net: ethernet: Fix memleak in ethoc_probe
[linux/fpc-iii.git] / kernel / rcu / tree.c
blobd0b113de3316ae910017dd6389fe81be39685a38
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/trace_events.h>
57 #include <linux/suspend.h>
59 #include "tree.h"
60 #include "rcu.h"
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
64 #endif
65 #define MODULE_PARAM_PREFIX "rcutree."
67 /* Data structures. */
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
77 #ifdef CONFIG_TRACING
78 # define DEFINE_RCU_TPS(sname) \
79 static char sname##_varname[] = #sname; \
80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81 # define RCU_STATE_NAME(sname) sname##_varname
82 #else
83 # define DEFINE_RCU_TPS(sname)
84 # define RCU_STATE_NAME(sname) __stringify(sname)
85 #endif
87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88 DEFINE_RCU_TPS(sname) \
89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90 struct rcu_state sname##_state = { \
91 .level = { &sname##_state.node[0] }, \
92 .rda = &sname##_data, \
93 .call = cr, \
94 .gp_state = RCU_GP_IDLE, \
95 .gpnum = 0UL - 300UL, \
96 .completed = 0UL - 300UL, \
97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 .orphan_donetail = &sname##_state.orphan_donelist, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
102 .abbr = sabbr, \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
156 static int rcu_scheduler_fully_active __read_mostly;
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
167 /* rcuc/rcub kthread realtime priority */
168 #ifdef CONFIG_RCU_KTHREAD_PRIO
169 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
170 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
172 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 module_param(kthread_prio, int, 0644);
175 /* Delay in jiffies for grace-period initialization delays, debug only. */
177 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
178 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
179 module_param(gp_preinit_delay, int, 0644);
180 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181 static const int gp_preinit_delay;
182 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
185 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
186 module_param(gp_init_delay, int, 0644);
187 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188 static const int gp_init_delay;
189 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
192 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
193 module_param(gp_cleanup_delay, int, 0644);
194 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195 static const int gp_cleanup_delay;
196 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
199 * Number of grace periods between delays, normalized by the duration of
200 * the delay. The longer the the delay, the more the grace periods between
201 * each delay. The reason for this normalization is that it means that,
202 * for non-zero delays, the overall slowdown of grace periods is constant
203 * regardless of the duration of the delay. This arrangement balances
204 * the need for long delays to increase some race probabilities with the
205 * need for fast grace periods to increase other race probabilities.
207 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
210 * Track the rcutorture test sequence number and the update version
211 * number within a given test. The rcutorture_testseq is incremented
212 * on every rcutorture module load and unload, so has an odd value
213 * when a test is running. The rcutorture_vernum is set to zero
214 * when rcutorture starts and is incremented on each rcutorture update.
215 * These variables enable correlating rcutorture output with the
216 * RCU tracing information.
218 unsigned long rcutorture_testseq;
219 unsigned long rcutorture_vernum;
222 * Compute the mask of online CPUs for the specified rcu_node structure.
223 * This will not be stable unless the rcu_node structure's ->lock is
224 * held, but the bit corresponding to the current CPU will be stable
225 * in most contexts.
227 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
229 return READ_ONCE(rnp->qsmaskinitnext);
233 * Return true if an RCU grace period is in progress. The READ_ONCE()s
234 * permit this function to be invoked without holding the root rcu_node
235 * structure's ->lock, but of course results can be subject to change.
237 static int rcu_gp_in_progress(struct rcu_state *rsp)
239 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
243 * Note a quiescent state. Because we do not need to know
244 * how many quiescent states passed, just if there was at least
245 * one since the start of the grace period, this just sets a flag.
246 * The caller must have disabled preemption.
248 void rcu_sched_qs(void)
250 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
251 return;
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data.gpnum),
254 TPS("cpuqs"));
255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
256 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
257 return;
258 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
259 rcu_report_exp_rdp(&rcu_sched_state,
260 this_cpu_ptr(&rcu_sched_data), true);
263 void rcu_bh_qs(void)
265 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
266 trace_rcu_grace_period(TPS("rcu_bh"),
267 __this_cpu_read(rcu_bh_data.gpnum),
268 TPS("cpuqs"));
269 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
273 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
275 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
276 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
277 .dynticks = ATOMIC_INIT(1),
278 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
280 .dynticks_idle = ATOMIC_INIT(1),
281 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
284 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
285 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
288 * Let the RCU core know that this CPU has gone through the scheduler,
289 * which is a quiescent state. This is called when the need for a
290 * quiescent state is urgent, so we burn an atomic operation and full
291 * memory barriers to let the RCU core know about it, regardless of what
292 * this CPU might (or might not) do in the near future.
294 * We inform the RCU core by emulating a zero-duration dyntick-idle
295 * period, which we in turn do by incrementing the ->dynticks counter
296 * by two.
298 * The caller must have disabled interrupts.
300 static void rcu_momentary_dyntick_idle(void)
302 struct rcu_data *rdp;
303 struct rcu_dynticks *rdtp;
304 int resched_mask;
305 struct rcu_state *rsp;
308 * Yes, we can lose flag-setting operations. This is OK, because
309 * the flag will be set again after some delay.
311 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
312 raw_cpu_write(rcu_sched_qs_mask, 0);
314 /* Find the flavor that needs a quiescent state. */
315 for_each_rcu_flavor(rsp) {
316 rdp = raw_cpu_ptr(rsp->rda);
317 if (!(resched_mask & rsp->flavor_mask))
318 continue;
319 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
320 if (READ_ONCE(rdp->mynode->completed) !=
321 READ_ONCE(rdp->cond_resched_completed))
322 continue;
325 * Pretend to be momentarily idle for the quiescent state.
326 * This allows the grace-period kthread to record the
327 * quiescent state, with no need for this CPU to do anything
328 * further.
330 rdtp = this_cpu_ptr(&rcu_dynticks);
331 smp_mb__before_atomic(); /* Earlier stuff before QS. */
332 atomic_add(2, &rdtp->dynticks); /* QS. */
333 smp_mb__after_atomic(); /* Later stuff after QS. */
334 break;
339 * Note a context switch. This is a quiescent state for RCU-sched,
340 * and requires special handling for preemptible RCU.
341 * The caller must have disabled interrupts.
343 void rcu_note_context_switch(void)
345 barrier(); /* Avoid RCU read-side critical sections leaking down. */
346 trace_rcu_utilization(TPS("Start context switch"));
347 rcu_sched_qs();
348 rcu_preempt_note_context_switch();
349 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
350 rcu_momentary_dyntick_idle();
351 trace_rcu_utilization(TPS("End context switch"));
352 barrier(); /* Avoid RCU read-side critical sections leaking up. */
354 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
357 * Register a quiescent state for all RCU flavors. If there is an
358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
359 * dyntick-idle quiescent state visible to other CPUs (but only for those
360 * RCU flavors in desperate need of a quiescent state, which will normally
361 * be none of them). Either way, do a lightweight quiescent state for
362 * all RCU flavors.
364 * The barrier() calls are redundant in the common case when this is
365 * called externally, but just in case this is called from within this
366 * file.
369 void rcu_all_qs(void)
371 unsigned long flags;
373 barrier(); /* Avoid RCU read-side critical sections leaking down. */
374 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
375 local_irq_save(flags);
376 rcu_momentary_dyntick_idle();
377 local_irq_restore(flags);
379 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
381 * Yes, we just checked a per-CPU variable with preemption
382 * enabled, so we might be migrated to some other CPU at
383 * this point. That is OK because in that case, the
384 * migration will supply the needed quiescent state.
385 * We might end up needlessly disabling preemption and
386 * invoking rcu_sched_qs() on the destination CPU, but
387 * the probability and cost are both quite low, so this
388 * should not be a problem in practice.
390 preempt_disable();
391 rcu_sched_qs();
392 preempt_enable();
394 this_cpu_inc(rcu_qs_ctr);
395 barrier(); /* Avoid RCU read-side critical sections leaking up. */
397 EXPORT_SYMBOL_GPL(rcu_all_qs);
399 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
400 static long qhimark = 10000; /* If this many pending, ignore blimit. */
401 static long qlowmark = 100; /* Once only this many pending, use blimit. */
403 module_param(blimit, long, 0444);
404 module_param(qhimark, long, 0444);
405 module_param(qlowmark, long, 0444);
407 static ulong jiffies_till_first_fqs = ULONG_MAX;
408 static ulong jiffies_till_next_fqs = ULONG_MAX;
409 static bool rcu_kick_kthreads;
411 module_param(jiffies_till_first_fqs, ulong, 0644);
412 module_param(jiffies_till_next_fqs, ulong, 0644);
413 module_param(rcu_kick_kthreads, bool, 0644);
416 * How long the grace period must be before we start recruiting
417 * quiescent-state help from rcu_note_context_switch().
419 static ulong jiffies_till_sched_qs = HZ / 20;
420 module_param(jiffies_till_sched_qs, ulong, 0644);
422 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
423 struct rcu_data *rdp);
424 static void force_qs_rnp(struct rcu_state *rsp,
425 int (*f)(struct rcu_data *rsp, bool *isidle,
426 unsigned long *maxj),
427 bool *isidle, unsigned long *maxj);
428 static void force_quiescent_state(struct rcu_state *rsp);
429 static int rcu_pending(void);
432 * Return the number of RCU batches started thus far for debug & stats.
434 unsigned long rcu_batches_started(void)
436 return rcu_state_p->gpnum;
438 EXPORT_SYMBOL_GPL(rcu_batches_started);
441 * Return the number of RCU-sched batches started thus far for debug & stats.
443 unsigned long rcu_batches_started_sched(void)
445 return rcu_sched_state.gpnum;
447 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
450 * Return the number of RCU BH batches started thus far for debug & stats.
452 unsigned long rcu_batches_started_bh(void)
454 return rcu_bh_state.gpnum;
456 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
459 * Return the number of RCU batches completed thus far for debug & stats.
461 unsigned long rcu_batches_completed(void)
463 return rcu_state_p->completed;
465 EXPORT_SYMBOL_GPL(rcu_batches_completed);
468 * Return the number of RCU-sched batches completed thus far for debug & stats.
470 unsigned long rcu_batches_completed_sched(void)
472 return rcu_sched_state.completed;
474 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
477 * Return the number of RCU BH batches completed thus far for debug & stats.
479 unsigned long rcu_batches_completed_bh(void)
481 return rcu_bh_state.completed;
483 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
486 * Return the number of RCU expedited batches completed thus far for
487 * debug & stats. Odd numbers mean that a batch is in progress, even
488 * numbers mean idle. The value returned will thus be roughly double
489 * the cumulative batches since boot.
491 unsigned long rcu_exp_batches_completed(void)
493 return rcu_state_p->expedited_sequence;
495 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
498 * Return the number of RCU-sched expedited batches completed thus far
499 * for debug & stats. Similar to rcu_exp_batches_completed().
501 unsigned long rcu_exp_batches_completed_sched(void)
503 return rcu_sched_state.expedited_sequence;
505 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
508 * Force a quiescent state.
510 void rcu_force_quiescent_state(void)
512 force_quiescent_state(rcu_state_p);
514 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
517 * Force a quiescent state for RCU BH.
519 void rcu_bh_force_quiescent_state(void)
521 force_quiescent_state(&rcu_bh_state);
523 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
526 * Force a quiescent state for RCU-sched.
528 void rcu_sched_force_quiescent_state(void)
530 force_quiescent_state(&rcu_sched_state);
532 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
535 * Show the state of the grace-period kthreads.
537 void show_rcu_gp_kthreads(void)
539 struct rcu_state *rsp;
541 for_each_rcu_flavor(rsp) {
542 pr_info("%s: wait state: %d ->state: %#lx\n",
543 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
544 /* sched_show_task(rsp->gp_kthread); */
547 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
550 * Record the number of times rcutorture tests have been initiated and
551 * terminated. This information allows the debugfs tracing stats to be
552 * correlated to the rcutorture messages, even when the rcutorture module
553 * is being repeatedly loaded and unloaded. In other words, we cannot
554 * store this state in rcutorture itself.
556 void rcutorture_record_test_transition(void)
558 rcutorture_testseq++;
559 rcutorture_vernum = 0;
561 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
564 * Send along grace-period-related data for rcutorture diagnostics.
566 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
567 unsigned long *gpnum, unsigned long *completed)
569 struct rcu_state *rsp = NULL;
571 switch (test_type) {
572 case RCU_FLAVOR:
573 rsp = rcu_state_p;
574 break;
575 case RCU_BH_FLAVOR:
576 rsp = &rcu_bh_state;
577 break;
578 case RCU_SCHED_FLAVOR:
579 rsp = &rcu_sched_state;
580 break;
581 default:
582 break;
584 if (rsp != NULL) {
585 *flags = READ_ONCE(rsp->gp_flags);
586 *gpnum = READ_ONCE(rsp->gpnum);
587 *completed = READ_ONCE(rsp->completed);
588 return;
590 *flags = 0;
591 *gpnum = 0;
592 *completed = 0;
594 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
597 * Record the number of writer passes through the current rcutorture test.
598 * This is also used to correlate debugfs tracing stats with the rcutorture
599 * messages.
601 void rcutorture_record_progress(unsigned long vernum)
603 rcutorture_vernum++;
605 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
608 * Does the CPU have callbacks ready to be invoked?
610 static int
611 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
613 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
614 rdp->nxttail[RCU_DONE_TAIL] != NULL;
618 * Return the root node of the specified rcu_state structure.
620 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
622 return &rsp->node[0];
626 * Is there any need for future grace periods?
627 * Interrupts must be disabled. If the caller does not hold the root
628 * rnp_node structure's ->lock, the results are advisory only.
630 static int rcu_future_needs_gp(struct rcu_state *rsp)
632 struct rcu_node *rnp = rcu_get_root(rsp);
633 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
634 int *fp = &rnp->need_future_gp[idx];
636 return READ_ONCE(*fp);
640 * Does the current CPU require a not-yet-started grace period?
641 * The caller must have disabled interrupts to prevent races with
642 * normal callback registry.
644 static bool
645 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
647 int i;
649 if (rcu_gp_in_progress(rsp))
650 return false; /* No, a grace period is already in progress. */
651 if (rcu_future_needs_gp(rsp))
652 return true; /* Yes, a no-CBs CPU needs one. */
653 if (!rdp->nxttail[RCU_NEXT_TAIL])
654 return false; /* No, this is a no-CBs (or offline) CPU. */
655 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
656 return true; /* Yes, CPU has newly registered callbacks. */
657 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
658 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
659 ULONG_CMP_LT(READ_ONCE(rsp->completed),
660 rdp->nxtcompleted[i]))
661 return true; /* Yes, CBs for future grace period. */
662 return false; /* No grace period needed. */
666 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
668 * If the new value of the ->dynticks_nesting counter now is zero,
669 * we really have entered idle, and must do the appropriate accounting.
