net: ethernet: Fix memleak in ethoc_probe
[linux/fpc-iii.git] / kernel / rcu / tree_plugin.h
blob554ea54e8d61ee3ffdb6a64a8932417bb4ff5134
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
33 #ifdef CONFIG_RCU_BOOST
35 #include "../locking/rtmutex_common.h"
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
46 #else /* #ifdef CONFIG_RCU_BOOST */
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary.
68 static void __init rcu_bootup_announce_oddness(void)
70 if (IS_ENABLED(CONFIG_RCU_TRACE))
71 pr_info("\tRCU debugfs-based tracing is enabled.\n");
72 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
73 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
74 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
75 RCU_FANOUT);
76 if (rcu_fanout_exact)
77 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
78 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
79 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
80 if (IS_ENABLED(CONFIG_PROVE_RCU))
81 pr_info("\tRCU lockdep checking is enabled.\n");
82 if (RCU_NUM_LVLS >= 4)
83 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
84 if (RCU_FANOUT_LEAF != 16)
85 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
86 RCU_FANOUT_LEAF);
87 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
88 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
89 if (nr_cpu_ids != NR_CPUS)
90 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
91 if (IS_ENABLED(CONFIG_RCU_BOOST))
92 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
95 #ifdef CONFIG_PREEMPT_RCU
97 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
98 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
99 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
101 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
102 bool wake);
105 * Tell them what RCU they are running.
107 static void __init rcu_bootup_announce(void)
109 pr_info("Preemptible hierarchical RCU implementation.\n");
110 rcu_bootup_announce_oddness();
113 /* Flags for rcu_preempt_ctxt_queue() decision table. */
114 #define RCU_GP_TASKS 0x8
115 #define RCU_EXP_TASKS 0x4
116 #define RCU_GP_BLKD 0x2
117 #define RCU_EXP_BLKD 0x1
120 * Queues a task preempted within an RCU-preempt read-side critical
121 * section into the appropriate location within the ->blkd_tasks list,
122 * depending on the states of any ongoing normal and expedited grace
123 * periods. The ->gp_tasks pointer indicates which element the normal
124 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
125 * indicates which element the expedited grace period is waiting on (again,
126 * NULL if none). If a grace period is waiting on a given element in the
127 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
128 * adding a task to the tail of the list blocks any grace period that is
129 * already waiting on one of the elements. In contrast, adding a task
130 * to the head of the list won't block any grace period that is already
131 * waiting on one of the elements.
133 * This queuing is imprecise, and can sometimes make an ongoing grace
134 * period wait for a task that is not strictly speaking blocking it.
135 * Given the choice, we needlessly block a normal grace period rather than
136 * blocking an expedited grace period.
138 * Note that an endless sequence of expedited grace periods still cannot
139 * indefinitely postpone a normal grace period. Eventually, all of the
140 * fixed number of preempted tasks blocking the normal grace period that are
141 * not also blocking the expedited grace period will resume and complete
142 * their RCU read-side critical sections. At that point, the ->gp_tasks
143 * pointer will equal the ->exp_tasks pointer, at which point the end of
144 * the corresponding expedited grace period will also be the end of the
145 * normal grace period.
147 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
148 __releases(rnp->lock) /* But leaves rrupts disabled. */
150 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
151 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
152 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
153 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
154 struct task_struct *t = current;
157 * Decide where to queue the newly blocked task. In theory,
158 * this could be an if-statement. In practice, when I tried
159 * that, it was quite messy.
161 switch (blkd_state) {
162 case 0:
163 case RCU_EXP_TASKS:
164 case RCU_EXP_TASKS + RCU_GP_BLKD:
165 case RCU_GP_TASKS:
166 case RCU_GP_TASKS + RCU_EXP_TASKS:
169 * Blocking neither GP, or first task blocking the normal
170 * GP but not blocking the already-waiting expedited GP.
171 * Queue at the head of the list to avoid unnecessarily
172 * blocking the already-waiting GPs.
