2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/trace_events.h>
57 #include <linux/suspend.h>
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
65 #define MODULE_PARAM_PREFIX "rcutree."
67 /* Data structures. */
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
78 # define DEFINE_RCU_TPS(sname) \
79 static char sname##_varname[] = #sname; \
80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81 # define RCU_STATE_NAME(sname) sname##_varname
83 # define DEFINE_RCU_TPS(sname)
84 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88 DEFINE_RCU_TPS(sname) \
89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90 struct rcu_state sname##_state = { \
91 .level = { &sname##_state.node[0] }, \
92 .rda = &sname##_data, \
94 .gp_state = RCU_GP_IDLE, \
95 .gpnum = 0UL - 300UL, \
96 .completed = 0UL - 300UL, \
97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 .orphan_donetail = &sname##_state.orphan_donelist, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
108 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
110 static struct rcu_state
*const rcu_state_p
;
111 LIST_HEAD(rcu_struct_flavors
);
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree
;
115 module_param(dump_tree
, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact
;
118 module_param(rcu_fanout_exact
, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
121 module_param(rcu_fanout_leaf
, int, 0444);
122 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
125 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly
;
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
141 int rcu_scheduler_active __read_mostly
;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
156 static int rcu_scheduler_fully_active __read_mostly
;
158 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
159 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
163 static void rcu_report_exp_rdp(struct rcu_state
*rsp
,
164 struct rcu_data
*rdp
, bool wake
);
165 static void sync_sched_exp_online_cleanup(int cpu
);
167 /* rcuc/rcub kthread realtime priority */
168 #ifdef CONFIG_RCU_KTHREAD_PRIO
169 static int kthread_prio
= CONFIG_RCU_KTHREAD_PRIO
;
170 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
171 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
172 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 module_param(kthread_prio
, int, 0644);
175 /* Delay in jiffies for grace-period initialization delays, debug only. */
177 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
178 static int gp_preinit_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY
;
179 module_param(gp_preinit_delay
, int, 0644);
180 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181 static const int gp_preinit_delay
;
182 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
185 static int gp_init_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
;
186 module_param(gp_init_delay
, int, 0644);
187 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188 static const int gp_init_delay
;
189 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
192 static int gp_cleanup_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY
;
193 module_param(gp_cleanup_delay
, int, 0644);
194 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195 static const int gp_cleanup_delay
;
196 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
199 * Number of grace periods between delays, normalized by the duration of
200 * the delay. The longer the the delay, the more the grace periods between
201 * each delay. The reason for this normalization is that it means that,
202 * for non-zero delays, the overall slowdown of grace periods is constant
203 * regardless of the duration of the delay. This arrangement balances
204 * the need for long delays to increase some race probabilities with the
205 * need for fast grace periods to increase other race probabilities.
207 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
210 * Track the rcutorture test sequence number and the update version
211 * number within a given test. The rcutorture_testseq is incremented
212 * on every rcutorture module load and unload, so has an odd value
213 * when a test is running. The rcutorture_vernum is set to zero
214 * when rcutorture starts and is incremented on each rcutorture update.
215 * These variables enable correlating rcutorture output with the
216 * RCU tracing information.
218 unsigned long rcutorture_testseq
;
219 unsigned long rcutorture_vernum
;
222 * Compute the mask of online CPUs for the specified rcu_node structure.
223 * This will not be stable unless the rcu_node structure's ->lock is
224 * held, but the bit corresponding to the current CPU will be stable
227 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
229 return READ_ONCE(rnp
->qsmaskinitnext
);
233 * Return true if an RCU grace period is in progress. The READ_ONCE()s
234 * permit this function to be invoked without holding the root rcu_node
235 * structure's ->lock, but of course results can be subject to change.
237 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
239 return READ_ONCE(rsp
->completed
) != READ_ONCE(rsp
->gpnum
);
243 * Note a quiescent state. Because we do not need to know
244 * how many quiescent states passed, just if there was at least
245 * one since the start of the grace period, this just sets a flag.
246 * The caller must have disabled preemption.
248 void rcu_sched_qs(void)
250 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.s
))
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data
.gpnum
),
255 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.norm
, false);
256 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
258 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, false);
259 rcu_report_exp_rdp(&rcu_sched_state
,
260 this_cpu_ptr(&rcu_sched_data
), true);
265 if (__this_cpu_read(rcu_bh_data
.cpu_no_qs
.s
)) {
266 trace_rcu_grace_period(TPS("rcu_bh"),
267 __this_cpu_read(rcu_bh_data
.gpnum
),
269 __this_cpu_write(rcu_bh_data
.cpu_no_qs
.b
.norm
, false);
273 static DEFINE_PER_CPU(int, rcu_sched_qs_mask
);
275 static DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
276 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
277 .dynticks
= ATOMIC_INIT(1),
278 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 .dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
,
280 .dynticks_idle
= ATOMIC_INIT(1),
281 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
284 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr
);
285 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr
);
288 * Let the RCU core know that this CPU has gone through the scheduler,
289 * which is a quiescent state. This is called when the need for a
290 * quiescent state is urgent, so we burn an atomic operation and full
291 * memory barriers to let the RCU core know about it, regardless of what
292 * this CPU might (or might not) do in the near future.
294 * We inform the RCU core by emulating a zero-duration dyntick-idle
295 * period, which we in turn do by incrementing the ->dynticks counter
298 * The caller must have disabled interrupts.
300 static void rcu_momentary_dyntick_idle(void)
302 struct rcu_data
*rdp
;
303 struct rcu_dynticks
*rdtp
;
305 struct rcu_state
*rsp
;
308 * Yes, we can lose flag-setting operations. This is OK, because
309 * the flag will be set again after some delay.
311 resched_mask
= raw_cpu_read(rcu_sched_qs_mask
);
312 raw_cpu_write(rcu_sched_qs_mask
, 0);
314 /* Find the flavor that needs a quiescent state. */
315 for_each_rcu_flavor(rsp
) {
316 rdp
= raw_cpu_ptr(rsp
->rda
);
317 if (!(resched_mask
& rsp
->flavor_mask
))
319 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
320 if (READ_ONCE(rdp
->mynode
->completed
) !=
321 READ_ONCE(rdp
->cond_resched_completed
))
325 * Pretend to be momentarily idle for the quiescent state.
326 * This allows the grace-period kthread to record the
327 * quiescent state, with no need for this CPU to do anything
330 rdtp
= this_cpu_ptr(&rcu_dynticks
);
331 smp_mb__before_atomic(); /* Earlier stuff before QS. */
332 atomic_add(2, &rdtp
->dynticks
); /* QS. */
333 smp_mb__after_atomic(); /* Later stuff after QS. */
339 * Note a context switch. This is a quiescent state for RCU-sched,
340 * and requires special handling for preemptible RCU.
341 * The caller must have disabled interrupts.
343 void rcu_note_context_switch(void)
345 barrier(); /* Avoid RCU read-side critical sections leaking down. */
346 trace_rcu_utilization(TPS("Start context switch"));
348 rcu_preempt_note_context_switch();
349 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
)))
350 rcu_momentary_dyntick_idle();
351 trace_rcu_utilization(TPS("End context switch"));
352 barrier(); /* Avoid RCU read-side critical sections leaking up. */
354 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
357 * Register a quiescent state for all RCU flavors. If there is an
358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
359 * dyntick-idle quiescent state visible to other CPUs (but only for those
360 * RCU flavors in desperate need of a quiescent state, which will normally
361 * be none of them). Either way, do a lightweight quiescent state for
364 * The barrier() calls are redundant in the common case when this is
365 * called externally, but just in case this is called from within this
369 void rcu_all_qs(void)
373 barrier(); /* Avoid RCU read-side critical sections leaking down. */
374 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
))) {
375 local_irq_save(flags
);
376 rcu_momentary_dyntick_idle();
377 local_irq_restore(flags
);
379 if (unlikely(raw_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))) {
381 * Yes, we just checked a per-CPU variable with preemption
382 * enabled, so we might be migrated to some other CPU at
383 * this point. That is OK because in that case, the
384 * migration will supply the needed quiescent state.
385 * We might end up needlessly disabling preemption and
386 * invoking rcu_sched_qs() on the destination CPU, but
387 * the probability and cost are both quite low, so this
388 * should not be a problem in practice.
394 this_cpu_inc(rcu_qs_ctr
);
395 barrier(); /* Avoid RCU read-side critical sections leaking up. */
397 EXPORT_SYMBOL_GPL(rcu_all_qs
);
399 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
400 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
401 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
403 module_param(blimit
, long, 0444);
404 module_param(qhimark
, long, 0444);
405 module_param(qlowmark
, long, 0444);
407 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
408 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
409 static bool rcu_kick_kthreads
;
411 module_param(jiffies_till_first_fqs
, ulong
, 0644);
412 module_param(jiffies_till_next_fqs
, ulong
, 0644);
413 module_param(rcu_kick_kthreads
, bool, 0644);
416 * How long the grace period must be before we start recruiting
417 * quiescent-state help from rcu_note_context_switch().
419 static ulong jiffies_till_sched_qs
= HZ
/ 20;
420 module_param(jiffies_till_sched_qs
, ulong
, 0644);
422 static bool rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
423 struct rcu_data
*rdp
);
424 static void force_qs_rnp(struct rcu_state
*rsp
,
425 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
426 unsigned long *maxj
),
427 bool *isidle
, unsigned long *maxj
);
428 static void force_quiescent_state(struct rcu_state
*rsp
);
429 static int rcu_pending(void);
432 * Return the number of RCU batches started thus far for debug & stats.
434 unsigned long rcu_batches_started(void)
436 return rcu_state_p
->gpnum
;
438 EXPORT_SYMBOL_GPL(rcu_batches_started
);
441 * Return the number of RCU-sched batches started thus far for debug & stats.
443 unsigned long rcu_batches_started_sched(void)
445 return rcu_sched_state
.gpnum
;
447 EXPORT_SYMBOL_GPL(rcu_batches_started_sched
);
450 * Return the number of RCU BH batches started thus far for debug & stats.
452 unsigned long rcu_batches_started_bh(void)
454 return rcu_bh_state
.gpnum
;
456 EXPORT_SYMBOL_GPL(rcu_batches_started_bh
);
459 * Return the number of RCU batches completed thus far for debug & stats.
461 unsigned long rcu_batches_completed(void)
463 return rcu_state_p
->completed
;
465 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
468 * Return the number of RCU-sched batches completed thus far for debug & stats.
470 unsigned long rcu_batches_completed_sched(void)
472 return rcu_sched_state
.completed
;
474 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
477 * Return the number of RCU BH batches completed thus far for debug & stats.
479 unsigned long rcu_batches_completed_bh(void)
481 return rcu_bh_state
.completed
;
483 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
486 * Return the number of RCU expedited batches completed thus far for
487 * debug & stats. Odd numbers mean that a batch is in progress, even
488 * numbers mean idle. The value returned will thus be roughly double
489 * the cumulative batches since boot.
491 unsigned long rcu_exp_batches_completed(void)
493 return rcu_state_p
->expedited_sequence
;
495 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed
);
498 * Return the number of RCU-sched expedited batches completed thus far
499 * for debug & stats. Similar to rcu_exp_batches_completed().
501 unsigned long rcu_exp_batches_completed_sched(void)
503 return rcu_sched_state
.expedited_sequence
;
505 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched
);
508 * Force a quiescent state.
510 void rcu_force_quiescent_state(void)
512 force_quiescent_state(rcu_state_p
);
514 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
517 * Force a quiescent state for RCU BH.
519 void rcu_bh_force_quiescent_state(void)
521 force_quiescent_state(&rcu_bh_state
);
523 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
526 * Force a quiescent state for RCU-sched.
528 void rcu_sched_force_quiescent_state(void)
530 force_quiescent_state(&rcu_sched_state
);
532 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
535 * Show the state of the grace-period kthreads.
537 void show_rcu_gp_kthreads(void)
539 struct rcu_state
*rsp
;
541 for_each_rcu_flavor(rsp
) {
542 pr_info("%s: wait state: %d ->state: %#lx\n",
543 rsp
->name
, rsp
->gp_state
, rsp
->gp_kthread
->state
);
544 /* sched_show_task(rsp->gp_kthread); */
547 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
550 * Record the number of times rcutorture tests have been initiated and
551 * terminated. This information allows the debugfs tracing stats to be
552 * correlated to the rcutorture messages, even when the rcutorture module
553 * is being repeatedly loaded and unloaded. In other words, we cannot
554 * store this state in rcutorture itself.
556 void rcutorture_record_test_transition(void)
558 rcutorture_testseq
++;
559 rcutorture_vernum
= 0;
561 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
564 * Send along grace-period-related data for rcutorture diagnostics.
566 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
567 unsigned long *gpnum
, unsigned long *completed
)
569 struct rcu_state
*rsp
= NULL
;
578 case RCU_SCHED_FLAVOR
:
579 rsp
= &rcu_sched_state
;
585 *flags
= READ_ONCE(rsp
->gp_flags
);
586 *gpnum
= READ_ONCE(rsp
->gpnum
);
587 *completed
= READ_ONCE(rsp
->completed
);
594 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
597 * Record the number of writer passes through the current rcutorture test.
598 * This is also used to correlate debugfs tracing stats with the rcutorture
601 void rcutorture_record_progress(unsigned long vernum
)
605 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
608 * Does the CPU have callbacks ready to be invoked?
611 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
613 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
] &&
614 rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
;
618 * Return the root node of the specified rcu_state structure.
620 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
622 return &rsp
->node
[0];
626 * Is there any need for future grace periods?
627 * Interrupts must be disabled. If the caller does not hold the root
628 * rnp_node structure's ->lock, the results are advisory only.
630 static int rcu_future_needs_gp(struct rcu_state
*rsp
)
632 struct rcu_node
*rnp
= rcu_get_root(rsp
);
633 int idx
= (READ_ONCE(rnp
->completed
) + 1) & 0x1;
634 int *fp
= &rnp
->need_future_gp
[idx
];
636 return READ_ONCE(*fp
);
640 * Does the current CPU require a not-yet-started grace period?
641 * The caller must have disabled interrupts to prevent races with
642 * normal callback registry.
645 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
649 if (rcu_gp_in_progress(rsp
))
650 return false; /* No, a grace period is already in progress. */
651 if (rcu_future_needs_gp(rsp
))
652 return true; /* Yes, a no-CBs CPU needs one. */
653 if (!rdp
->nxttail
[RCU_NEXT_TAIL
])
654 return false; /* No, this is a no-CBs (or offline) CPU. */
655 if (*rdp
->nxttail
[RCU_NEXT_READY_TAIL
])
656 return true; /* Yes, CPU has newly registered callbacks. */
657 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
658 if (rdp
->nxttail
[i
- 1] != rdp
->nxttail
[i
] &&
659 ULONG_CMP_LT(READ_ONCE(rsp
->completed
),
660 rdp
->nxtcompleted
[i
]))
661 return true; /* Yes, CBs for future grace period. */
662 return false; /* No grace period needed. */
666 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
668 * If the new value of the ->dynticks_nesting counter now is zero,
669 * we really have entered idle, and must do the appropriate accounting.