670 * The caller must have disabled interrupts.
672 static void rcu_eqs_enter_common(long long oldval, bool user)
674 struct rcu_state *rsp;
675 struct rcu_data *rdp;
676 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
678 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
679 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
680 !user && !is_idle_task(current)) {
681 struct task_struct *idle __maybe_unused =
682 idle_task(smp_processor_id());
684 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
685 rcu_ftrace_dump(DUMP_ORIG);
686 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
687 current->pid, current->comm,
688 idle->pid, idle->comm); /* must be idle task! */
690 for_each_rcu_flavor(rsp) {
691 rdp = this_cpu_ptr(rsp->rda);
692 do_nocb_deferred_wakeup(rdp);
694 rcu_prepare_for_idle();
695 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
696 smp_mb__before_atomic(); /* See above. */
697 atomic_inc(&rdtp->dynticks);
698 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
699 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
700 atomic_read(&rdtp->dynticks) & 0x1);
701 rcu_dynticks_task_enter();
704 * It is illegal to enter an extended quiescent state while
705 * in an RCU read-side critical section.
707 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
708 "Illegal idle entry in RCU read-side critical section.");
709 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
710 "Illegal idle entry in RCU-bh read-side critical section.");
711 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
712 "Illegal idle entry in RCU-sched read-side critical section.");
716 * Enter an RCU extended quiescent state, which can be either the
717 * idle loop or adaptive-tickless usermode execution.
719 static void rcu_eqs_enter(bool user)
721 long long oldval;
722 struct rcu_dynticks *rdtp;
724 rdtp = this_cpu_ptr(&rcu_dynticks);
725 oldval = rdtp->dynticks_nesting;
726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
727 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
728 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
729 rdtp->dynticks_nesting = 0;
730 rcu_eqs_enter_common(oldval, user);
731 } else {
732 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
737 * rcu_idle_enter - inform RCU that current CPU is entering idle
739 * Enter idle mode, in other words, -leave- the mode in which RCU
740 * read-side critical sections can occur. (Though RCU read-side
741 * critical sections can occur in irq handlers in idle, a possibility
742 * handled by irq_enter() and irq_exit().)
744 * We crowbar the ->dynticks_nesting field to zero to allow for
745 * the possibility of usermode upcalls having messed up our count
746 * of interrupt nesting level during the prior busy period.
748 void rcu_idle_enter(void)
750 unsigned long flags;
752 local_irq_save(flags);
753 rcu_eqs_enter(false);
754 rcu_sysidle_enter(0);
755 local_irq_restore(flags);
757 EXPORT_SYMBOL_GPL(rcu_idle_enter);
759 #ifdef CONFIG_NO_HZ_FULL
761 * rcu_user_enter - inform RCU that we are resuming userspace.
763 * Enter RCU idle mode right before resuming userspace. No use of RCU
764 * is permitted between this call and rcu_user_exit(). This way the
765 * CPU doesn't need to maintain the tick for RCU maintenance purposes
766 * when the CPU runs in userspace.
768 void rcu_user_enter(void)
770 rcu_eqs_enter(1);
772 #endif /* CONFIG_NO_HZ_FULL */
775 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
777 * Exit from an interrupt handler, which might possibly result in entering
778 * idle mode, in other words, leaving the mode in which read-side critical
779 * sections can occur. The caller must have disabled interrupts.
781 * This code assumes that the idle loop never does anything that might
782 * result in unbalanced calls to irq_enter() and irq_exit(). If your
783 * architecture violates this assumption, RCU will give you what you
784 * deserve, good and hard. But very infrequently and irreproducibly.
786 * Use things like work queues to work around this limitation.
788 * You have been warned.
790 void rcu_irq_exit(void)
792 long long oldval;
793 struct rcu_dynticks *rdtp;
795 rdtp = this_cpu_ptr(&rcu_dynticks);
797 /* Page faults can happen in NMI handlers, so check... */
798 if (READ_ONCE(rdtp->dynticks_nmi_nesting))
799 return;
801 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
802 oldval = rdtp->dynticks_nesting;
803 rdtp->dynticks_nesting--;
804 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
805 rdtp->dynticks_nesting < 0);
806 if (rdtp->dynticks_nesting)
807 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
808 else
809 rcu_eqs_enter_common(oldval, true);
810 rcu_sysidle_enter(1);
814 * Wrapper for rcu_irq_exit() where interrupts are enabled.
816 void rcu_irq_exit_irqson(void)
818 unsigned long flags;
820 local_irq_save(flags);
821 rcu_irq_exit();
822 local_irq_restore(flags);
826 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
828 * If the new value of the ->dynticks_nesting counter was previously zero,
829 * we really have exited idle, and must do the appropriate accounting.
830 * The caller must have disabled interrupts.
832 static void rcu_eqs_exit_common(long long oldval, int user)
834 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
836 rcu_dynticks_task_exit();
837 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
838 atomic_inc(&rdtp->dynticks);
839 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
840 smp_mb__after_atomic(); /* See above. */
841 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
842 !(atomic_read(&rdtp->dynticks) & 0x1));
843 rcu_cleanup_after_idle();
844 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
845 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
846 !user && !is_idle_task(current)) {
847 struct task_struct *idle __maybe_unused =
848 idle_task(smp_processor_id());
850 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
851 oldval, rdtp->dynticks_nesting);
852 rcu_ftrace_dump(DUMP_ORIG);
853 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
854 current->pid, current->comm,
855 idle->pid, idle->comm); /* must be idle task! */
860 * Exit an RCU extended quiescent state, which can be either the
861 * idle loop or adaptive-tickless usermode execution.
863 static void rcu_eqs_exit(bool user)
865 struct rcu_dynticks *rdtp;
866 long long oldval;
868 rdtp = this_cpu_ptr(&rcu_dynticks);
869 oldval = rdtp->dynticks_nesting;
870 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
871 if (oldval & DYNTICK_TASK_NEST_MASK) {
872 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
873 } else {
874 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
875 rcu_eqs_exit_common(oldval, user);
880 * rcu_idle_exit - inform RCU that current CPU is leaving idle
882 * Exit idle mode, in other words, -enter- the mode in which RCU
883 * read-side critical sections can occur.
885 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
886 * allow for the possibility of usermode upcalls messing up our count
887 * of interrupt nesting level during the busy period that is just
888 * now starting.
890 void rcu_idle_exit(void)
892 unsigned long flags;
894 local_irq_save(flags);
895 rcu_eqs_exit(false);
896 rcu_sysidle_exit(0);
897 local_irq_restore(flags);
899 EXPORT_SYMBOL_GPL(rcu_idle_exit);
901 #ifdef CONFIG_NO_HZ_FULL
903 * rcu_user_exit - inform RCU that we are exiting userspace.
905 * Exit RCU idle mode while entering the kernel because it can
906 * run a RCU read side critical section anytime.
908 void rcu_user_exit(void)
910 rcu_eqs_exit(1);
912 #endif /* CONFIG_NO_HZ_FULL */
915 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
917 * Enter an interrupt handler, which might possibly result in exiting
918 * idle mode, in other words, entering the mode in which read-side critical
919 * sections can occur. The caller must have disabled interrupts.
921 * Note that the Linux kernel is fully capable of entering an interrupt
922 * handler that it never exits, for example when doing upcalls to
923 * user mode! This code assumes that the idle loop never does upcalls to
924 * user mode. If your architecture does do upcalls from the idle loop (or
925 * does anything else that results in unbalanced calls to the irq_enter()
926 * and irq_exit() functions), RCU will give you what you deserve, good
927 * and hard. But very infrequently and irreproducibly.
929 * Use things like work queues to work around this limitation.
931 * You have been warned.
933 void rcu_irq_enter(void)
935 struct rcu_dynticks *rdtp;
936 long long oldval;
938 rdtp = this_cpu_ptr(&rcu_dynticks);
940 /* Page faults can happen in NMI handlers, so check... */
941 if (READ_ONCE(rdtp->dynticks_nmi_nesting))
942 return;
944 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
945 oldval = rdtp->dynticks_nesting;
946 rdtp->dynticks_nesting++;
947 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
948 rdtp->dynticks_nesting == 0);
949 if (oldval)
950 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
951 else
952 rcu_eqs_exit_common(oldval, true);
953 rcu_sysidle_exit(1);
957 * Wrapper for rcu_irq_enter() where interrupts are enabled.
959 void rcu_irq_enter_irqson(void)
961 unsigned long flags;
963 local_irq_save(flags);
964 rcu_irq_enter();
965 local_irq_restore(flags);
969 * rcu_nmi_enter - inform RCU of entry to NMI context
971 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
972 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
973 * that the CPU is active. This implementation permits nested NMIs, as
974 * long as the nesting level does not overflow an int. (You will probably
975 * run out of stack space first.)
977 void rcu_nmi_enter(void)
979 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
980 int incby = 2;
982 /* Complain about underflow. */
983 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
986 * If idle from RCU viewpoint, atomically increment ->dynticks
987 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
988 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
989 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
990 * to be in the outermost NMI handler that interrupted an RCU-idle
991 * period (observation due to Andy Lutomirski).
993 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
994 smp_mb__before_atomic(); /* Force delay from prior write. */
995 atomic_inc(&rdtp->dynticks);
996 /* atomic_inc() before later RCU read-side crit sects */
997 smp_mb__after_atomic(); /* See above. */
998 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
999 incby = 1;
1001 rdtp->dynticks_nmi_nesting += incby;
1002 barrier();
1006 * rcu_nmi_exit - inform RCU of exit from NMI context
1008 * If we are returning from the outermost NMI handler that interrupted an
1009 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1010 * to let the RCU grace-period handling know that the CPU is back to
1011 * being RCU-idle.
1013 void rcu_nmi_exit(void)
1015 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1018 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1019 * (We are exiting an NMI handler, so RCU better be paying attention
1020 * to us!)
1022 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1023 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1026 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1027 * leave it in non-RCU-idle state.
1029 if (rdtp->dynticks_nmi_nesting != 1) {
1030 rdtp->dynticks_nmi_nesting -= 2;
1031 return;
1034 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1035 rdtp->dynticks_nmi_nesting = 0;
1036 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1037 smp_mb__before_atomic(); /* See above. */
1038 atomic_inc(&rdtp->dynticks);
1039 smp_mb__after_atomic(); /* Force delay to next write. */
1040 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1044 * __rcu_is_watching - are RCU read-side critical sections safe?
1046 * Return true if RCU is watching the running CPU, which means that
1047 * this CPU can safely enter RCU read-side critical sections. Unlike
1048 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1049 * least disabled preemption.
1051 bool notrace __rcu_is_watching(void)
1053 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1057 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1059 * If the current CPU is in its idle loop and is neither in an interrupt
1060 * or NMI handler, return true.
1062 bool notrace rcu_is_watching(void)
1064 bool ret;
1066 preempt_disable_notrace();
1067 ret = __rcu_is_watching();
1068 preempt_enable_notrace();
1069 return ret;
1071 EXPORT_SYMBOL_GPL(rcu_is_watching);
1073 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1076 * Is the current CPU online? Disable preemption to avoid false positives
1077 * that could otherwise happen due to the current CPU number being sampled,
1078 * this task being preempted, its old CPU being taken offline, resuming
1079 * on some other CPU, then determining that its old CPU is now offline.
1080 * It is OK to use RCU on an offline processor during initial boot, hence
1081 * the check for rcu_scheduler_fully_active. Note also that it is OK
1082 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1083 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1084 * offline to continue to use RCU for one jiffy after marking itself
1085 * offline in the cpu_online_mask. This leniency is necessary given the
1086 * non-atomic nature of the online and offline processing, for example,
1087 * the fact that a CPU enters the scheduler after completing the teardown
1088 * of the CPU.
1090 * This is also why RCU internally marks CPUs online during in the
1091 * preparation phase and offline after the CPU has been taken down.
1093 * Disable checking if in an NMI handler because we cannot safely report
1094 * errors from NMI handlers anyway.
1096 bool rcu_lockdep_current_cpu_online(void)
1098 struct rcu_data *rdp;
1099 struct rcu_node *rnp;
1100 bool ret;
1102 if (in_nmi())
1103 return true;
1104 preempt_disable();
1105 rdp = this_cpu_ptr(&rcu_sched_data);
1106 rnp = rdp->mynode;
1107 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1108 !rcu_scheduler_fully_active;
1109 preempt_enable();
1110 return ret;
1112 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1114 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1117 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1119 * If the current CPU is idle or running at a first-level (not nested)
1120 * interrupt from idle, return true. The caller must have at least
1121 * disabled preemption.
1123 static int rcu_is_cpu_rrupt_from_idle(void)
1125 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1129 * Snapshot the specified CPU's dynticks counter so that we can later
1130 * credit them with an implicit quiescent state. Return 1 if this CPU
1131 * is in dynticks idle mode, which is an extended quiescent state.
1133 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1134 bool *isidle, unsigned long *maxj)
1136 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1137 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1138 if ((rdp->dynticks_snap & 0x1) == 0) {
1139 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1140 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1141 rdp->mynode->gpnum))
1142 WRITE_ONCE(rdp->gpwrap, true);
1143 return 1;
1145 return 0;
1149 * Return true if the specified CPU has passed through a quiescent
1150 * state by virtue of being in or having passed through an dynticks
1151 * idle state since the last call to dyntick_save_progress_counter()
1152 * for this same CPU, or by virtue of having been offline.
1154 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1155 bool *isidle, unsigned long *maxj)
1157 unsigned int curr;
1158 int *rcrmp;
1159 unsigned int snap;
1161 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1162 snap = (unsigned int)rdp->dynticks_snap;
1165 * If the CPU passed through or entered a dynticks idle phase with
1166 * no active irq/NMI handlers, then we can safely pretend that the CPU
1167 * already acknowledged the request to pass through a quiescent
1168 * state. Either way, that CPU cannot possibly be in an RCU
1169 * read-side critical section that started before the beginning
1170 * of the current RCU grace period.
1172 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1173 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1174 rdp->dynticks_fqs++;
1175 return 1;
1179 * Check for the CPU being offline, but only if the grace period
1180 * is old enough. We don't need to worry about the CPU changing
1181 * state: If we see it offline even once, it has been through a
1182 * quiescent state.
1184 * The reason for insisting that the grace period be at least
1185 * one jiffy old is that CPUs that are not quite online and that
1186 * have just gone offline can still execute RCU read-side critical
1187 * sections.
