroup
*cgrp
)
3940 struct cgrp_cset_link
*link
;
3942 spin_lock_irq(&css_set_lock
);
3943 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
3944 count
+= atomic_read(&link
->cset
->refcount
);
3945 spin_unlock_irq(&css_set_lock
);
3950 * css_next_child - find the next child of a given css
3951 * @pos: the current position (%NULL to initiate traversal)
3952 * @parent: css whose children to walk
3954 * This function returns the next child of @parent and should be called
3955 * under either cgroup_mutex or RCU read lock. The only requirement is
3956 * that @parent and @pos are accessible. The next sibling is guaranteed to
3957 * be returned regardless of their states.
3959 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3960 * css which finished ->css_online() is guaranteed to be visible in the
3961 * future iterations and will stay visible until the last reference is put.
3962 * A css which hasn't finished ->css_online() or already finished
3963 * ->css_offline() may show up during traversal. It's each subsystem's
3964 * responsibility to synchronize against on/offlining.
3966 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3967 struct cgroup_subsys_state
*parent
)
3969 struct cgroup_subsys_state
*next
;
3971 cgroup_assert_mutex_or_rcu_locked();
3974 * @pos could already have been unlinked from the sibling list.
3975 * Once a cgroup is removed, its ->sibling.next is no longer
3976 * updated when its next sibling changes. CSS_RELEASED is set when
3977 * @pos is taken off list, at which time its next pointer is valid,
3978 * and, as releases are serialized, the one pointed to by the next
3979 * pointer is guaranteed to not have started release yet. This
3980 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3981 * critical section, the one pointed to by its next pointer is
3982 * guaranteed to not have finished its RCU grace period even if we
3983 * have dropped rcu_read_lock() inbetween iterations.
3985 * If @pos has CSS_RELEASED set, its next pointer can't be
3986 * dereferenced; however, as each css is given a monotonically
3987 * increasing unique serial number and always appended to the
3988 * sibling list, the next one can be found by walking the parent's
3989 * children until the first css with higher serial number than
3990 * @pos's. While this path can be slower, it happens iff iteration
3991 * races against release and the race window is very small.
3994 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3995 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3996 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3998 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3999 if (next
->serial_nr
> pos
->serial_nr
)
4004 * @next, if not pointing to the head, can be dereferenced and is
4007 if (&next
->sibling
!= &parent
->children
)
4013 * css_next_descendant_pre - find the next descendant for pre-order walk
4014 * @pos: the current position (%NULL to initiate traversal)
4015 * @root: css whose descendants to walk
4017 * To be used by css_for_each_descendant_pre(). Find the next descendant
4018 * to visit for pre-order traversal of @root's descendants. @root is
4019 * included in the iteration and the first node to be visited.
4021 * While this function requires cgroup_mutex or RCU read locking, it
4022 * doesn't require the whole traversal to be contained in a single critical
4023 * section. This function will return the correct next descendant as long
4024 * as both @pos and @root are accessible and @pos is a descendant of @root.
4026 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4027 * css which finished ->css_online() is guaranteed to be visible in the
4028 * future iterations and will stay visible until the last reference is put.
4029 * A css which hasn't finished ->css_online() or already finished
4030 * ->css_offline() may show up during traversal. It's each subsystem's
4031 * responsibility to synchronize against on/offlining.
4033 struct cgroup_subsys_state
*
4034 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
4035 struct cgroup_subsys_state
*root
)
4037 struct cgroup_subsys_state
*next
;
4039 cgroup_assert_mutex_or_rcu_locked();
4041 /* if first iteration, visit @root */
4045 /* visit the first child if exists */
4046 next
= css_next_child(NULL
, pos
);
4050 /* no child, visit my or the closest ancestor's next sibling */
4051 while (pos
!= root
) {
4052 next
= css_next_child(pos
, pos
->parent
);
4062 * css_rightmost_descendant - return the rightmost descendant of a css
4063 * @pos: css of interest
4065 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4066 * is returned. This can be used during pre-order traversal to skip
4069 * While this function requires cgroup_mutex or RCU read locking, it
4070 * doesn't require the whole traversal to be contained in a single critical
4071 * section. This function will return the correct rightmost descendant as
4072 * long as @pos is accessible.
4074 struct cgroup_subsys_state
*
4075 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
4077 struct cgroup_subsys_state
*last
, *tmp
;
4079 cgroup_assert_mutex_or_rcu_locked();
4083 /* ->prev isn't RCU safe, walk ->next till the end */
4085 css_for_each_child(tmp
, last
)
4092 static struct cgroup_subsys_state
*
4093 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
4095 struct cgroup_subsys_state
*last
;
4099 pos
= css_next_child(NULL
, pos
);
4106 * css_next_descendant_post - find the next descendant for post-order walk
4107 * @pos: the current position (%NULL to initiate traversal)
4108 * @root: css whose descendants to walk
4110 * To be used by css_for_each_descendant_post(). Find the next descendant
4111 * to visit for post-order traversal of @root's descendants. @root is
4112 * included in the iteration and the last node to be visited.
4114 * While this function requires cgroup_mutex or RCU read locking, it
4115 * doesn't require the whole traversal to be contained in a single critical
4116 * section. This function will return the correct next descendant as long
4117 * as both @pos and @cgroup are accessible and @pos is a descendant of
4120 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4121 * css which finished ->css_online() is guaranteed to be visible in the
4122 * future iterations and will stay visible until the last reference is put.
4123 * A css which hasn't finished ->css_online() or already finished
4124 * ->css_offline() may show up during traversal. It's each subsystem's
4125 * responsibility to synchronize against on/offlining.
4127 struct cgroup_subsys_state
*
4128 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
4129 struct cgroup_subsys_state
*root
)
4131 struct cgroup_subsys_state
*next
;
4133 cgroup_assert_mutex_or_rcu_locked();
4135 /* if first iteration, visit leftmost descendant which may be @root */
4137 return css_leftmost_descendant(root
);
4139 /* if we visited @root, we're done */
4143 /* if there's an unvisited sibling, visit its leftmost descendant */
4144 next
= css_next_child(pos
, pos
->parent
);
4146 return css_leftmost_descendant(next
);
4148 /* no sibling left, visit parent */
4153 * css_has_online_children - does a css have online children
4154 * @css: the target css
4156 * Returns %true if @css has any online children; otherwise, %false. This
4157 * function can be called from any context but the caller is responsible
4158 * for synchronizing against on/offlining as necessary.
4160 bool css_has_online_children(struct cgroup_subsys_state
*css
)
4162 struct cgroup_subsys_state
*child
;
4166 css_for_each_child(child
, css
) {
4167 if (child
->flags
& CSS_ONLINE
) {
4177 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4178 * @it: the iterator to advance
4180 * Advance @it to the next css_set to walk.
4182 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4184 struct list_head
*l
= it
->cset_pos
;
4185 struct cgrp_cset_link
*link
;
4186 struct css_set
*cset
;
4188 lockdep_assert_held(&css_set_lock
);
4190 /* Advance to the next non-empty css_set */
4193 if (l
== it
->cset_head
) {
4194 it
->cset_pos
= NULL
;
4195 it
->task_pos
= NULL
;
4200 cset
= container_of(l
, struct css_set
,
4201 e_cset_node
[it
->ss
->id
]);
4203 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
4206 } while (!css_set_populated(cset
));
4210 if (!list_empty(&cset
->tasks
))
4211 it
->task_pos
= cset
->tasks
.next
;
4213 it
->task_pos
= cset
->mg_tasks
.next
;
4215 it
->tasks_head
= &cset
->tasks
;
4216 it
->mg_tasks_head
= &cset
->mg_tasks
;
4219 * We don't keep css_sets locked across iteration steps and thus
4220 * need to take steps to ensure that iteration can be resumed after
4221 * the lock is re-acquired. Iteration is performed at two levels -
4222 * css_sets and tasks in them.
4224 * Once created, a css_set never leaves its cgroup lists, so a
4225 * pinned css_set is guaranteed to stay put and we can resume
4226 * iteration afterwards.
4228 * Tasks may leave @cset across iteration steps. This is resolved
4229 * by registering each iterator with the css_set currently being
4230 * walked and making css_set_move_task() advance iterators whose
4231 * next task is leaving.