174 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
175 break;
177 case RCU_EXP_BLKD:
178 case RCU_GP_BLKD:
179 case RCU_GP_BLKD + RCU_EXP_BLKD:
180 case RCU_GP_TASKS + RCU_EXP_BLKD:
181 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
182 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185 * First task arriving that blocks either GP, or first task
186 * arriving that blocks the expedited GP (with the normal
187 * GP already waiting), or a task arriving that blocks
188 * both GPs with both GPs already waiting. Queue at the
189 * tail of the list to avoid any GP waiting on any of the
190 * already queued tasks that are not blocking it.
192 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
193 break;
195 case RCU_EXP_TASKS + RCU_EXP_BLKD:
196 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
197 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
200 * Second or subsequent task blocking the expedited GP.
201 * The task either does not block the normal GP, or is the
202 * first task blocking the normal GP. Queue just after
203 * the first task blocking the expedited GP.
205 list_add(&t->rcu_node_entry, rnp->exp_tasks);
206 break;
208 case RCU_GP_TASKS + RCU_GP_BLKD:
209 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
212 * Second or subsequent task blocking the normal GP.
213 * The task does not block the expedited GP. Queue just
214 * after the first task blocking the normal GP.
216 list_add(&t->rcu_node_entry, rnp->gp_tasks);
217 break;
219 default:
221 /* Yet another exercise in excessive paranoia. */
222 WARN_ON_ONCE(1);
223 break;
227 * We have now queued the task. If it was the first one to
228 * block either grace period, update the ->gp_tasks and/or
229 * ->exp_tasks pointers, respectively, to reference the newly
230 * blocked tasks.
232 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
233 rnp->gp_tasks = &t->rcu_node_entry;
234 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
235 rnp->exp_tasks = &t->rcu_node_entry;
236 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
239 * Report the quiescent state for the expedited GP. This expedited
240 * GP should not be able to end until we report, so there should be
241 * no need to check for a subsequent expedited GP. (Though we are
242 * still in a quiescent state in any case.)
244 if (blkd_state & RCU_EXP_BLKD &&
245 t->rcu_read_unlock_special.b.exp_need_qs) {
246 t->rcu_read_unlock_special.b.exp_need_qs = false;
247 rcu_report_exp_rdp(rdp->rsp, rdp, true);
248 } else {
249 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
254 * Record a preemptible-RCU quiescent state for the specified CPU. Note
255 * that this just means that the task currently running on the CPU is
256 * not in a quiescent state. There might be any number of tasks blocked
257 * while in an RCU read-side critical section.
259 * As with the other rcu_*_qs() functions, callers to this function
260 * must disable preemption.
262 static void rcu_preempt_qs(void)
264 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
265 trace_rcu_grace_period(TPS("rcu_preempt"),
266 __this_cpu_read(rcu_data_p->gpnum),
267 TPS("cpuqs"));
268 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
269 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
270 current->rcu_read_unlock_special.b.need_qs = false;
275 * We have entered the scheduler, and the current task might soon be
276 * context-switched away from. If this task is in an RCU read-side
277 * critical section, we will no longer be able to rely on the CPU to
278 * record that fact, so we enqueue the task on the blkd_tasks list.
279 * The task will dequeue itself when it exits the outermost enclosing
280 * RCU read-side critical section. Therefore, the current grace period
281 * cannot be permitted to complete until the blkd_tasks list entries
282 * predating the current grace period drain, in other words, until
283 * rnp->gp_tasks becomes NULL.
285 * Caller must disable interrupts.
287 static void rcu_preempt_note_context_switch(void)
289 struct task_struct *t = current;
290 struct rcu_data *rdp;
291 struct rcu_node *rnp;
293 if (t->rcu_read_lock_nesting > 0 &&
294 !t->rcu_read_unlock_special.b.blocked) {
296 /* Possibly blocking in an RCU read-side critical section. */
297 rdp = this_cpu_ptr(rcu_state_p->rda);
298 rnp = rdp->mynode;
299 raw_spin_lock_rcu_node(rnp);
300 t->rcu_read_unlock_special.b.blocked = true;
301 t->rcu_blocked_node = rnp;
304 * Verify the CPU's sanity, trace the preemption, and
305 * then queue the task as required based on the states
306 * of any ongoing and expedited grace periods.