1189 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1190 return 0; /* Grace period is not old enough. */
1191 barrier();
1192 if (cpu_is_offline(rdp->cpu)) {
1193 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1194 rdp->offline_fqs++;
1195 return 1;
1199 * A CPU running for an extended time within the kernel can
1200 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1201 * even context-switching back and forth between a pair of
1202 * in-kernel CPU-bound tasks cannot advance grace periods.
1203 * So if the grace period is old enough, make the CPU pay attention.
1204 * Note that the unsynchronized assignments to the per-CPU
1205 * rcu_sched_qs_mask variable are safe. Yes, setting of
1206 * bits can be lost, but they will be set again on the next
1207 * force-quiescent-state pass. So lost bit sets do not result
1208 * in incorrect behavior, merely in a grace period lasting
1209 * a few jiffies longer than it might otherwise. Because
1210 * there are at most four threads involved, and because the
1211 * updates are only once every few jiffies, the probability of
1212 * lossage (and thus of slight grace-period extension) is
1213 * quite low.
1215 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1216 * is set too high, we override with half of the RCU CPU stall
1217 * warning delay.
1219 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1220 if (ULONG_CMP_GE(jiffies,
1221 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1222 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1223 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1224 WRITE_ONCE(rdp->cond_resched_completed,
1225 READ_ONCE(rdp->mynode->completed));
1226 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1227 WRITE_ONCE(*rcrmp,
1228 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1230 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1233 /* And if it has been a really long time, kick the CPU as well. */
1234 if (ULONG_CMP_GE(jiffies,
1235 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1236 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1237 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1239 return 0;
1242 static void record_gp_stall_check_time(struct rcu_state *rsp)
1244 unsigned long j = jiffies;
1245 unsigned long j1;
1247 rsp->gp_start = j;
1248 smp_wmb(); /* Record start time before stall time. */
1249 j1 = rcu_jiffies_till_stall_check();
1250 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1251 rsp->jiffies_resched = j + j1 / 2;
1252 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1256 * Convert a ->gp_state value to a character string.
1258 static const char *gp_state_getname(short gs)
1260 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1261 return "???";
1262 return gp_state_names[gs];
1266 * Complain about starvation of grace-period kthread.
1268 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1270 unsigned long gpa;
1271 unsigned long j;
1273 j = jiffies;
1274 gpa = READ_ONCE(rsp->gp_activity);
1275 if (j - gpa > 2 * HZ) {
1276 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1277 rsp->name, j - gpa,
1278 rsp->gpnum, rsp->completed,
1279 rsp->gp_flags,
1280 gp_state_getname(rsp->gp_state), rsp->gp_state,
1281 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1282 if (rsp->gp_kthread) {
1283 sched_show_task(rsp->gp_kthread);
1284 wake_up_process(rsp->gp_kthread);
1290 * Dump stacks of all tasks running on stalled CPUs.
1292 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1294 int cpu;
1295 unsigned long flags;
1296 struct rcu_node *rnp;
1298 rcu_for_each_leaf_node(rsp, rnp) {
1299 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1300 if (rnp->qsmask != 0) {
1301 for_each_leaf_node_possible_cpu(rnp, cpu)
1302 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1303 dump_cpu_task(cpu);
1305 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1310 * If too much time has passed in the current grace period, and if
1311 * so configured, go kick the relevant kthreads.
1313 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1315 unsigned long j;
1317 if (!rcu_kick_kthreads)
1318 return;
1319 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1320 if (time_after(jiffies, j) && rsp->gp_kthread) {
1321 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1322 rcu_ftrace_dump(DUMP_ALL);
1323 wake_up_process(rsp->gp_kthread);
1324 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1328 static inline void panic_on_rcu_stall(void)
1330 if (sysctl_panic_on_rcu_stall)
1331 panic("RCU Stall\n");
1334 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1336 int cpu;
1337 long delta;
1338 unsigned long flags;
1339 unsigned long gpa;
1340 unsigned long j;
1341 int ndetected = 0;
1342 struct rcu_node *rnp = rcu_get_root(rsp);
1343 long totqlen = 0;
1345 /* Kick and suppress, if so configured. */
1346 rcu_stall_kick_kthreads(rsp);
1347 if (rcu_cpu_stall_suppress)
1348 return;
1350 /* Only let one CPU complain about others per time interval. */
1352 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1353 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1354 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1355 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1356 return;
1358 WRITE_ONCE(rsp->jiffies_stall,
1359 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1360 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1363 * OK, time to rat on our buddy...
1364 * See Documentation/RCU/stallwarn.txt for info on how to debug
1365 * RCU CPU stall warnings.
1367 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1368 rsp->name);
1369 print_cpu_stall_info_begin();
1370 rcu_for_each_leaf_node(rsp, rnp) {
1371 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1372 ndetected += rcu_print_task_stall(rnp);
1373 if (rnp->qsmask != 0) {
1374 for_each_leaf_node_possible_cpu(rnp, cpu)
1375 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1376 print_cpu_stall_info(rsp, cpu);
1377 ndetected++;
1380 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1383 print_cpu_stall_info_end();
1384 for_each_possible_cpu(cpu)
1385 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1386 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1387 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1388 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1389 if (ndetected) {
1390 rcu_dump_cpu_stacks(rsp);
1391 } else {
1392 if (READ_ONCE(rsp->gpnum) != gpnum ||
1393 READ_ONCE(rsp->completed) == gpnum) {
1394 pr_err("INFO: Stall ended before state dump start\n");
1395 } else {
1396 j = jiffies;
1397 gpa = READ_ONCE(rsp->gp_activity);
1398 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1399 rsp->name, j - gpa, j, gpa,
1400 jiffies_till_next_fqs,
1401 rcu_get_root(rsp)->qsmask);
1402 /* In this case, the current CPU might be at fault. */
1403 sched_show_task(current);
1407 /* Complain about tasks blocking the grace period. */
1408 rcu_print_detail_task_stall(rsp);
1410 rcu_check_gp_kthread_starvation(rsp);
1412 panic_on_rcu_stall();
1414 force_quiescent_state(rsp); /* Kick them all. */
1417 static void print_cpu_stall(struct rcu_state *rsp)
1419 int cpu;
1420 unsigned long flags;
1421 struct rcu_node *rnp = rcu_get_root(rsp);
1422 long totqlen = 0;
1424 /* Kick and suppress, if so configured. */
1425 rcu_stall_kick_kthreads(rsp);
1426 if (rcu_cpu_stall_suppress)
1427 return;
1430 * OK, time to rat on ourselves...
1431 * See Documentation/RCU/stallwarn.txt for info on how to debug
1432 * RCU CPU stall warnings.
1434 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1435 print_cpu_stall_info_begin();
1436 print_cpu_stall_info(rsp, smp_processor_id());
1437 print_cpu_stall_info_end();
1438 for_each_possible_cpu(cpu)
1439 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1440 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1441 jiffies - rsp->gp_start,
1442 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1444 rcu_check_gp_kthread_starvation(rsp);
1446 rcu_dump_cpu_stacks(rsp);
1448 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1449 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1450 WRITE_ONCE(rsp->jiffies_stall,
1451 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1452 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1454 panic_on_rcu_stall();
1457 * Attempt to revive the RCU machinery by forcing a context switch.
1459 * A context switch would normally allow the RCU state machine to make
1460 * progress and it could be we're stuck in kernel space without context
1461 * switches for an entirely unreasonable amount of time.
1463 resched_cpu(smp_processor_id());
1466 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1468 unsigned long completed;
1469 unsigned long gpnum;
1470 unsigned long gps;
1471 unsigned long j;
1472 unsigned long js;
1473 struct rcu_node *rnp;
1475 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1476 !rcu_gp_in_progress(rsp))
1477 return;
1478 rcu_stall_kick_kthreads(rsp);
1479 j = jiffies;
1482 * Lots of memory barriers to reject false positives.
1484 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1485 * then rsp->gp_start, and finally rsp->completed. These values
1486 * are updated in the opposite order with memory barriers (or
1487 * equivalent) during grace-period initialization and cleanup.
1488 * Now, a false positive can occur if we get an new value of
1489 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1490 * the memory barriers, the only way that this can happen is if one
1491 * grace period ends and another starts between these two fetches.
1492 * Detect this by comparing rsp->completed with the previous fetch
1493 * from rsp->gpnum.
1495 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1496 * and rsp->gp_start suffice to forestall false positives.
1498 gpnum = READ_ONCE(rsp->gpnum);
1499 smp_rmb(); /* Pick up ->gpnum first... */
1500 js = READ_ONCE(rsp->jiffies_stall);
1501 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1502 gps = READ_ONCE(rsp->gp_start);
1503 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1504 completed = READ_ONCE(rsp->completed);
1505 if (ULONG_CMP_GE(completed, gpnum) ||
1506 ULONG_CMP_LT(j, js) ||
1507 ULONG_CMP_GE(gps, js))
1508 return; /* No stall or GP completed since entering function. */
1509 rnp = rdp->mynode;
1510 if (rcu_gp_in_progress(rsp) &&
1511 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1513 /* We haven't checked in, so go dump stack. */
1514 print_cpu_stall(rsp);
1516 } else if (rcu_gp_in_progress(rsp) &&
1517 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1519 /* They had a few time units to dump stack, so complain. */
1520 print_other_cpu_stall(rsp, gpnum);
1525 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1527 * Set the stall-warning timeout way off into the future, thus preventing
1528 * any RCU CPU stall-warning messages from appearing in the current set of
1529 * RCU grace periods.
1531 * The caller must disable hard irqs.
1533 void rcu_cpu_stall_reset(void)
1535 struct rcu_state *rsp;
1537 for_each_rcu_flavor(rsp)
1538 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1542 * Initialize the specified rcu_data structure's default callback list
1543 * to empty. The default callback list is the one that is not used by
1544 * no-callbacks CPUs.
1546 static void init_default_callback_list(struct rcu_data *rdp)
1548 int i;
1550 rdp->nxtlist = NULL;
1551 for (i = 0; i < RCU_NEXT_SIZE; i++)
1552 rdp->nxttail[i] = &rdp->nxtlist;
1556 * Initialize the specified rcu_data structure's callback list to empty.
1558 static void init_callback_list(struct rcu_data *rdp)
1560 if (init_nocb_callback_list(rdp))
1561 return;
1562 init_default_callback_list(rdp);
1566 * Determine the value that ->completed will have at the end of the
1567 * next subsequent grace period. This is used to tag callbacks so that
1568 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1569 * been dyntick-idle for an extended period with callbacks under the
1570 * influence of RCU_FAST_NO_HZ.
1572 * The caller must hold rnp->lock with interrupts disabled.
1574 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1575 struct rcu_node *rnp)
1578 * If RCU is idle, we just wait for the next grace period.
1579 * But we can only be sure that RCU is idle if we are looking
1580 * at the root rcu_node structure -- otherwise, a new grace
1581 * period might have started, but just not yet gotten around
1582 * to initializing the current non-root rcu_node structure.
1584 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1585 return rnp->completed + 1;
1588 * Otherwise, wait for a possible partial grace period and
1589 * then the subsequent full grace period.
1591 return rnp->completed + 2;
1595 * Trace-event helper function for rcu_start_future_gp() and
1596 * rcu_nocb_wait_gp().
1598 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1599 unsigned long c, const char *s)
1601 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1602 rnp->completed, c, rnp->level,
1603 rnp->grplo, rnp->grphi, s);
1607 * Start some future grace period, as needed to handle newly arrived
1608 * callbacks. The required future grace periods are recorded in each
1609 * rcu_node structure's ->need_future_gp field. Returns true if there
1610 * is reason to awaken the grace-period kthread.
1612 * The caller must hold the specified rcu_node structure's ->lock.
1614 static bool __maybe_unused
1615 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1616 unsigned long *c_out)
1618 unsigned long c;
1619 int i;
1620 bool ret = false;
1621 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1624 * Pick up grace-period number for new callbacks. If this
1625 * grace period is already marked as needed, return to the caller.
1627 c = rcu_cbs_completed(rdp->rsp, rnp);
1628 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1629 if (rnp->need_future_gp[c & 0x1]) {
1630 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1631 goto out;
1635 * If either this rcu_node structure or the root rcu_node structure
1636 * believe that a grace period is in progress, then we must wait
1637 * for the one following, which is in "c". Because our request
1638 * will be noticed at the end of the current grace period, we don't
1639 * need to explicitly start one. We only do the lockless check
1640 * of rnp_root's fields if the current rcu_node structure thinks
1641 * there is no grace period in flight, and because we hold rnp->lock,
1642 * the only possible change is when rnp_root's two fields are
1643 * equal, in which case rnp_root->gpnum might be concurrently
1644 * incremented. But that is OK, as it will just result in our
1645 * doing some extra useless work.
1647 if (rnp->gpnum != rnp->completed ||
1648 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1649 rnp->need_future_gp[c & 0x1]++;
1650 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1651 goto out;
1655 * There might be no grace period in progress. If we don't already
1656 * hold it, acquire the root rcu_node structure's lock in order to
1657 * start one (if needed).
1659 if (rnp != rnp_root)
1660 raw_spin_lock_rcu_node(rnp_root);
1663 * Get a new grace-period number. If there really is no grace
1664 * period in progress, it will be smaller than the one we obtained
1665 * earlier. Adjust callbacks as needed. Note that even no-CBs
1666 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1668 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1669 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1670 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1671 rdp->nxtcompleted[i] = c;
1674 * If the needed for the required grace period is already
1675 * recorded, trace and leave.
1677 if (rnp_root->need_future_gp[c & 0x1]) {
1678 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1679 goto unlock_out;
1682 /* Record the need for the future grace period. */
1683 rnp_root->need_future_gp[c & 0x1]++;
1685 /* If a grace period is not already in progress, start one. */
1686 if (rnp_root->gpnum != rnp_root->completed) {
1687 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1688 } else {
1689 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1690 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1692 unlock_out:
1693 if (rnp != rnp_root)
1694 raw_spin_unlock_rcu_node(rnp_root);
1695 out:
1696 if (c_out != NULL)
1697 *c_out = c;
1698 return ret;
1702 * Clean up any old requests for the just-ended grace period. Also return
1703 * whether any additional grace periods have been requested. Also invoke
1704 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1705 * waiting for this grace period to complete.
1707 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1709 int c = rnp->completed;
1710 int needmore;
1711 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1713 rnp->need_future_gp[c & 0x1] = 0;
1714 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1715 trace_rcu_future_gp(rnp, rdp, c,
1716 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1717 return needmore;
1721 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1722 * an interrupt or softirq handler), and don't bother awakening when there
1723 * is nothing for the grace-period kthread to do (as in several CPUs raced
1724 * to awaken, and we lost), and finally don't try to awaken a kthread that
1725 * has not yet been created. If all those checks are passed, track some
1726 * debug information and awaken.