670 * The caller must have disabled interrupts.
672 static void rcu_eqs_enter_common(long long oldval
, bool user
)
674 struct rcu_state
*rsp
;
675 struct rcu_data
*rdp
;
676 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
678 trace_rcu_dyntick(TPS("Start"), oldval
, rdtp
->dynticks_nesting
);
679 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
680 !user
&& !is_idle_task(current
)) {
681 struct task_struct
*idle __maybe_unused
=
682 idle_task(smp_processor_id());
684 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval
, 0);
685 rcu_ftrace_dump(DUMP_ORIG
);
686 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
687 current
->pid
, current
->comm
,
688 idle
->pid
, idle
->comm
); /* must be idle task! */
690 for_each_rcu_flavor(rsp
) {
691 rdp
= this_cpu_ptr(rsp
->rda
);
692 do_nocb_deferred_wakeup(rdp
);
694 rcu_prepare_for_idle();
695 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
696 smp_mb__before_atomic(); /* See above. */
697 atomic_inc(&rdtp
->dynticks
);
698 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
699 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
700 atomic_read(&rdtp
->dynticks
) & 0x1);
701 rcu_dynticks_task_enter();
704 * It is illegal to enter an extended quiescent state while
705 * in an RCU read-side critical section.
707 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map
),
708 "Illegal idle entry in RCU read-side critical section.");
709 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
),
710 "Illegal idle entry in RCU-bh read-side critical section.");
711 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map
),
712 "Illegal idle entry in RCU-sched read-side critical section.");
716 * Enter an RCU extended quiescent state, which can be either the
717 * idle loop or adaptive-tickless usermode execution.
719 static void rcu_eqs_enter(bool user
)
722 struct rcu_dynticks
*rdtp
;
724 rdtp
= this_cpu_ptr(&rcu_dynticks
);
725 oldval
= rdtp
->dynticks_nesting
;
726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
727 (oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
728 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
) {
729 rdtp
->dynticks_nesting
= 0;
730 rcu_eqs_enter_common(oldval
, user
);
732 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
737 * rcu_idle_enter - inform RCU that current CPU is entering idle
739 * Enter idle mode, in other words, -leave- the mode in which RCU
740 * read-side critical sections can occur. (Though RCU read-side
741 * critical sections can occur in irq handlers in idle, a possibility
742 * handled by irq_enter() and irq_exit().)
744 * We crowbar the ->dynticks_nesting field to zero to allow for
745 * the possibility of usermode upcalls having messed up our count
746 * of interrupt nesting level during the prior busy period.
748 void rcu_idle_enter(void)
752 local_irq_save(flags
);
753 rcu_eqs_enter(false);
754 rcu_sysidle_enter(0);
755 local_irq_restore(flags
);
757 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
759 #ifdef CONFIG_NO_HZ_FULL
761 * rcu_user_enter - inform RCU that we are resuming userspace.
763 * Enter RCU idle mode right before resuming userspace. No use of RCU
764 * is permitted between this call and rcu_user_exit(). This way the
765 * CPU doesn't need to maintain the tick for RCU maintenance purposes
766 * when the CPU runs in userspace.
768 void rcu_user_enter(void)
772 #endif /* CONFIG_NO_HZ_FULL */
775 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
777 * Exit from an interrupt handler, which might possibly result in entering
778 * idle mode, in other words, leaving the mode in which read-side critical
779 * sections can occur. The caller must have disabled interrupts.
781 * This code assumes that the idle loop never does anything that might
782 * result in unbalanced calls to irq_enter() and irq_exit(). If your
783 * architecture violates this assumption, RCU will give you what you
784 * deserve, good and hard. But very infrequently and irreproducibly.
786 * Use things like work queues to work around this limitation.
788 * You have been warned.
790 void rcu_irq_exit(void)
793 struct rcu_dynticks
*rdtp
;
795 rdtp
= this_cpu_ptr(&rcu_dynticks
);
797 /* Page faults can happen in NMI handlers, so check... */
798 if (READ_ONCE(rdtp
->dynticks_nmi_nesting
))
801 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
802 oldval
= rdtp
->dynticks_nesting
;
803 rdtp
->dynticks_nesting
--;
804 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
805 rdtp
->dynticks_nesting
< 0);
806 if (rdtp
->dynticks_nesting
)
807 trace_rcu_dyntick(TPS("--="), oldval
, rdtp
->dynticks_nesting
);
809 rcu_eqs_enter_common(oldval
, true);
810 rcu_sysidle_enter(1);
814 * Wrapper for rcu_irq_exit() where interrupts are enabled.
816 void rcu_irq_exit_irqson(void)
820 local_irq_save(flags
);
822 local_irq_restore(flags
);
826 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
828 * If the new value of the ->dynticks_nesting counter was previously zero,
829 * we really have exited idle, and must do the appropriate accounting.
830 * The caller must have disabled interrupts.
832 static void rcu_eqs_exit_common(long long oldval
, int user
)
834 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
836 rcu_dynticks_task_exit();
837 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
838 atomic_inc(&rdtp
->dynticks
);
839 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
840 smp_mb__after_atomic(); /* See above. */
841 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
842 !(atomic_read(&rdtp
->dynticks
) & 0x1));
843 rcu_cleanup_after_idle();
844 trace_rcu_dyntick(TPS("End"), oldval
, rdtp
->dynticks_nesting
);
845 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
846 !user
&& !is_idle_task(current
)) {
847 struct task_struct
*idle __maybe_unused
=
848 idle_task(smp_processor_id());
850 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
851 oldval
, rdtp
->dynticks_nesting
);
852 rcu_ftrace_dump(DUMP_ORIG
);
853 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
854 current
->pid
, current
->comm
,
855 idle
->pid
, idle
->comm
); /* must be idle task! */
860 * Exit an RCU extended quiescent state, which can be either the
861 * idle loop or adaptive-tickless usermode execution.
863 static void rcu_eqs_exit(bool user
)
865 struct rcu_dynticks
*rdtp
;
868 rdtp
= this_cpu_ptr(&rcu_dynticks
);
869 oldval
= rdtp
->dynticks_nesting
;
870 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
871 if (oldval
& DYNTICK_TASK_NEST_MASK
) {
872 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
874 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
875 rcu_eqs_exit_common(oldval
, user
);
880 * rcu_idle_exit - inform RCU that current CPU is leaving idle
882 * Exit idle mode, in other words, -enter- the mode in which RCU
883 * read-side critical sections can occur.
885 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
886 * allow for the possibility of usermode upcalls messing up our count
887 * of interrupt nesting level during the busy period that is just
890 void rcu_idle_exit(void)
894 local_irq_save(flags
);
897 local_irq_restore(flags
);
899 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
901 #ifdef CONFIG_NO_HZ_FULL
903 * rcu_user_exit - inform RCU that we are exiting userspace.
905 * Exit RCU idle mode while entering the kernel because it can
906 * run a RCU read side critical section anytime.
908 void rcu_user_exit(void)
912 #endif /* CONFIG_NO_HZ_FULL */
915 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
917 * Enter an interrupt handler, which might possibly result in exiting
918 * idle mode, in other words, entering the mode in which read-side critical
919 * sections can occur. The caller must have disabled interrupts.
921 * Note that the Linux kernel is fully capable of entering an interrupt
922 * handler that it never exits, for example when doing upcalls to
923 * user mode! This code assumes that the idle loop never does upcalls to
924 * user mode. If your architecture does do upcalls from the idle loop (or
925 * does anything else that results in unbalanced calls to the irq_enter()
926 * and irq_exit() functions), RCU will give you what you deserve, good
927 * and hard. But very infrequently and irreproducibly.
929 * Use things like work queues to work around this limitation.
931 * You have been warned.
933 void rcu_irq_enter(void)
935 struct rcu_dynticks
*rdtp
;
938 rdtp
= this_cpu_ptr(&rcu_dynticks
);
940 /* Page faults can happen in NMI handlers, so check... */
941 if (READ_ONCE(rdtp
->dynticks_nmi_nesting
))
944 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
945 oldval
= rdtp
->dynticks_nesting
;
946 rdtp
->dynticks_nesting
++;
947 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
948 rdtp
->dynticks_nesting
== 0);
950 trace_rcu_dyntick(TPS("++="), oldval
, rdtp
->dynticks_nesting
);
952 rcu_eqs_exit_common(oldval
, true);
957 * Wrapper for rcu_irq_enter() where interrupts are enabled.
959 void rcu_irq_enter_irqson(void)
963 local_irq_save(flags
);
965 local_irq_restore(flags
);
969 * rcu_nmi_enter - inform RCU of entry to NMI context
971 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
972 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
973 * that the CPU is active. This implementation permits nested NMIs, as
974 * long as the nesting level does not overflow an int. (You will probably
975 * run out of stack space first.)
977 void rcu_nmi_enter(void)
979 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
982 /* Complain about underflow. */
983 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
< 0);
986 * If idle from RCU viewpoint, atomically increment ->dynticks
987 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
988 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
989 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
990 * to be in the outermost NMI handler that interrupted an RCU-idle
991 * period (observation due to Andy Lutomirski).
993 if (!(atomic_read(&rdtp
->dynticks
) & 0x1)) {
994 smp_mb__before_atomic(); /* Force delay from prior write. */
995 atomic_inc(&rdtp
->dynticks
);
996 /* atomic_inc() before later RCU read-side crit sects */
997 smp_mb__after_atomic(); /* See above. */
998 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
1001 rdtp
->dynticks_nmi_nesting
+= incby
;
1006 * rcu_nmi_exit - inform RCU of exit from NMI context
1008 * If we are returning from the outermost NMI handler that interrupted an
1009 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1010 * to let the RCU grace-period handling know that the CPU is back to
1013 void rcu_nmi_exit(void)
1015 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1018 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1019 * (We are exiting an NMI handler, so RCU better be paying attention
1022 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
<= 0);
1023 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
1026 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1027 * leave it in non-RCU-idle state.
1029 if (rdtp
->dynticks_nmi_nesting
!= 1) {
1030 rdtp
->dynticks_nmi_nesting
-= 2;
1034 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1035 rdtp
->dynticks_nmi_nesting
= 0;
1036 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1037 smp_mb__before_atomic(); /* See above. */
1038 atomic_inc(&rdtp
->dynticks
);
1039 smp_mb__after_atomic(); /* Force delay to next write. */
1040 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
1044 * __rcu_is_watching - are RCU read-side critical sections safe?
1046 * Return true if RCU is watching the running CPU, which means that
1047 * this CPU can safely enter RCU read-side critical sections. Unlike
1048 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1049 * least disabled preemption.
1051 bool notrace
__rcu_is_watching(void)
1053 return atomic_read(this_cpu_ptr(&rcu_dynticks
.dynticks
)) & 0x1;
1057 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1059 * If the current CPU is in its idle loop and is neither in an interrupt
1060 * or NMI handler, return true.
1062 bool notrace
rcu_is_watching(void)
1066 preempt_disable_notrace();
1067 ret
= __rcu_is_watching();
1068 preempt_enable_notrace();
1071 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1073 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1076 * Is the current CPU online? Disable preemption to avoid false positives
1077 * that could otherwise happen due to the current CPU number being sampled,
1078 * this task being preempted, its old CPU being taken offline, resuming
1079 * on some other CPU, then determining that its old CPU is now offline.
1080 * It is OK to use RCU on an offline processor during initial boot, hence
1081 * the check for rcu_scheduler_fully_active. Note also that it is OK
1082 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1083 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1084 * offline to continue to use RCU for one jiffy after marking itself
1085 * offline in the cpu_online_mask. This leniency is necessary given the
1086 * non-atomic nature of the online and offline processing, for example,
1087 * the fact that a CPU enters the scheduler after completing the teardown
1090 * This is also why RCU internally marks CPUs online during in the
1091 * preparation phase and offline after the CPU has been taken down.
1093 * Disable checking if in an NMI handler because we cannot safely report
1094 * errors from NMI handlers anyway.
1096 bool rcu_lockdep_current_cpu_online(void)
1098 struct rcu_data
*rdp
;
1099 struct rcu_node
*rnp
;
1105 rdp
= this_cpu_ptr(&rcu_sched_data
);
1107 ret
= (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) ||
1108 !rcu_scheduler_fully_active
;
1112 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1114 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1117 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1119 * If the current CPU is idle or running at a first-level (not nested)
1120 * interrupt from idle, return true. The caller must have at least
1121 * disabled preemption.
1123 static int rcu_is_cpu_rrupt_from_idle(void)
1125 return __this_cpu_read(rcu_dynticks
.dynticks_nesting
) <= 1;
1129 * Snapshot the specified CPU's dynticks counter so that we can later
1130 * credit them with an implicit quiescent state. Return 1 if this CPU
1131 * is in dynticks idle mode, which is an extended quiescent state.
1133 static int dyntick_save_progress_counter(struct rcu_data
*rdp
,
1134 bool *isidle
, unsigned long *maxj
)
1136 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1137 rcu_sysidle_check_cpu(rdp
, isidle
, maxj
);
1138 if ((rdp
->dynticks_snap
& 0x1) == 0) {
1139 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1140 if (ULONG_CMP_LT(READ_ONCE(rdp
->gpnum
) + ULONG_MAX
/ 4,
1141 rdp
->mynode
->gpnum
))
1142 WRITE_ONCE(rdp
->gpwrap
, true);
1149 * Return true if the specified CPU has passed through a quiescent
1150 * state by virtue of being in or having passed through an dynticks
1151 * idle state since the last call to dyntick_save_progress_counter()
1152 * for this same CPU, or by virtue of having been offline.
1154 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
,
1155 bool *isidle
, unsigned long *maxj
)
1161 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1162 snap
= (unsigned int)rdp
->dynticks_snap
;
1165 * If the CPU passed through or entered a dynticks idle phase with
1166 * no active irq/NMI handlers, then we can safely pretend that the CPU
1167 * already acknowledged the request to pass through a quiescent
1168 * state. Either way, that CPU cannot possibly be in an RCU
1169 * read-side critical section that started before the beginning
1170 * of the current RCU grace period.
1172 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
1173 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1174 rdp
->dynticks_fqs
++;
1179 * Check for the CPU being offline, but only if the grace period
1180 * is old enough. We don't need to worry about the CPU changing
1181 * state: If we see it offline even once, it has been through a
1184 * The reason for insisting that the grace period be at least
1185 * one jiffy old is that CPUs that are not quite online and that
1186 * have just gone offline can still execute RCU read-side critical
1189 if (ULONG_CMP_GE(rdp
->rsp
->gp_start
+ 2, jiffies
))
1190 return 0; /* Grace period is not old enough. */
1192 if (cpu_is_offline(rdp
->cpu
)) {
1193 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("ofl"));
1199 * A CPU running for an extended time within the kernel can
1200 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1201 * even context-switching back and forth between a pair of
1202 * in-kernel CPU-bound tasks cannot advance grace periods.