4234 list_del(&it
->iters_node
);
4235 put_css_set_locked(it
->cur_cset
);
4238 it
->cur_cset
= cset
;
4239 list_add(&it
->iters_node
, &cset
->task_iters
);
4242 static void css_task_iter_advance(struct css_task_iter
*it
)
4244 struct list_head
*l
= it
->task_pos
;
4246 lockdep_assert_held(&css_set_lock
);
4250 * Advance iterator to find next entry. cset->tasks is consumed
4251 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4256 if (l
== it
->tasks_head
)
4257 l
= it
->mg_tasks_head
->next
;
4259 if (l
== it
->mg_tasks_head
)
4260 css_task_iter_advance_css_set(it
);
4266 * css_task_iter_start - initiate task iteration
4267 * @css: the css to walk tasks of
4268 * @it: the task iterator to use
4270 * Initiate iteration through the tasks of @css. The caller can call
4271 * css_task_iter_next() to walk through the tasks until the function
4272 * returns NULL. On completion of iteration, css_task_iter_end() must be
4275 void css_task_iter_start(struct cgroup_subsys_state
*css
,
4276 struct css_task_iter
*it
)
4278 /* no one should try to iterate before mounting cgroups */
4279 WARN_ON_ONCE(!use_task_css_set_links
);
4281 memset(it
, 0, sizeof(*it
));
4283 spin_lock_irq(&css_set_lock
);
4288 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4290 it
->cset_pos
= &css
->cgroup
->cset_links
;
4292 it
->cset_head
= it
->cset_pos
;
4294 css_task_iter_advance_css_set(it
);
4296 spin_unlock_irq(&css_set_lock
);
4300 * css_task_iter_next - return the next task for the iterator
4301 * @it: the task iterator being iterated
4303 * The "next" function for task iteration. @it should have been
4304 * initialized via css_task_iter_start(). Returns NULL when the iteration
4307 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4310 put_task_struct(it
->cur_task
);
4311 it
->cur_task
= NULL
;
4314 spin_lock_irq(&css_set_lock
);
4317 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4319 get_task_struct(it
->cur_task
);
4320 css_task_iter_advance(it
);
4323 spin_unlock_irq(&css_set_lock
);
4325 return it
->cur_task
;
4329 * css_task_iter_end - finish task iteration
4330 * @it: the task iterator to finish
4332 * Finish task iteration started by css_task_iter_start().
4334 void css_task_iter_end(struct css_task_iter
*it
)
4337 spin_lock_irq(&css_set_lock
);
4338 list_del(&it
->iters_node
);
4339 put_css_set_locked(it
->cur_cset
);
4340 spin_unlock_irq(&css_set_lock
);
4344 put_task_struct(it
->cur_task
);
4348 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4349 * @to: cgroup to which the tasks will be moved
4350 * @from: cgroup in which the tasks currently reside
4352 * Locking rules between cgroup_post_fork() and the migration path
4353 * guarantee that, if a task is forking while being migrated, the new child
4354 * is guaranteed to be either visible in the source cgroup after the
4355 * parent's migration is complete or put into the target cgroup. No task
4356 * can slip out of migration through forking.
4358 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
4360 LIST_HEAD(preloaded_csets
);
4361 struct cgrp_cset_link
*link
;
4362 struct css_task_iter it
;
4363 struct task_struct
*task
;
4366 if (!cgroup_may_migrate_to(to
))
4369 mutex_lock(&cgroup_mutex
);
4371 percpu_down_write(&cgroup_threadgroup_rwsem
);
4373 /* all tasks in @from are being moved, all csets are source */
4374 spin_lock_irq(&css_set_lock
);
4375 list_for_each_entry(link
, &from
->cset_links
, cset_link
)
4376 cgroup_migrate_add_src(link
->cset
, to
, &preloaded_csets
);
4377 spin_unlock_irq(&css_set_lock
);
4379 ret
= cgroup_migrate_prepare_dst(&preloaded_csets
);
4384 * Migrate tasks one-by-one until @from is empty. This fails iff
4385 * ->can_attach() fails.
4388 css_task_iter_start(&from
->self
, &it
);
4391 task
= css_task_iter_next(&it
);
4392 } while (task
&& (task
->flags
& PF_EXITING
));
4395 get_task_struct(task
);
4396 css_task_iter_end(&it
);
4399 ret
= cgroup_migrate(task
, false, to
->root
);
4401 trace_cgroup_transfer_tasks(to
, task
, false);
4402 put_task_struct(task
);
4404 } while (task
&& !ret
);
4406 cgroup_migrate_finish(&preloaded_csets
);
4407 percpu_up_write(&cgroup_threadgroup_rwsem
);
4408 mutex_unlock(&cgroup_mutex
);
4413 * Stuff for reading the 'tasks'/'procs' files.
4415 * Reading this file can return large amounts of data if a cgroup has
4416 * *lots* of attached tasks. So it may need several calls to read(),
4417 * but we cannot guarantee that the information we produce is correct
4418 * unless we produce it entirely atomically.
4422 /* which pidlist file are we talking about? */
4423 enum cgroup_filetype
{
4429 * A pidlist is a list of pids that virtually represents the contents of one
4430 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4431 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4434 struct cgroup_pidlist
{
4436 * used to find which pidlist is wanted. doesn't change as long as
4437 * this particular list stays in the list.
4439 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
4442 /* how many elements the above list has */
4444 /* each of these stored in a list by its cgroup */
4445 struct list_head links
;
4446 /* pointer to the cgroup we belong to, for list removal purposes */
4447 struct cgroup
*owner
;
4448 /* for delayed destruction */
4449 struct delayed_work destroy_dwork
;
4453 * The following two functions "fix" the issue where there are more pids
4454 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4455 * TODO: replace with a kernel-wide solution to this problem
4457 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4458 static void *pidlist_allocate(int count
)
4460 if (PIDLIST_TOO_LARGE(count
))
4461 return vmalloc(count
* sizeof(pid_t
));
4463 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
4466 static void pidlist_free(void *p
)
4472 * Used to destroy all pidlists lingering waiting for destroy timer. None
4473 * should be left afterwards.
4475 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
)
4477 struct cgroup_pidlist
*l
, *tmp_l
;
4479 mutex_lock(&cgrp
->pidlist_mutex
);
4480 list_for_each_entry_safe(l
, tmp_l
, &cgrp
->pidlists
, links
)
4481 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
, 0);
4482 mutex_unlock(&cgrp
->pidlist_mutex
);
4484 flush_workqueue(cgroup_pidlist_destroy_wq
);
4485 BUG_ON(!list_empty(&cgrp
->pidlists
));
4488 static void cgroup_pidlist_destroy_work_fn(struct work_struct
*work
)
4490 struct delayed_work
*dwork
= to_delayed_work(work
);
4491 struct cgroup_pidlist
*l
= container_of(dwork
, struct cgroup_pidlist
,
4493 struct cgroup_pidlist
*tofree
= NULL
;
4495 mutex_lock(&l
->owner
->pidlist_mutex
);
4498 * Destroy iff we didn't get queued again. The state won't change
4499 * as destroy_dwork can only be queued while locked.
4501 if (!delayed_work_pending(dwork
)) {
4502 list_del(&l
->links
);
4503 pidlist_free(l
->list
);
4504 put_pid_ns(l
->key
.ns
);
4508 mutex_unlock(&l
->owner
->pidlist_mutex
);
4513 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4514 * Returns the number of unique elements.
4516 static int pidlist_uniq(pid_t
*list
, int length
)
4521 * we presume the 0th element is unique, so i starts at 1. trivial
4522 * edge cases first; no work needs to be done for either
4524 if (length
== 0 || length
== 1)
4526 /* src and dest walk down the list; dest counts unique elements */
4527 for (src
= 1; src
< length
; src
++) {
4528 /* find next unique element */
4529 while (list
[src
] == list
[src
-1]) {
4534 /* dest always points to where the next unique element goes */
4535 list
[dest
] = list
[src
];
4543 * The two pid files - task and cgroup.procs - guaranteed that the result
4544 * is sorted, which forced this whole pidlist fiasco. As pid order is
4545 * different per namespace, each namespace needs differently sorted list,
4546 * making it impossible to use, for example, single rbtree of member tasks
4547 * sorted by task pointer. As pidlists can be fairly large, allocating one
4548 * per open file is dangerous, so cgroup had to implement shared pool of
4549 * pidlists keyed by cgroup and namespace.