1728 * So why do the self-wakeup when in an interrupt or softirq handler
1729 * in the grace-period kthread's context? Because the kthread might have
1730 * been interrupted just as it was going to sleep, and just after the final
1731 * pre-sleep check of the awaken condition. In this case, a wakeup really
1732 * is required, and is therefore supplied.
1734 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1736 if ((current == rsp->gp_kthread &&
1737 !in_interrupt() && !in_serving_softirq()) ||
1738 !READ_ONCE(rsp->gp_flags) ||
1739 !rsp->gp_kthread)
1740 return;
1741 swake_up(&rsp->gp_wq);
1745 * If there is room, assign a ->completed number to any callbacks on
1746 * this CPU that have not already been assigned. Also accelerate any
1747 * callbacks that were previously assigned a ->completed number that has
1748 * since proven to be too conservative, which can happen if callbacks get
1749 * assigned a ->completed number while RCU is idle, but with reference to
1750 * a non-root rcu_node structure. This function is idempotent, so it does
1751 * not hurt to call it repeatedly. Returns an flag saying that we should
1752 * awaken the RCU grace-period kthread.
1754 * The caller must hold rnp->lock with interrupts disabled.
1756 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1757 struct rcu_data *rdp)
1759 unsigned long c;
1760 int i;
1761 bool ret;
1763 /* If the CPU has no callbacks, nothing to do. */
1764 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1765 return false;
1768 * Starting from the sublist containing the callbacks most
1769 * recently assigned a ->completed number and working down, find the
1770 * first sublist that is not assignable to an upcoming grace period.
1771 * Such a sublist has something in it (first two tests) and has
1772 * a ->completed number assigned that will complete sooner than
1773 * the ->completed number for newly arrived callbacks (last test).
1775 * The key point is that any later sublist can be assigned the
1776 * same ->completed number as the newly arrived callbacks, which
1777 * means that the callbacks in any of these later sublist can be
1778 * grouped into a single sublist, whether or not they have already
1779 * been assigned a ->completed number.
1781 c = rcu_cbs_completed(rsp, rnp);
1782 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1783 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1784 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1785 break;
1788 * If there are no sublist for unassigned callbacks, leave.
1789 * At the same time, advance "i" one sublist, so that "i" will
1790 * index into the sublist where all the remaining callbacks should
1791 * be grouped into.
1793 if (++i >= RCU_NEXT_TAIL)
1794 return false;
1797 * Assign all subsequent callbacks' ->completed number to the next
1798 * full grace period and group them all in the sublist initially
1799 * indexed by "i".
1801 for (; i <= RCU_NEXT_TAIL; i++) {
1802 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1803 rdp->nxtcompleted[i] = c;
1805 /* Record any needed additional grace periods. */
1806 ret = rcu_start_future_gp(rnp, rdp, NULL);
1808 /* Trace depending on how much we were able to accelerate. */
1809 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1810 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1811 else
1812 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1813 return ret;
1817 * Move any callbacks whose grace period has completed to the
1818 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1819 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1820 * sublist. This function is idempotent, so it does not hurt to
1821 * invoke it repeatedly. As long as it is not invoked -too- often...
1822 * Returns true if the RCU grace-period kthread needs to be awakened.
1824 * The caller must hold rnp->lock with interrupts disabled.
1826 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1827 struct rcu_data *rdp)
1829 int i, j;
1831 /* If the CPU has no callbacks, nothing to do. */
1832 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1833 return false;
1836 * Find all callbacks whose ->completed numbers indicate that they
1837 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1839 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1840 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1841 break;
1842 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1844 /* Clean up any sublist tail pointers that were misordered above. */
1845 for (j = RCU_WAIT_TAIL; j < i; j++)
1846 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1848 /* Copy down callbacks to fill in empty sublists. */
1849 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1850 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1851 break;
1852 rdp->nxttail[j] = rdp->nxttail[i];
1853 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1856 /* Classify any remaining callbacks. */
1857 return rcu_accelerate_cbs(rsp, rnp, rdp);
1861 * Update CPU-local rcu_data state to record the beginnings and ends of
1862 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1863 * structure corresponding to the current CPU, and must have irqs disabled.
1864 * Returns true if the grace-period kthread needs to be awakened.
1866 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1867 struct rcu_data *rdp)
1869 bool ret;
1870 bool need_gp;
1872 /* Handle the ends of any preceding grace periods first. */
1873 if (rdp->completed == rnp->completed &&
1874 !unlikely(READ_ONCE(rdp->gpwrap))) {
1876 /* No grace period end, so just accelerate recent callbacks. */
1877 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1879 } else {
1881 /* Advance callbacks. */
1882 ret = rcu_advance_cbs(rsp, rnp, rdp);
1884 /* Remember that we saw this grace-period completion. */
1885 rdp->completed = rnp->completed;
1886 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1889 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1891 * If the current grace period is waiting for this CPU,
1892 * set up to detect a quiescent state, otherwise don't
1893 * go looking for one.
1895 rdp->gpnum = rnp->gpnum;
1896 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1897 need_gp = !!(rnp->qsmask & rdp->grpmask);
1898 rdp->cpu_no_qs.b.norm = need_gp;
1899 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1900 rdp->core_needs_qs = need_gp;
1901 zero_cpu_stall_ticks(rdp);
1902 WRITE_ONCE(rdp->gpwrap, false);
1904 return ret;
1907 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1909 unsigned long flags;
1910 bool needwake;
1911 struct rcu_node *rnp;
1913 local_irq_save(flags);
1914 rnp = rdp->mynode;
1915 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1916 rdp->completed == READ_ONCE(rnp->completed) &&
1917 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1918 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1919 local_irq_restore(flags);
1920 return;
1922 needwake = __note_gp_changes(rsp, rnp, rdp);
1923 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1924 if (needwake)
1925 rcu_gp_kthread_wake(rsp);
1928 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1930 if (delay > 0 &&
1931 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1932 schedule_timeout_uninterruptible(delay);
1936 * Initialize a new grace period. Return false if no grace period required.
1938 static bool rcu_gp_init(struct rcu_state *rsp)
1940 unsigned long oldmask;
1941 struct rcu_data *rdp;
1942 struct rcu_node *rnp = rcu_get_root(rsp);
1944 WRITE_ONCE(rsp->gp_activity, jiffies);
1945 raw_spin_lock_irq_rcu_node(rnp);
1946 if (!READ_ONCE(rsp->gp_flags)) {
1947 /* Spurious wakeup, tell caller to go back to sleep. */
1948 raw_spin_unlock_irq_rcu_node(rnp);
1949 return false;
1951 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1953 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1955 * Grace period already in progress, don't start another.
1956 * Not supposed to be able to happen.
1958 raw_spin_unlock_irq_rcu_node(rnp);
1959 return false;
1962 /* Advance to a new grace period and initialize state. */
1963 record_gp_stall_check_time(rsp);
1964 /* Record GP times before starting GP, hence smp_store_release(). */
1965 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1966 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1967 raw_spin_unlock_irq_rcu_node(rnp);
1970 * Apply per-leaf buffered online and offline operations to the
1971 * rcu_node tree. Note that this new grace period need not wait
1972 * for subsequent online CPUs, and that quiescent-state forcing
1973 * will handle subsequent offline CPUs.
1975 rcu_for_each_leaf_node(rsp, rnp) {
1976 rcu_gp_slow(rsp, gp_preinit_delay);
1977 raw_spin_lock_irq_rcu_node(rnp);
1978 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1979 !rnp->wait_blkd_tasks) {
1980 /* Nothing to do on this leaf rcu_node structure. */
1981 raw_spin_unlock_irq_rcu_node(rnp);
1982 continue;
1985 /* Record old state, apply changes to ->qsmaskinit field. */
1986 oldmask = rnp->qsmaskinit;
1987 rnp->qsmaskinit = rnp->qsmaskinitnext;
1989 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1990 if (!oldmask != !rnp->qsmaskinit) {
1991 if (!oldmask) /* First online CPU for this rcu_node. */
1992 rcu_init_new_rnp(rnp);
1993 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1994 rnp->wait_blkd_tasks = true;
1995 else /* Last offline CPU and can propagate. */
1996 rcu_cleanup_dead_rnp(rnp);
2000 * If all waited-on tasks from prior grace period are
2001 * done, and if all this rcu_node structure's CPUs are
2002 * still offline, propagate up the rcu_node tree and
2003 * clear ->wait_blkd_tasks. Otherwise, if one of this
2004 * rcu_node structure's CPUs has since come back online,
2005 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2006 * checks for this, so just call it unconditionally).
2008 if (rnp->wait_blkd_tasks &&
2009 (!rcu_preempt_has_tasks(rnp) ||
2010 rnp->qsmaskinit)) {
2011 rnp->wait_blkd_tasks = false;
2012 rcu_cleanup_dead_rnp(rnp);
2015 raw_spin_unlock_irq_rcu_node(rnp);
2019 * Set the quiescent-state-needed bits in all the rcu_node
2020 * structures for all currently online CPUs in breadth-first order,
2021 * starting from the root rcu_node structure, relying on the layout
2022 * of the tree within the rsp->node[] array. Note that other CPUs
2023 * will access only the leaves of the hierarchy, thus seeing that no
2024 * grace period is in progress, at least until the corresponding
2025 * leaf node has been initialized.
2027 * The grace period cannot complete until the initialization
2028 * process finishes, because this kthread handles both.
2030 rcu_for_each_node_breadth_first(rsp, rnp) {
2031 rcu_gp_slow(rsp, gp_init_delay);
2032 raw_spin_lock_irq_rcu_node(rnp);
2033 rdp = this_cpu_ptr(rsp->rda);
2034 rcu_preempt_check_blocked_tasks(rnp);
2035 rnp->qsmask = rnp->qsmaskinit;
2036 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2037 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2038 WRITE_ONCE(rnp->completed, rsp->completed);
2039 if (rnp == rdp->mynode)
2040 (void)__note_gp_changes(rsp, rnp, rdp);
2041 rcu_preempt_boost_start_gp(rnp);
2042 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2043 rnp->level, rnp->grplo,
2044 rnp->grphi, rnp->qsmask);
2045 raw_spin_unlock_irq_rcu_node(rnp);
2046 cond_resched_rcu_qs();
2047 WRITE_ONCE(rsp->gp_activity, jiffies);
2050 return true;
2054 * Helper function for wait_event_interruptible_timeout() wakeup
2055 * at force-quiescent-state time.
2057 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2059 struct rcu_node *rnp = rcu_get_root(rsp);
2061 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2062 *gfp = READ_ONCE(rsp->gp_flags);
2063 if (*gfp & RCU_GP_FLAG_FQS)
2064 return true;
2066 /* The current grace period has completed. */
2067 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2068 return true;
2070 return false;
2074 * Do one round of quiescent-state forcing.
2076 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2078 bool isidle = false;
2079 unsigned long maxj;
2080 struct rcu_node *rnp = rcu_get_root(rsp);
2082 WRITE_ONCE(rsp->gp_activity, jiffies);
2083 rsp->n_force_qs++;
2084 if (first_time) {
2085 /* Collect dyntick-idle snapshots. */
2086 if (is_sysidle_rcu_state(rsp)) {
2087 isidle = true;
2088 maxj = jiffies - ULONG_MAX / 4;
2090 force_qs_rnp(rsp, dyntick_save_progress_counter,
2091 &isidle, &maxj);
2092 rcu_sysidle_report_gp(rsp, isidle, maxj);
2093 } else {
2094 /* Handle dyntick-idle and offline CPUs. */
2095 isidle = true;
2096 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2098 /* Clear flag to prevent immediate re-entry. */
2099 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2100 raw_spin_lock_irq_rcu_node(rnp);
2101 WRITE_ONCE(rsp->gp_flags,
2102 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2103 raw_spin_unlock_irq_rcu_node(rnp);
2108 * Clean up after the old grace period.
2110 static void rcu_gp_cleanup(struct rcu_state *rsp)
2112 unsigned long gp_duration;
2113 bool needgp = false;
2114 int nocb = 0;
2115 struct rcu_data *rdp;
2116 struct rcu_node *rnp = rcu_get_root(rsp);
2117 struct swait_queue_head *sq;
2119 WRITE_ONCE(rsp->gp_activity, jiffies);
2120 raw_spin_lock_irq_rcu_node(rnp);
2121 gp_duration = jiffies - rsp->gp_start;
2122 if (gp_duration > rsp->gp_max)
2123 rsp->gp_max = gp_duration;
2126 * We know the grace period is complete, but to everyone else
2127 * it appears to still be ongoing. But it is also the case
2128 * that to everyone else it looks like there is nothing that
2129 * they can do to advance the grace period. It is therefore
2130 * safe for us to drop the lock in order to mark the grace
2131 * period as completed in all of the rcu_node structures.
2133 raw_spin_unlock_irq_rcu_node(rnp);
2136 * Propagate new ->completed value to rcu_node structures so
2137 * that other CPUs don't have to wait until the start of the next
2138 * grace period to process their callbacks. This also avoids
2139 * some nasty RCU grace-period initialization races by forcing
2140 * the end of the current grace period to be completely recorded in
2141 * all of the rcu_node structures before the beginning of the next
2142 * grace period is recorded in any of the rcu_node structures.
2144 rcu_for_each_node_breadth_first(rsp, rnp) {
2145 raw_spin_lock_irq_rcu_node(rnp);
2146 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2147 WARN_ON_ONCE(rnp->qsmask);
2148 WRITE_ONCE(rnp->completed, rsp->gpnum);
2149 rdp = this_cpu_ptr(rsp->rda);
2150 if (rnp == rdp->mynode)
2151 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2152 /* smp_mb() provided by prior unlock-lock pair. */
2153 nocb += rcu_future_gp_cleanup(rsp, rnp);
2154 sq = rcu_nocb_gp_get(rnp);
2155 raw_spin_unlock_irq_rcu_node(rnp);
2156 rcu_nocb_gp_cleanup(sq);
2157 cond_resched_rcu_qs();
2158 WRITE_ONCE(rsp->gp_activity, jiffies);
2159 rcu_gp_slow(rsp, gp_cleanup_delay);
2161 rnp = rcu_get_root(rsp);
2162 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2163 rcu_nocb_gp_set(rnp, nocb);
2165 /* Declare grace period done. */
2166 WRITE_ONCE(rsp->completed, rsp->gpnum);
2167 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2168 rsp->gp_state = RCU_GP_IDLE;
2169 rdp = this_cpu_ptr(rsp->rda);
2170 /* Advance CBs to reduce false positives below. */
2171 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2172 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2173 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2174 trace_rcu_grace_period(rsp->name,
2175 READ_ONCE(rsp->gpnum),
2176 TPS("newreq"));
2178 raw_spin_unlock_irq_rcu_node(rnp);
2182 * Body of kthread that handles grace periods.