1203 * So if the grace period is old enough, make the CPU pay attention.
1204 * Note that the unsynchronized assignments to the per-CPU
1205 * rcu_sched_qs_mask variable are safe. Yes, setting of
1206 * bits can be lost, but they will be set again on the next
1207 * force-quiescent-state pass. So lost bit sets do not result
1208 * in incorrect behavior, merely in a grace period lasting
1209 * a few jiffies longer than it might otherwise. Because
1210 * there are at most four threads involved, and because the
1211 * updates are only once every few jiffies, the probability of
1212 * lossage (and thus of slight grace-period extension) is
1215 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1216 * is set too high, we override with half of the RCU CPU stall
1219 rcrmp
= &per_cpu(rcu_sched_qs_mask
, rdp
->cpu
);
1220 if (ULONG_CMP_GE(jiffies
,
1221 rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
) ||
1222 ULONG_CMP_GE(jiffies
, rdp
->rsp
->jiffies_resched
)) {
1223 if (!(READ_ONCE(*rcrmp
) & rdp
->rsp
->flavor_mask
)) {
1224 WRITE_ONCE(rdp
->cond_resched_completed
,
1225 READ_ONCE(rdp
->mynode
->completed
));
1226 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1228 READ_ONCE(*rcrmp
) + rdp
->rsp
->flavor_mask
);
1230 rdp
->rsp
->jiffies_resched
+= 5; /* Re-enable beating. */
1233 /* And if it has been a really long time, kick the CPU as well. */
1234 if (ULONG_CMP_GE(jiffies
,
1235 rdp
->rsp
->gp_start
+ 2 * jiffies_till_sched_qs
) ||
1236 ULONG_CMP_GE(jiffies
, rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
))
1237 resched_cpu(rdp
->cpu
); /* Force CPU into scheduler. */
1242 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
1244 unsigned long j
= jiffies
;
1248 smp_wmb(); /* Record start time before stall time. */
1249 j1
= rcu_jiffies_till_stall_check();
1250 WRITE_ONCE(rsp
->jiffies_stall
, j
+ j1
);
1251 rsp
->jiffies_resched
= j
+ j1
/ 2;
1252 rsp
->n_force_qs_gpstart
= READ_ONCE(rsp
->n_force_qs
);
1256 * Convert a ->gp_state value to a character string.
1258 static const char *gp_state_getname(short gs
)
1260 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
1262 return gp_state_names
[gs
];
1266 * Complain about starvation of grace-period kthread.
1268 static void rcu_check_gp_kthread_starvation(struct rcu_state
*rsp
)
1274 gpa
= READ_ONCE(rsp
->gp_activity
);
1275 if (j
- gpa
> 2 * HZ
) {
1276 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1278 rsp
->gpnum
, rsp
->completed
,
1280 gp_state_getname(rsp
->gp_state
), rsp
->gp_state
,
1281 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: ~0);
1282 if (rsp
->gp_kthread
) {
1283 sched_show_task(rsp
->gp_kthread
);
1284 wake_up_process(rsp
->gp_kthread
);
1290 * Dump stacks of all tasks running on stalled CPUs.
1292 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
1295 unsigned long flags
;
1296 struct rcu_node
*rnp
;
1298 rcu_for_each_leaf_node(rsp
, rnp
) {
1299 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1300 if (rnp
->qsmask
!= 0) {
1301 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1302 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
))
1305 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1310 * If too much time has passed in the current grace period, and if
1311 * so configured, go kick the relevant kthreads.
1313 static void rcu_stall_kick_kthreads(struct rcu_state
*rsp
)
1317 if (!rcu_kick_kthreads
)
1319 j
= READ_ONCE(rsp
->jiffies_kick_kthreads
);
1320 if (time_after(jiffies
, j
) && rsp
->gp_kthread
) {
1321 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp
->name
);
1322 rcu_ftrace_dump(DUMP_ALL
);
1323 wake_up_process(rsp
->gp_kthread
);
1324 WRITE_ONCE(rsp
->jiffies_kick_kthreads
, j
+ HZ
);
1328 static inline void panic_on_rcu_stall(void)
1330 if (sysctl_panic_on_rcu_stall
)
1331 panic("RCU Stall\n");
1334 static void print_other_cpu_stall(struct rcu_state
*rsp
, unsigned long gpnum
)
1338 unsigned long flags
;
1342 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1345 /* Kick and suppress, if so configured. */
1346 rcu_stall_kick_kthreads(rsp
);
1347 if (rcu_cpu_stall_suppress
)
1350 /* Only let one CPU complain about others per time interval. */
1352 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1353 delta
= jiffies
- READ_ONCE(rsp
->jiffies_stall
);
1354 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
1355 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1358 WRITE_ONCE(rsp
->jiffies_stall
,
1359 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1360 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1363 * OK, time to rat on our buddy...
1364 * See Documentation/RCU/stallwarn.txt for info on how to debug
1365 * RCU CPU stall warnings.
1367 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1369 print_cpu_stall_info_begin();
1370 rcu_for_each_leaf_node(rsp
, rnp
) {
1371 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1372 ndetected
+= rcu_print_task_stall(rnp
);
1373 if (rnp
->qsmask
!= 0) {
1374 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1375 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
)) {
1376 print_cpu_stall_info(rsp
, cpu
);
1380 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1383 print_cpu_stall_info_end();
1384 for_each_possible_cpu(cpu
)
1385 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1386 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1387 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
1388 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1390 rcu_dump_cpu_stacks(rsp
);
1392 if (READ_ONCE(rsp
->gpnum
) != gpnum
||
1393 READ_ONCE(rsp
->completed
) == gpnum
) {
1394 pr_err("INFO: Stall ended before state dump start\n");
1397 gpa
= READ_ONCE(rsp
->gp_activity
);
1398 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1399 rsp
->name
, j
- gpa
, j
, gpa
,
1400 jiffies_till_next_fqs
,
1401 rcu_get_root(rsp
)->qsmask
);
1402 /* In this case, the current CPU might be at fault. */
1403 sched_show_task(current
);
1407 /* Complain about tasks blocking the grace period. */
1408 rcu_print_detail_task_stall(rsp
);
1410 rcu_check_gp_kthread_starvation(rsp
);
1412 panic_on_rcu_stall();
1414 force_quiescent_state(rsp
); /* Kick them all. */
1417 static void print_cpu_stall(struct rcu_state
*rsp
)
1420 unsigned long flags
;
1421 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1424 /* Kick and suppress, if so configured. */
1425 rcu_stall_kick_kthreads(rsp
);
1426 if (rcu_cpu_stall_suppress
)
1430 * OK, time to rat on ourselves...
1431 * See Documentation/RCU/stallwarn.txt for info on how to debug
1432 * RCU CPU stall warnings.
1434 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
1435 print_cpu_stall_info_begin();
1436 print_cpu_stall_info(rsp
, smp_processor_id());
1437 print_cpu_stall_info_end();
1438 for_each_possible_cpu(cpu
)
1439 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1440 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1441 jiffies
- rsp
->gp_start
,
1442 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1444 rcu_check_gp_kthread_starvation(rsp
);
1446 rcu_dump_cpu_stacks(rsp
);
1448 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1449 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1450 WRITE_ONCE(rsp
->jiffies_stall
,
1451 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1452 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1454 panic_on_rcu_stall();
1457 * Attempt to revive the RCU machinery by forcing a context switch.
1459 * A context switch would normally allow the RCU state machine to make
1460 * progress and it could be we're stuck in kernel space without context
1461 * switches for an entirely unreasonable amount of time.
1463 resched_cpu(smp_processor_id());
1466 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1468 unsigned long completed
;
1469 unsigned long gpnum
;
1473 struct rcu_node
*rnp
;
1475 if ((rcu_cpu_stall_suppress
&& !rcu_kick_kthreads
) ||
1476 !rcu_gp_in_progress(rsp
))
1478 rcu_stall_kick_kthreads(rsp
);
1482 * Lots of memory barriers to reject false positives.
1484 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1485 * then rsp->gp_start, and finally rsp->completed. These values
1486 * are updated in the opposite order with memory barriers (or
1487 * equivalent) during grace-period initialization and cleanup.
1488 * Now, a false positive can occur if we get an new value of
1489 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1490 * the memory barriers, the only way that this can happen is if one
1491 * grace period ends and another starts between these two fetches.
1492 * Detect this by comparing rsp->completed with the previous fetch
1495 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1496 * and rsp->gp_start suffice to forestall false positives.
1498 gpnum
= READ_ONCE(rsp
->gpnum
);
1499 smp_rmb(); /* Pick up ->gpnum first... */
1500 js
= READ_ONCE(rsp
->jiffies_stall
);
1501 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1502 gps
= READ_ONCE(rsp
->gp_start
);
1503 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1504 completed
= READ_ONCE(rsp
->completed
);
1505 if (ULONG_CMP_GE(completed
, gpnum
) ||
1506 ULONG_CMP_LT(j
, js
) ||
1507 ULONG_CMP_GE(gps
, js
))
1508 return; /* No stall or GP completed since entering function. */
1510 if (rcu_gp_in_progress(rsp
) &&
1511 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
)) {
1513 /* We haven't checked in, so go dump stack. */
1514 print_cpu_stall(rsp
);
1516 } else if (rcu_gp_in_progress(rsp
) &&
1517 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
1519 /* They had a few time units to dump stack, so complain. */
1520 print_other_cpu_stall(rsp
, gpnum
);
1525 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1527 * Set the stall-warning timeout way off into the future, thus preventing
1528 * any RCU CPU stall-warning messages from appearing in the current set of
1529 * RCU grace periods.
1531 * The caller must disable hard irqs.
1533 void rcu_cpu_stall_reset(void)
1535 struct rcu_state
*rsp
;
1537 for_each_rcu_flavor(rsp
)
1538 WRITE_ONCE(rsp
->jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1542 * Initialize the specified rcu_data structure's default callback list
1543 * to empty. The default callback list is the one that is not used by
1544 * no-callbacks CPUs.
1546 static void init_default_callback_list(struct rcu_data
*rdp
)
1550 rdp
->nxtlist
= NULL
;
1551 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1552 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1556 * Initialize the specified rcu_data structure's callback list to empty.
1558 static void init_callback_list(struct rcu_data
*rdp
)
1560 if (init_nocb_callback_list(rdp
))
1562 init_default_callback_list(rdp
);
1566 * Determine the value that ->completed will have at the end of the
1567 * next subsequent grace period. This is used to tag callbacks so that
1568 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1569 * been dyntick-idle for an extended period with callbacks under the
1570 * influence of RCU_FAST_NO_HZ.
1572 * The caller must hold rnp->lock with interrupts disabled.
1574 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
1575 struct rcu_node
*rnp
)
1578 * If RCU is idle, we just wait for the next grace period.
1579 * But we can only be sure that RCU is idle if we are looking
1580 * at the root rcu_node structure -- otherwise, a new grace
1581 * period might have started, but just not yet gotten around
1582 * to initializing the current non-root rcu_node structure.
1584 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1585 return rnp
->completed
+ 1;
1588 * Otherwise, wait for a possible partial grace period and
1589 * then the subsequent full grace period.
1591 return rnp
->completed
+ 2;
1595 * Trace-event helper function for rcu_start_future_gp() and
1596 * rcu_nocb_wait_gp().
1598 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1599 unsigned long c
, const char *s
)
1601 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1602 rnp
->completed
, c
, rnp
->level
,
1603 rnp
->grplo
, rnp
->grphi
, s
);
1607 * Start some future grace period, as needed to handle newly arrived
1608 * callbacks. The required future grace periods are recorded in each
1609 * rcu_node structure's ->need_future_gp field. Returns true if there
1610 * is reason to awaken the grace-period kthread.
1612 * The caller must hold the specified rcu_node structure's ->lock.
1614 static bool __maybe_unused
1615 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1616 unsigned long *c_out
)
1621 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1624 * Pick up grace-period number for new callbacks. If this
1625 * grace period is already marked as needed, return to the caller.
1627 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1628 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startleaf"));
1629 if (rnp
->need_future_gp
[c
& 0x1]) {
1630 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartleaf"));
1635 * If either this rcu_node structure or the root rcu_node structure
1636 * believe that a grace period is in progress, then we must wait
1637 * for the one following, which is in "c". Because our request
1638 * will be noticed at the end of the current grace period, we don't
1639 * need to explicitly start one. We only do the lockless check
1640 * of rnp_root's fields if the current rcu_node structure thinks
1641 * there is no grace period in flight, and because we hold rnp->lock,
1642 * the only possible change is when rnp_root's two fields are
1643 * equal, in which case rnp_root->gpnum might be concurrently
1644 * incremented. But that is OK, as it will just result in our
1645 * doing some extra useless work.
1647 if (rnp
->gpnum
!= rnp
->completed
||
1648 READ_ONCE(rnp_root
->gpnum
) != READ_ONCE(rnp_root
->completed
)) {
1649 rnp
->need_future_gp
[c
& 0x1]++;
1650 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleaf"));
1655 * There might be no grace period in progress. If we don't already
1656 * hold it, acquire the root rcu_node structure's lock in order to
1657 * start one (if needed).
1659 if (rnp
!= rnp_root
)
1660 raw_spin_lock_rcu_node(rnp_root
);
1663 * Get a new grace-period number. If there really is no grace
1664 * period in progress, it will be smaller than the one we obtained
1665 * earlier. Adjust callbacks as needed. Note that even no-CBs
1666 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1668 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1669 for (i
= RCU_DONE_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
1670 if (ULONG_CMP_LT(c
, rdp
->nxtcompleted
[i
]))
1671 rdp
->nxtcompleted
[i
] = c
;
1674 * If the needed for the required grace period is already
1675 * recorded, trace and leave.
1677 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1678 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartedroot"));
1682 /* Record the need for the future grace period. */
1683 rnp_root
->need_future_gp
[c
& 0x1]++;
1685 /* If a grace period is not already in progress, start one. */
1686 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1687 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleafroot"));
1689 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedroot"));
1690 ret
= rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1693 if (rnp
!= rnp_root
)
1694 raw_spin_unlock_rcu_node(rnp_root
);
1702 * Clean up any old requests for the just-ended grace period. Also return
1703 * whether any additional grace periods have been requested. Also invoke
1704 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1705 * waiting for this grace period to complete.
1707 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1709 int c
= rnp
->completed
;
1711 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1713 rnp
->need_future_gp
[c
& 0x1] = 0;
1714 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1715 trace_rcu_future_gp(rnp
, rdp
, c
,
1716 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1721 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1722 * an interrupt or softirq handler), and don't bother awakening when there
1723 * is nothing for the grace-period kthread to do (as in several CPUs raced
1724 * to awaken, and we lost), and finally don't try to awaken a kthread that
1725 * has not yet been created. If all those checks are passed, track some
1726 * debug information and awaken.