4551 * All this extra complexity was caused by the original implementation
4552 * committing to an entirely unnecessary property. In the long term, we
4553 * want to do away with it. Explicitly scramble sort order if on the
4554 * default hierarchy so that no such expectation exists in the new
4557 * Scrambling is done by swapping every two consecutive bits, which is
4558 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4560 static pid_t
pid_fry(pid_t pid
)
4562 unsigned a
= pid
& 0x55555555;
4563 unsigned b
= pid
& 0xAAAAAAAA;
4565 return (a
<< 1) | (b
>> 1);
4568 static pid_t
cgroup_pid_fry(struct cgroup
*cgrp
, pid_t pid
)
4570 if (cgroup_on_dfl(cgrp
))
4571 return pid_fry(pid
);
4576 static int cmppid(const void *a
, const void *b
)
4578 return *(pid_t
*)a
- *(pid_t
*)b
;
4581 static int fried_cmppid(const void *a
, const void *b
)
4583 return pid_fry(*(pid_t
*)a
) - pid_fry(*(pid_t
*)b
);
4586 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
4587 enum cgroup_filetype type
)
4589 struct cgroup_pidlist
*l
;
4590 /* don't need task_nsproxy() if we're looking at ourself */
4591 struct pid_namespace
*ns
= task_active_pid_ns(current
);
4593 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4595 list_for_each_entry(l
, &cgrp
->pidlists
, links
)
4596 if (l
->key
.type
== type
&& l
->key
.ns
== ns
)
4602 * find the appropriate pidlist for our purpose (given procs vs tasks)
4603 * returns with the lock on that pidlist already held, and takes care
4604 * of the use count, or returns NULL with no locks held if we're out of
4607 static struct cgroup_pidlist
*cgroup_pidlist_find_create(struct cgroup
*cgrp
,
4608 enum cgroup_filetype type
)
4610 struct cgroup_pidlist
*l
;
4612 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4614 l
= cgroup_pidlist_find(cgrp
, type
);
4618 /* entry not found; create a new one */
4619 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
4623 INIT_DELAYED_WORK(&l
->destroy_dwork
, cgroup_pidlist_destroy_work_fn
);
4625 /* don't need task_nsproxy() if we're looking at ourself */
4626 l
->key
.ns
= get_pid_ns(task_active_pid_ns(current
));
4628 list_add(&l
->links
, &cgrp
->pidlists
);
4633 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4635 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
4636 struct cgroup_pidlist
**lp
)
4640 int pid
, n
= 0; /* used for populating the array */
4641 struct css_task_iter it
;
4642 struct task_struct
*tsk
;
4643 struct cgroup_pidlist
*l
;
4645 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4648 * If cgroup gets more users after we read count, we won't have
4649 * enough space - tough. This race is indistinguishable to the
4650 * caller from the case that the additional cgroup users didn't
4651 * show up until sometime later on.
4653 length
= cgroup_task_count(cgrp
);
4654 array
= pidlist_allocate(length
);
4657 /* now, populate the array */
4658 css_task_iter_start(&cgrp
->self
, &it
);
4659 while ((tsk
= css_task_iter_next(&it
))) {
4660 if (unlikely(n
== length
))
4662 /* get tgid or pid for procs or tasks file respectively */
4663 if (type
== CGROUP_FILE_PROCS
)
4664 pid
= task_tgid_vnr(tsk
);
4666 pid
= task_pid_vnr(tsk
);
4667 if (pid
> 0) /* make sure to only use valid results */
4670 css_task_iter_end(&it
);
4672 /* now sort & (if procs) strip out duplicates */
4673 if (cgroup_on_dfl(cgrp
))
4674 sort(array
, length
, sizeof(pid_t
), fried_cmppid
, NULL
);
4676 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
4677 if (type
== CGROUP_FILE_PROCS
)
4678 length
= pidlist_uniq(array
, length
);
4680 l
= cgroup_pidlist_find_create(cgrp
, type
);
4682 pidlist_free(array
);
4686 /* store array, freeing old if necessary */
4687 pidlist_free(l
->list
);
4695 * cgroupstats_build - build and fill cgroupstats
4696 * @stats: cgroupstats to fill information into
4697 * @dentry: A dentry entry belonging to the cgroup for which stats have
4700 * Build and fill cgroupstats so that taskstats can export it to user
4703 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
4705 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
4706 struct cgroup
*cgrp
;
4707 struct css_task_iter it
;
4708 struct task_struct
*tsk
;
4710 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4711 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
4712 kernfs_type(kn
) != KERNFS_DIR
)
4715 mutex_lock(&cgroup_mutex
);
4718 * We aren't being called from kernfs and there's no guarantee on
4719 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4720 * @kn->priv is RCU safe. Let's do the RCU dancing.
4723 cgrp
= rcu_dereference(kn
->priv
);
4724 if (!cgrp
|| cgroup_is_dead(cgrp
)) {
4726 mutex_unlock(&cgroup_mutex
);
4731 css_task_iter_start(&cgrp
->self
, &it
);
4732 while ((tsk
= css_task_iter_next(&it
))) {
4733 switch (tsk
->state
) {
4735 stats
->nr_running
++;
4737 case TASK_INTERRUPTIBLE
:
4738 stats
->nr_sleeping
++;
4740 case TASK_UNINTERRUPTIBLE
:
4741 stats
->nr_uninterruptible
++;
4744 stats
->nr_stopped
++;
4747 if (delayacct_is_task_waiting_on_io(tsk
))
4748 stats
->nr_io_wait
++;
4752 css_task_iter_end(&it
);
4754 mutex_unlock(&cgroup_mutex
);
4760 * seq_file methods for the tasks/procs files. The seq_file position is the
4761 * next pid to display; the seq_file iterator is a pointer to the pid
4762 * in the cgroup->l->list array.
4765 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
4768 * Initially we receive a position value that corresponds to
4769 * one more than the last pid shown (or 0 on the first call or
4770 * after a seek to the start). Use a binary-search to find the
4771 * next pid to display, if any
4773 struct kernfs_open_file
*of
= s
->private;
4774 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4775 struct cgroup_pidlist
*l
;
4776 enum cgroup_filetype type
= seq_cft(s
)->private;
4777 int index
= 0, pid
= *pos
;
4780 mutex_lock(&cgrp
->pidlist_mutex
);
4783 * !NULL @of->priv indicates that this isn't the first start()
4784 * after open. If the matching pidlist is around, we can use that.
4785 * Look for it. Note that @of->priv can't be used directly. It
4786 * could already have been destroyed.
4789 of
->priv
= cgroup_pidlist_find(cgrp
, type
);
4792 * Either this is the first start() after open or the matching
4793 * pidlist has been destroyed inbetween. Create a new one.
4796 ret
= pidlist_array_load(cgrp
, type
,
4797 (struct cgroup_pidlist
**)&of
->priv
);
4799 return ERR_PTR(ret
);
4804 int end
= l
->length
;
4806 while (index
< end
) {
4807 int mid
= (index
+ end
) / 2;
4808 if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) == pid
) {
4811 } else if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) <= pid
)
4817 /* If we're off the end of the array, we're done */
4818 if (index
>= l
->length
)
4820 /* Update the abstract position to be the actual pid that we found */
4821 iter
= l
->list
+ index
;
4822 *pos
= cgroup_pid_fry(cgrp
, *iter
);
4826 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
4828 struct kernfs_open_file
*of
= s
->private;
4829 struct cgroup_pidlist
*l
= of
->priv
;
4832 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
,
4833 CGROUP_PIDLIST_DESTROY_DELAY
);
4834 mutex_unlock(&seq_css(s
)->cgroup
->pidlist_mutex
);
4837 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4839 struct kernfs_open_file
*of
= s
->private;
4840 struct cgroup_pidlist
*l
= of
->priv
;
4842 pid_t
*end
= l
->list
+ l
->length
;
4844 * Advance to the next pid in the array. If this goes off the
4851 *pos
= cgroup_pid_fry(seq_css(s
)->cgroup
, *p
);
4856 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
4858 seq_printf(s
, "%d\n", *(int *)v
);
4863 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
4866 return notify_on_release(css
->cgroup
);
4869 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
4870 struct cftype
*cft
, u64 val
)
4873 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4875 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4879 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4882 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4885 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4886 struct cftype
*cft
, u64 val
)
4889 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4891 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4895 /* cgroup core interface files for the default hierarchy */
4896 static struct cftype cgroup_dfl_base_files
[] = {
4898 .name
= "cgroup.procs",
4899 .file_offset
= offsetof(struct cgroup
, procs_file
),
4900 .seq_start
= cgroup_pidlist_start
,
4901 .seq_next
= cgroup_pidlist_next
,
4902 .seq_stop
= cgroup_pidlist_stop
,
4903 .seq_show
= cgroup_pidlist_show
,
4904 .private = CGROUP_FILE_PROCS
,
4905 .write
= cgroup_procs_write
,
4908 .name
= "cgroup.controllers",
4909 .seq_show
= cgroup_controllers_show
,
4912 .name
= "cgroup.subtree_control",
4913 .seq_show
= cgroup_subtree_control_show
,
4914 .write
= cgroup_subtree_control_write
,
4917 .name
= "cgroup.events",
4918 .flags
= CFTYPE_NOT_ON_ROOT
,
4919 .file_offset
= offsetof(struct cgroup
, events_file
),
4920 .seq_show
= cgroup_events_show
,
4925 /* cgroup core interface files for the legacy hierarchies */
4926 static struct cftype cgroup_legacy_base_files
[] = {
4928 .name
= "cgroup.procs",
4929 .seq_start
= cgroup_pidlist_start
,
4930 .seq_next
= cgroup_pidlist_next
,
4931 .seq_stop
= cgroup_pidlist_stop
,
4932 .seq_show
= cgroup_pidlist_show
,
4933 .private = CGROUP_FILE_PROCS
,
4934 .write
= cgroup_procs_write
,
4937 .name
= "cgroup.clone_children",
4938 .read_u64
= cgroup_clone_children_read
,
4939 .write_u64
= cgroup_clone_children_write
,
4942 .name
= "cgroup.sane_behavior",
4943 .flags
= CFTYPE_ONLY_ON_ROOT
,
4944 .seq_show
= cgroup_sane_behavior_show
,
4948 .seq_start
= cgroup_pidlist_start
,
4949 .seq_next
= cgroup_pidlist_next
,
4950 .seq_stop
= cgroup_pidlist_stop
,
4951 .seq_show
= cgroup_pidlist_show
,
4952 .private = CGROUP_FILE_TASKS
,
4953 .write
= cgroup_tasks_write
,
4956 .name
= "notify_on_release",
4957 .read_u64
= cgroup_read_notify_on_release
,
4958 .write_u64
= cgroup_write_notify_on_release
,
4961 .name
= "release_agent",
4962 .flags
= CFTYPE_ONLY_ON_ROOT
,
4963 .seq_show
= cgroup_release_agent_show
,
4964 .write
= cgroup_release_agent_write
,
4965 .max_write_len
= PATH_MAX
- 1,
4971 * css destruction is four-stage process.