2184 static int __noreturn rcu_gp_kthread(void *arg)
2186 bool first_gp_fqs;
2187 int gf;
2188 unsigned long j;
2189 int ret;
2190 struct rcu_state *rsp = arg;
2191 struct rcu_node *rnp = rcu_get_root(rsp);
2193 rcu_bind_gp_kthread();
2194 for (;;) {
2196 /* Handle grace-period start. */
2197 for (;;) {
2198 trace_rcu_grace_period(rsp->name,
2199 READ_ONCE(rsp->gpnum),
2200 TPS("reqwait"));
2201 rsp->gp_state = RCU_GP_WAIT_GPS;
2202 swait_event_interruptible(rsp->gp_wq,
2203 READ_ONCE(rsp->gp_flags) &
2204 RCU_GP_FLAG_INIT);
2205 rsp->gp_state = RCU_GP_DONE_GPS;
2206 /* Locking provides needed memory barrier. */
2207 if (rcu_gp_init(rsp))
2208 break;
2209 cond_resched_rcu_qs();
2210 WRITE_ONCE(rsp->gp_activity, jiffies);
2211 WARN_ON(signal_pending(current));
2212 trace_rcu_grace_period(rsp->name,
2213 READ_ONCE(rsp->gpnum),
2214 TPS("reqwaitsig"));
2217 /* Handle quiescent-state forcing. */
2218 first_gp_fqs = true;
2219 j = jiffies_till_first_fqs;
2220 if (j > HZ) {
2221 j = HZ;
2222 jiffies_till_first_fqs = HZ;
2224 ret = 0;
2225 for (;;) {
2226 if (!ret) {
2227 rsp->jiffies_force_qs = jiffies + j;
2228 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2229 jiffies + 3 * j);
2231 trace_rcu_grace_period(rsp->name,
2232 READ_ONCE(rsp->gpnum),
2233 TPS("fqswait"));
2234 rsp->gp_state = RCU_GP_WAIT_FQS;
2235 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2236 rcu_gp_fqs_check_wake(rsp, &gf), j);
2237 rsp->gp_state = RCU_GP_DOING_FQS;
2238 /* Locking provides needed memory barriers. */
2239 /* If grace period done, leave loop. */
2240 if (!READ_ONCE(rnp->qsmask) &&
2241 !rcu_preempt_blocked_readers_cgp(rnp))
2242 break;
2243 /* If time for quiescent-state forcing, do it. */
2244 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2245 (gf & RCU_GP_FLAG_FQS)) {
2246 trace_rcu_grace_period(rsp->name,
2247 READ_ONCE(rsp->gpnum),
2248 TPS("fqsstart"));
2249 rcu_gp_fqs(rsp, first_gp_fqs);
2250 first_gp_fqs = false;
2251 trace_rcu_grace_period(rsp->name,
2252 READ_ONCE(rsp->gpnum),
2253 TPS("fqsend"));
2254 cond_resched_rcu_qs();
2255 WRITE_ONCE(rsp->gp_activity, jiffies);
2256 ret = 0; /* Force full wait till next FQS. */
2257 j = jiffies_till_next_fqs;
2258 if (j > HZ) {
2259 j = HZ;
2260 jiffies_till_next_fqs = HZ;
2261 } else if (j < 1) {
2262 j = 1;
2263 jiffies_till_next_fqs = 1;
2265 } else {
2266 /* Deal with stray signal. */
2267 cond_resched_rcu_qs();
2268 WRITE_ONCE(rsp->gp_activity, jiffies);
2269 WARN_ON(signal_pending(current));
2270 trace_rcu_grace_period(rsp->name,
2271 READ_ONCE(rsp->gpnum),
2272 TPS("fqswaitsig"));
2273 ret = 1; /* Keep old FQS timing. */
2274 j = jiffies;
2275 if (time_after(jiffies, rsp->jiffies_force_qs))
2276 j = 1;
2277 else
2278 j = rsp->jiffies_force_qs - j;
2282 /* Handle grace-period end. */
2283 rsp->gp_state = RCU_GP_CLEANUP;
2284 rcu_gp_cleanup(rsp);
2285 rsp->gp_state = RCU_GP_CLEANED;
2290 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2291 * in preparation for detecting the next grace period. The caller must hold
2292 * the root node's ->lock and hard irqs must be disabled.
2294 * Note that it is legal for a dying CPU (which is marked as offline) to
2295 * invoke this function. This can happen when the dying CPU reports its
2296 * quiescent state.
2298 * Returns true if the grace-period kthread must be awakened.
2300 static bool
2301 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2302 struct rcu_data *rdp)
2304 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2306 * Either we have not yet spawned the grace-period
2307 * task, this CPU does not need another grace period,
2308 * or a grace period is already in progress.
2309 * Either way, don't start a new grace period.
2311 return false;
2313 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2314 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2315 TPS("newreq"));
2318 * We can't do wakeups while holding the rnp->lock, as that
2319 * could cause possible deadlocks with the rq->lock. Defer
2320 * the wakeup to our caller.
2322 return true;
2326 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2327 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2328 * is invoked indirectly from rcu_advance_cbs(), which would result in
2329 * endless recursion -- or would do so if it wasn't for the self-deadlock
2330 * that is encountered beforehand.
2332 * Returns true if the grace-period kthread needs to be awakened.
2334 static bool rcu_start_gp(struct rcu_state *rsp)
2336 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2337 struct rcu_node *rnp = rcu_get_root(rsp);
2338 bool ret = false;
2341 * If there is no grace period in progress right now, any
2342 * callbacks we have up to this point will be satisfied by the
2343 * next grace period. Also, advancing the callbacks reduces the
2344 * probability of false positives from cpu_needs_another_gp()
2345 * resulting in pointless grace periods. So, advance callbacks
2346 * then start the grace period!
2348 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2349 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2350 return ret;
2354 * Report a full set of quiescent states to the specified rcu_state data
2355 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2356 * kthread if another grace period is required. Whether we wake
2357 * the grace-period kthread or it awakens itself for the next round
2358 * of quiescent-state forcing, that kthread will clean up after the
2359 * just-completed grace period. Note that the caller must hold rnp->lock,
2360 * which is released before return.
2362 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2363 __releases(rcu_get_root(rsp)->lock)
2365 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2366 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2367 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2368 rcu_gp_kthread_wake(rsp);
2372 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2373 * Allows quiescent states for a group of CPUs to be reported at one go
2374 * to the specified rcu_node structure, though all the CPUs in the group
2375 * must be represented by the same rcu_node structure (which need not be a
2376 * leaf rcu_node structure, though it often will be). The gps parameter
2377 * is the grace-period snapshot, which means that the quiescent states
2378 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2379 * must be held upon entry, and it is released before return.
2381 static void
2382 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2383 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2384 __releases(rnp->lock)
2386 unsigned long oldmask = 0;
2387 struct rcu_node *rnp_c;
2389 /* Walk up the rcu_node hierarchy. */
2390 for (;;) {
2391 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2394 * Our bit has already been cleared, or the
2395 * relevant grace period is already over, so done.
2397 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2398 return;
2400 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2401 rnp->qsmask &= ~mask;
2402 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2403 mask, rnp->qsmask, rnp->level,
2404 rnp->grplo, rnp->grphi,
2405 !!rnp->gp_tasks);
2406 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2408 /* Other bits still set at this level, so done. */
2409 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2410 return;
2412 mask = rnp->grpmask;
2413 if (rnp->parent == NULL) {
2415 /* No more levels. Exit loop holding root lock. */
2417 break;
2419 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2420 rnp_c = rnp;
2421 rnp = rnp->parent;
2422 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2423 oldmask = rnp_c->qsmask;
2427 * Get here if we are the last CPU to pass through a quiescent
2428 * state for this grace period. Invoke rcu_report_qs_rsp()
2429 * to clean up and start the next grace period if one is needed.
2431 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2435 * Record a quiescent state for all tasks that were previously queued
2436 * on the specified rcu_node structure and that were blocking the current
2437 * RCU grace period. The caller must hold the specified rnp->lock with
2438 * irqs disabled, and this lock is released upon return, but irqs remain
2439 * disabled.
2441 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2442 struct rcu_node *rnp, unsigned long flags)
2443 __releases(rnp->lock)
2445 unsigned long gps;
2446 unsigned long mask;
2447 struct rcu_node *rnp_p;
2449 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2450 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2451 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2452 return; /* Still need more quiescent states! */
2455 rnp_p = rnp->parent;
2456 if (rnp_p == NULL) {
2458 * Only one rcu_node structure in the tree, so don't
2459 * try to report up to its nonexistent parent!
2461 rcu_report_qs_rsp(rsp, flags);
2462 return;
2465 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2466 gps = rnp->gpnum;
2467 mask = rnp->grpmask;
2468 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2469 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2470 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2474 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2475 * structure. This must be called from the specified CPU.
2477 static void
2478 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2480 unsigned long flags;
2481 unsigned long mask;
2482 bool needwake;
2483 struct rcu_node *rnp;
2485 rnp = rdp->mynode;
2486 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2487 if ((rdp->cpu_no_qs.b.norm &&
2488 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2489 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2490 rdp->gpwrap) {
2493 * The grace period in which this quiescent state was
2494 * recorded has ended, so don't report it upwards.
2495 * We will instead need a new quiescent state that lies
2496 * within the current grace period.
2498 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2499 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2500 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2501 return;
2503 mask = rdp->grpmask;
2504 if ((rnp->qsmask & mask) == 0) {
2505 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2506 } else {
2507 rdp->core_needs_qs = false;
2510 * This GP can't end until cpu checks in, so all of our
2511 * callbacks can be processed during the next GP.
2513 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2515 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2516 /* ^^^ Released rnp->lock */
2517 if (needwake)
2518 rcu_gp_kthread_wake(rsp);
2523 * Check to see if there is a new grace period of which this CPU
2524 * is not yet aware, and if so, set up local rcu_data state for it.
2525 * Otherwise, see if this CPU has just passed through its first
2526 * quiescent state for this grace period, and record that fact if so.
2528 static void
2529 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2531 /* Check for grace-period ends and beginnings. */
2532 note_gp_changes(rsp, rdp);
2535 * Does this CPU still need to do its part for current grace period?
2536 * If no, return and let the other CPUs do their part as well.
2538 if (!rdp->core_needs_qs)
2539 return;
2542 * Was there a quiescent state since the beginning of the grace
2543 * period? If no, then exit and wait for the next call.
2545 if (rdp->cpu_no_qs.b.norm &&
2546 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2547 return;
2550 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2551 * judge of that).
2553 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2557 * Send the specified CPU's RCU callbacks to the orphanage. The
2558 * specified CPU must be offline, and the caller must hold the
2559 * ->orphan_lock.
2561 static void
2562 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2563 struct rcu_node *rnp, struct rcu_data *rdp)
2565 /* No-CBs CPUs do not have orphanable callbacks. */
2566 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2567 return;
2570 * Orphan the callbacks. First adjust the counts. This is safe
2571 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2572 * cannot be running now. Thus no memory barrier is required.
2574 if (rdp->nxtlist != NULL) {
2575 rsp->qlen_lazy += rdp->qlen_lazy;
2576 rsp->qlen += rdp->qlen;
2577 rdp->n_cbs_orphaned += rdp->qlen;
2578 rdp->qlen_lazy = 0;
2579 WRITE_ONCE(rdp->qlen, 0);
2583 * Next, move those callbacks still needing a grace period to
2584 * the orphanage, where some other CPU will pick them up.
2585 * Some of the callbacks might have gone partway through a grace
2586 * period, but that is too bad. They get to start over because we
2587 * cannot assume that grace periods are synchronized across CPUs.
2588 * We don't bother updating the ->nxttail[] array yet, instead
2589 * we just reset the whole thing later on.
2591 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2592 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2593 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2594 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2598 * Then move the ready-to-invoke callbacks to the orphanage,
2599 * where some other CPU will pick them up. These will not be
2600 * required to pass though another grace period: They are done.
2602 if (rdp->nxtlist != NULL) {
2603 *rsp->orphan_donetail = rdp->nxtlist;
2604 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2608 * Finally, initialize the rcu_data structure's list to empty and
2609 * disallow further callbacks on this CPU.
2611 init_callback_list(rdp);
2612 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2616 * Adopt the RCU callbacks from the specified rcu_state structure's
2617 * orphanage. The caller must hold the ->orphan_lock.
2619 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2621 int i;
2622 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2624 /* No-CBs CPUs are handled specially. */
2625 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2626 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2627 return;
2629 /* Do the accounting first. */
2630 rdp->qlen_lazy += rsp->qlen_lazy;
2631 rdp->qlen += rsp->qlen;
2632 rdp->n_cbs_adopted += rsp->qlen;
2633 if (rsp->qlen_lazy != rsp->qlen)
2634 rcu_idle_count_callbacks_posted();
2635 rsp->qlen_lazy = 0;
2636 rsp->qlen = 0;
2639 * We do not need a memory barrier here because the only way we
2640 * can get here if there is an rcu_barrier() in flight is if
2641 * we are the task doing the rcu_barrier().
2644 /* First adopt the ready-to-invoke callbacks. */
2645 if (rsp->orphan_donelist != NULL) {
2646 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2647 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2648 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2649 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2650 rdp->nxttail[i] = rsp->orphan_donetail;
2651 rsp->orphan_donelist = NULL;
2652 rsp->orphan_donetail = &rsp->orphan_donelist;
2655 /* And then adopt the callbacks that still need a grace period. */
2656 if (rsp->orphan_nxtlist != NULL) {
2657 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2658 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2659 rsp->orphan_nxtlist = NULL;
2660 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2665 * Trace the fact that this CPU is going offline.
2667 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2669 RCU_TRACE(unsigned long mask);
2670 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2671 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2673 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2674 return;
2676 RCU_TRACE(mask = rdp->grpmask);
2677 trace_rcu_grace_period(rsp->name,
2678 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2679 TPS("cpuofl"));
2683 * All CPUs for the specified rcu_node structure have gone offline,
2684 * and all tasks that were preempted within an RCU read-side critical
2685 * section while running on one of those CPUs have since exited their RCU
2686 * read-side critical section. Some other CPU is reporting this fact with
2687 * the specified rcu_node structure's ->lock held and interrupts disabled.