1728 * So why do the self-wakeup when in an interrupt or softirq handler
1729 * in the grace-period kthread's context? Because the kthread might have
1730 * been interrupted just as it was going to sleep, and just after the final
1731 * pre-sleep check of the awaken condition. In this case, a wakeup really
1732 * is required, and is therefore supplied.
1734 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1736 if ((current
== rsp
->gp_kthread
&&
1737 !in_interrupt() && !in_serving_softirq()) ||
1738 !READ_ONCE(rsp
->gp_flags
) ||
1741 swake_up(&rsp
->gp_wq
);
1745 * If there is room, assign a ->completed number to any callbacks on
1746 * this CPU that have not already been assigned. Also accelerate any
1747 * callbacks that were previously assigned a ->completed number that has
1748 * since proven to be too conservative, which can happen if callbacks get
1749 * assigned a ->completed number while RCU is idle, but with reference to
1750 * a non-root rcu_node structure. This function is idempotent, so it does
1751 * not hurt to call it repeatedly. Returns an flag saying that we should
1752 * awaken the RCU grace-period kthread.
1754 * The caller must hold rnp->lock with interrupts disabled.
1756 static bool rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1757 struct rcu_data
*rdp
)
1763 /* If the CPU has no callbacks, nothing to do. */
1764 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1768 * Starting from the sublist containing the callbacks most
1769 * recently assigned a ->completed number and working down, find the
1770 * first sublist that is not assignable to an upcoming grace period.
1771 * Such a sublist has something in it (first two tests) and has
1772 * a ->completed number assigned that will complete sooner than
1773 * the ->completed number for newly arrived callbacks (last test).
1775 * The key point is that any later sublist can be assigned the
1776 * same ->completed number as the newly arrived callbacks, which
1777 * means that the callbacks in any of these later sublist can be
1778 * grouped into a single sublist, whether or not they have already
1779 * been assigned a ->completed number.
1781 c
= rcu_cbs_completed(rsp
, rnp
);
1782 for (i
= RCU_NEXT_TAIL
- 1; i
> RCU_DONE_TAIL
; i
--)
1783 if (rdp
->nxttail
[i
] != rdp
->nxttail
[i
- 1] &&
1784 !ULONG_CMP_GE(rdp
->nxtcompleted
[i
], c
))
1788 * If there are no sublist for unassigned callbacks, leave.
1789 * At the same time, advance "i" one sublist, so that "i" will
1790 * index into the sublist where all the remaining callbacks should
1793 if (++i
>= RCU_NEXT_TAIL
)
1797 * Assign all subsequent callbacks' ->completed number to the next
1798 * full grace period and group them all in the sublist initially
1801 for (; i
<= RCU_NEXT_TAIL
; i
++) {
1802 rdp
->nxttail
[i
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1803 rdp
->nxtcompleted
[i
] = c
;
1805 /* Record any needed additional grace periods. */
1806 ret
= rcu_start_future_gp(rnp
, rdp
, NULL
);
1808 /* Trace depending on how much we were able to accelerate. */
1809 if (!*rdp
->nxttail
[RCU_WAIT_TAIL
])
1810 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccWaitCB"));
1812 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccReadyCB"));
1817 * Move any callbacks whose grace period has completed to the
1818 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1819 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1820 * sublist. This function is idempotent, so it does not hurt to
1821 * invoke it repeatedly. As long as it is not invoked -too- often...
1822 * Returns true if the RCU grace-period kthread needs to be awakened.
1824 * The caller must hold rnp->lock with interrupts disabled.
1826 static bool rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1827 struct rcu_data
*rdp
)
1831 /* If the CPU has no callbacks, nothing to do. */
1832 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1836 * Find all callbacks whose ->completed numbers indicate that they
1837 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1839 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++) {
1840 if (ULONG_CMP_LT(rnp
->completed
, rdp
->nxtcompleted
[i
]))
1842 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[i
];
1844 /* Clean up any sublist tail pointers that were misordered above. */
1845 for (j
= RCU_WAIT_TAIL
; j
< i
; j
++)
1846 rdp
->nxttail
[j
] = rdp
->nxttail
[RCU_DONE_TAIL
];
1848 /* Copy down callbacks to fill in empty sublists. */
1849 for (j
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++, j
++) {
1850 if (rdp
->nxttail
[j
] == rdp
->nxttail
[RCU_NEXT_TAIL
])
1852 rdp
->nxttail
[j
] = rdp
->nxttail
[i
];
1853 rdp
->nxtcompleted
[j
] = rdp
->nxtcompleted
[i
];
1856 /* Classify any remaining callbacks. */
1857 return rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1861 * Update CPU-local rcu_data state to record the beginnings and ends of
1862 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1863 * structure corresponding to the current CPU, and must have irqs disabled.
1864 * Returns true if the grace-period kthread needs to be awakened.
1866 static bool __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1867 struct rcu_data
*rdp
)
1872 /* Handle the ends of any preceding grace periods first. */
1873 if (rdp
->completed
== rnp
->completed
&&
1874 !unlikely(READ_ONCE(rdp
->gpwrap
))) {
1876 /* No grace period end, so just accelerate recent callbacks. */
1877 ret
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1881 /* Advance callbacks. */
1882 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
);
1884 /* Remember that we saw this grace-period completion. */
1885 rdp
->completed
= rnp
->completed
;
1886 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuend"));
1889 if (rdp
->gpnum
!= rnp
->gpnum
|| unlikely(READ_ONCE(rdp
->gpwrap
))) {
1891 * If the current grace period is waiting for this CPU,
1892 * set up to detect a quiescent state, otherwise don't
1893 * go looking for one.
1895 rdp
->gpnum
= rnp
->gpnum
;
1896 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpustart"));
1897 need_gp
= !!(rnp
->qsmask
& rdp
->grpmask
);
1898 rdp
->cpu_no_qs
.b
.norm
= need_gp
;
1899 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
1900 rdp
->core_needs_qs
= need_gp
;
1901 zero_cpu_stall_ticks(rdp
);
1902 WRITE_ONCE(rdp
->gpwrap
, false);
1907 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1909 unsigned long flags
;
1911 struct rcu_node
*rnp
;
1913 local_irq_save(flags
);
1915 if ((rdp
->gpnum
== READ_ONCE(rnp
->gpnum
) &&
1916 rdp
->completed
== READ_ONCE(rnp
->completed
) &&
1917 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1918 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1919 local_irq_restore(flags
);
1922 needwake
= __note_gp_changes(rsp
, rnp
, rdp
);
1923 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1925 rcu_gp_kthread_wake(rsp
);
1928 static void rcu_gp_slow(struct rcu_state
*rsp
, int delay
)
1931 !(rsp
->gpnum
% (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1932 schedule_timeout_uninterruptible(delay
);
1936 * Initialize a new grace period. Return false if no grace period required.
1938 static bool rcu_gp_init(struct rcu_state
*rsp
)
1940 unsigned long oldmask
;
1941 struct rcu_data
*rdp
;
1942 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1944 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1945 raw_spin_lock_irq_rcu_node(rnp
);
1946 if (!READ_ONCE(rsp
->gp_flags
)) {
1947 /* Spurious wakeup, tell caller to go back to sleep. */
1948 raw_spin_unlock_irq_rcu_node(rnp
);
1951 WRITE_ONCE(rsp
->gp_flags
, 0); /* Clear all flags: New grace period. */
1953 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp
))) {
1955 * Grace period already in progress, don't start another.
1956 * Not supposed to be able to happen.
1958 raw_spin_unlock_irq_rcu_node(rnp
);
1962 /* Advance to a new grace period and initialize state. */
1963 record_gp_stall_check_time(rsp
);
1964 /* Record GP times before starting GP, hence smp_store_release(). */
1965 smp_store_release(&rsp
->gpnum
, rsp
->gpnum
+ 1);
1966 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, TPS("start"));
1967 raw_spin_unlock_irq_rcu_node(rnp
);
1970 * Apply per-leaf buffered online and offline operations to the
1971 * rcu_node tree. Note that this new grace period need not wait
1972 * for subsequent online CPUs, and that quiescent-state forcing
1973 * will handle subsequent offline CPUs.
1975 rcu_for_each_leaf_node(rsp
, rnp
) {
1976 rcu_gp_slow(rsp
, gp_preinit_delay
);
1977 raw_spin_lock_irq_rcu_node(rnp
);
1978 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1979 !rnp
->wait_blkd_tasks
) {
1980 /* Nothing to do on this leaf rcu_node structure. */
1981 raw_spin_unlock_irq_rcu_node(rnp
);
1985 /* Record old state, apply changes to ->qsmaskinit field. */
1986 oldmask
= rnp
->qsmaskinit
;
1987 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1989 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1990 if (!oldmask
!= !rnp
->qsmaskinit
) {
1991 if (!oldmask
) /* First online CPU for this rcu_node. */
1992 rcu_init_new_rnp(rnp
);
1993 else if (rcu_preempt_has_tasks(rnp
)) /* blocked tasks */
1994 rnp
->wait_blkd_tasks
= true;
1995 else /* Last offline CPU and can propagate. */
1996 rcu_cleanup_dead_rnp(rnp
);
2000 * If all waited-on tasks from prior grace period are
2001 * done, and if all this rcu_node structure's CPUs are
2002 * still offline, propagate up the rcu_node tree and
2003 * clear ->wait_blkd_tasks. Otherwise, if one of this
2004 * rcu_node structure's CPUs has since come back online,
2005 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2006 * checks for this, so just call it unconditionally).
2008 if (rnp
->wait_blkd_tasks
&&
2009 (!rcu_preempt_has_tasks(rnp
) ||
2011 rnp
->wait_blkd_tasks
= false;
2012 rcu_cleanup_dead_rnp(rnp
);
2015 raw_spin_unlock_irq_rcu_node(rnp
);
2019 * Set the quiescent-state-needed bits in all the rcu_node
2020 * structures for all currently online CPUs in breadth-first order,
2021 * starting from the root rcu_node structure, relying on the layout
2022 * of the tree within the rsp->node[] array. Note that other CPUs
2023 * will access only the leaves of the hierarchy, thus seeing that no
2024 * grace period is in progress, at least until the corresponding
2025 * leaf node has been initialized.
2027 * The grace period cannot complete until the initialization
2028 * process finishes, because this kthread handles both.
2030 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2031 rcu_gp_slow(rsp
, gp_init_delay
);
2032 raw_spin_lock_irq_rcu_node(rnp
);
2033 rdp
= this_cpu_ptr(rsp
->rda
);
2034 rcu_preempt_check_blocked_tasks(rnp
);
2035 rnp
->qsmask
= rnp
->qsmaskinit
;
2036 WRITE_ONCE(rnp
->gpnum
, rsp
->gpnum
);
2037 if (WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
))
2038 WRITE_ONCE(rnp
->completed
, rsp
->completed
);
2039 if (rnp
== rdp
->mynode
)
2040 (void)__note_gp_changes(rsp
, rnp
, rdp
);
2041 rcu_preempt_boost_start_gp(rnp
);
2042 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
2043 rnp
->level
, rnp
->grplo
,
2044 rnp
->grphi
, rnp
->qsmask
);
2045 raw_spin_unlock_irq_rcu_node(rnp
);
2046 cond_resched_rcu_qs();
2047 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2054 * Helper function for wait_event_interruptible_timeout() wakeup
2055 * at force-quiescent-state time.
2057 static bool rcu_gp_fqs_check_wake(struct rcu_state
*rsp
, int *gfp
)
2059 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2061 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2062 *gfp
= READ_ONCE(rsp
->gp_flags
);
2063 if (*gfp
& RCU_GP_FLAG_FQS
)
2066 /* The current grace period has completed. */
2067 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
2074 * Do one round of quiescent-state forcing.
2076 static void rcu_gp_fqs(struct rcu_state
*rsp
, bool first_time
)
2078 bool isidle
= false;
2080 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2082 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2085 /* Collect dyntick-idle snapshots. */
2086 if (is_sysidle_rcu_state(rsp
)) {
2088 maxj
= jiffies
- ULONG_MAX
/ 4;
2090 force_qs_rnp(rsp
, dyntick_save_progress_counter
,
2092 rcu_sysidle_report_gp(rsp
, isidle
, maxj
);
2094 /* Handle dyntick-idle and offline CPUs. */
2096 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
, &isidle
, &maxj
);
2098 /* Clear flag to prevent immediate re-entry. */
2099 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2100 raw_spin_lock_irq_rcu_node(rnp
);
2101 WRITE_ONCE(rsp
->gp_flags
,
2102 READ_ONCE(rsp
->gp_flags
) & ~RCU_GP_FLAG_FQS
);
2103 raw_spin_unlock_irq_rcu_node(rnp
);
2108 * Clean up after the old grace period.
2110 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
2112 unsigned long gp_duration
;
2113 bool needgp
= false;
2115 struct rcu_data
*rdp
;
2116 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2117 struct swait_queue_head
*sq
;
2119 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2120 raw_spin_lock_irq_rcu_node(rnp
);
2121 gp_duration
= jiffies
- rsp
->gp_start
;
2122 if (gp_duration
> rsp
->gp_max
)
2123 rsp
->gp_max
= gp_duration
;
2126 * We know the grace period is complete, but to everyone else
2127 * it appears to still be ongoing. But it is also the case
2128 * that to everyone else it looks like there is nothing that
2129 * they can do to advance the grace period. It is therefore
2130 * safe for us to drop the lock in order to mark the grace
2131 * period as completed in all of the rcu_node structures.
2133 raw_spin_unlock_irq_rcu_node(rnp
);
2136 * Propagate new ->completed value to rcu_node structures so
2137 * that other CPUs don't have to wait until the start of the next
2138 * grace period to process their callbacks. This also avoids
2139 * some nasty RCU grace-period initialization races by forcing
2140 * the end of the current grace period to be completely recorded in
2141 * all of the rcu_node structures before the beginning of the next
2142 * grace period is recorded in any of the rcu_node structures.