4973 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4974 * Implemented in kill_css().
4976 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4977 * and thus css_tryget_online() is guaranteed to fail, the css can be
4978 * offlined by invoking offline_css(). After offlining, the base ref is
4979 * put. Implemented in css_killed_work_fn().
4981 * 3. When the percpu_ref reaches zero, the only possible remaining
4982 * accessors are inside RCU read sections. css_release() schedules the
4985 * 4. After the grace period, the css can be freed. Implemented in
4986 * css_free_work_fn().
4988 * It is actually hairier because both step 2 and 4 require process context
4989 * and thus involve punting to css->destroy_work adding two additional
4990 * steps to the already complex sequence.
4992 static void css_free_work_fn(struct work_struct
*work
)
4994 struct cgroup_subsys_state
*css
=
4995 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4996 struct cgroup_subsys
*ss
= css
->ss
;
4997 struct cgroup
*cgrp
= css
->cgroup
;
4999 percpu_ref_exit(&css
->refcnt
);
5003 struct cgroup_subsys_state
*parent
= css
->parent
;
5007 cgroup_idr_remove(&ss
->css_idr
, id
);
5013 /* cgroup free path */
5014 atomic_dec(&cgrp
->root
->nr_cgrps
);
5015 cgroup_pidlist_destroy_all(cgrp
);
5016 cancel_work_sync(&cgrp
->release_agent_work
);
5018 if (cgroup_parent(cgrp
)) {
5020 * We get a ref to the parent, and put the ref when
5021 * this cgroup is being freed, so it's guaranteed
5022 * that the parent won't be destroyed before its
5025 cgroup_put(cgroup_parent(cgrp
));
5026 kernfs_put(cgrp
->kn
);
5030 * This is root cgroup's refcnt reaching zero,
5031 * which indicates that the root should be
5034 cgroup_destroy_root(cgrp
->root
);
5039 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
5041 struct cgroup_subsys_state
*css
=
5042 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
5044 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
5045 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5048 static void css_release_work_fn(struct work_struct
*work
)
5050 struct cgroup_subsys_state
*css
=
5051 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5052 struct cgroup_subsys
*ss
= css
->ss
;
5053 struct cgroup
*cgrp
= css
->cgroup
;
5055 mutex_lock(&cgroup_mutex
);
5057 css
->flags
|= CSS_RELEASED
;
5058 list_del_rcu(&css
->sibling
);
5061 /* css release path */
5062 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
5063 if (ss
->css_released
)
5064 ss
->css_released(css
);
5066 /* cgroup release path */
5067 trace_cgroup_release(cgrp
);
5069 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
5073 * There are two control paths which try to determine
5074 * cgroup from dentry without going through kernfs -
5075 * cgroupstats_build() and css_tryget_online_from_dir().
5076 * Those are supported by RCU protecting clearing of
5077 * cgrp->kn->priv backpointer.
5080 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
5084 mutex_unlock(&cgroup_mutex
);
5086 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
5089 static void css_release(struct percpu_ref
*ref
)
5091 struct cgroup_subsys_state
*css
=
5092 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5094 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
5095 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5098 static void init_and_link_css(struct cgroup_subsys_state
*css
,
5099 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
5101 lockdep_assert_held(&cgroup_mutex
);
5105 memset(css
, 0, sizeof(*css
));
5109 INIT_LIST_HEAD(&css
->sibling
);
5110 INIT_LIST_HEAD(&css
->children
);
5111 css
->serial_nr
= css_serial_nr_next
++;
5112 atomic_set(&css
->online_cnt
, 0);
5114 if (cgroup_parent(cgrp
)) {
5115 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
5116 css_get(css
->parent
);
5119 BUG_ON(cgroup_css(cgrp
, ss
));
5122 /* invoke ->css_online() on a new CSS and mark it online if successful */
5123 static int online_css(struct cgroup_subsys_state
*css
)
5125 struct cgroup_subsys
*ss
= css
->ss
;
5128 lockdep_assert_held(&cgroup_mutex
);
5131 ret
= ss
->css_online(css
);
5133 css
->flags
|= CSS_ONLINE
;
5134 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
5136 atomic_inc(&css
->online_cnt
);
5138 atomic_inc(&css
->parent
->online_cnt
);
5143 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5144 static void offline_css(struct cgroup_subsys_state
*css
)
5146 struct cgroup_subsys
*ss
= css
->ss
;
5148 lockdep_assert_held(&cgroup_mutex
);
5150 if (!(css
->flags
& CSS_ONLINE
))
5156 if (ss
->css_offline
)
5157 ss
->css_offline(css
);
5159 css
->flags
&= ~CSS_ONLINE
;
5160 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
5162 wake_up_all(&css
->cgroup
->offline_waitq
);
5166 * css_create - create a cgroup_subsys_state
5167 * @cgrp: the cgroup new css will be associated with
5168 * @ss: the subsys of new css
5170 * Create a new css associated with @cgrp - @ss pair. On success, the new
5171 * css is online and installed in @cgrp. This function doesn't create the
5172 * interface files. Returns 0 on success, -errno on failure.
5174 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
5175 struct cgroup_subsys
*ss
)
5177 struct cgroup
*parent
= cgroup_parent(cgrp
);
5178 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
5179 struct cgroup_subsys_state
*css
;
5182 lockdep_assert_held(&cgroup_mutex
);
5184 css
= ss
->css_alloc(parent_css
);
5186 css
= ERR_PTR(-ENOMEM
);
5190 init_and_link_css(css
, ss
, cgrp
);
5192 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
5196 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
5201 /* @css is ready to be brought online now, make it visible */
5202 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
5203 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
5205 err
= online_css(css
);
5209 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
5210 cgroup_parent(parent
)) {
5211 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5212 current
->comm
, current
->pid
, ss
->name
);
5213 if (!strcmp(ss
->name
, "memory"))
5214 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5215 ss
->warned_broken_hierarchy
= true;
5221 list_del_rcu(&css
->sibling
);
5223 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
5224 return ERR_PTR(err
);
5228 * The returned cgroup is fully initialized including its control mask, but
5229 * it isn't associated with its kernfs_node and doesn't have the control
5232 static struct cgroup
*cgroup_create(struct cgroup
*parent
)
5234 struct cgroup_root
*root
= parent
->root
;
5235 struct cgroup
*cgrp
, *tcgrp
;
5236 int level
= parent
->level
+ 1;
5239 /* allocate the cgroup and its ID, 0 is reserved for the root */
5240 cgrp
= kzalloc(sizeof(*cgrp
) +
5241 sizeof(cgrp
->ancestor_ids
[0]) * (level
+ 1), GFP_KERNEL
);
5243 return ERR_PTR(-ENOMEM
);
5245 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
5250 * Temporarily set the pointer to NULL, so idr_find() won't return
5251 * a half-baked cgroup.