308 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310 trace_rcu_preempt_task(rdp->rsp->name,
311 t->pid,
312 (rnp->qsmask & rdp->grpmask)
313 ? rnp->gpnum
314 : rnp->gpnum + 1);
315 rcu_preempt_ctxt_queue(rnp, rdp);
316 } else if (t->rcu_read_lock_nesting < 0 &&
317 t->rcu_read_unlock_special.s) {
320 * Complete exit from RCU read-side critical section on
321 * behalf of preempted instance of __rcu_read_unlock().
323 rcu_read_unlock_special(t);
327 * Either we were not in an RCU read-side critical section to
328 * begin with, or we have now recorded that critical section
329 * globally. Either way, we can now note a quiescent state
330 * for this CPU. Again, if we were in an RCU read-side critical
331 * section, and if that critical section was blocking the current
332 * grace period, then the fact that the task has been enqueued
333 * means that we continue to block the current grace period.
335 rcu_preempt_qs();
339 * Check for preempted RCU readers blocking the current grace period
340 * for the specified rcu_node structure. If the caller needs a reliable
341 * answer, it must hold the rcu_node's ->lock.
343 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
345 return rnp->gp_tasks != NULL;
349 * Advance a ->blkd_tasks-list pointer to the next entry, instead
350 * returning NULL if at the end of the list.
352 static struct list_head *rcu_next_node_entry(struct task_struct *t,
353 struct rcu_node *rnp)
355 struct list_head *np;
357 np = t->rcu_node_entry.next;
358 if (np == &rnp->blkd_tasks)
359 np = NULL;
360 return np;
364 * Return true if the specified rcu_node structure has tasks that were
365 * preempted within an RCU read-side critical section.
367 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
369 return !list_empty(&rnp->blkd_tasks);
373 * Handle special cases during rcu_read_unlock(), such as needing to
374 * notify RCU core processing or task having blocked during the RCU
375 * read-side critical section.
377 void rcu_read_unlock_special(struct task_struct *t)
379 bool empty_exp;
380 bool empty_norm;
381 bool empty_exp_now;
382 unsigned long flags;
383 struct list_head *np;
384 bool drop_boost_mutex = false;
385 struct rcu_data *rdp;
386 struct rcu_node *rnp;
387 union rcu_special special;
389 /* NMI handlers cannot block and cannot safely manipulate state. */
390 if (in_nmi())
391 return;
393 local_irq_save(flags);
396 * If RCU core is waiting for this CPU to exit its critical section,
397 * report the fact that it has exited. Because irqs are disabled,
398 * t->rcu_read_unlock_special cannot change.
400 special = t->rcu_read_unlock_special;
401 if (special.b.need_qs) {
402 rcu_preempt_qs();
403 t->rcu_read_unlock_special.b.need_qs = false;
404 if (!t->rcu_read_unlock_special.s) {
405 local_irq_restore(flags);
406 return;
411 * Respond to a request for an expedited grace period, but only if
412 * we were not preempted, meaning that we were running on the same
413 * CPU throughout. If we were preempted, the exp_need_qs flag
414 * would have been cleared at the time of the first preemption,
415 * and the quiescent state would be reported when we were dequeued.
417 if (special.b.exp_need_qs) {
418 WARN_ON_ONCE(special.b.blocked);
419 t->rcu_read_unlock_special.b.exp_need_qs = false;
420 rdp = this_cpu_ptr(rcu_state_p->rda);
421 rcu_report_exp_rdp(rcu_state_p, rdp, true);
422 if (!t->rcu_read_unlock_special.s) {
423 local_irq_restore(flags);
424 return;
428 /* Hardware IRQ handlers cannot block, complain if they get here. */
429 if (in_irq() || in_serving_softirq()) {
430 lockdep_rcu_suspicious(__FILE__, __LINE__,
431 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
432 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
433 t->rcu_read_unlock_special.s,
434 t->rcu_read_unlock_special.b.blocked,
435 t->rcu_read_unlock_special.b.exp_need_qs,
436 t->rcu_read_unlock_special.b.need_qs);
437 local_irq_restore(flags);
438 return;
441 /* Clean up if blocked during RCU read-side critical section. */
442 if (special.b.blocked) {
443 t->rcu_read_unlock_special.b.blocked = false;
446 * Remove this task from the list it blocked on. The task
447 * now remains queued on the rcu_node corresponding to the
448 * CPU it first blocked on, so there is no longer any need
449 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
451 rnp = t->rcu_blocked_node;
452 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
453 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
454 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
455 empty_exp = sync_rcu_preempt_exp_done(rnp);
456 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
457 np = rcu_next_node_entry(t, rnp);
458 list_del_init(&t->rcu_node_entry);
459 t->rcu_blocked_node = NULL;
460 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
461 rnp->gpnum, t->pid);
462 if (&t->rcu_node_entry == rnp->gp_tasks)
463 rnp->gp_tasks = np;
464 if (&t->rcu_node_entry == rnp->exp_tasks)
465 rnp->exp_tasks = np;
466 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
467 if (&t->rcu_node_entry == rnp->boost_tasks)
468 rnp->boost_tasks = np;
469 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
470 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
474 * If this was the last task on the current list, and if
475 * we aren't waiting on any CPUs, report the quiescent state.