2688 * This function therefore goes up the tree of rcu_node structures,
2689 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2690 * the leaf rcu_node structure's ->qsmaskinit field has already been
2691 * updated
2693 * This function does check that the specified rcu_node structure has
2694 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2695 * prematurely. That said, invoking it after the fact will cost you
2696 * a needless lock acquisition. So once it has done its work, don't
2697 * invoke it again.
2699 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2701 long mask;
2702 struct rcu_node *rnp = rnp_leaf;
2704 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2705 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2706 return;
2707 for (;;) {
2708 mask = rnp->grpmask;
2709 rnp = rnp->parent;
2710 if (!rnp)
2711 break;
2712 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2713 rnp->qsmaskinit &= ~mask;
2714 rnp->qsmask &= ~mask;
2715 if (rnp->qsmaskinit) {
2716 raw_spin_unlock_rcu_node(rnp);
2717 /* irqs remain disabled. */
2718 return;
2720 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2725 * The CPU has been completely removed, and some other CPU is reporting
2726 * this fact from process context. Do the remainder of the cleanup,
2727 * including orphaning the outgoing CPU's RCU callbacks, and also
2728 * adopting them. There can only be one CPU hotplug operation at a time,
2729 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2731 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2733 unsigned long flags;
2734 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2735 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2737 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2738 return;
2740 /* Adjust any no-longer-needed kthreads. */
2741 rcu_boost_kthread_setaffinity(rnp, -1);
2743 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2744 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2745 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2746 rcu_adopt_orphan_cbs(rsp, flags);
2747 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2749 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2750 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2751 cpu, rdp->qlen, rdp->nxtlist);
2755 * Invoke any RCU callbacks that have made it to the end of their grace
2756 * period. Thottle as specified by rdp->blimit.
2758 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2760 unsigned long flags;
2761 struct rcu_head *next, *list, **tail;
2762 long bl, count, count_lazy;
2763 int i;
2765 /* If no callbacks are ready, just return. */
2766 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2767 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2768 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2769 need_resched(), is_idle_task(current),
2770 rcu_is_callbacks_kthread());
2771 return;
2775 * Extract the list of ready callbacks, disabling to prevent
2776 * races with call_rcu() from interrupt handlers.
2778 local_irq_save(flags);
2779 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2780 bl = rdp->blimit;
2781 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2782 list = rdp->nxtlist;
2783 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2784 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2785 tail = rdp->nxttail[RCU_DONE_TAIL];
2786 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2787 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2788 rdp->nxttail[i] = &rdp->nxtlist;
2789 local_irq_restore(flags);
2791 /* Invoke callbacks. */
2792 count = count_lazy = 0;
2793 while (list) {
2794 next = list->next;
2795 prefetch(next);
2796 debug_rcu_head_unqueue(list);
2797 if (__rcu_reclaim(rsp->name, list))
2798 count_lazy++;
2799 list = next;
2800 /* Stop only if limit reached and CPU has something to do. */
2801 if (++count >= bl &&
2802 (need_resched() ||
2803 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2804 break;
2807 local_irq_save(flags);
2808 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2809 is_idle_task(current),
2810 rcu_is_callbacks_kthread());
2812 /* Update count, and requeue any remaining callbacks. */
2813 if (list != NULL) {
2814 *tail = rdp->nxtlist;
2815 rdp->nxtlist = list;
2816 for (i = 0; i < RCU_NEXT_SIZE; i++)
2817 if (&rdp->nxtlist == rdp->nxttail[i])
2818 rdp->nxttail[i] = tail;
2819 else
2820 break;
2822 smp_mb(); /* List handling before counting for rcu_barrier(). */
2823 rdp->qlen_lazy -= count_lazy;
2824 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2825 rdp->n_cbs_invoked += count;
2827 /* Reinstate batch limit if we have worked down the excess. */
2828 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2829 rdp->blimit = blimit;
2831 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2832 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2833 rdp->qlen_last_fqs_check = 0;
2834 rdp->n_force_qs_snap = rsp->n_force_qs;
2835 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2836 rdp->qlen_last_fqs_check = rdp->qlen;
2837 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2839 local_irq_restore(flags);
2841 /* Re-invoke RCU core processing if there are callbacks remaining. */
2842 if (cpu_has_callbacks_ready_to_invoke(rdp))
2843 invoke_rcu_core();
2847 * Check to see if this CPU is in a non-context-switch quiescent state
2848 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2849 * Also schedule RCU core processing.
2851 * This function must be called from hardirq context. It is normally
2852 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2853 * false, there is no point in invoking rcu_check_callbacks().
2855 void rcu_check_callbacks(int user)
2857 trace_rcu_utilization(TPS("Start scheduler-tick"));
2858 increment_cpu_stall_ticks();
2859 if (user || rcu_is_cpu_rrupt_from_idle()) {
2862 * Get here if this CPU took its interrupt from user
2863 * mode or from the idle loop, and if this is not a
2864 * nested interrupt. In this case, the CPU is in
2865 * a quiescent state, so note it.
2867 * No memory barrier is required here because both
2868 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2869 * variables that other CPUs neither access nor modify,
2870 * at least not while the corresponding CPU is online.
2873 rcu_sched_qs();
2874 rcu_bh_qs();
2876 } else if (!in_softirq()) {
2879 * Get here if this CPU did not take its interrupt from
2880 * softirq, in other words, if it is not interrupting
2881 * a rcu_bh read-side critical section. This is an _bh
2882 * critical section, so note it.
2885 rcu_bh_qs();
2887 rcu_preempt_check_callbacks();
2888 if (rcu_pending())
2889 invoke_rcu_core();
2890 if (user)
2891 rcu_note_voluntary_context_switch(current);
2892 trace_rcu_utilization(TPS("End scheduler-tick"));
2896 * Scan the leaf rcu_node structures, processing dyntick state for any that
2897 * have not yet encountered a quiescent state, using the function specified.
2898 * Also initiate boosting for any threads blocked on the root rcu_node.
2900 * The caller must have suppressed start of new grace periods.
2902 static void force_qs_rnp(struct rcu_state *rsp,
2903 int (*f)(struct rcu_data *rsp, bool *isidle,
2904 unsigned long *maxj),
2905 bool *isidle, unsigned long *maxj)
2907 int cpu;
2908 unsigned long flags;
2909 unsigned long mask;
2910 struct rcu_node *rnp;
2912 rcu_for_each_leaf_node(rsp, rnp) {
2913 cond_resched_rcu_qs();
2914 mask = 0;
2915 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2916 if (rnp->qsmask == 0) {
2917 if (rcu_state_p == &rcu_sched_state ||
2918 rsp != rcu_state_p ||
2919 rcu_preempt_blocked_readers_cgp(rnp)) {
2921 * No point in scanning bits because they
2922 * are all zero. But we might need to
2923 * priority-boost blocked readers.
2925 rcu_initiate_boost(rnp, flags);
2926 /* rcu_initiate_boost() releases rnp->lock */
2927 continue;
2929 if (rnp->parent &&
2930 (rnp->parent->qsmask & rnp->grpmask)) {
2932 * Race between grace-period
2933 * initialization and task exiting RCU
2934 * read-side critical section: Report.
2936 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2937 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2938 continue;
2941 for_each_leaf_node_possible_cpu(rnp, cpu) {
2942 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2943 if ((rnp->qsmask & bit) != 0) {
2944 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2945 mask |= bit;
2948 if (mask != 0) {
2949 /* Idle/offline CPUs, report (releases rnp->lock. */
2950 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2951 } else {
2952 /* Nothing to do here, so just drop the lock. */
2953 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2959 * Force quiescent states on reluctant CPUs, and also detect which
2960 * CPUs are in dyntick-idle mode.
2962 static void force_quiescent_state(struct rcu_state *rsp)
2964 unsigned long flags;
2965 bool ret;
2966 struct rcu_node *rnp;
2967 struct rcu_node *rnp_old = NULL;
2969 /* Funnel through hierarchy to reduce memory contention. */
2970 rnp = __this_cpu_read(rsp->rda->mynode);
2971 for (; rnp != NULL; rnp = rnp->parent) {
2972 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2973 !raw_spin_trylock(&rnp->fqslock);
2974 if (rnp_old != NULL)
2975 raw_spin_unlock(&rnp_old->fqslock);
2976 if (ret) {
2977 rsp->n_force_qs_lh++;
2978 return;
2980 rnp_old = rnp;
2982 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2984 /* Reached the root of the rcu_node tree, acquire lock. */
2985 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2986 raw_spin_unlock(&rnp_old->fqslock);
2987 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2988 rsp->n_force_qs_lh++;
2989 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2990 return; /* Someone beat us to it. */
2992 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2993 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2994 rcu_gp_kthread_wake(rsp);
2998 * This does the RCU core processing work for the specified rcu_state
2999 * and rcu_data structures. This may be called only from the CPU to
3000 * whom the rdp belongs.
3002 static void
3003 __rcu_process_callbacks(struct rcu_state *rsp)
3005 unsigned long flags;
3006 bool needwake;
3007 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3009 WARN_ON_ONCE(rdp->beenonline == 0);
3011 /* Update RCU state based on any recent quiescent states. */
3012 rcu_check_quiescent_state(rsp, rdp);
3014 /* Does this CPU require a not-yet-started grace period? */
3015 local_irq_save(flags);
3016 if (cpu_needs_another_gp(rsp, rdp)) {
3017 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3018 needwake = rcu_start_gp(rsp);
3019 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3020 if (needwake)
3021 rcu_gp_kthread_wake(rsp);
3022 } else {
3023 local_irq_restore(flags);
3026 /* If there are callbacks ready, invoke them. */
3027 if (cpu_has_callbacks_ready_to_invoke(rdp))
3028 invoke_rcu_callbacks(rsp, rdp);
3030 /* Do any needed deferred wakeups of rcuo kthreads. */
3031 do_nocb_deferred_wakeup(rdp);
3035 * Do RCU core processing for the current CPU.
3037 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3039 struct rcu_state *rsp;
3041 if (cpu_is_offline(smp_processor_id()))
3042 return;
3043 trace_rcu_utilization(TPS("Start RCU core"));
3044 for_each_rcu_flavor(rsp)
3045 __rcu_process_callbacks(rsp);
3046 trace_rcu_utilization(TPS("End RCU core"));
3050 * Schedule RCU callback invocation. If the specified type of RCU
3051 * does not support RCU priority boosting, just do a direct call,
3052 * otherwise wake up the per-CPU kernel kthread. Note that because we
3053 * are running on the current CPU with softirqs disabled, the
3054 * rcu_cpu_kthread_task cannot disappear out from under us.
3056 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3058 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3059 return;
3060 if (likely(!rsp->boost)) {
3061 rcu_do_batch(rsp, rdp);
3062 return;
3064 invoke_rcu_callbacks_kthread();
3067 static void invoke_rcu_core(void)
3069 if (cpu_online(smp_processor_id()))
3070 raise_softirq(RCU_SOFTIRQ);
3074 * Handle any core-RCU processing required by a call_rcu() invocation.
3076 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3077 struct rcu_head *head, unsigned long flags)
3079 bool needwake;
3082 * If called from an extended quiescent state, invoke the RCU
3083 * core in order to force a re-evaluation of RCU's idleness.
3085 if (!rcu_is_watching())
3086 invoke_rcu_core();
3088 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3089 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3090 return;
3093 * Force the grace period if too many callbacks or too long waiting.
3094 * Enforce hysteresis, and don't invoke force_quiescent_state()
3095 * if some other CPU has recently done so. Also, don't bother
3096 * invoking force_quiescent_state() if the newly enqueued callback
3097 * is the only one waiting for a grace period to complete.
3099 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3101 /* Are we ignoring a completed grace period? */
3102 note_gp_changes(rsp, rdp);
3104 /* Start a new grace period if one not already started. */
3105 if (!rcu_gp_in_progress(rsp)) {
3106 struct rcu_node *rnp_root = rcu_get_root(rsp);
3108 raw_spin_lock_rcu_node(rnp_root);
3109 needwake = rcu_start_gp(rsp);
3110 raw_spin_unlock_rcu_node(rnp_root);
3111 if (needwake)
3112 rcu_gp_kthread_wake(rsp);
3113 } else {
3114 /* Give the grace period a kick. */
3115 rdp->blimit = LONG_MAX;
3116 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3117 *rdp->nxttail[RCU_DONE_TAIL] != head)
3118 force_quiescent_state(rsp);
3119 rdp->n_force_qs_snap = rsp->n_force_qs;
3120 rdp->qlen_last_fqs_check = rdp->qlen;
3126 * RCU callback function to leak a callback.
3128 static void rcu_leak_callback(struct rcu_head *rhp)
3133 * Helper function for call_rcu() and friends. The cpu argument will
3134 * normally be -1, indicating "currently running CPU". It may specify
3135 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3136 * is expected to specify a CPU.
3138 static void
3139 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3140 struct rcu_state *rsp, int cpu, bool lazy)
3142 unsigned long flags;
3143 struct rcu_data *rdp;
3145 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3146 if (debug_rcu_head_queue(head)) {
3147 /* Probable double call_rcu(), so leak the callback. */
3148 WRITE_ONCE(head->func, rcu_leak_callback);
3149 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3150 return;
3152 head->func = func;
3153 head->next = NULL;
3156 * Opportunistically note grace-period endings and beginnings.
3157 * Note that we might see a beginning right after we see an
3158 * end, but never vice versa, since this CPU has to pass through
3159 * a quiescent state betweentimes.
3161 local_irq_save(flags);
3162 rdp = this_cpu_ptr(rsp->rda);
3164 /* Add the callback to our list. */
3165 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3166 int offline;
3168 if (cpu != -1)
3169 rdp = per_cpu_ptr(rsp->rda, cpu);
3170 if (likely(rdp->mynode)) {
3171 /* Post-boot, so this should be for a no-CBs CPU. */
3172 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3173 WARN_ON_ONCE(offline);
3174 /* Offline CPU, _call_rcu() illegal, leak callback. */
3175 local_irq_restore(flags);
3176 return;
3179 * Very early boot, before rcu_init(). Initialize if needed
3180 * and then drop through to queue the callback.
3182 BUG_ON(cpu != -1);
3183 WARN_ON_ONCE(!rcu_is_watching());
3184 if (!likely(rdp->nxtlist))
3185 init_default_callback_list(rdp);
3187 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3188 if (lazy)
3189 rdp->qlen_lazy++;
3190 else
3191 rcu_idle_count_callbacks_posted();
3192 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3193 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3194 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3196 if (__is_kfree_rcu_offset((unsigned long)func))
3197 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3198 rdp->qlen_lazy, rdp->qlen);
3199 else
3200 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3202 /* Go handle any RCU core processing required. */
3203 __call_rcu_core(rsp, rdp, head, flags);
3204 local_irq_restore(flags);
3208 * Queue an RCU-sched callback for invocation after a grace period.