2144 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2145 raw_spin_lock_irq_rcu_node(rnp
);
2146 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
2147 WARN_ON_ONCE(rnp
->qsmask
);
2148 WRITE_ONCE(rnp
->completed
, rsp
->gpnum
);
2149 rdp
= this_cpu_ptr(rsp
->rda
);
2150 if (rnp
== rdp
->mynode
)
2151 needgp
= __note_gp_changes(rsp
, rnp
, rdp
) || needgp
;
2152 /* smp_mb() provided by prior unlock-lock pair. */
2153 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
2154 sq
= rcu_nocb_gp_get(rnp
);
2155 raw_spin_unlock_irq_rcu_node(rnp
);
2156 rcu_nocb_gp_cleanup(sq
);
2157 cond_resched_rcu_qs();
2158 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2159 rcu_gp_slow(rsp
, gp_cleanup_delay
);
2161 rnp
= rcu_get_root(rsp
);
2162 raw_spin_lock_irq_rcu_node(rnp
); /* Order GP before ->completed update. */
2163 rcu_nocb_gp_set(rnp
, nocb
);
2165 /* Declare grace period done. */
2166 WRITE_ONCE(rsp
->completed
, rsp
->gpnum
);
2167 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, TPS("end"));
2168 rsp
->gp_state
= RCU_GP_IDLE
;
2169 rdp
= this_cpu_ptr(rsp
->rda
);
2170 /* Advance CBs to reduce false positives below. */
2171 needgp
= rcu_advance_cbs(rsp
, rnp
, rdp
) || needgp
;
2172 if (needgp
|| cpu_needs_another_gp(rsp
, rdp
)) {
2173 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2174 trace_rcu_grace_period(rsp
->name
,
2175 READ_ONCE(rsp
->gpnum
),
2178 raw_spin_unlock_irq_rcu_node(rnp
);
2182 * Body of kthread that handles grace periods.
2184 static int __noreturn
rcu_gp_kthread(void *arg
)
2190 struct rcu_state
*rsp
= arg
;
2191 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2193 rcu_bind_gp_kthread();
2196 /* Handle grace-period start. */
2198 trace_rcu_grace_period(rsp
->name
,
2199 READ_ONCE(rsp
->gpnum
),
2201 rsp
->gp_state
= RCU_GP_WAIT_GPS
;
2202 swait_event_interruptible(rsp
->gp_wq
,
2203 READ_ONCE(rsp
->gp_flags
) &
2205 rsp
->gp_state
= RCU_GP_DONE_GPS
;
2206 /* Locking provides needed memory barrier. */
2207 if (rcu_gp_init(rsp
))
2209 cond_resched_rcu_qs();
2210 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2211 WARN_ON(signal_pending(current
));
2212 trace_rcu_grace_period(rsp
->name
,
2213 READ_ONCE(rsp
->gpnum
),
2217 /* Handle quiescent-state forcing. */
2218 first_gp_fqs
= true;
2219 j
= jiffies_till_first_fqs
;
2222 jiffies_till_first_fqs
= HZ
;
2227 rsp
->jiffies_force_qs
= jiffies
+ j
;
2228 WRITE_ONCE(rsp
->jiffies_kick_kthreads
,
2231 trace_rcu_grace_period(rsp
->name
,
2232 READ_ONCE(rsp
->gpnum
),
2234 rsp
->gp_state
= RCU_GP_WAIT_FQS
;
2235 ret
= swait_event_interruptible_timeout(rsp
->gp_wq
,
2236 rcu_gp_fqs_check_wake(rsp
, &gf
), j
);
2237 rsp
->gp_state
= RCU_GP_DOING_FQS
;
2238 /* Locking provides needed memory barriers. */
2239 /* If grace period done, leave loop. */
2240 if (!READ_ONCE(rnp
->qsmask
) &&
2241 !rcu_preempt_blocked_readers_cgp(rnp
))
2243 /* If time for quiescent-state forcing, do it. */
2244 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_force_qs
) ||
2245 (gf
& RCU_GP_FLAG_FQS
)) {
2246 trace_rcu_grace_period(rsp
->name
,
2247 READ_ONCE(rsp
->gpnum
),
2249 rcu_gp_fqs(rsp
, first_gp_fqs
);
2250 first_gp_fqs
= false;
2251 trace_rcu_grace_period(rsp
->name
,
2252 READ_ONCE(rsp
->gpnum
),
2254 cond_resched_rcu_qs();
2255 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2256 ret
= 0; /* Force full wait till next FQS. */
2257 j
= jiffies_till_next_fqs
;
2260 jiffies_till_next_fqs
= HZ
;
2263 jiffies_till_next_fqs
= 1;
2266 /* Deal with stray signal. */
2267 cond_resched_rcu_qs();
2268 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2269 WARN_ON(signal_pending(current
));
2270 trace_rcu_grace_period(rsp
->name
,
2271 READ_ONCE(rsp
->gpnum
),
2273 ret
= 1; /* Keep old FQS timing. */
2275 if (time_after(jiffies
, rsp
->jiffies_force_qs
))
2278 j
= rsp
->jiffies_force_qs
- j
;
2282 /* Handle grace-period end. */
2283 rsp
->gp_state
= RCU_GP_CLEANUP
;
2284 rcu_gp_cleanup(rsp
);
2285 rsp
->gp_state
= RCU_GP_CLEANED
;
2290 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2291 * in preparation for detecting the next grace period. The caller must hold
2292 * the root node's ->lock and hard irqs must be disabled.
2294 * Note that it is legal for a dying CPU (which is marked as offline) to
2295 * invoke this function. This can happen when the dying CPU reports its
2298 * Returns true if the grace-period kthread must be awakened.
2301 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
2302 struct rcu_data
*rdp
)
2304 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
2306 * Either we have not yet spawned the grace-period
2307 * task, this CPU does not need another grace period,
2308 * or a grace period is already in progress.
2309 * Either way, don't start a new grace period.
2313 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2314 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gpnum
),
2318 * We can't do wakeups while holding the rnp->lock, as that
2319 * could cause possible deadlocks with the rq->lock. Defer
2320 * the wakeup to our caller.
2326 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2327 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2328 * is invoked indirectly from rcu_advance_cbs(), which would result in
2329 * endless recursion -- or would do so if it wasn't for the self-deadlock
2330 * that is encountered beforehand.
2332 * Returns true if the grace-period kthread needs to be awakened.
2334 static bool rcu_start_gp(struct rcu_state
*rsp
)
2336 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
2337 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2341 * If there is no grace period in progress right now, any
2342 * callbacks we have up to this point will be satisfied by the
2343 * next grace period. Also, advancing the callbacks reduces the
2344 * probability of false positives from cpu_needs_another_gp()
2345 * resulting in pointless grace periods. So, advance callbacks
2346 * then start the grace period!
2348 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
) || ret
;
2349 ret
= rcu_start_gp_advanced(rsp
, rnp
, rdp
) || ret
;
2354 * Report a full set of quiescent states to the specified rcu_state data
2355 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2356 * kthread if another grace period is required. Whether we wake
2357 * the grace-period kthread or it awakens itself for the next round
2358 * of quiescent-state forcing, that kthread will clean up after the
2359 * just-completed grace period. Note that the caller must hold rnp->lock,
2360 * which is released before return.
2362 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
2363 __releases(rcu_get_root(rsp
)->lock
)
2365 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
2366 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2367 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
2368 rcu_gp_kthread_wake(rsp
);
2372 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2373 * Allows quiescent states for a group of CPUs to be reported at one go
2374 * to the specified rcu_node structure, though all the CPUs in the group
2375 * must be represented by the same rcu_node structure (which need not be a
2376 * leaf rcu_node structure, though it often will be). The gps parameter
2377 * is the grace-period snapshot, which means that the quiescent states
2378 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2379 * must be held upon entry, and it is released before return.
2382 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
2383 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
)
2384 __releases(rnp
->lock
)
2386 unsigned long oldmask
= 0;
2387 struct rcu_node
*rnp_c
;
2389 /* Walk up the rcu_node hierarchy. */
2391 if (!(rnp
->qsmask
& mask
) || rnp
->gpnum
!= gps
) {
2394 * Our bit has already been cleared, or the
2395 * relevant grace period is already over, so done.
2397 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2400 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2401 rnp
->qsmask
&= ~mask
;
2402 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
2403 mask
, rnp
->qsmask
, rnp
->level
,
2404 rnp
->grplo
, rnp
->grphi
,
2406 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2408 /* Other bits still set at this level, so done. */
2409 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2412 mask
= rnp
->grpmask
;
2413 if (rnp
->parent
== NULL
) {
2415 /* No more levels. Exit loop holding root lock. */
2419 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2422 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2423 oldmask
= rnp_c
->qsmask
;
2427 * Get here if we are the last CPU to pass through a quiescent
2428 * state for this grace period. Invoke rcu_report_qs_rsp()
2429 * to clean up and start the next grace period if one is needed.
2431 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
2435 * Record a quiescent state for all tasks that were previously queued
2436 * on the specified rcu_node structure and that were blocking the current
2437 * RCU grace period. The caller must hold the specified rnp->lock with
2438 * irqs disabled, and this lock is released upon return, but irqs remain
2441 static void rcu_report_unblock_qs_rnp(struct rcu_state
*rsp
,
2442 struct rcu_node
*rnp
, unsigned long flags
)
2443 __releases(rnp
->lock
)
2447 struct rcu_node
*rnp_p
;
2449 if (rcu_state_p
== &rcu_sched_state
|| rsp
!= rcu_state_p
||
2450 rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2451 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2452 return; /* Still need more quiescent states! */
2455 rnp_p
= rnp
->parent
;
2456 if (rnp_p
== NULL
) {
2458 * Only one rcu_node structure in the tree, so don't
2459 * try to report up to its nonexistent parent!
2461 rcu_report_qs_rsp(rsp
, flags
);
2465 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2467 mask
= rnp
->grpmask
;
2468 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2469 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2470 rcu_report_qs_rnp(mask
, rsp
, rnp_p
, gps
, flags
);
2474 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2475 * structure. This must be called from the specified CPU.
2478 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2480 unsigned long flags
;
2483 struct rcu_node
*rnp
;
2486 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2487 if ((rdp
->cpu_no_qs
.b
.norm
&&
2488 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) ||
2489 rdp
->gpnum
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
||
2493 * The grace period in which this quiescent state was
2494 * recorded has ended, so don't report it upwards.
2495 * We will instead need a new quiescent state that lies
2496 * within the current grace period.
2498 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2499 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
2500 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2503 mask
= rdp
->grpmask
;
2504 if ((rnp
->qsmask
& mask
) == 0) {
2505 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2507 rdp
->core_needs_qs
= false;
2510 * This GP can't end until cpu checks in, so all of our
2511 * callbacks can be processed during the next GP.
2513 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
2515 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2516 /* ^^^ Released rnp->lock */
2518 rcu_gp_kthread_wake(rsp
);
2523 * Check to see if there is a new grace period of which this CPU
2524 * is not yet aware, and if so, set up local rcu_data state for it.
2525 * Otherwise, see if this CPU has just passed through its first
2526 * quiescent state for this grace period, and record that fact if so.
2529 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2531 /* Check for grace-period ends and beginnings. */
2532 note_gp_changes(rsp
, rdp
);
2535 * Does this CPU still need to do its part for current grace period?
2536 * If no, return and let the other CPUs do their part as well.
2538 if (!rdp
->core_needs_qs
)
2542 * Was there a quiescent state since the beginning of the grace
2543 * period? If no, then exit and wait for the next call.
2545 if (rdp
->cpu_no_qs
.b
.norm
&&
2546 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
))
2550 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2553 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
2557 * Send the specified CPU's RCU callbacks to the orphanage. The
2558 * specified CPU must be offline, and the caller must hold the
2562 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
2563 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
2565 /* No-CBs CPUs do not have orphanable callbacks. */
2566 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) || rcu_is_nocb_cpu(rdp
->cpu
))
2570 * Orphan the callbacks. First adjust the counts. This is safe
2571 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2572 * cannot be running now. Thus no memory barrier is required.
2574 if (rdp
->nxtlist
!= NULL
) {
2575 rsp
->qlen_lazy
+= rdp
->qlen_lazy
;
2576 rsp
->qlen
+= rdp
->qlen
;
2577 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
2579 WRITE_ONCE(rdp
->qlen
, 0);
2583 * Next, move those callbacks still needing a grace period to
2584 * the orphanage, where some other CPU will pick them up.
2585 * Some of the callbacks might have gone partway through a grace
2586 * period, but that is too bad. They get to start over because we
2587 * cannot assume that grace periods are synchronized across CPUs.
2588 * We don't bother updating the ->nxttail[] array yet, instead
2589 * we just reset the whole thing later on.
2591 if (*rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
) {
2592 *rsp
->orphan_nxttail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2593 rsp
->orphan_nxttail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
2594 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2598 * Then move the ready-to-invoke callbacks to the orphanage,
2599 * where some other CPU will pick them up. These will not be
2600 * required to pass though another grace period: They are done.
2602 if (rdp
->nxtlist
!= NULL
) {
2603 *rsp
->orphan_donetail
= rdp
->nxtlist
;
2604 rsp
->orphan_donetail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2608 * Finally, initialize the rcu_data structure's list to empty and
2609 * disallow further callbacks on this CPU.
2611 init_callback_list(rdp
);
2612 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2616 * Adopt the RCU callbacks from the specified rcu_state structure's
2617 * orphanage. The caller must hold the ->orphan_lock.
2619 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
, unsigned long flags
)
2622 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2624 /* No-CBs CPUs are handled specially. */
2625 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2626 rcu_nocb_adopt_orphan_cbs(rsp
, rdp
, flags
))
2629 /* Do the accounting first. */
2630 rdp
->qlen_lazy
+= rsp
->qlen_lazy
;
2631 rdp
->qlen
+= rsp
->qlen
;
2632 rdp
->n_cbs_adopted
+= rsp
->qlen
;
2633 if (rsp
->qlen_lazy
!= rsp
->qlen
)
2634 rcu_idle_count_callbacks_posted();
2639 * We do not need a memory barrier here because the only way we
2640 * can get here if there is an rcu_barrier() in flight is if
2641 * we are the task doing the rcu_barrier().
2644 /* First adopt the ready-to-invoke callbacks. */
2645 if (rsp
->orphan_donelist
!= NULL
) {
2646 *rsp
->orphan_donetail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2647 *rdp
->nxttail
[RCU_DONE_TAIL
] = rsp
->orphan_donelist
;
2648 for (i
= RCU_NEXT_SIZE
- 1; i
>= RCU_DONE_TAIL
; i
--)
2649 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2650 rdp
->nxttail
[i
] = rsp
->orphan_donetail
;
2651 rsp
->orphan_donelist
= NULL
;
2652 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2655 /* And then adopt the callbacks that still need a grace period. */
2656 if (rsp
->orphan_nxtlist
!= NULL
) {
2657 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxtlist
;
2658 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxttail
;
2659 rsp
->orphan_nxtlist
= NULL
;
2660 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2665 * Trace the fact that this CPU is going offline.
2667 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2669 RCU_TRACE(unsigned long mask
);
2670 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
));
2671 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
);
2673 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2676 RCU_TRACE(mask
= rdp
->grpmask
);
2677 trace_rcu_grace_period(rsp
->name
,
2678 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
2683 * All CPUs for the specified rcu_node structure have gone offline,
2684 * and all tasks that were preempted within an RCU read-side critical
2685 * section while running on one of those CPUs have since exited their RCU
2686 * read-side critical section. Some other CPU is reporting this fact with
2687 * the specified rcu_node structure's ->lock held and interrupts disabled.