476 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
477 * so we must take a snapshot of the expedited state.
479 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
480 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
481 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
482 rnp->gpnum,
483 0, rnp->qsmask,
484 rnp->level,
485 rnp->grplo,
486 rnp->grphi,
487 !!rnp->gp_tasks);
488 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
489 } else {
490 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
493 /* Unboost if we were boosted. */
494 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
495 rt_mutex_unlock(&rnp->boost_mtx);
498 * If this was the last task on the expedited lists,
499 * then we need to report up the rcu_node hierarchy.
501 if (!empty_exp && empty_exp_now)
502 rcu_report_exp_rnp(rcu_state_p, rnp, true);
503 } else {
504 local_irq_restore(flags);
509 * Dump detailed information for all tasks blocking the current RCU
510 * grace period on the specified rcu_node structure.
512 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
514 unsigned long flags;
515 struct task_struct *t;
517 raw_spin_lock_irqsave_rcu_node(rnp, flags);
518 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
519 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
520 return;
522 t = list_entry(rnp->gp_tasks->prev,
523 struct task_struct, rcu_node_entry);
524 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
526 * We could be printing a lot while holding a spinlock.
527 * Avoid triggering hard lockup.
529 touch_nmi_watchdog();
530 sched_show_task(t);
532 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
536 * Dump detailed information for all tasks blocking the current RCU
537 * grace period.
539 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
541 struct rcu_node *rnp = rcu_get_root(rsp);
543 rcu_print_detail_task_stall_rnp(rnp);
544 rcu_for_each_leaf_node(rsp, rnp)
545 rcu_print_detail_task_stall_rnp(rnp);
548 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
550 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
551 rnp->level, rnp->grplo, rnp->grphi);
554 static void rcu_print_task_stall_end(void)
556 pr_cont("\n");
560 * Scan the current list of tasks blocked within RCU read-side critical
561 * sections, printing out the tid of each.
563 static int rcu_print_task_stall(struct rcu_node *rnp)
565 struct task_struct *t;
566 int ndetected = 0;
568 if (!rcu_preempt_blocked_readers_cgp(rnp))
569 return 0;
570 rcu_print_task_stall_begin(rnp);
571 t = list_entry(rnp->gp_tasks->prev,
572 struct task_struct, rcu_node_entry);
573 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
574 pr_cont(" P%d", t->pid);
575 ndetected++;
577 rcu_print_task_stall_end();
578 return ndetected;
582 * Scan the current list of tasks blocked within RCU read-side critical
583 * sections, printing out the tid of each that is blocking the current
584 * expedited grace period.
586 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
588 struct task_struct *t;
589 int ndetected = 0;
591 if (!rnp->exp_tasks)
592 return 0;
593 t = list_entry(rnp->exp_tasks->prev,
594 struct task_struct, rcu_node_entry);
595 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
596 pr_cont(" P%d", t->pid);
597 ndetected++;
599 return ndetected;
603 * Check that the list of blocked tasks for the newly completed grace
604 * period is in fact empty. It is a serious bug to complete a grace
605 * period that still has RCU readers blocked! This function must be
606 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
607 * must be held by the caller.
609 * Also, if there are blocked tasks on the list, they automatically
610 * block the newly created grace period, so set up ->gp_tasks accordingly.