5253 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
5256 goto out_cancel_ref
;
5259 init_cgroup_housekeeping(cgrp
);
5261 cgrp
->self
.parent
= &parent
->self
;
5263 cgrp
->level
= level
;
5265 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
))
5266 cgrp
->ancestor_ids
[tcgrp
->level
] = tcgrp
->id
;
5268 if (notify_on_release(parent
))
5269 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
5271 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
5272 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
5274 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
5276 /* allocation complete, commit to creation */
5277 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
5278 atomic_inc(&root
->nr_cgrps
);
5282 * @cgrp is now fully operational. If something fails after this
5283 * point, it'll be released via the normal destruction path.
5285 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
5288 * On the default hierarchy, a child doesn't automatically inherit
5289 * subtree_control from the parent. Each is configured manually.
5291 if (!cgroup_on_dfl(cgrp
))
5292 cgrp
->subtree_control
= cgroup_control(cgrp
);
5294 cgroup_propagate_control(cgrp
);
5299 percpu_ref_exit(&cgrp
->self
.refcnt
);
5302 return ERR_PTR(ret
);
5305 static int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
5308 struct cgroup
*parent
, *cgrp
;
5309 struct kernfs_node
*kn
;
5312 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5313 if (strchr(name
, '\n'))
5316 parent
= cgroup_kn_lock_live(parent_kn
, false);
5320 cgrp
= cgroup_create(parent
);
5322 ret
= PTR_ERR(cgrp
);
5326 /* create the directory */
5327 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
5335 * This extra ref will be put in cgroup_free_fn() and guarantees
5336 * that @cgrp->kn is always accessible.
5340 ret
= cgroup_kn_set_ugid(kn
);
5344 ret
= css_populate_dir(&cgrp
->self
);
5348 ret
= cgroup_apply_control_enable(cgrp
);
5352 trace_cgroup_mkdir(cgrp
);
5354 /* let's create and online css's */
5355 kernfs_activate(kn
);
5361 cgroup_destroy_locked(cgrp
);
5363 cgroup_kn_unlock(parent_kn
);
5368 * This is called when the refcnt of a css is confirmed to be killed.
5369 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5370 * initate destruction and put the css ref from kill_css().
5372 static void css_killed_work_fn(struct work_struct
*work
)
5374 struct cgroup_subsys_state
*css
=
5375 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5377 mutex_lock(&cgroup_mutex
);
5382 /* @css can't go away while we're holding cgroup_mutex */
5384 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
5386 mutex_unlock(&cgroup_mutex
);
5389 /* css kill confirmation processing requires process context, bounce */
5390 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5392 struct cgroup_subsys_state
*css
=
5393 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5395 if (atomic_dec_and_test(&css
->online_cnt
)) {
5396 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5397 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5402 * kill_css - destroy a css
5403 * @css: css to destroy
5405 * This function initiates destruction of @css by removing cgroup interface
5406 * files and putting its base reference. ->css_offline() will be invoked
5407 * asynchronously once css_tryget_online() is guaranteed to fail and when
5408 * the reference count reaches zero, @css will be released.
5410 static void kill_css(struct cgroup_subsys_state
*css
)
5412 lockdep_assert_held(&cgroup_mutex
);
5414 if (css
->flags
& CSS_DYING
)
5417 css
->flags
|= CSS_DYING
;
5420 * This must happen before css is disassociated with its cgroup.
5421 * See seq_css() for details.
5426 * Killing would put the base ref, but we need to keep it alive
5427 * until after ->css_offline().
5432 * cgroup core guarantees that, by the time ->css_offline() is
5433 * invoked, no new css reference will be given out via
5434 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5435 * proceed to offlining css's because percpu_ref_kill() doesn't
5436 * guarantee that the ref is seen as killed on all CPUs on return.
5438 * Use percpu_ref_kill_and_confirm() to get notifications as each
5439 * css is confirmed to be seen as killed on all CPUs.
5441 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5445 * cgroup_destroy_locked - the first stage of cgroup destruction
5446 * @cgrp: cgroup to be destroyed
5448 * css's make use of percpu refcnts whose killing latency shouldn't be
5449 * exposed to userland and are RCU protected. Also, cgroup core needs to
5450 * guarantee that css_tryget_online() won't succeed by the time
5451 * ->css_offline() is invoked. To satisfy all the requirements,
5452 * destruction is implemented in the following two steps.
5454 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5455 * userland visible parts and start killing the percpu refcnts of
5456 * css's. Set up so that the next stage will be kicked off once all
5457 * the percpu refcnts are confirmed to be killed.
5459 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5460 * rest of destruction. Once all cgroup references are gone, the
5461 * cgroup is RCU-freed.
5463 * This function implements s1. After this step, @cgrp is gone as far as
5464 * the userland is concerned and a new cgroup with the same name may be
5465 * created. As cgroup doesn't care about the names internally, this
5466 * doesn't cause any problem.
5468 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5469 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5471 struct cgroup_subsys_state
*css
;
5472 struct cgrp_cset_link
*link
;
5475 lockdep_assert_held(&cgroup_mutex
);
5478 * Only migration can raise populated from zero and we're already
5479 * holding cgroup_mutex.
5481 if (cgroup_is_populated(cgrp
))
5485 * Make sure there's no live children. We can't test emptiness of
5486 * ->self.children as dead children linger on it while being
5487 * drained; otherwise, "rmdir parent/child parent" may fail.
5489 if (css_has_online_children(&cgrp
->self
))
5493 * Mark @cgrp and the associated csets dead. The former prevents
5494 * further task migration and child creation by disabling
5495 * cgroup_lock_live_group(). The latter makes the csets ignored by
5496 * the migration path.
5498 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5500 spin_lock_irq(&css_set_lock
);
5501 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5502 link
->cset
->dead
= true;
5503 spin_unlock_irq(&css_set_lock
);
5505 /* initiate massacre of all css's */
5506 for_each_css(css
, ssid
, cgrp
)
5510 * Remove @cgrp directory along with the base files. @cgrp has an
5511 * extra ref on its kn.
5513 kernfs_remove(cgrp
->kn
);
5515 check_for_release(cgroup_parent(cgrp
));
5517 /* put the base reference */
5518 percpu_ref_kill(&cgrp
->self
.refcnt
);
5523 static int cgroup_rmdir(struct kernfs_node
*kn
)
5525 struct cgroup
*cgrp
;
5528 cgrp
= cgroup_kn_lock_live(kn
, false);
5532 ret
= cgroup_destroy_locked(cgrp
);
5535 trace_cgroup_rmdir(cgrp
);
5537 cgroup_kn_unlock(kn
);
5541 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5542 .remount_fs
= cgroup_remount
,
5543 .show_options
= cgroup_show_options
,
5544 .mkdir
= cgroup_mkdir
,
5545 .rmdir
= cgroup_rmdir
,
5546 .rename
= cgroup_rename
,
5547 .show_path
= cgroup_show_path
,
5550 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5552 struct cgroup_subsys_state
*css
;
5554 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5556 mutex_lock(&cgroup_mutex
);
5558 idr_init(&ss
->css_idr
);
5559 INIT_LIST_HEAD(&ss
->cfts
);
5561 /* Create the root cgroup state for this subsystem */
5562 ss
->root
= &cgrp_dfl_root
;
5563 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5564 /* We don't handle early failures gracefully */
5565 BUG_ON(IS_ERR(css
));
5566 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5569 * Root csses are never destroyed and we can't initialize
5570 * percpu_ref during early init. Disable refcnting.
5572 css
->flags
|= CSS_NO_REF
;
5575 /* allocation can't be done safely during early init */
5578 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5579 BUG_ON(css
->id
< 0);
5582 /* Update the init_css_set to contain a subsys
5583 * pointer to this state - since the subsystem is
5584 * newly registered, all tasks and hence the
5585 * init_css_set is in the subsystem's root cgroup. */
5586 init_css_set
.subsys
[ss
->id
] = css
;
5588 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5589 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5590 have_free_callback
|= (bool)ss
->free
<< ss
->id
;
5591 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5593 /* At system boot, before all subsystems have been
5594 * registered, no tasks have been forked, so we don't
5595 * need to invoke fork callbacks here. */
5596 BUG_ON(!list_empty(&init_task
.tasks
));
5598 BUG_ON(online_css(css
));
5600 mutex_unlock(&cgroup_mutex
);
5604 * cgroup_init_early - cgroup initialization at system boot
5606 * Initialize cgroups at system boot, and initialize any
5607 * subsystems that request early init.