2688 * This function therefore goes up the tree of rcu_node structures,
2689 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2690 * the leaf rcu_node structure's ->qsmaskinit field has already been
2693 * This function does check that the specified rcu_node structure has
2694 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2695 * prematurely. That said, invoking it after the fact will cost you
2696 * a needless lock acquisition. So once it has done its work, don't
2699 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2702 struct rcu_node
*rnp
= rnp_leaf
;
2704 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2705 rnp
->qsmaskinit
|| rcu_preempt_has_tasks(rnp
))
2708 mask
= rnp
->grpmask
;
2712 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2713 rnp
->qsmaskinit
&= ~mask
;
2714 rnp
->qsmask
&= ~mask
;
2715 if (rnp
->qsmaskinit
) {
2716 raw_spin_unlock_rcu_node(rnp
);
2717 /* irqs remain disabled. */
2720 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2725 * The CPU has been completely removed, and some other CPU is reporting
2726 * this fact from process context. Do the remainder of the cleanup,
2727 * including orphaning the outgoing CPU's RCU callbacks, and also
2728 * adopting them. There can only be one CPU hotplug operation at a time,
2729 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2731 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2733 unsigned long flags
;
2734 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2735 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2737 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2740 /* Adjust any no-longer-needed kthreads. */
2741 rcu_boost_kthread_setaffinity(rnp
, -1);
2743 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2744 raw_spin_lock_irqsave(&rsp
->orphan_lock
, flags
);
2745 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
2746 rcu_adopt_orphan_cbs(rsp
, flags
);
2747 raw_spin_unlock_irqrestore(&rsp
->orphan_lock
, flags
);
2749 WARN_ONCE(rdp
->qlen
!= 0 || rdp
->nxtlist
!= NULL
,
2750 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2751 cpu
, rdp
->qlen
, rdp
->nxtlist
);
2755 * Invoke any RCU callbacks that have made it to the end of their grace
2756 * period. Thottle as specified by rdp->blimit.
2758 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2760 unsigned long flags
;
2761 struct rcu_head
*next
, *list
, **tail
;
2762 long bl
, count
, count_lazy
;
2765 /* If no callbacks are ready, just return. */
2766 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
2767 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
2768 trace_rcu_batch_end(rsp
->name
, 0, !!READ_ONCE(rdp
->nxtlist
),
2769 need_resched(), is_idle_task(current
),
2770 rcu_is_callbacks_kthread());
2775 * Extract the list of ready callbacks, disabling to prevent
2776 * races with call_rcu() from interrupt handlers.
2778 local_irq_save(flags
);
2779 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2781 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
2782 list
= rdp
->nxtlist
;
2783 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2784 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2785 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2786 for (i
= RCU_NEXT_SIZE
- 1; i
>= 0; i
--)
2787 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2788 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2789 local_irq_restore(flags
);
2791 /* Invoke callbacks. */
2792 count
= count_lazy
= 0;
2796 debug_rcu_head_unqueue(list
);
2797 if (__rcu_reclaim(rsp
->name
, list
))
2800 /* Stop only if limit reached and CPU has something to do. */
2801 if (++count
>= bl
&&
2803 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2807 local_irq_save(flags
);
2808 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
2809 is_idle_task(current
),
2810 rcu_is_callbacks_kthread());
2812 /* Update count, and requeue any remaining callbacks. */
2814 *tail
= rdp
->nxtlist
;
2815 rdp
->nxtlist
= list
;
2816 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2817 if (&rdp
->nxtlist
== rdp
->nxttail
[i
])
2818 rdp
->nxttail
[i
] = tail
;
2822 smp_mb(); /* List handling before counting for rcu_barrier(). */
2823 rdp
->qlen_lazy
-= count_lazy
;
2824 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
- count
);
2825 rdp
->n_cbs_invoked
+= count
;
2827 /* Reinstate batch limit if we have worked down the excess. */
2828 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
2829 rdp
->blimit
= blimit
;
2831 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2832 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2833 rdp
->qlen_last_fqs_check
= 0;
2834 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2835 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
2836 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2837 WARN_ON_ONCE((rdp
->nxtlist
== NULL
) != (rdp
->qlen
== 0));
2839 local_irq_restore(flags
);
2841 /* Re-invoke RCU core processing if there are callbacks remaining. */
2842 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2847 * Check to see if this CPU is in a non-context-switch quiescent state
2848 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2849 * Also schedule RCU core processing.
2851 * This function must be called from hardirq context. It is normally
2852 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2853 * false, there is no point in invoking rcu_check_callbacks().
2855 void rcu_check_callbacks(int user
)
2857 trace_rcu_utilization(TPS("Start scheduler-tick"));
2858 increment_cpu_stall_ticks();
2859 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2862 * Get here if this CPU took its interrupt from user
2863 * mode or from the idle loop, and if this is not a
2864 * nested interrupt. In this case, the CPU is in
2865 * a quiescent state, so note it.
2867 * No memory barrier is required here because both
2868 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2869 * variables that other CPUs neither access nor modify,
2870 * at least not while the corresponding CPU is online.
2876 } else if (!in_softirq()) {
2879 * Get here if this CPU did not take its interrupt from
2880 * softirq, in other words, if it is not interrupting
2881 * a rcu_bh read-side critical section. This is an _bh
2882 * critical section, so note it.
2887 rcu_preempt_check_callbacks();
2891 rcu_note_voluntary_context_switch(current
);
2892 trace_rcu_utilization(TPS("End scheduler-tick"));
2896 * Scan the leaf rcu_node structures, processing dyntick state for any that
2897 * have not yet encountered a quiescent state, using the function specified.
2898 * Also initiate boosting for any threads blocked on the root rcu_node.
2900 * The caller must have suppressed start of new grace periods.
2902 static void force_qs_rnp(struct rcu_state
*rsp
,
2903 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
2904 unsigned long *maxj
),
2905 bool *isidle
, unsigned long *maxj
)
2908 unsigned long flags
;
2910 struct rcu_node
*rnp
;
2912 rcu_for_each_leaf_node(rsp
, rnp
) {
2913 cond_resched_rcu_qs();
2915 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2916 if (rnp
->qsmask
== 0) {
2917 if (rcu_state_p
== &rcu_sched_state
||
2918 rsp
!= rcu_state_p
||
2919 rcu_preempt_blocked_readers_cgp(rnp
)) {
2921 * No point in scanning bits because they
2922 * are all zero. But we might need to
2923 * priority-boost blocked readers.
2925 rcu_initiate_boost(rnp
, flags
);
2926 /* rcu_initiate_boost() releases rnp->lock */
2930 (rnp
->parent
->qsmask
& rnp
->grpmask
)) {
2932 * Race between grace-period
2933 * initialization and task exiting RCU
2934 * read-side critical section: Report.
2936 rcu_report_unblock_qs_rnp(rsp
, rnp
, flags
);
2937 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2941 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
2942 unsigned long bit
= leaf_node_cpu_bit(rnp
, cpu
);
2943 if ((rnp
->qsmask
& bit
) != 0) {
2944 if (f(per_cpu_ptr(rsp
->rda
, cpu
), isidle
, maxj
))
2949 /* Idle/offline CPUs, report (releases rnp->lock. */
2950 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2952 /* Nothing to do here, so just drop the lock. */
2953 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2959 * Force quiescent states on reluctant CPUs, and also detect which
2960 * CPUs are in dyntick-idle mode.
2962 static void force_quiescent_state(struct rcu_state
*rsp
)
2964 unsigned long flags
;
2966 struct rcu_node
*rnp
;
2967 struct rcu_node
*rnp_old
= NULL
;
2969 /* Funnel through hierarchy to reduce memory contention. */
2970 rnp
= __this_cpu_read(rsp
->rda
->mynode
);
2971 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2972 ret
= (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2973 !raw_spin_trylock(&rnp
->fqslock
);
2974 if (rnp_old
!= NULL
)
2975 raw_spin_unlock(&rnp_old
->fqslock
);
2977 rsp
->n_force_qs_lh
++;
2982 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2984 /* Reached the root of the rcu_node tree, acquire lock. */
2985 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2986 raw_spin_unlock(&rnp_old
->fqslock
);
2987 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2988 rsp
->n_force_qs_lh
++;
2989 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2990 return; /* Someone beat us to it. */
2992 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2993 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2994 rcu_gp_kthread_wake(rsp
);
2998 * This does the RCU core processing work for the specified rcu_state
2999 * and rcu_data structures. This may be called only from the CPU to
3000 * whom the rdp belongs.
3003 __rcu_process_callbacks(struct rcu_state
*rsp
)
3005 unsigned long flags
;
3007 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
3009 WARN_ON_ONCE(rdp
->beenonline
== 0);
3011 /* Update RCU state based on any recent quiescent states. */
3012 rcu_check_quiescent_state(rsp
, rdp
);
3014 /* Does this CPU require a not-yet-started grace period? */
3015 local_irq_save(flags
);
3016 if (cpu_needs_another_gp(rsp
, rdp
)) {
3017 raw_spin_lock_rcu_node(rcu_get_root(rsp
)); /* irqs disabled. */
3018 needwake
= rcu_start_gp(rsp
);
3019 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
3021 rcu_gp_kthread_wake(rsp
);
3023 local_irq_restore(flags
);
3026 /* If there are callbacks ready, invoke them. */
3027 if (cpu_has_callbacks_ready_to_invoke(rdp
))
3028 invoke_rcu_callbacks(rsp
, rdp
);
3030 /* Do any needed deferred wakeups of rcuo kthreads. */
3031 do_nocb_deferred_wakeup(rdp
);
3035 * Do RCU core processing for the current CPU.
3037 static __latent_entropy
void rcu_process_callbacks(struct softirq_action
*unused
)
3039 struct rcu_state
*rsp
;
3041 if (cpu_is_offline(smp_processor_id()))
3043 trace_rcu_utilization(TPS("Start RCU core"));
3044 for_each_rcu_flavor(rsp
)
3045 __rcu_process_callbacks(rsp
);
3046 trace_rcu_utilization(TPS("End RCU core"));
3050 * Schedule RCU callback invocation. If the specified type of RCU
3051 * does not support RCU priority boosting, just do a direct call,
3052 * otherwise wake up the per-CPU kernel kthread. Note that because we
3053 * are running on the current CPU with softirqs disabled, the
3054 * rcu_cpu_kthread_task cannot disappear out from under us.
3056 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3058 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
3060 if (likely(!rsp
->boost
)) {
3061 rcu_do_batch(rsp
, rdp
);
3064 invoke_rcu_callbacks_kthread();
3067 static void invoke_rcu_core(void)
3069 if (cpu_online(smp_processor_id()))
3070 raise_softirq(RCU_SOFTIRQ
);
3074 * Handle any core-RCU processing required by a call_rcu() invocation.
3076 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
3077 struct rcu_head
*head
, unsigned long flags
)
3082 * If called from an extended quiescent state, invoke the RCU
3083 * core in order to force a re-evaluation of RCU's idleness.
3085 if (!rcu_is_watching())
3088 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3089 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
3093 * Force the grace period if too many callbacks or too long waiting.
3094 * Enforce hysteresis, and don't invoke force_quiescent_state()
3095 * if some other CPU has recently done so. Also, don't bother
3096 * invoking force_quiescent_state() if the newly enqueued callback
3097 * is the only one waiting for a grace period to complete.
3099 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
3101 /* Are we ignoring a completed grace period? */
3102 note_gp_changes(rsp
, rdp
);
3104 /* Start a new grace period if one not already started. */
3105 if (!rcu_gp_in_progress(rsp
)) {
3106 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
3108 raw_spin_lock_rcu_node(rnp_root
);
3109 needwake
= rcu_start_gp(rsp
);
3110 raw_spin_unlock_rcu_node(rnp_root
);
3112 rcu_gp_kthread_wake(rsp
);
3114 /* Give the grace period a kick. */
3115 rdp
->blimit
= LONG_MAX
;
3116 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
3117 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
3118 force_quiescent_state(rsp
);
3119 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3120 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
3126 * RCU callback function to leak a callback.
3128 static void rcu_leak_callback(struct rcu_head
*rhp
)
3133 * Helper function for call_rcu() and friends. The cpu argument will
3134 * normally be -1, indicating "currently running CPU". It may specify
3135 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3136 * is expected to specify a CPU.
3139 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
,
3140 struct rcu_state
*rsp
, int cpu
, bool lazy
)
3142 unsigned long flags
;
3143 struct rcu_data
*rdp
;
3145 WARN_ON_ONCE((unsigned long)head
& 0x1); /* Misaligned rcu_head! */
3146 if (debug_rcu_head_queue(head
)) {
3147 /* Probable double call_rcu(), so leak the callback. */
3148 WRITE_ONCE(head
->func
, rcu_leak_callback
);
3149 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3156 * Opportunistically note grace-period endings and beginnings.
3157 * Note that we might see a beginning right after we see an
3158 * end, but never vice versa, since this CPU has to pass through
3159 * a quiescent state betweentimes.
3161 local_irq_save(flags
);
3162 rdp
= this_cpu_ptr(rsp
->rda
);
3164 /* Add the callback to our list. */
3165 if (unlikely(rdp
->nxttail
[RCU_NEXT_TAIL
] == NULL
) || cpu
!= -1) {
3169 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3170 if (likely(rdp
->mynode
)) {
3171 /* Post-boot, so this should be for a no-CBs CPU. */
3172 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
3173 WARN_ON_ONCE(offline
);
3174 /* Offline CPU, _call_rcu() illegal, leak callback. */
3175 local_irq_restore(flags
);
3179 * Very early boot, before rcu_init(). Initialize if needed
3180 * and then drop through to queue the callback.
3183 WARN_ON_ONCE(!rcu_is_watching());
3184 if (!likely(rdp
->nxtlist
))
3185 init_default_callback_list(rdp
);
3187 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
+ 1);
3191 rcu_idle_count_callbacks_posted();
3192 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3193 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
3194 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
3196 if (__is_kfree_rcu_offset((unsigned long)func
))
3197 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
3198 rdp
->qlen_lazy
, rdp
->qlen
);
3200 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
3202 /* Go handle any RCU core processing required. */
3203 __call_rcu_core(rsp
, rdp
, head
, flags
);
3204 local_irq_restore(flags
);
3208 * Queue an RCU-sched callback for invocation after a grace period.
3210 void call_rcu_sched(struct rcu_head
*head
, rcu_callback_t func
)
3212 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
3214 EXPORT_SYMBOL_GPL(call_rcu_sched
);
3217 * Queue an RCU callback for invocation after a quicker grace period.
3219 void call_rcu_bh(struct rcu_head
*head
, rcu_callback_t func
)
3221 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
3223 EXPORT_SYMBOL_GPL(call_rcu_bh
);
3226 * Queue an RCU callback for lazy invocation after a grace period.
3227 * This will likely be later named something like "call_rcu_lazy()",
3228 * but this change will require some way of tagging the lazy RCU
3229 * callbacks in the list of pending callbacks. Until then, this
3230 * function may only be called from __kfree_rcu().