612 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
614 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
615 if (rcu_preempt_has_tasks(rnp))
616 rnp->gp_tasks = rnp->blkd_tasks.next;
617 WARN_ON_ONCE(rnp->qsmask);
621 * Check for a quiescent state from the current CPU. When a task blocks,
622 * the task is recorded in the corresponding CPU's rcu_node structure,
623 * which is checked elsewhere.
625 * Caller must disable hard irqs.
627 static void rcu_preempt_check_callbacks(void)
629 struct task_struct *t = current;
631 if (t->rcu_read_lock_nesting == 0) {
632 rcu_preempt_qs();
633 return;
635 if (t->rcu_read_lock_nesting > 0 &&
636 __this_cpu_read(rcu_data_p->core_needs_qs) &&
637 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
638 t->rcu_read_unlock_special.b.need_qs = true;
641 #ifdef CONFIG_RCU_BOOST
643 static void rcu_preempt_do_callbacks(void)
645 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
648 #endif /* #ifdef CONFIG_RCU_BOOST */
651 * Queue a preemptible-RCU callback for invocation after a grace period.
653 void call_rcu(struct rcu_head *head, rcu_callback_t func)
655 __call_rcu(head, func, rcu_state_p, -1, 0);
657 EXPORT_SYMBOL_GPL(call_rcu);
660 * synchronize_rcu - wait until a grace period has elapsed.
662 * Control will return to the caller some time after a full grace
663 * period has elapsed, in other words after all currently executing RCU
664 * read-side critical sections have completed. Note, however, that
665 * upon return from synchronize_rcu(), the caller might well be executing
666 * concurrently with new RCU read-side critical sections that began while
667 * synchronize_rcu() was waiting. RCU read-side critical sections are
668 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
670 * See the description of synchronize_sched() for more detailed information
671 * on memory ordering guarantees.
673 void synchronize_rcu(void)
675 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
676 lock_is_held(&rcu_lock_map) ||
677 lock_is_held(&rcu_sched_lock_map),
678 "Illegal synchronize_rcu() in RCU read-side critical section");
679 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
680 return;
681 if (rcu_gp_is_expedited())
682 synchronize_rcu_expedited();
683 else
684 wait_rcu_gp(call_rcu);
686 EXPORT_SYMBOL_GPL(synchronize_rcu);
689 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
691 * Note that this primitive does not necessarily wait for an RCU grace period
692 * to complete. For example, if there are no RCU callbacks queued anywhere
693 * in the system, then rcu_barrier() is within its rights to return
694 * immediately, without waiting for anything, much less an RCU grace period.
696 void rcu_barrier(void)
698 _rcu_barrier(rcu_state_p);
700 EXPORT_SYMBOL_GPL(rcu_barrier);
703 * Initialize preemptible RCU's state structures.
705 static void __init __rcu_init_preempt(void)
707 rcu_init_one(rcu_state_p);
711 * Check for a task exiting while in a preemptible-RCU read-side
712 * critical section, clean up if so. No need to issue warnings,
713 * as debug_check_no_locks_held() already does this if lockdep
714 * is enabled.
716 void exit_rcu(void)
718 struct task_struct *t = current;
720 if (likely(list_empty(&current->rcu_node_entry)))
721 return;
722 t->rcu_read_lock_nesting = 1;
723 barrier();
724 t->rcu_read_unlock_special.b.blocked = true;
725 __rcu_read_unlock();
728 #else /* #ifdef CONFIG_PREEMPT_RCU */
730 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
733 * Tell them what RCU they are running.
735 static void __init rcu_bootup_announce(void)
737 pr_info("Hierarchical RCU implementation.\n");
738 rcu_bootup_announce_oddness();
742 * Because preemptible RCU does not exist, we never have to check for
743 * CPUs being in quiescent states.
745 static void rcu_preempt_note_context_switch(void)
750 * Because preemptible RCU does not exist, there are never any preempted
751 * RCU readers.
753 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
755 return 0;
759 * Because there is no preemptible RCU, there can be no readers blocked.
761 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
763 return false;
767 * Because preemptible RCU does not exist, we never have to check for
768 * tasks blocked within RCU read-side critical sections.