5609 int __init
cgroup_init_early(void)
5611 static struct cgroup_sb_opts __initdata opts
;
5612 struct cgroup_subsys
*ss
;
5615 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5616 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5618 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5620 for_each_subsys(ss
, i
) {
5621 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5622 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5623 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5625 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5626 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5629 ss
->name
= cgroup_subsys_name
[i
];
5630 if (!ss
->legacy_name
)
5631 ss
->legacy_name
= cgroup_subsys_name
[i
];
5634 cgroup_init_subsys(ss
, true);
5639 static u16 cgroup_disable_mask __initdata
;
5642 * cgroup_init - cgroup initialization
5644 * Register cgroup filesystem and /proc file, and initialize
5645 * any subsystems that didn't request early init.
5647 int __init
cgroup_init(void)
5649 struct cgroup_subsys
*ss
;
5652 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5653 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5654 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_dfl_base_files
));
5655 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_legacy_base_files
));
5658 * The latency of the synchronize_sched() is too high for cgroups,
5659 * avoid it at the cost of forcing all readers into the slow path.
5661 rcu_sync_enter_start(&cgroup_threadgroup_rwsem
.rss
);
5663 get_user_ns(init_cgroup_ns
.user_ns
);
5665 mutex_lock(&cgroup_mutex
);
5668 * Add init_css_set to the hash table so that dfl_root can link to
5671 hash_add(css_set_table
, &init_css_set
.hlist
,
5672 css_set_hash(init_css_set
.subsys
));
5674 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5676 mutex_unlock(&cgroup_mutex
);
5678 for_each_subsys(ss
, ssid
) {
5679 if (ss
->early_init
) {
5680 struct cgroup_subsys_state
*css
=
5681 init_css_set
.subsys
[ss
->id
];
5683 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5685 BUG_ON(css
->id
< 0);
5687 cgroup_init_subsys(ss
, false);
5690 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5691 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5694 * Setting dfl_root subsys_mask needs to consider the
5695 * disabled flag and cftype registration needs kmalloc,
5696 * both of which aren't available during early_init.
5698 if (cgroup_disable_mask
& (1 << ssid
)) {
5699 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5700 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5705 if (cgroup_ssid_no_v1(ssid
))
5706 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5709 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5711 if (ss
->implicit_on_dfl
)
5712 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5713 else if (!ss
->dfl_cftypes
)
5714 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5716 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5717 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5719 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5720 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5724 ss
->bind(init_css_set
.subsys
[ssid
]);
5726 mutex_lock(&cgroup_mutex
);
5727 css_populate_dir(init_css_set
.subsys
[ssid
]);
5728 mutex_unlock(&cgroup_mutex
);
5731 /* init_css_set.subsys[] has been updated, re-hash */
5732 hash_del(&init_css_set
.hlist
);
5733 hash_add(css_set_table
, &init_css_set
.hlist
,
5734 css_set_hash(init_css_set
.subsys
));
5736 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5737 WARN_ON(register_filesystem(&cgroup_fs_type
));
5738 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5739 WARN_ON(!proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
));
5744 static int __init
cgroup_wq_init(void)
5747 * There isn't much point in executing destruction path in
5748 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5749 * Use 1 for @max_active.
5751 * We would prefer to do this in cgroup_init() above, but that
5752 * is called before init_workqueues(): so leave this until after.
5754 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5755 BUG_ON(!cgroup_destroy_wq
);
5758 * Used to destroy pidlists and separate to serve as flush domain.
5759 * Cap @max_active to 1 too.
5761 cgroup_pidlist_destroy_wq
= alloc_workqueue("cgroup_pidlist_destroy",
5763 BUG_ON(!cgroup_pidlist_destroy_wq
);
5767 core_initcall(cgroup_wq_init
);
5770 * proc_cgroup_show()
5771 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5772 * - Used for /proc/<pid>/cgroup.
5774 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5775 struct pid
*pid
, struct task_struct
*tsk
)
5779 struct cgroup_root
*root
;
5782 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5786 mutex_lock(&cgroup_mutex
);
5787 spin_lock_irq(&css_set_lock
);
5789 for_each_root(root
) {
5790 struct cgroup_subsys
*ss
;
5791 struct cgroup
*cgrp
;
5792 int ssid
, count
= 0;
5794 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5797 seq_printf(m
, "%d:", root
->hierarchy_id
);
5798 if (root
!= &cgrp_dfl_root
)
5799 for_each_subsys(ss
, ssid
)
5800 if (root
->subsys_mask
& (1 << ssid
))
5801 seq_printf(m
, "%s%s", count
++ ? "," : "",
5803 if (strlen(root
->name
))
5804 seq_printf(m
, "%sname=%s", count
? "," : "",
5808 cgrp
= task_cgroup_from_root(tsk
, root
);
5811 * On traditional hierarchies, all zombie tasks show up as
5812 * belonging to the root cgroup. On the default hierarchy,
5813 * while a zombie doesn't show up in "cgroup.procs" and
5814 * thus can't be migrated, its /proc/PID/cgroup keeps
5815 * reporting the cgroup it belonged to before exiting. If
5816 * the cgroup is removed before the zombie is reaped,
5817 * " (deleted)" is appended to the cgroup path.
5819 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5820 retval
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5821 current
->nsproxy
->cgroup_ns
);
5822 if (retval
>= PATH_MAX
)
5823 retval
= -ENAMETOOLONG
;
5832 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5833 seq_puts(m
, " (deleted)\n");
5840 spin_unlock_irq(&css_set_lock
);
5841 mutex_unlock(&cgroup_mutex
);
5847 /* Display information about each subsystem and each hierarchy */
5848 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5850 struct cgroup_subsys
*ss
;
5853 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5855 * ideally we don't want subsystems moving around while we do this.
5856 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5857 * subsys/hierarchy state.
5859 mutex_lock(&cgroup_mutex
);
5861 for_each_subsys(ss
, i
)
5862 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5863 ss
->legacy_name
, ss
->root
->hierarchy_id
,
5864 atomic_read(&ss
->root
->nr_cgrps
),
5865 cgroup_ssid_enabled(i
));
5867 mutex_unlock(&cgroup_mutex
);
5871 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5873 return single_open(file
, proc_cgroupstats_show
, NULL
);
5876 static const struct file_operations proc_cgroupstats_operations
= {
5877 .open
= cgroupstats_open
,
5879 .llseek
= seq_lseek
,
5880 .release
= single_release
,
5884 * cgroup_fork - initialize cgroup related fields during copy_process()
5885 * @child: pointer to task_struct of forking parent process.
5887 * A task is associated with the init_css_set until cgroup_post_fork()
5888 * attaches it to the parent's css_set. Empty cg_list indicates that
5889 * @child isn't holding reference to its css_set.
5891 void cgroup_fork(struct task_struct
*child
)
5893 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5894 INIT_LIST_HEAD(&child
->cg_list
);
5898 * cgroup_can_fork - called on a new task before the process is exposed
5899 * @child: the task in question.
5901 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5902 * returns an error, the fork aborts with that error code. This allows for
5903 * a cgroup subsystem to conditionally allow or deny new forks.
5905 int cgroup_can_fork(struct task_struct
*child
)
5907 struct cgroup_subsys
*ss
;
5910 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
5911 ret
= ss
->can_fork(child
);
5914 } while_each_subsys_mask();
5919 for_each_subsys(ss
, j
) {
5922 if (ss
->cancel_fork
)
5923 ss
->cancel_fork(child
);
5930 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5931 * @child: the task in question
5933 * This calls the cancel_fork() callbacks if a fork failed *after*
5934 * cgroup_can_fork() succeded.
5936 void cgroup_cancel_fork(struct task_struct
*child
)
5938 struct cgroup_subsys
*ss
;
5941 for_each_subsys(ss
, i
)
5942 if (ss
->cancel_fork
)
5943 ss
->cancel_fork(child
);
5947 * cgroup_post_fork - called on a new task after adding it to the task list
5948 * @child: the task in question
5950 * Adds the task to the list running through its css_set if necessary and
5951 * call the subsystem fork() callbacks. Has to be after the task is
5952 * visible on the task list in case we race with the first call to
5953 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5956 void cgroup_post_fork(struct task_struct
*child
)
5958 struct cgroup_subsys
*ss
;
5962 * This may race against cgroup_enable_task_cg_lists(). As that
5963 * function sets use_task_css_set_links before grabbing
5964 * tasklist_lock and we just went through tasklist_lock to add
5965 * @child, it's guaranteed that either we see the set
5966 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5967 * @child during its iteration.
5969 * If we won the race, @child is associated with %current's
5970 * css_set. Grabbing css_set_lock guarantees both that the
5971 * association is stable, and, on completion of the parent's
5972 * migration, @child is visible in the source of migration or
5973 * already in the destination cgroup. This guarantee is necessary
5974 * when implementing operations which need to migrate all tasks of
5975 * a cgroup to another.
5977 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5978 * will remain in init_css_set. This is safe because all tasks are
5979 * in the init_css_set before cg_links is enabled and there's no
5980 * operation which transfers all tasks out of init_css_set.