3232 void kfree_call_rcu(struct rcu_head
*head
,
3233 rcu_callback_t func
)
3235 __call_rcu(head
, func
, rcu_state_p
, -1, 1);
3237 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
3240 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3241 * any blocking grace-period wait automatically implies a grace period
3242 * if there is only one CPU online at any point time during execution
3243 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3244 * occasionally incorrectly indicate that there are multiple CPUs online
3245 * when there was in fact only one the whole time, as this just adds
3246 * some overhead: RCU still operates correctly.
3248 static inline int rcu_blocking_is_gp(void)
3252 might_sleep(); /* Check for RCU read-side critical section. */
3254 ret
= num_online_cpus() <= 1;
3260 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3262 * Control will return to the caller some time after a full rcu-sched
3263 * grace period has elapsed, in other words after all currently executing
3264 * rcu-sched read-side critical sections have completed. These read-side
3265 * critical sections are delimited by rcu_read_lock_sched() and
3266 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3267 * local_irq_disable(), and so on may be used in place of
3268 * rcu_read_lock_sched().
3270 * This means that all preempt_disable code sequences, including NMI and
3271 * non-threaded hardware-interrupt handlers, in progress on entry will
3272 * have completed before this primitive returns. However, this does not
3273 * guarantee that softirq handlers will have completed, since in some
3274 * kernels, these handlers can run in process context, and can block.
3276 * Note that this guarantee implies further memory-ordering guarantees.
3277 * On systems with more than one CPU, when synchronize_sched() returns,
3278 * each CPU is guaranteed to have executed a full memory barrier since the
3279 * end of its last RCU-sched read-side critical section whose beginning
3280 * preceded the call to synchronize_sched(). In addition, each CPU having
3281 * an RCU read-side critical section that extends beyond the return from
3282 * synchronize_sched() is guaranteed to have executed a full memory barrier
3283 * after the beginning of synchronize_sched() and before the beginning of
3284 * that RCU read-side critical section. Note that these guarantees include
3285 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3286 * that are executing in the kernel.
3288 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3289 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3290 * to have executed a full memory barrier during the execution of
3291 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3292 * again only if the system has more than one CPU).
3294 * This primitive provides the guarantees made by the (now removed)
3295 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3296 * guarantees that rcu_read_lock() sections will have completed.
3297 * In "classic RCU", these two guarantees happen to be one and
3298 * the same, but can differ in realtime RCU implementations.
3300 void synchronize_sched(void)
3302 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3303 lock_is_held(&rcu_lock_map
) ||
3304 lock_is_held(&rcu_sched_lock_map
),
3305 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3306 if (rcu_blocking_is_gp())
3308 if (rcu_gp_is_expedited())
3309 synchronize_sched_expedited();
3311 wait_rcu_gp(call_rcu_sched
);
3313 EXPORT_SYMBOL_GPL(synchronize_sched
);
3316 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3318 * Control will return to the caller some time after a full rcu_bh grace
3319 * period has elapsed, in other words after all currently executing rcu_bh
3320 * read-side critical sections have completed. RCU read-side critical
3321 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3322 * and may be nested.
3324 * See the description of synchronize_sched() for more detailed information
3325 * on memory ordering guarantees.
3327 void synchronize_rcu_bh(void)
3329 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3330 lock_is_held(&rcu_lock_map
) ||
3331 lock_is_held(&rcu_sched_lock_map
),
3332 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3333 if (rcu_blocking_is_gp())
3335 if (rcu_gp_is_expedited())
3336 synchronize_rcu_bh_expedited();
3338 wait_rcu_gp(call_rcu_bh
);
3340 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
3343 * get_state_synchronize_rcu - Snapshot current RCU state
3345 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3346 * to determine whether or not a full grace period has elapsed in the
3349 unsigned long get_state_synchronize_rcu(void)
3352 * Any prior manipulation of RCU-protected data must happen
3353 * before the load from ->gpnum.
3358 * Make sure this load happens before the purportedly
3359 * time-consuming work between get_state_synchronize_rcu()
3360 * and cond_synchronize_rcu().
3362 return smp_load_acquire(&rcu_state_p
->gpnum
);
3364 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3367 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3369 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3371 * If a full RCU grace period has elapsed since the earlier call to
3372 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3373 * synchronize_rcu() to wait for a full grace period.
3375 * Yes, this function does not take counter wrap into account. But
3376 * counter wrap is harmless. If the counter wraps, we have waited for
3377 * more than 2 billion grace periods (and way more on a 64-bit system!),
3378 * so waiting for one additional grace period should be just fine.
3380 void cond_synchronize_rcu(unsigned long oldstate
)
3382 unsigned long newstate
;
3385 * Ensure that this load happens before any RCU-destructive
3386 * actions the caller might carry out after we return.
3388 newstate
= smp_load_acquire(&rcu_state_p
->completed
);
3389 if (ULONG_CMP_GE(oldstate
, newstate
))
3392 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3395 * get_state_synchronize_sched - Snapshot current RCU-sched state
3397 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3398 * to determine whether or not a full grace period has elapsed in the
3401 unsigned long get_state_synchronize_sched(void)
3404 * Any prior manipulation of RCU-protected data must happen
3405 * before the load from ->gpnum.
3410 * Make sure this load happens before the purportedly
3411 * time-consuming work between get_state_synchronize_sched()
3412 * and cond_synchronize_sched().
3414 return smp_load_acquire(&rcu_sched_state
.gpnum
);
3416 EXPORT_SYMBOL_GPL(get_state_synchronize_sched
);
3419 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3421 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3423 * If a full RCU-sched grace period has elapsed since the earlier call to
3424 * get_state_synchronize_sched(), just return. Otherwise, invoke
3425 * synchronize_sched() to wait for a full grace period.
3427 * Yes, this function does not take counter wrap into account. But
3428 * counter wrap is harmless. If the counter wraps, we have waited for
3429 * more than 2 billion grace periods (and way more on a 64-bit system!),
3430 * so waiting for one additional grace period should be just fine.
3432 void cond_synchronize_sched(unsigned long oldstate
)
3434 unsigned long newstate
;
3437 * Ensure that this load happens before any RCU-destructive
3438 * actions the caller might carry out after we return.
3440 newstate
= smp_load_acquire(&rcu_sched_state
.completed
);
3441 if (ULONG_CMP_GE(oldstate
, newstate
))
3442 synchronize_sched();
3444 EXPORT_SYMBOL_GPL(cond_synchronize_sched
);
3446 /* Adjust sequence number for start of update-side operation. */
3447 static void rcu_seq_start(unsigned long *sp
)
3449 WRITE_ONCE(*sp
, *sp
+ 1);
3450 smp_mb(); /* Ensure update-side operation after counter increment. */
3451 WARN_ON_ONCE(!(*sp
& 0x1));
3454 /* Adjust sequence number for end of update-side operation. */
3455 static void rcu_seq_end(unsigned long *sp
)
3457 smp_mb(); /* Ensure update-side operation before counter increment. */
3458 WRITE_ONCE(*sp
, *sp
+ 1);
3459 WARN_ON_ONCE(*sp
& 0x1);
3462 /* Take a snapshot of the update side's sequence number. */
3463 static unsigned long rcu_seq_snap(unsigned long *sp
)
3467 s
= (READ_ONCE(*sp
) + 3) & ~0x1;
3468 smp_mb(); /* Above access must not bleed into critical section. */
3473 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3474 * full update-side operation has occurred.
3476 static bool rcu_seq_done(unsigned long *sp
, unsigned long s
)
3478 return ULONG_CMP_GE(READ_ONCE(*sp
), s
);
3482 * Check to see if there is any immediate RCU-related work to be done
3483 * by the current CPU, for the specified type of RCU, returning 1 if so.
3484 * The checks are in order of increasing expense: checks that can be
3485 * carried out against CPU-local state are performed first. However,
3486 * we must check for CPU stalls first, else we might not get a chance.
3488 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3490 struct rcu_node
*rnp
= rdp
->mynode
;
3492 rdp
->n_rcu_pending
++;
3494 /* Check for CPU stalls, if enabled. */
3495 check_cpu_stall(rsp
, rdp
);
3497 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3498 if (rcu_nohz_full_cpu(rsp
))
3501 /* Is the RCU core waiting for a quiescent state from this CPU? */
3502 if (rcu_scheduler_fully_active
&&
3503 rdp
->core_needs_qs
&& rdp
->cpu_no_qs
.b
.norm
&&
3504 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) {
3505 rdp
->n_rp_core_needs_qs
++;
3506 } else if (rdp
->core_needs_qs
&&
3507 (!rdp
->cpu_no_qs
.b
.norm
||
3508 rdp
->rcu_qs_ctr_snap
!= __this_cpu_read(rcu_qs_ctr
))) {
3509 rdp
->n_rp_report_qs
++;
3513 /* Does this CPU have callbacks ready to invoke? */
3514 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
3515 rdp
->n_rp_cb_ready
++;
3519 /* Has RCU gone idle with this CPU needing another grace period? */
3520 if (cpu_needs_another_gp(rsp
, rdp
)) {
3521 rdp
->n_rp_cpu_needs_gp
++;
3525 /* Has another RCU grace period completed? */
3526 if (READ_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
3527 rdp
->n_rp_gp_completed
++;
3531 /* Has a new RCU grace period started? */
3532 if (READ_ONCE(rnp
->gpnum
) != rdp
->gpnum
||
3533 unlikely(READ_ONCE(rdp
->gpwrap
))) { /* outside lock */
3534 rdp
->n_rp_gp_started
++;
3538 /* Does this CPU need a deferred NOCB wakeup? */
3539 if (rcu_nocb_need_deferred_wakeup(rdp
)) {
3540 rdp
->n_rp_nocb_defer_wakeup
++;
3545 rdp
->n_rp_need_nothing
++;
3550 * Check to see if there is any immediate RCU-related work to be done
3551 * by the current CPU, returning 1 if so. This function is part of the
3552 * RCU implementation; it is -not- an exported member of the RCU API.
3554 static int rcu_pending(void)
3556 struct rcu_state
*rsp
;
3558 for_each_rcu_flavor(rsp
)
3559 if (__rcu_pending(rsp
, this_cpu_ptr(rsp
->rda
)))
3565 * Return true if the specified CPU has any callback. If all_lazy is
3566 * non-NULL, store an indication of whether all callbacks are lazy.
3567 * (If there are no callbacks, all of them are deemed to be lazy.)
3569 static bool __maybe_unused
rcu_cpu_has_callbacks(bool *all_lazy
)
3573 struct rcu_data
*rdp
;
3574 struct rcu_state
*rsp
;
3576 for_each_rcu_flavor(rsp
) {
3577 rdp
= this_cpu_ptr(rsp
->rda
);
3581 if (rdp
->qlen
!= rdp
->qlen_lazy
|| !all_lazy
) {
3592 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3593 * the compiler is expected to optimize this away.
3595 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
3596 int cpu
, unsigned long done
)
3598 trace_rcu_barrier(rsp
->name
, s
, cpu
,
3599 atomic_read(&rsp
->barrier_cpu_count
), done
);
3603 * RCU callback function for _rcu_barrier(). If we are last, wake
3604 * up the task executing _rcu_barrier().
3606 static void rcu_barrier_callback(struct rcu_head
*rhp
)
3608 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
3609 struct rcu_state
*rsp
= rdp
->rsp
;
3611 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
3612 _rcu_barrier_trace(rsp
, "LastCB", -1, rsp
->barrier_sequence
);
3613 complete(&rsp
->barrier_completion
);
3615 _rcu_barrier_trace(rsp
, "CB", -1, rsp
->barrier_sequence
);
3620 * Called with preemption disabled, and from cross-cpu IRQ context.
3622 static void rcu_barrier_func(void *type
)
3624 struct rcu_state
*rsp
= type
;
3625 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
3627 _rcu_barrier_trace(rsp
, "IRQ", -1, rsp
->barrier_sequence
);
3628 atomic_inc(&rsp
->barrier_cpu_count
);
3629 rsp
->call(&rdp
->barrier_head
, rcu_barrier_callback
);
3633 * Orchestrate the specified type of RCU barrier, waiting for all
3634 * RCU callbacks of the specified type to complete.
3636 static void _rcu_barrier(struct rcu_state
*rsp
)
3639 struct rcu_data
*rdp
;
3640 unsigned long s
= rcu_seq_snap(&rsp
->barrier_sequence
);
3642 _rcu_barrier_trace(rsp
, "Begin", -1, s
);
3644 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3645 mutex_lock(&rsp
->barrier_mutex
);
3647 /* Did someone else do our work for us? */
3648 if (rcu_seq_done(&rsp
->barrier_sequence
, s
)) {
3649 _rcu_barrier_trace(rsp
, "EarlyExit", -1, rsp
->barrier_sequence
);
3650 smp_mb(); /* caller's subsequent code after above check. */
3651 mutex_unlock(&rsp
->barrier_mutex
);
3655 /* Mark the start of the barrier operation. */
3656 rcu_seq_start(&rsp
->barrier_sequence
);
3657 _rcu_barrier_trace(rsp
, "Inc1", -1, rsp
->barrier_sequence
);
3660 * Initialize the count to one rather than to zero in order to
3661 * avoid a too-soon return to zero in case of a short grace period
3662 * (or preemption of this task). Exclude CPU-hotplug operations
3663 * to ensure that no offline CPU has callbacks queued.
3665 init_completion(&rsp
->barrier_completion
);
3666 atomic_set(&rsp
->barrier_cpu_count
, 1);
3670 * Force each CPU with callbacks to register a new callback.
3671 * When that callback is invoked, we will know that all of the
3672 * corresponding CPU's preceding callbacks have been invoked.
3674 for_each_possible_cpu(cpu
) {
3675 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
3677 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3678 if (rcu_is_nocb_cpu(cpu
)) {
3679 if (!rcu_nocb_cpu_needs_barrier(rsp
, cpu
)) {
3680 _rcu_barrier_trace(rsp
, "OfflineNoCB", cpu
,
3681 rsp
->barrier_sequence
);
3683 _rcu_barrier_trace(rsp
, "OnlineNoCB", cpu
,
3684 rsp
->barrier_sequence
);
3685 smp_mb__before_atomic();
3686 atomic_inc(&rsp
->barrier_cpu_count
);
3687 __call_rcu(&rdp
->barrier_head
,
3688 rcu_barrier_callback
, rsp
, cpu
, 0);
3690 } else if (READ_ONCE(rdp
->qlen
)) {
3691 _rcu_barrier_trace(rsp
, "OnlineQ", cpu
,
3692 rsp
->barrier_sequence
);
3693 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
3695 _rcu_barrier_trace(rsp
, "OnlineNQ", cpu
,
3696 rsp
->barrier_sequence
);
3702 * Now that we have an rcu_barrier_callback() callback on each
3703 * CPU, and thus each counted, remove the initial count.