770 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
775 * Because preemptible RCU does not exist, we never have to check for
776 * tasks blocked within RCU read-side critical sections.
778 static int rcu_print_task_stall(struct rcu_node *rnp)
780 return 0;
784 * Because preemptible RCU does not exist, we never have to check for
785 * tasks blocked within RCU read-side critical sections that are
786 * blocking the current expedited grace period.
788 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
790 return 0;
794 * Because there is no preemptible RCU, there can be no readers blocked,
795 * so there is no need to check for blocked tasks. So check only for
796 * bogus qsmask values.
798 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
800 WARN_ON_ONCE(rnp->qsmask);
804 * Because preemptible RCU does not exist, it never has any callbacks
805 * to check.
807 static void rcu_preempt_check_callbacks(void)
812 * Because preemptible RCU does not exist, rcu_barrier() is just
813 * another name for rcu_barrier_sched().
815 void rcu_barrier(void)
817 rcu_barrier_sched();
819 EXPORT_SYMBOL_GPL(rcu_barrier);
822 * Because preemptible RCU does not exist, it need not be initialized.
824 static void __init __rcu_init_preempt(void)
829 * Because preemptible RCU does not exist, tasks cannot possibly exit
830 * while in preemptible RCU read-side critical sections.
832 void exit_rcu(void)
836 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
838 #ifdef CONFIG_RCU_BOOST
840 #include "../locking/rtmutex_common.h"
842 #ifdef CONFIG_RCU_TRACE
844 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
846 if (!rcu_preempt_has_tasks(rnp))
847 rnp->n_balk_blkd_tasks++;
848 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
849 rnp->n_balk_exp_gp_tasks++;
850 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
851 rnp->n_balk_boost_tasks++;
852 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
853 rnp->n_balk_notblocked++;
854 else if (rnp->gp_tasks != NULL &&
855 ULONG_CMP_LT(jiffies, rnp->boost_time))
856 rnp->n_balk_notyet++;
857 else
858 rnp->n_balk_nos++;
861 #else /* #ifdef CONFIG_RCU_TRACE */
863 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
867 #endif /* #else #ifdef CONFIG_RCU_TRACE */
869 static void rcu_wake_cond(struct task_struct *t, int status)
872 * If the thread is yielding, only wake it when this
873 * is invoked from idle
875 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
876 wake_up_process(t);
880 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
881 * or ->boost_tasks, advancing the pointer to the next task in the
882 * ->blkd_tasks list.
884 * Note that irqs must be enabled: boosting the task can block.
885 * Returns 1 if there are more tasks needing to be boosted.
887 static int rcu_boost(struct rcu_node *rnp)
889 unsigned long flags;
890 struct task_struct *t;
891 struct list_head *tb;
893 if (READ_ONCE(rnp->exp_tasks) == NULL &&
894 READ_ONCE(rnp->boost_tasks) == NULL)
895 return 0; /* Nothing left to boost. */
897 raw_spin_lock_irqsave_rcu_node(rnp, flags);
900 * Recheck under the lock: all tasks in need of boosting
901 * might exit their RCU read-side critical sections on their own.
903 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
904 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
905 return 0;
909 * Preferentially boost tasks blocking expedited grace periods.
910 * This cannot starve the normal grace periods because a second
911 * expedited grace period must boost all blocked tasks, including
912 * those blocking the pre-existing normal grace period.
914 if (rnp->exp_tasks != NULL) {
915 tb = rnp->exp_tasks;
916 rnp->n_exp_boosts++;
917 } else {
918 tb = rnp->boost_tasks;
919 rnp->n_normal_boosts++;
921 rnp->n_tasks_boosted++;
924 * We boost task t by manufacturing an rt_mutex that appears to
925 * be held by task t. We leave a pointer to that rt_mutex where
926 * task t can find it, and task t will release the mutex when it
927 * exits its outermost RCU read-side critical section. Then
928 * simply acquiring this artificial rt_mutex will boost task
929 * t's priority. (Thanks to tglx for suggesting this approach!)
931 * Note that task t must acquire rnp->lock to remove itself from
932 * the ->blkd_tasks list, which it will do from exit() if from
933 * nowhere else. We therefore are guaranteed that task t will
934 * stay around at least until we drop rnp->lock. Note that
935 * rnp->lock also resolves races between our priority boosting
936 * and task t's exiting its outermost RCU read-side critical
937 * section.