3210 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3212 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3214 EXPORT_SYMBOL_GPL(call_rcu_sched);
3217 * Queue an RCU callback for invocation after a quicker grace period.
3219 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3221 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3223 EXPORT_SYMBOL_GPL(call_rcu_bh);
3226 * Queue an RCU callback for lazy invocation after a grace period.
3227 * This will likely be later named something like "call_rcu_lazy()",
3228 * but this change will require some way of tagging the lazy RCU
3229 * callbacks in the list of pending callbacks. Until then, this
3230 * function may only be called from __kfree_rcu().
3232 void kfree_call_rcu(struct rcu_head *head,
3233 rcu_callback_t func)
3235 __call_rcu(head, func, rcu_state_p, -1, 1);
3237 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3240 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3241 * any blocking grace-period wait automatically implies a grace period
3242 * if there is only one CPU online at any point time during execution
3243 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3244 * occasionally incorrectly indicate that there are multiple CPUs online
3245 * when there was in fact only one the whole time, as this just adds
3246 * some overhead: RCU still operates correctly.
3248 static inline int rcu_blocking_is_gp(void)
3250 int ret;
3252 might_sleep(); /* Check for RCU read-side critical section. */
3253 preempt_disable();
3254 ret = num_online_cpus() <= 1;
3255 preempt_enable();
3256 return ret;
3260 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3262 * Control will return to the caller some time after a full rcu-sched
3263 * grace period has elapsed, in other words after all currently executing
3264 * rcu-sched read-side critical sections have completed. These read-side
3265 * critical sections are delimited by rcu_read_lock_sched() and
3266 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3267 * local_irq_disable(), and so on may be used in place of
3268 * rcu_read_lock_sched().
3270 * This means that all preempt_disable code sequences, including NMI and
3271 * non-threaded hardware-interrupt handlers, in progress on entry will
3272 * have completed before this primitive returns. However, this does not
3273 * guarantee that softirq handlers will have completed, since in some
3274 * kernels, these handlers can run in process context, and can block.
3276 * Note that this guarantee implies further memory-ordering guarantees.
3277 * On systems with more than one CPU, when synchronize_sched() returns,
3278 * each CPU is guaranteed to have executed a full memory barrier since the
3279 * end of its last RCU-sched read-side critical section whose beginning
3280 * preceded the call to synchronize_sched(). In addition, each CPU having
3281 * an RCU read-side critical section that extends beyond the return from
3282 * synchronize_sched() is guaranteed to have executed a full memory barrier
3283 * after the beginning of synchronize_sched() and before the beginning of
3284 * that RCU read-side critical section. Note that these guarantees include
3285 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3286 * that are executing in the kernel.
3288 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3289 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3290 * to have executed a full memory barrier during the execution of
3291 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3292 * again only if the system has more than one CPU).
3294 * This primitive provides the guarantees made by the (now removed)
3295 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3296 * guarantees that rcu_read_lock() sections will have completed.
3297 * In "classic RCU", these two guarantees happen to be one and
3298 * the same, but can differ in realtime RCU implementations.
3300 void synchronize_sched(void)
3302 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3303 lock_is_held(&rcu_lock_map) ||
3304 lock_is_held(&rcu_sched_lock_map),
3305 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3306 if (rcu_blocking_is_gp())
3307 return;
3308 if (rcu_gp_is_expedited())
3309 synchronize_sched_expedited();
3310 else
3311 wait_rcu_gp(call_rcu_sched);
3313 EXPORT_SYMBOL_GPL(synchronize_sched);
3316 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3318 * Control will return to the caller some time after a full rcu_bh grace
3319 * period has elapsed, in other words after all currently executing rcu_bh
3320 * read-side critical sections have completed. RCU read-side critical
3321 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3322 * and may be nested.
3324 * See the description of synchronize_sched() for more detailed information
3325 * on memory ordering guarantees.
3327 void synchronize_rcu_bh(void)
3329 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3330 lock_is_held(&rcu_lock_map) ||
3331 lock_is_held(&rcu_sched_lock_map),
3332 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3333 if (rcu_blocking_is_gp())
3334 return;
3335 if (rcu_gp_is_expedited())
3336 synchronize_rcu_bh_expedited();
3337 else
3338 wait_rcu_gp(call_rcu_bh);
3340 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3343 * get_state_synchronize_rcu - Snapshot current RCU state
3345 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3346 * to determine whether or not a full grace period has elapsed in the
3347 * meantime.
3349 unsigned long get_state_synchronize_rcu(void)
3352 * Any prior manipulation of RCU-protected data must happen
3353 * before the load from ->gpnum.
3355 smp_mb(); /* ^^^ */
3358 * Make sure this load happens before the purportedly
3359 * time-consuming work between get_state_synchronize_rcu()
3360 * and cond_synchronize_rcu().
3362 return smp_load_acquire(&rcu_state_p->gpnum);
3364 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3367 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3369 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3371 * If a full RCU grace period has elapsed since the earlier call to
3372 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3373 * synchronize_rcu() to wait for a full grace period.
3375 * Yes, this function does not take counter wrap into account. But
3376 * counter wrap is harmless. If the counter wraps, we have waited for
3377 * more than 2 billion grace periods (and way more on a 64-bit system!),
3378 * so waiting for one additional grace period should be just fine.
3380 void cond_synchronize_rcu(unsigned long oldstate)
3382 unsigned long newstate;
3385 * Ensure that this load happens before any RCU-destructive
3386 * actions the caller might carry out after we return.
3388 newstate = smp_load_acquire(&rcu_state_p->completed);
3389 if (ULONG_CMP_GE(oldstate, newstate))
3390 synchronize_rcu();
3392 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3395 * get_state_synchronize_sched - Snapshot current RCU-sched state
3397 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3398 * to determine whether or not a full grace period has elapsed in the
3399 * meantime.
3401 unsigned long get_state_synchronize_sched(void)
3404 * Any prior manipulation of RCU-protected data must happen
3405 * before the load from ->gpnum.
3407 smp_mb(); /* ^^^ */
3410 * Make sure this load happens before the purportedly
3411 * time-consuming work between get_state_synchronize_sched()
3412 * and cond_synchronize_sched().
3414 return smp_load_acquire(&rcu_sched_state.gpnum);
3416 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3419 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3421 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3423 * If a full RCU-sched grace period has elapsed since the earlier call to
3424 * get_state_synchronize_sched(), just return. Otherwise, invoke
3425 * synchronize_sched() to wait for a full grace period.
3427 * Yes, this function does not take counter wrap into account. But
3428 * counter wrap is harmless. If the counter wraps, we have waited for
3429 * more than 2 billion grace periods (and way more on a 64-bit system!),
3430 * so waiting for one additional grace period should be just fine.
3432 void cond_synchronize_sched(unsigned long oldstate)
3434 unsigned long newstate;
3437 * Ensure that this load happens before any RCU-destructive
3438 * actions the caller might carry out after we return.
3440 newstate = smp_load_acquire(&rcu_sched_state.completed);
3441 if (ULONG_CMP_GE(oldstate, newstate))
3442 synchronize_sched();
3444 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3446 /* Adjust sequence number for start of update-side operation. */
3447 static void rcu_seq_start(unsigned long *sp)
3449 WRITE_ONCE(*sp, *sp + 1);
3450 smp_mb(); /* Ensure update-side operation after counter increment. */
3451 WARN_ON_ONCE(!(*sp & 0x1));
3454 /* Adjust sequence number for end of update-side operation. */
3455 static void rcu_seq_end(unsigned long *sp)
3457 smp_mb(); /* Ensure update-side operation before counter increment. */
3458 WRITE_ONCE(*sp, *sp + 1);
3459 WARN_ON_ONCE(*sp & 0x1);
3462 /* Take a snapshot of the update side's sequence number. */
3463 static unsigned long rcu_seq_snap(unsigned long *sp)
3465 unsigned long s;
3467 s = (READ_ONCE(*sp) + 3) & ~0x1;
3468 smp_mb(); /* Above access must not bleed into critical section. */
3469 return s;
3473 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3474 * full update-side operation has occurred.
3476 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3478 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3482 * Check to see if there is any immediate RCU-related work to be done
3483 * by the current CPU, for the specified type of RCU, returning 1 if so.
3484 * The checks are in order of increasing expense: checks that can be
3485 * carried out against CPU-local state are performed first. However,
3486 * we must check for CPU stalls first, else we might not get a chance.
3488 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3490 struct rcu_node *rnp = rdp->mynode;
3492 rdp->n_rcu_pending++;
3494 /* Check for CPU stalls, if enabled. */
3495 check_cpu_stall(rsp, rdp);
3497 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3498 if (rcu_nohz_full_cpu(rsp))
3499 return 0;
3501 /* Is the RCU core waiting for a quiescent state from this CPU? */
3502 if (rcu_scheduler_fully_active &&
3503 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3504 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3505 rdp->n_rp_core_needs_qs++;
3506 } else if (rdp->core_needs_qs &&
3507 (!rdp->cpu_no_qs.b.norm ||
3508 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3509 rdp->n_rp_report_qs++;
3510 return 1;
3513 /* Does this CPU have callbacks ready to invoke? */
3514 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3515 rdp->n_rp_cb_ready++;
3516 return 1;
3519 /* Has RCU gone idle with this CPU needing another grace period? */
3520 if (cpu_needs_another_gp(rsp, rdp)) {
3521 rdp->n_rp_cpu_needs_gp++;
3522 return 1;
3525 /* Has another RCU grace period completed? */
3526 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3527 rdp->n_rp_gp_completed++;
3528 return 1;
3531 /* Has a new RCU grace period started? */
3532 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3533 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3534 rdp->n_rp_gp_started++;
3535 return 1;
3538 /* Does this CPU need a deferred NOCB wakeup? */
3539 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3540 rdp->n_rp_nocb_defer_wakeup++;
3541 return 1;
3544 /* nothing to do */
3545 rdp->n_rp_need_nothing++;
3546 return 0;
3550 * Check to see if there is any immediate RCU-related work to be done
3551 * by the current CPU, returning 1 if so. This function is part of the
3552 * RCU implementation; it is -not- an exported member of the RCU API.
3554 static int rcu_pending(void)
3556 struct rcu_state *rsp;
3558 for_each_rcu_flavor(rsp)
3559 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3560 return 1;
3561 return 0;
3565 * Return true if the specified CPU has any callback. If all_lazy is
3566 * non-NULL, store an indication of whether all callbacks are lazy.
3567 * (If there are no callbacks, all of them are deemed to be lazy.)
3569 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3571 bool al = true;
3572 bool hc = false;
3573 struct rcu_data *rdp;
3574 struct rcu_state *rsp;
3576 for_each_rcu_flavor(rsp) {
3577 rdp = this_cpu_ptr(rsp->rda);
3578 if (!rdp->nxtlist)
3579 continue;
3580 hc = true;
3581 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3582 al = false;
3583 break;
3586 if (all_lazy)
3587 *all_lazy = al;
3588 return hc;
3592 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3593 * the compiler is expected to optimize this away.
3595 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3596 int cpu, unsigned long done)
3598 trace_rcu_barrier(rsp->name, s, cpu,
3599 atomic_read(&rsp->barrier_cpu_count), done);
3603 * RCU callback function for _rcu_barrier(). If we are last, wake
3604 * up the task executing _rcu_barrier().
3606 static void rcu_barrier_callback(struct rcu_head *rhp)
3608 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3609 struct rcu_state *rsp = rdp->rsp;
3611 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3612 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3613 complete(&rsp->barrier_completion);
3614 } else {
3615 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3620 * Called with preemption disabled, and from cross-cpu IRQ context.
3622 static void rcu_barrier_func(void *type)
3624 struct rcu_state *rsp = type;
3625 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3627 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3628 atomic_inc(&rsp->barrier_cpu_count);
3629 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3633 * Orchestrate the specified type of RCU barrier, waiting for all
3634 * RCU callbacks of the specified type to complete.
3636 static void _rcu_barrier(struct rcu_state *rsp)
3638 int cpu;
3639 struct rcu_data *rdp;
3640 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3642 _rcu_barrier_trace(rsp, "Begin", -1, s);
3644 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3645 mutex_lock(&rsp->barrier_mutex);
3647 /* Did someone else do our work for us? */
3648 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3649 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3650 smp_mb(); /* caller's subsequent code after above check. */
3651 mutex_unlock(&rsp->barrier_mutex);
3652 return;
3655 /* Mark the start of the barrier operation. */
3656 rcu_seq_start(&rsp->barrier_sequence);
3657 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3660 * Initialize the count to one rather than to zero in order to
3661 * avoid a too-soon return to zero in case of a short grace period
3662 * (or preemption of this task). Exclude CPU-hotplug operations
3663 * to ensure that no offline CPU has callbacks queued.
3665 init_completion(&rsp->barrier_completion);
3666 atomic_set(&rsp->barrier_cpu_count, 1);
3667 get_online_cpus();
3670 * Force each CPU with callbacks to register a new callback.
3671 * When that callback is invoked, we will know that all of the
3672 * corresponding CPU's preceding callbacks have been invoked.
3674 for_each_possible_cpu(cpu) {
3675 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3676 continue;
3677 rdp = per_cpu_ptr(rsp->rda, cpu);
3678 if (rcu_is_nocb_cpu(cpu)) {
3679 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3680 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3681 rsp->barrier_sequence);
3682 } else {
3683 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3684 rsp->barrier_sequence);
3685 smp_mb__before_atomic();
3686 atomic_inc(&rsp->barrier_cpu_count);
3687 __call_rcu(&rdp->barrier_head,
3688 rcu_barrier_callback, rsp, cpu, 0);
3690 } else if (READ_ONCE(rdp->qlen)) {
3691 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3692 rsp->barrier_sequence);
3693 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3694 } else {
3695 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3696 rsp->barrier_sequence);
3699 put_online_cpus();
3702 * Now that we have an rcu_barrier_callback() callback on each
3703 * CPU, and thus each counted, remove the initial count.
3705 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3706 complete(&rsp->barrier_completion);
3708 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3709 wait_for_completion(&rsp->barrier_completion);
3711 /* Mark the end of the barrier operation. */
3712 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3713 rcu_seq_end(&rsp->barrier_sequence);
3715 /* Other rcu_barrier() invocations can now safely proceed. */
3716 mutex_unlock(&rsp->barrier_mutex);
3720 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3722 void rcu_barrier_bh(void)
3724 _rcu_barrier(&rcu_bh_state);
3726 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3729 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3731 void rcu_barrier_sched(void)
3733 _rcu_barrier(&rcu_sched_state);
3735 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3738 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3739 * first CPU in a given leaf rcu_node structure coming online. The caller
3740 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3741 * disabled.