3705 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
3706 complete(&rsp
->barrier_completion
);
3708 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3709 wait_for_completion(&rsp
->barrier_completion
);
3711 /* Mark the end of the barrier operation. */
3712 _rcu_barrier_trace(rsp
, "Inc2", -1, rsp
->barrier_sequence
);
3713 rcu_seq_end(&rsp
->barrier_sequence
);
3715 /* Other rcu_barrier() invocations can now safely proceed. */
3716 mutex_unlock(&rsp
->barrier_mutex
);
3720 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3722 void rcu_barrier_bh(void)
3724 _rcu_barrier(&rcu_bh_state
);
3726 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
3729 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3731 void rcu_barrier_sched(void)
3733 _rcu_barrier(&rcu_sched_state
);
3735 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
3738 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3739 * first CPU in a given leaf rcu_node structure coming online. The caller
3740 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3743 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
3746 struct rcu_node
*rnp
= rnp_leaf
;
3749 mask
= rnp
->grpmask
;
3753 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
3754 rnp
->qsmaskinit
|= mask
;
3755 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
3760 * Do boot-time initialization of a CPU's per-CPU RCU data.
3763 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3765 unsigned long flags
;
3766 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3767 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3769 /* Set up local state, ensuring consistent view of global state. */
3770 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3771 rdp
->grpmask
= leaf_node_cpu_bit(rdp
->mynode
, cpu
);
3772 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
3773 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
3774 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
3777 rcu_boot_init_nocb_percpu_data(rdp
);
3778 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3782 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3783 * offline event can be happening at a given time. Note also that we
3784 * can accept some slop in the rsp->completed access due to the fact
3785 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3788 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3790 unsigned long flags
;
3792 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3793 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3795 /* Set up local state, ensuring consistent view of global state. */
3796 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3797 rdp
->qlen_last_fqs_check
= 0;
3798 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3799 rdp
->blimit
= blimit
;
3801 init_callback_list(rdp
); /* Re-enable callbacks on this CPU. */
3802 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
3803 rcu_sysidle_init_percpu_data(rdp
->dynticks
);
3804 atomic_set(&rdp
->dynticks
->dynticks
,
3805 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
3806 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
3809 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3810 * propagation up the rcu_node tree will happen at the beginning
3811 * of the next grace period.
3814 mask
= rdp
->grpmask
;
3815 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
3816 if (!rdp
->beenonline
)
3817 WRITE_ONCE(rsp
->ncpus
, READ_ONCE(rsp
->ncpus
) + 1);
3818 rdp
->beenonline
= true; /* We have now been online. */
3819 rdp
->gpnum
= rnp
->completed
; /* Make CPU later note any new GP. */
3820 rdp
->completed
= rnp
->completed
;
3821 rdp
->cpu_no_qs
.b
.norm
= true;
3822 rdp
->rcu_qs_ctr_snap
= per_cpu(rcu_qs_ctr
, cpu
);
3823 rdp
->core_needs_qs
= false;
3824 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuonl"));
3825 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3828 int rcutree_prepare_cpu(unsigned int cpu
)
3830 struct rcu_state
*rsp
;
3832 for_each_rcu_flavor(rsp
)
3833 rcu_init_percpu_data(cpu
, rsp
);
3835 rcu_prepare_kthreads(cpu
);
3836 rcu_spawn_all_nocb_kthreads(cpu
);
3841 static void rcutree_affinity_setting(unsigned int cpu
, int outgoing
)
3843 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
3845 rcu_boost_kthread_setaffinity(rdp
->mynode
, outgoing
);
3848 int rcutree_online_cpu(unsigned int cpu
)
3850 sync_sched_exp_online_cleanup(cpu
);
3851 rcutree_affinity_setting(cpu
, -1);
3855 int rcutree_offline_cpu(unsigned int cpu
)
3857 rcutree_affinity_setting(cpu
, cpu
);
3862 int rcutree_dying_cpu(unsigned int cpu
)
3864 struct rcu_state
*rsp
;
3866 for_each_rcu_flavor(rsp
)
3867 rcu_cleanup_dying_cpu(rsp
);
3871 int rcutree_dead_cpu(unsigned int cpu
)
3873 struct rcu_state
*rsp
;
3875 for_each_rcu_flavor(rsp
) {
3876 rcu_cleanup_dead_cpu(cpu
, rsp
);
3877 do_nocb_deferred_wakeup(per_cpu_ptr(rsp
->rda
, cpu
));
3883 * Mark the specified CPU as being online so that subsequent grace periods
3884 * (both expedited and normal) will wait on it. Note that this means that
3885 * incoming CPUs are not allowed to use RCU read-side critical sections
3886 * until this function is called. Failing to observe this restriction
3887 * will result in lockdep splats.
3889 void rcu_cpu_starting(unsigned int cpu
)
3891 unsigned long flags
;
3893 struct rcu_data
*rdp
;
3894 struct rcu_node
*rnp
;
3895 struct rcu_state
*rsp
;
3897 for_each_rcu_flavor(rsp
) {
3898 rdp
= this_cpu_ptr(rsp
->rda
);
3900 mask
= rdp
->grpmask
;
3901 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3902 rnp
->qsmaskinitnext
|= mask
;
3903 rnp
->expmaskinitnext
|= mask
;
3904 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3908 #ifdef CONFIG_HOTPLUG_CPU
3910 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3911 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3913 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3914 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3917 static void rcu_cleanup_dying_idle_cpu(int cpu
, struct rcu_state
*rsp
)
3919 unsigned long flags
;
3921 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3922 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
3924 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3925 mask
= rdp
->grpmask
;
3926 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
3927 rnp
->qsmaskinitnext
&= ~mask
;
3928 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3931 void rcu_report_dead(unsigned int cpu
)
3933 struct rcu_state
*rsp
;
3935 /* QS for any half-done expedited RCU-sched GP. */
3937 rcu_report_exp_rdp(&rcu_sched_state
,
3938 this_cpu_ptr(rcu_sched_state
.rda
), true);
3940 for_each_rcu_flavor(rsp
)
3941 rcu_cleanup_dying_idle_cpu(cpu
, rsp
);
3945 static int rcu_pm_notify(struct notifier_block
*self
,
3946 unsigned long action
, void *hcpu
)
3949 case PM_HIBERNATION_PREPARE
:
3950 case PM_SUSPEND_PREPARE
:
3951 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3954 case PM_POST_HIBERNATION
:
3955 case PM_POST_SUSPEND
:
3956 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3957 rcu_unexpedite_gp();
3966 * Spawn the kthreads that handle each RCU flavor's grace periods.
3968 static int __init
rcu_spawn_gp_kthread(void)
3970 unsigned long flags
;
3971 int kthread_prio_in
= kthread_prio
;
3972 struct rcu_node
*rnp
;
3973 struct rcu_state
*rsp
;
3974 struct sched_param sp
;
3975 struct task_struct
*t
;
3977 /* Force priority into range. */
3978 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
3980 else if (kthread_prio
< 0)
3982 else if (kthread_prio
> 99)
3984 if (kthread_prio
!= kthread_prio_in
)
3985 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3986 kthread_prio
, kthread_prio_in
);
3988 rcu_scheduler_fully_active
= 1;
3989 for_each_rcu_flavor(rsp
) {
3990 t
= kthread_create(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
3992 rnp
= rcu_get_root(rsp
);
3993 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3994 rsp
->gp_kthread
= t
;
3996 sp
.sched_priority
= kthread_prio
;
3997 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
3999 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
4002 rcu_spawn_nocb_kthreads();
4003 rcu_spawn_boost_kthreads();
4006 early_initcall(rcu_spawn_gp_kthread
);
4009 * This function is invoked towards the end of the scheduler's
4010 * initialization process. Before this is called, the idle task might
4011 * contain synchronous grace-period primitives (during which time, this idle
4012 * task is booting the system, and such primitives are no-ops). After this
4013 * function is called, any synchronous grace-period primitives are run as
4014 * expedited, with the requesting task driving the grace period forward.
4015 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4016 * runtime RCU functionality.
4018 void rcu_scheduler_starting(void)
4020 WARN_ON(num_online_cpus() != 1);
4021 WARN_ON(nr_context_switches() > 0);
4022 rcu_test_sync_prims();
4023 rcu_scheduler_active
= RCU_SCHEDULER_INIT
;
4024 rcu_test_sync_prims();
4028 * Compute the per-level fanout, either using the exact fanout specified
4029 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4031 static void __init
rcu_init_levelspread(int *levelspread
, const int *levelcnt
)
4035 if (rcu_fanout_exact
) {
4036 levelspread
[rcu_num_lvls
- 1] = rcu_fanout_leaf
;
4037 for (i
= rcu_num_lvls
- 2; i
>= 0; i
--)
4038 levelspread
[i
] = RCU_FANOUT
;
4044 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4046 levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
4053 * Helper function for rcu_init() that initializes one rcu_state structure.
4055 static void __init
rcu_init_one(struct rcu_state
*rsp
)
4057 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
4058 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
4059 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
4060 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
4061 static u8 fl_mask
= 0x1;
4063 int levelcnt
[RCU_NUM_LVLS
]; /* # nodes in each level. */
4064 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
4068 struct rcu_node
*rnp
;
4070 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
4072 /* Silence gcc 4.8 false positive about array index out of range. */
4073 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
4074 panic("rcu_init_one: rcu_num_lvls out of range");
4076 /* Initialize the level-tracking arrays. */
4078 for (i
= 0; i
< rcu_num_lvls
; i
++)
4079 levelcnt
[i
] = num_rcu_lvl
[i
];
4080 for (i
= 1; i
< rcu_num_lvls
; i
++)
4081 rsp
->level
[i
] = rsp
->level
[i
- 1] + levelcnt
[i
- 1];
4082 rcu_init_levelspread(levelspread
, levelcnt
);
4083 rsp
->flavor_mask
= fl_mask
;
4086 /* Initialize the elements themselves, starting from the leaves. */
4088 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4089 cpustride
*= levelspread
[i
];
4090 rnp
= rsp
->level
[i
];
4091 for (j
= 0; j
< levelcnt
[i
]; j
++, rnp
++) {
4092 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
4093 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
4094 &rcu_node_class
[i
], buf
[i
]);
4095 raw_spin_lock_init(&rnp
->fqslock
);
4096 lockdep_set_class_and_name(&rnp
->fqslock
,
4097 &rcu_fqs_class
[i
], fqs
[i
]);
4098 rnp
->gpnum
= rsp
->gpnum
;
4099 rnp
->completed
= rsp
->completed
;
4101 rnp
->qsmaskinit
= 0;
4102 rnp
->grplo
= j
* cpustride
;
4103 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4104 if (rnp
->grphi
>= nr_cpu_ids
)
4105 rnp
->grphi
= nr_cpu_ids
- 1;
4111 rnp
->grpnum
= j
% levelspread
[i
- 1];
4112 rnp
->grpmask
= 1UL << rnp
->grpnum
;
4113 rnp
->parent
= rsp
->level
[i
- 1] +
4114 j
/ levelspread
[i
- 1];
4117 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4118 rcu_init_one_nocb(rnp
);
4119 init_waitqueue_head(&rnp
->exp_wq
[0]);
4120 init_waitqueue_head(&rnp
->exp_wq
[1]);
4121 init_waitqueue_head(&rnp
->exp_wq
[2]);
4122 init_waitqueue_head(&rnp
->exp_wq
[3]);
4123 spin_lock_init(&rnp
->exp_lock
);
4127 init_swait_queue_head(&rsp
->gp_wq
);
4128 init_swait_queue_head(&rsp
->expedited_wq
);
4129 rnp
= rsp
->level
[rcu_num_lvls
- 1];
4130 for_each_possible_cpu(i
) {
4131 while (i
> rnp
->grphi
)
4133 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
4134 rcu_boot_init_percpu_data(i
, rsp
);
4136 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
4140 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4141 * replace the definitions in tree.h because those are needed to size
4142 * the ->node array in the rcu_state structure.
4144 static void __init
rcu_init_geometry(void)
4148 int rcu_capacity
[RCU_NUM_LVLS
];
4151 * Initialize any unspecified boot parameters.
4152 * The default values of jiffies_till_first_fqs and
4153 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4154 * value, which is a function of HZ, then adding one for each
4155 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4157 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4158 if (jiffies_till_first_fqs
== ULONG_MAX
)
4159 jiffies_till_first_fqs
= d
;
4160 if (jiffies_till_next_fqs
== ULONG_MAX
)
4161 jiffies_till_next_fqs
= d
;
4163 /* If the compile-time values are accurate, just leave. */
4164 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4165 nr_cpu_ids
== NR_CPUS
)
4167 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4168 rcu_fanout_leaf
, nr_cpu_ids
);
4171 * The boot-time rcu_fanout_leaf parameter must be at least two
4172 * and cannot exceed the number of bits in the rcu_node masks.
4173 * Complain and fall back to the compile-time values if this
4174 * limit is exceeded.
4176 if (rcu_fanout_leaf
< 2 ||
4177 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4178 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4184 * Compute number of nodes that can be handled an rcu_node tree
4185 * with the given number of levels.
4187 rcu_capacity
[0] = rcu_fanout_leaf
;
4188 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4189 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4192 * The tree must be able to accommodate the configured number of CPUs.
4193 * If this limit is exceeded, fall back to the compile-time values.
4195 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4196 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4201 /* Calculate the number of levels in the tree. */
4202 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4204 rcu_num_lvls
= i
+ 1;
4206 /* Calculate the number of rcu_nodes at each level of the tree. */
4207 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4208 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4209 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4212 /* Calculate the total number of rcu_node structures. */
4214 for (i
= 0; i
< rcu_num_lvls
; i
++)
4215 rcu_num_nodes
+= num_rcu_lvl
[i
];
4219 * Dump out the structure of the rcu_node combining tree associated
4220 * with the rcu_state structure referenced by rsp.
4222 static void __init
rcu_dump_rcu_node_tree(struct rcu_state
*rsp
)
4225 struct rcu_node
*rnp
;
4227 pr_info("rcu_node tree layout dump\n");
4229 rcu_for_each_node_breadth_first(rsp
, rnp
) {
4230 if (rnp
->level
!= level
) {
4235 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4240 void __init
rcu_init(void)
4244 rcu_early_boot_tests();
4246 rcu_bootup_announce();
4247 rcu_init_geometry();
4248 rcu_init_one(&rcu_bh_state
);
4249 rcu_init_one(&rcu_sched_state
);
4251 rcu_dump_rcu_node_tree(&rcu_sched_state
);
4252 __rcu_init_preempt();
4253 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
4256 * We don't need protection against CPU-hotplug here because
4257 * this is called early in boot, before either interrupts
4258 * or the scheduler are operational.
4260 pm_notifier(rcu_pm_notify
, 0);
4261 for_each_online_cpu(cpu
) {
4262 rcutree_prepare_cpu(cpu
);
4263 rcu_cpu_starting(cpu
);
4267 #include "tree_exp.h"
4268 #include "tree_plugin.h"