939 t = container_of(tb, struct task_struct, rcu_node_entry);
940 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
941 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
942 /* Lock only for side effect: boosts task t's priority. */
943 rt_mutex_lock(&rnp->boost_mtx);
944 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
946 return READ_ONCE(rnp->exp_tasks) != NULL ||
947 READ_ONCE(rnp->boost_tasks) != NULL;
951 * Priority-boosting kthread, one per leaf rcu_node.
953 static int rcu_boost_kthread(void *arg)
955 struct rcu_node *rnp = (struct rcu_node *)arg;
956 int spincnt = 0;
957 int more2boost;
959 trace_rcu_utilization(TPS("Start boost kthread@init"));
960 for (;;) {
961 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
962 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
963 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
964 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
965 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
966 more2boost = rcu_boost(rnp);
967 if (more2boost)
968 spincnt++;
969 else
970 spincnt = 0;
971 if (spincnt > 10) {
972 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
973 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
974 schedule_timeout_interruptible(2);
975 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
976 spincnt = 0;
979 /* NOTREACHED */
980 trace_rcu_utilization(TPS("End boost kthread@notreached"));
981 return 0;
985 * Check to see if it is time to start boosting RCU readers that are
986 * blocking the current grace period, and, if so, tell the per-rcu_node
987 * kthread to start boosting them. If there is an expedited grace
988 * period in progress, it is always time to boost.
990 * The caller must hold rnp->lock, which this function releases.
991 * The ->boost_kthread_task is immortal, so we don't need to worry
992 * about it going away.
994 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
995 __releases(rnp->lock)
997 struct task_struct *t;
999 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1000 rnp->n_balk_exp_gp_tasks++;
1001 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1002 return;
1004 if (rnp->exp_tasks != NULL ||
1005 (rnp->gp_tasks != NULL &&
1006 rnp->boost_tasks == NULL &&
1007 rnp->qsmask == 0 &&
1008 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1009 if (rnp->exp_tasks == NULL)
1010 rnp->boost_tasks = rnp->gp_tasks;
1011 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1012 t = rnp->boost_kthread_task;
1013 if (t)
1014 rcu_wake_cond(t, rnp->boost_kthread_status);
1015 } else {
1016 rcu_initiate_boost_trace(rnp);
1017 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1022 * Wake up the per-CPU kthread to invoke RCU callbacks.
1024 static void invoke_rcu_callbacks_kthread(void)
1026 unsigned long flags;
1028 local_irq_save(flags);
1029 __this_cpu_write(rcu_cpu_has_work, 1);
1030 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1031 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1032 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1033 __this_cpu_read(rcu_cpu_kthread_status));
1035 local_irq_restore(flags);
1039 * Is the current CPU running the RCU-callbacks kthread?
1040 * Caller must have preemption disabled.
1042 static bool rcu_is_callbacks_kthread(void)
1044 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1047 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1050 * Do priority-boost accounting for the start of a new grace period.
1052 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1054 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1058 * Create an RCU-boost kthread for the specified node if one does not
1059 * already exist. We only create this kthread for preemptible RCU.
1060 * Returns zero if all is well, a negated errno otherwise.
1062 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1063 struct rcu_node *rnp)
1065 int rnp_index = rnp - &rsp->node[0];
1066 unsigned long flags;
1067 struct sched_param sp;
1068 struct task_struct *t;
1070 if (rcu_state_p != rsp)
1071 return 0;
1073 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1074 return 0;
1076 rsp->boost = 1;
1077 if (rnp->boost_kthread_task != NULL)
1078 return 0;
1079 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1080 "rcub/%d", rnp_index);
1081 if (IS_ERR(t))
1082 return PTR_ERR(t);
1083 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1084 rnp->boost_kthread_task = t;
1085 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086 sp.sched_priority = kthread_prio;
1087 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1088 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1089 return 0;
1092 static void rcu_kthread_do_work(void)
1094 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1095 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1096 rcu_preempt_do_callbacks();
1099 static void rcu_cpu_kthread_setup(unsigned int cpu)
1101 struct sched_param sp;
1103 sp.sched_priority = kthread_prio;
1104 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1107 static void rcu_cpu_kthread_park(unsigned int cpu)
1109 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1112 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1114 return __this_cpu_read(rcu_cpu_has_work);
1118 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1119 * RCU softirq used in flavors and configurations of RCU that do not
1120 * support RCU priority boosting.