5982 if (use_task_css_set_links
) {
5983 struct css_set
*cset
;
5985 spin_lock_irq(&css_set_lock
);
5986 cset
= task_css_set(current
);
5987 if (list_empty(&child
->cg_list
)) {
5989 css_set_move_task(child
, NULL
, cset
, false);
5991 spin_unlock_irq(&css_set_lock
);
5995 * Call ss->fork(). This must happen after @child is linked on
5996 * css_set; otherwise, @child might change state between ->fork()
5997 * and addition to css_set.
5999 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
6001 } while_each_subsys_mask();
6005 * cgroup_exit - detach cgroup from exiting task
6006 * @tsk: pointer to task_struct of exiting process
6008 * Description: Detach cgroup from @tsk and release it.
6010 * Note that cgroups marked notify_on_release force every task in
6011 * them to take the global cgroup_mutex mutex when exiting.
6012 * This could impact scaling on very large systems. Be reluctant to
6013 * use notify_on_release cgroups where very high task exit scaling
6014 * is required on large systems.
6016 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
6017 * call cgroup_exit() while the task is still competent to handle
6018 * notify_on_release(), then leave the task attached to the root cgroup in
6019 * each hierarchy for the remainder of its exit. No need to bother with
6020 * init_css_set refcnting. init_css_set never goes away and we can't race
6021 * with migration path - PF_EXITING is visible to migration path.
6023 void cgroup_exit(struct task_struct
*tsk
)
6025 struct cgroup_subsys
*ss
;
6026 struct css_set
*cset
;
6030 * Unlink from @tsk from its css_set. As migration path can't race
6031 * with us, we can check css_set and cg_list without synchronization.
6033 cset
= task_css_set(tsk
);
6035 if (!list_empty(&tsk
->cg_list
)) {
6036 spin_lock_irq(&css_set_lock
);
6037 css_set_move_task(tsk
, cset
, NULL
, false);
6038 spin_unlock_irq(&css_set_lock
);
6043 /* see cgroup_post_fork() for details */
6044 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
6046 } while_each_subsys_mask();
6049 void cgroup_free(struct task_struct
*task
)
6051 struct css_set
*cset
= task_css_set(task
);
6052 struct cgroup_subsys
*ss
;
6055 do_each_subsys_mask(ss
, ssid
, have_free_callback
) {
6057 } while_each_subsys_mask();
6062 static void check_for_release(struct cgroup
*cgrp
)
6064 if (notify_on_release(cgrp
) && !cgroup_is_populated(cgrp
) &&
6065 !css_has_online_children(&cgrp
->self
) && !cgroup_is_dead(cgrp
))
6066 schedule_work(&cgrp
->release_agent_work
);
6070 * Notify userspace when a cgroup is released, by running the
6071 * configured release agent with the name of the cgroup (path
6072 * relative to the root of cgroup file system) as the argument.
6074 * Most likely, this user command will try to rmdir this cgroup.
6076 * This races with the possibility that some other task will be
6077 * attached to this cgroup before it is removed, or that some other
6078 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6079 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6080 * unused, and this cgroup will be reprieved from its death sentence,
6081 * to continue to serve a useful existence. Next time it's released,
6082 * we will get notified again, if it still has 'notify_on_release' set.
6084 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6085 * means only wait until the task is successfully execve()'d. The
6086 * separate release agent task is forked by call_usermodehelper(),
6087 * then control in this thread returns here, without waiting for the
6088 * release agent task. We don't bother to wait because the caller of
6089 * this routine has no use for the exit status of the release agent
6090 * task, so no sense holding our caller up for that.
6092 static void cgroup_release_agent(struct work_struct
*work
)
6094 struct cgroup
*cgrp
=
6095 container_of(work
, struct cgroup
, release_agent_work
);
6096 char *pathbuf
= NULL
, *agentbuf
= NULL
;
6097 char *argv
[3], *envp
[3];
6100 mutex_lock(&cgroup_mutex
);
6102 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
6103 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
6104 if (!pathbuf
|| !agentbuf
)
6107 spin_lock_irq(&css_set_lock
);
6108 ret
= cgroup_path_ns_locked(cgrp
, pathbuf
, PATH_MAX
, &init_cgroup_ns
);
6109 spin_unlock_irq(&css_set_lock
);
6110 if (ret
< 0 || ret
>= PATH_MAX
)
6117 /* minimal command environment */
6119 envp
[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6122 mutex_unlock(&cgroup_mutex
);
6123 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
6126 mutex_unlock(&cgroup_mutex
);
6132 static int __init
cgroup_disable(char *str
)
6134 struct cgroup_subsys
*ss
;
6138 while ((token
= strsep(&str
, ",")) != NULL
) {
6142 for_each_subsys(ss
, i
) {
6143 if (strcmp(token
, ss
->name
) &&
6144 strcmp(token
, ss
->legacy_name
))
6146 cgroup_disable_mask
|= 1 << i
;
6151 __setup("cgroup_disable=", cgroup_disable
);
6153 static int __init
cgroup_no_v1(char *str
)
6155 struct cgroup_subsys
*ss
;
6159 while ((token
= strsep(&str
, ",")) != NULL
) {
6163 if (!strcmp(token
, "all")) {
6164 cgroup_no_v1_mask
= U16_MAX
;
6168 for_each_subsys(ss
, i
) {
6169 if (strcmp(token
, ss
->name
) &&
6170 strcmp(token
, ss
->legacy_name
))
6173 cgroup_no_v1_mask
|= 1 << i
;
6178 __setup("cgroup_no_v1=", cgroup_no_v1
);
6181 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6182 * @dentry: directory dentry of interest
6183 * @ss: subsystem of interest
6185 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6186 * to get the corresponding css and return it. If such css doesn't exist
6187 * or can't be pinned, an ERR_PTR value is returned.
6189 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
6190 struct cgroup_subsys
*ss
)
6192 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
6193 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
6194 struct cgroup_subsys_state
*css
= NULL
;
6195 struct cgroup
*cgrp
;
6197 /* is @dentry a cgroup dir? */
6198 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
6199 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
6200 return ERR_PTR(-EBADF
);
6205 * This path doesn't originate from kernfs and @kn could already
6206 * have been or be removed at any point. @kn->priv is RCU
6207 * protected for this access. See css_release_work_fn() for details.
6209 cgrp
= rcu_dereference(kn
->priv
);
6211 css
= cgroup_css(cgrp
, ss
);
6213 if (!css
|| !css_tryget_online(css
))
6214 css
= ERR_PTR(-ENOENT
);
6221 * css_from_id - lookup css by id
6222 * @id: the cgroup id
6223 * @ss: cgroup subsys to be looked into
6225 * Returns the css if there's valid one with @id, otherwise returns NULL.
6226 * Should be called under rcu_read_lock().
6228 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
6230 WARN_ON_ONCE(!rcu_read_lock_held());
6231 return idr_find(&ss
->css_idr
, id
);
6235 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6236 * @path: path on the default hierarchy
6238 * Find the cgroup at @path on the default hierarchy, increment its
6239 * reference count and return it. Returns pointer to the found cgroup on
6240 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6241 * if @path points to a non-directory.
6243 struct cgroup
*cgroup_get_from_path(const char *path
)
6245 struct kernfs_node
*kn
;
6246 struct cgroup
*cgrp
;
6248 mutex_lock(&cgroup_mutex
);
6250 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
6252 if (kernfs_type(kn
) == KERNFS_DIR
) {
6256 cgrp
= ERR_PTR(-ENOTDIR
);
6260 cgrp
= ERR_PTR(-ENOENT
);
6263 mutex_unlock(&cgroup_mutex
);
6266 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
6269 * cgroup_get_from_fd - get a cgroup pointer from a fd
6270 * @fd: fd obtained by open(cgroup2_dir)
6272 * Find the cgroup from a fd which should be obtained
6273 * by opening a cgroup directory. Returns a pointer to the
6274 * cgroup on success. ERR_PTR is returned if the cgroup
6277 struct cgroup
*cgroup_get_from_fd(int fd
)
6279 struct cgroup_subsys_state
*css
;
6280 struct cgroup
*cgrp
;
6285 return ERR_PTR(-EBADF
);
6287 css
= css_tryget_online_from_dir(f
->f_path
.dentry
, NULL
);
6290 return ERR_CAST(css
);
6293 if (!cgroup_on_dfl(cgrp
)) {
6295 return ERR_PTR(-EBADF
);
6300 EXPORT_SYMBOL_GPL(cgroup_get_from_fd
);
6303 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6304 * definition in cgroup-defs.h.