3743 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3745 long mask;
3746 struct rcu_node *rnp = rnp_leaf;
3748 for (;;) {
3749 mask = rnp->grpmask;
3750 rnp = rnp->parent;
3751 if (rnp == NULL)
3752 return;
3753 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3754 rnp->qsmaskinit |= mask;
3755 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3760 * Do boot-time initialization of a CPU's per-CPU RCU data.
3762 static void __init
3763 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3765 unsigned long flags;
3766 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3767 struct rcu_node *rnp = rcu_get_root(rsp);
3769 /* Set up local state, ensuring consistent view of global state. */
3770 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3771 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3772 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3773 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3774 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3775 rdp->cpu = cpu;
3776 rdp->rsp = rsp;
3777 rcu_boot_init_nocb_percpu_data(rdp);
3778 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3782 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3783 * offline event can be happening at a given time. Note also that we
3784 * can accept some slop in the rsp->completed access due to the fact
3785 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3787 static void
3788 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3790 unsigned long flags;
3791 unsigned long mask;
3792 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3793 struct rcu_node *rnp = rcu_get_root(rsp);
3795 /* Set up local state, ensuring consistent view of global state. */
3796 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3797 rdp->qlen_last_fqs_check = 0;
3798 rdp->n_force_qs_snap = rsp->n_force_qs;
3799 rdp->blimit = blimit;
3800 if (!rdp->nxtlist)
3801 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3802 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3803 rcu_sysidle_init_percpu_data(rdp->dynticks);
3804 atomic_set(&rdp->dynticks->dynticks,
3805 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3806 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3809 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3810 * propagation up the rcu_node tree will happen at the beginning
3811 * of the next grace period.
3813 rnp = rdp->mynode;
3814 mask = rdp->grpmask;
3815 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3816 if (!rdp->beenonline)
3817 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3818 rdp->beenonline = true; /* We have now been online. */
3819 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3820 rdp->completed = rnp->completed;
3821 rdp->cpu_no_qs.b.norm = true;
3822 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3823 rdp->core_needs_qs = false;
3824 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3825 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3828 int rcutree_prepare_cpu(unsigned int cpu)
3830 struct rcu_state *rsp;
3832 for_each_rcu_flavor(rsp)
3833 rcu_init_percpu_data(cpu, rsp);
3835 rcu_prepare_kthreads(cpu);
3836 rcu_spawn_all_nocb_kthreads(cpu);
3838 return 0;
3841 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3843 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3845 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3848 int rcutree_online_cpu(unsigned int cpu)
3850 sync_sched_exp_online_cleanup(cpu);
3851 rcutree_affinity_setting(cpu, -1);
3852 return 0;
3855 int rcutree_offline_cpu(unsigned int cpu)
3857 rcutree_affinity_setting(cpu, cpu);
3858 return 0;
3862 int rcutree_dying_cpu(unsigned int cpu)
3864 struct rcu_state *rsp;
3866 for_each_rcu_flavor(rsp)
3867 rcu_cleanup_dying_cpu(rsp);
3868 return 0;
3871 int rcutree_dead_cpu(unsigned int cpu)
3873 struct rcu_state *rsp;
3875 for_each_rcu_flavor(rsp) {
3876 rcu_cleanup_dead_cpu(cpu, rsp);
3877 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3879 return 0;
3883 * Mark the specified CPU as being online so that subsequent grace periods
3884 * (both expedited and normal) will wait on it. Note that this means that
3885 * incoming CPUs are not allowed to use RCU read-side critical sections
3886 * until this function is called. Failing to observe this restriction
3887 * will result in lockdep splats.
3889 void rcu_cpu_starting(unsigned int cpu)
3891 unsigned long flags;
3892 unsigned long mask;
3893 struct rcu_data *rdp;
3894 struct rcu_node *rnp;
3895 struct rcu_state *rsp;
3897 for_each_rcu_flavor(rsp) {
3898 rdp = this_cpu_ptr(rsp->rda);
3899 rnp = rdp->mynode;
3900 mask = rdp->grpmask;
3901 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3902 rnp->qsmaskinitnext |= mask;
3903 rnp->expmaskinitnext |= mask;
3904 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3908 #ifdef CONFIG_HOTPLUG_CPU
3910 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3911 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3912 * bit masks.
3913 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3914 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3915 * bit masks.
3917 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3919 unsigned long flags;
3920 unsigned long mask;
3921 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3922 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3924 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3925 mask = rdp->grpmask;
3926 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3927 rnp->qsmaskinitnext &= ~mask;
3928 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3931 void rcu_report_dead(unsigned int cpu)
3933 struct rcu_state *rsp;
3935 /* QS for any half-done expedited RCU-sched GP. */
3936 preempt_disable();
3937 rcu_report_exp_rdp(&rcu_sched_state,
3938 this_cpu_ptr(rcu_sched_state.rda), true);
3939 preempt_enable();
3940 for_each_rcu_flavor(rsp)
3941 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3943 #endif
3945 static int rcu_pm_notify(struct notifier_block *self,
3946 unsigned long action, void *hcpu)
3948 switch (action) {
3949 case PM_HIBERNATION_PREPARE:
3950 case PM_SUSPEND_PREPARE:
3951 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3952 rcu_expedite_gp();
3953 break;
3954 case PM_POST_HIBERNATION:
3955 case PM_POST_SUSPEND:
3956 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3957 rcu_unexpedite_gp();
3958 break;
3959 default:
3960 break;
3962 return NOTIFY_OK;
3966 * Spawn the kthreads that handle each RCU flavor's grace periods.
3968 static int __init rcu_spawn_gp_kthread(void)
3970 unsigned long flags;
3971 int kthread_prio_in = kthread_prio;
3972 struct rcu_node *rnp;
3973 struct rcu_state *rsp;
3974 struct sched_param sp;
3975 struct task_struct *t;
3977 /* Force priority into range. */
3978 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3979 kthread_prio = 1;
3980 else if (kthread_prio < 0)
3981 kthread_prio = 0;
3982 else if (kthread_prio > 99)
3983 kthread_prio = 99;
3984 if (kthread_prio != kthread_prio_in)
3985 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3986 kthread_prio, kthread_prio_in);
3988 rcu_scheduler_fully_active = 1;
3989 for_each_rcu_flavor(rsp) {
3990 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3991 BUG_ON(IS_ERR(t));
3992 rnp = rcu_get_root(rsp);
3993 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3994 rsp->gp_kthread = t;
3995 if (kthread_prio) {
3996 sp.sched_priority = kthread_prio;
3997 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3999 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4000 wake_up_process(t);
4002 rcu_spawn_nocb_kthreads();
4003 rcu_spawn_boost_kthreads();
4004 return 0;
4006 early_initcall(rcu_spawn_gp_kthread);
4009 * This function is invoked towards the end of the scheduler's
4010 * initialization process. Before this is called, the idle task might
4011 * contain synchronous grace-period primitives (during which time, this idle
4012 * task is booting the system, and such primitives are no-ops). After this
4013 * function is called, any synchronous grace-period primitives are run as
4014 * expedited, with the requesting task driving the grace period forward.
4015 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4016 * runtime RCU functionality.
4018 void rcu_scheduler_starting(void)
4020 WARN_ON(num_online_cpus() != 1);
4021 WARN_ON(nr_context_switches() > 0);
4022 rcu_test_sync_prims();
4023 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4024 rcu_test_sync_prims();
4028 * Compute the per-level fanout, either using the exact fanout specified
4029 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4031 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4033 int i;
4035 if (rcu_fanout_exact) {
4036 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4037 for (i = rcu_num_lvls - 2; i >= 0; i--)
4038 levelspread[i] = RCU_FANOUT;
4039 } else {
4040 int ccur;
4041 int cprv;
4043 cprv = nr_cpu_ids;
4044 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4045 ccur = levelcnt[i];
4046 levelspread[i] = (cprv + ccur - 1) / ccur;
4047 cprv = ccur;
4053 * Helper function for rcu_init() that initializes one rcu_state structure.
4055 static void __init rcu_init_one(struct rcu_state *rsp)
4057 static const char * const buf[] = RCU_NODE_NAME_INIT;
4058 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4059 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4060 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4061 static u8 fl_mask = 0x1;
4063 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4064 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4065 int cpustride = 1;
4066 int i;
4067 int j;
4068 struct rcu_node *rnp;
4070 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4072 /* Silence gcc 4.8 false positive about array index out of range. */
4073 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4074 panic("rcu_init_one: rcu_num_lvls out of range");
4076 /* Initialize the level-tracking arrays. */
4078 for (i = 0; i < rcu_num_lvls; i++)
4079 levelcnt[i] = num_rcu_lvl[i];
4080 for (i = 1; i < rcu_num_lvls; i++)
4081 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4082 rcu_init_levelspread(levelspread, levelcnt);
4083 rsp->flavor_mask = fl_mask;
4084 fl_mask <<= 1;
4086 /* Initialize the elements themselves, starting from the leaves. */
4088 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4089 cpustride *= levelspread[i];
4090 rnp = rsp->level[i];
4091 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4092 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4093 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4094 &rcu_node_class[i], buf[i]);
4095 raw_spin_lock_init(&rnp->fqslock);
4096 lockdep_set_class_and_name(&rnp->fqslock,
4097 &rcu_fqs_class[i], fqs[i]);
4098 rnp->gpnum = rsp->gpnum;
4099 rnp->completed = rsp->completed;
4100 rnp->qsmask = 0;
4101 rnp->qsmaskinit = 0;
4102 rnp->grplo = j * cpustride;
4103 rnp->grphi = (j + 1) * cpustride - 1;
4104 if (rnp->grphi >= nr_cpu_ids)
4105 rnp->grphi = nr_cpu_ids - 1;
4106 if (i == 0) {
4107 rnp->grpnum = 0;
4108 rnp->grpmask = 0;
4109 rnp->parent = NULL;
4110 } else {
4111 rnp->grpnum = j % levelspread[i - 1];
4112 rnp->grpmask = 1UL << rnp->grpnum;
4113 rnp->parent = rsp->level[i - 1] +
4114 j / levelspread[i - 1];
4116 rnp->level = i;
4117 INIT_LIST_HEAD(&rnp->blkd_tasks);
4118 rcu_init_one_nocb(rnp);
4119 init_waitqueue_head(&rnp->exp_wq[0]);
4120 init_waitqueue_head(&rnp->exp_wq[1]);
4121 init_waitqueue_head(&rnp->exp_wq[2]);
4122 init_waitqueue_head(&rnp->exp_wq[3]);
4123 spin_lock_init(&rnp->exp_lock);
4127 init_swait_queue_head(&rsp->gp_wq);
4128 init_swait_queue_head(&rsp->expedited_wq);
4129 rnp = rsp->level[rcu_num_lvls - 1];
4130 for_each_possible_cpu(i) {
4131 while (i > rnp->grphi)
4132 rnp++;
4133 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4134 rcu_boot_init_percpu_data(i, rsp);
4136 list_add(&rsp->flavors, &rcu_struct_flavors);
4140 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4141 * replace the definitions in tree.h because those are needed to size
4142 * the ->node array in the rcu_state structure.
4144 static void __init rcu_init_geometry(void)
4146 ulong d;
4147 int i;
4148 int rcu_capacity[RCU_NUM_LVLS];
4151 * Initialize any unspecified boot parameters.
4152 * The default values of jiffies_till_first_fqs and
4153 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4154 * value, which is a function of HZ, then adding one for each
4155 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4157 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4158 if (jiffies_till_first_fqs == ULONG_MAX)
4159 jiffies_till_first_fqs = d;
4160 if (jiffies_till_next_fqs == ULONG_MAX)
4161 jiffies_till_next_fqs = d;
4163 /* If the compile-time values are accurate, just leave. */
4164 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4165 nr_cpu_ids == NR_CPUS)
4166 return;
4167 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4168 rcu_fanout_leaf, nr_cpu_ids);
4171 * The boot-time rcu_fanout_leaf parameter must be at least two
4172 * and cannot exceed the number of bits in the rcu_node masks.
4173 * Complain and fall back to the compile-time values if this
4174 * limit is exceeded.
4176 if (rcu_fanout_leaf < 2 ||
4177 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4178 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4179 WARN_ON(1);
4180 return;
4184 * Compute number of nodes that can be handled an rcu_node tree
4185 * with the given number of levels.
4187 rcu_capacity[0] = rcu_fanout_leaf;
4188 for (i = 1; i < RCU_NUM_LVLS; i++)
4189 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4192 * The tree must be able to accommodate the configured number of CPUs.
4193 * If this limit is exceeded, fall back to the compile-time values.
4195 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4196 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4197 WARN_ON(1);
4198 return;
4201 /* Calculate the number of levels in the tree. */
4202 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4204 rcu_num_lvls = i + 1;
4206 /* Calculate the number of rcu_nodes at each level of the tree. */
4207 for (i = 0; i < rcu_num_lvls; i++) {
4208 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4209 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4212 /* Calculate the total number of rcu_node structures. */
4213 rcu_num_nodes = 0;
4214 for (i = 0; i < rcu_num_lvls; i++)
4215 rcu_num_nodes += num_rcu_lvl[i];
4219 * Dump out the structure of the rcu_node combining tree associated
4220 * with the rcu_state structure referenced by rsp.
4222 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4224 int level = 0;
4225 struct rcu_node *rnp;
4227 pr_info("rcu_node tree layout dump\n");
4228 pr_info(" ");
4229 rcu_for_each_node_breadth_first(rsp, rnp) {
4230 if (rnp->level != level) {
4231 pr_cont("\n");
4232 pr_info(" ");
4233 level = rnp->level;
4235 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4237 pr_cont("\n");
4240 void __init rcu_init(void)
4242 int cpu;
4244 rcu_early_boot_tests();
4246 rcu_bootup_announce();
4247 rcu_init_geometry();
4248 rcu_init_one(&rcu_bh_state);
4249 rcu_init_one(&rcu_sched_state);
4250 if (dump_tree)
4251 rcu_dump_rcu_node_tree(&rcu_sched_state);
4252 __rcu_init_preempt();
4253 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4256 * We don't need protection against CPU-hotplug here because
4257 * this is called early in boot, before either interrupts
4258 * or the scheduler are operational.
4260 pm_notifier(rcu_pm_notify, 0);
4261 for_each_online_cpu(cpu) {
4262 rcutree_prepare_cpu(cpu);
4263 rcu_cpu_starting(cpu);
4267 #include "tree_exp.h"
4268 #include "tree_plugin.h"