6306 #ifdef CONFIG_SOCK_CGROUP_DATA
6308 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6310 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
6311 static bool cgroup_sk_alloc_disabled __read_mostly
;
6313 void cgroup_sk_alloc_disable(void)
6315 if (cgroup_sk_alloc_disabled
)
6317 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6318 cgroup_sk_alloc_disabled
= true;
6323 #define cgroup_sk_alloc_disabled false
6327 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
6329 if (cgroup_sk_alloc_disabled
) {
6330 skcd
->no_refcnt
= 1;
6334 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6341 struct css_set
*cset
;
6343 cset
= task_css_set(current
);
6344 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
6345 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
6354 void cgroup_sk_clone(struct sock_cgroup_data
*skcd
)
6356 /* Socket clone path */
6358 if (skcd
->no_refcnt
)
6361 * We might be cloning a socket which is left in an empty
6362 * cgroup and the cgroup might have already been rmdir'd.
6363 * Don't use cgroup_get_live().
6365 cgroup_get(sock_cgroup_ptr(skcd
));
6369 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
6371 if (skcd
->no_refcnt
)
6374 cgroup_put(sock_cgroup_ptr(skcd
));
6377 #endif /* CONFIG_SOCK_CGROUP_DATA */
6379 /* cgroup namespaces */
6381 static struct ucounts
*inc_cgroup_namespaces(struct user_namespace
*ns
)
6383 return inc_ucount(ns
, current_euid(), UCOUNT_CGROUP_NAMESPACES
);
6386 static void dec_cgroup_namespaces(struct ucounts
*ucounts
)
6388 dec_ucount(ucounts
, UCOUNT_CGROUP_NAMESPACES
);
6391 static struct cgroup_namespace
*alloc_cgroup_ns(void)
6393 struct cgroup_namespace
*new_ns
;
6396 new_ns
= kzalloc(sizeof(struct cgroup_namespace
), GFP_KERNEL
);
6398 return ERR_PTR(-ENOMEM
);
6399 ret
= ns_alloc_inum(&new_ns
->ns
);
6402 return ERR_PTR(ret
);
6404 atomic_set(&new_ns
->count
, 1);
6405 new_ns
->ns
.ops
= &cgroupns_operations
;
6409 void free_cgroup_ns(struct cgroup_namespace
*ns
)
6411 put_css_set(ns
->root_cset
);
6412 dec_cgroup_namespaces(ns
->ucounts
);
6413 put_user_ns(ns
->user_ns
);
6414 ns_free_inum(&ns
->ns
);
6417 EXPORT_SYMBOL(free_cgroup_ns
);
6419 struct cgroup_namespace
*copy_cgroup_ns(unsigned long flags
,
6420 struct user_namespace
*user_ns
,
6421 struct cgroup_namespace
*old_ns
)
6423 struct cgroup_namespace
*new_ns
;
6424 struct ucounts
*ucounts
;
6425 struct css_set
*cset
;
6429 if (!(flags
& CLONE_NEWCGROUP
)) {
6430 get_cgroup_ns(old_ns
);
6434 /* Allow only sysadmin to create cgroup namespace. */
6435 if (!ns_capable(user_ns
, CAP_SYS_ADMIN
))
6436 return ERR_PTR(-EPERM
);
6438 ucounts
= inc_cgroup_namespaces(user_ns
);
6440 return ERR_PTR(-ENOSPC
);
6442 /* It is not safe to take cgroup_mutex here */
6443 spin_lock_irq(&css_set_lock
);
6444 cset
= task_css_set(current
);
6446 spin_unlock_irq(&css_set_lock
);
6448 new_ns
= alloc_cgroup_ns();
6449 if (IS_ERR(new_ns
)) {
6451 dec_cgroup_namespaces(ucounts
);
6455 new_ns
->user_ns
= get_user_ns(user_ns
);
6456 new_ns
->ucounts
= ucounts
;
6457 new_ns
->root_cset
= cset
;
6462 static inline struct cgroup_namespace
*to_cg_ns(struct ns_common
*ns
)
6464 return container_of(ns
, struct cgroup_namespace
, ns
);
6467 static int cgroupns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
6469 struct cgroup_namespace
*cgroup_ns
= to_cg_ns(ns
);
6471 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN
) ||
6472 !ns_capable(cgroup_ns
->user_ns
, CAP_SYS_ADMIN
))
6475 /* Don't need to do anything if we are attaching to our own cgroupns. */
6476 if (cgroup_ns
== nsproxy
->cgroup_ns
)
6479 get_cgroup_ns(cgroup_ns
);
6480 put_cgroup_ns(nsproxy
->cgroup_ns
);
6481 nsproxy
->cgroup_ns
= cgroup_ns
;
6486 static struct ns_common
*cgroupns_get(struct task_struct
*task
)
6488 struct cgroup_namespace
*ns
= NULL
;
6489 struct nsproxy
*nsproxy
;
6492 nsproxy
= task
->nsproxy
;
6494 ns
= nsproxy
->cgroup_ns
;
6499 return ns
? &ns
->ns
: NULL
;
6502 static void cgroupns_put(struct ns_common
*ns
)
6504 put_cgroup_ns(to_cg_ns(ns
));
6507 static struct user_namespace
*cgroupns_owner(struct ns_common
*ns
)
6509 return to_cg_ns(ns
)->user_ns
;
6512 const struct proc_ns_operations cgroupns_operations
= {
6514 .type
= CLONE_NEWCGROUP
,
6515 .get
= cgroupns_get
,
6516 .put
= cgroupns_put
,
6517 .install
= cgroupns_install
,
6518 .owner
= cgroupns_owner
,
6521 static __init
int cgroup_namespaces_init(void)
6525 subsys_initcall(cgroup_namespaces_init
);
6527 #ifdef CONFIG_CGROUP_DEBUG
6528 static struct cgroup_subsys_state
*
6529 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
6531 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
6534 return ERR_PTR(-ENOMEM
);
6539 static void debug_css_free(struct cgroup_subsys_state
*css
)
6544 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
6547 return cgroup_task_count(css
->cgroup
);
6550 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
6553 return (u64
)(unsigned long)current
->cgroups
;
6556 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
6562 count
= atomic_read(&task_css_set(current
)->refcount
);
6567 static int current_css_set_cg_links_read(struct seq_file
*seq
, void *v
)
6569 struct cgrp_cset_link
*link
;
6570 struct css_set
*cset
;
6573 name_buf
= kmalloc(NAME_MAX
+ 1, GFP_KERNEL
);
6577 spin_lock_irq(&css_set_lock
);
6579 cset
= rcu_dereference(current
->cgroups
);
6580 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
6581 struct cgroup
*c
= link
->cgrp
;
6583 cgroup_name(c
, name_buf
, NAME_MAX
+ 1);
6584 seq_printf(seq
, "Root %d group %s\n",
6585 c
->root
->hierarchy_id
, name_buf
);
6588 spin_unlock_irq(&css_set_lock
);
6593 #define MAX_TASKS_SHOWN_PER_CSS 25
6594 static int cgroup_css_links_read(struct seq_file
*seq
, void *v
)
6596 struct cgroup_subsys_state
*css
= seq_css(seq
);
6597 struct cgrp_cset_link
*link
;
6599 spin_lock_irq(&css_set_lock
);
6600 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
6601 struct css_set
*cset
= link
->cset
;
6602 struct task_struct
*task
;
6605 seq_printf(seq
, "css_set %p\n", cset
);
6607 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
6608 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
6610 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
6613 list_for_each_entry(task
, &cset
->mg_tasks
, cg_list
) {
6614 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
6616 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
6620 seq_puts(seq
, " ...\n");
6622 spin_unlock_irq(&css_set_lock
);
6626 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
6628 return (!cgroup_is_populated(css
->cgroup
) &&
6629 !css_has_online_children(&css
->cgroup
->self
));
6632 static struct cftype debug_files
[] = {
6634 .name
= "taskcount",
6635 .read_u64
= debug_taskcount_read
,
6639 .name
= "current_css_set",
6640 .read_u64
= current_css_set_read
,
6644 .name
= "current_css_set_refcount",
6645 .read_u64
= current_css_set_refcount_read
,
6649 .name
= "current_css_set_cg_links",
6650 .seq_show
= current_css_set_cg_links_read
,
6654 .name
= "cgroup_css_links",
6655 .seq_show
= cgroup_css_links_read
,
6659 .name
= "releasable",
6660 .read_u64
= releasable_read
,
6666 struct cgroup_subsys debug_cgrp_subsys
= {
6667 .css_alloc
= debug_css_alloc
,
6668 .css_free
= debug_css_free
,
6669 .legacy_cftypes
= debug_files
,
6671 #endif /* CONFIG_CGROUP_DEBUG */