1122 static void rcu_cpu_kthread(unsigned int cpu)
1124 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1125 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1126 int spincnt;
1128 for (spincnt = 0; spincnt < 10; spincnt++) {
1129 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1130 local_bh_disable();
1131 *statusp = RCU_KTHREAD_RUNNING;
1132 this_cpu_inc(rcu_cpu_kthread_loops);
1133 local_irq_disable();
1134 work = *workp;
1135 *workp = 0;
1136 local_irq_enable();
1137 if (work)
1138 rcu_kthread_do_work();
1139 local_bh_enable();
1140 if (*workp == 0) {
1141 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1142 *statusp = RCU_KTHREAD_WAITING;
1143 return;
1146 *statusp = RCU_KTHREAD_YIELDING;
1147 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1148 schedule_timeout_interruptible(2);
1149 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1150 *statusp = RCU_KTHREAD_WAITING;
1154 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1155 * served by the rcu_node in question. The CPU hotplug lock is still
1156 * held, so the value of rnp->qsmaskinit will be stable.
1158 * We don't include outgoingcpu in the affinity set, use -1 if there is
1159 * no outgoing CPU. If there are no CPUs left in the affinity set,
1160 * this function allows the kthread to execute on any CPU.
1162 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1164 struct task_struct *t = rnp->boost_kthread_task;
1165 unsigned long mask = rcu_rnp_online_cpus(rnp);
1166 cpumask_var_t cm;
1167 int cpu;
1169 if (!t)
1170 return;
1171 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1172 return;
1173 for_each_leaf_node_possible_cpu(rnp, cpu)
1174 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1175 cpu != outgoingcpu)
1176 cpumask_set_cpu(cpu, cm);
1177 if (cpumask_weight(cm) == 0)
1178 cpumask_setall(cm);
1179 set_cpus_allowed_ptr(t, cm);
1180 free_cpumask_var(cm);
1183 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1184 .store = &rcu_cpu_kthread_task,
1185 .thread_should_run = rcu_cpu_kthread_should_run,
1186 .thread_fn = rcu_cpu_kthread,
1187 .thread_comm = "rcuc/%u",
1188 .setup = rcu_cpu_kthread_setup,
1189 .park = rcu_cpu_kthread_park,
1193 * Spawn boost kthreads -- called as soon as the scheduler is running.
1195 static void __init rcu_spawn_boost_kthreads(void)
1197 struct rcu_node *rnp;
1198 int cpu;
1200 for_each_possible_cpu(cpu)
1201 per_cpu(rcu_cpu_has_work, cpu) = 0;
1202 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1203 rcu_for_each_leaf_node(rcu_state_p, rnp)
1204 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1207 static void rcu_prepare_kthreads(int cpu)
1209 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1210 struct rcu_node *rnp = rdp->mynode;
1212 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1213 if (rcu_scheduler_fully_active)
1214 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1217 #else /* #ifdef CONFIG_RCU_BOOST */
1219 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1220 __releases(rnp->lock)
1222 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1225 static void invoke_rcu_callbacks_kthread(void)
1227 WARN_ON_ONCE(1);
1230 static bool rcu_is_callbacks_kthread(void)
1232 return false;
1235 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1239 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1243 static void __init rcu_spawn_boost_kthreads(void)
1247 static void rcu_prepare_kthreads(int cpu)
1251 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1253 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1256 * Check to see if any future RCU-related work will need to be done
1257 * by the current CPU, even if none need be done immediately, returning
1258 * 1 if so. This function is part of the RCU implementation; it is -not-
1259 * an exported member of the RCU API.
1261 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1262 * any flavor of RCU.
1264 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1266 *nextevt = KTIME_MAX;
1267 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1268 ? 0 : rcu_cpu_has_callbacks(NULL);
1272 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1273 * after it.
1275 static void rcu_cleanup_after_idle(void)
1280 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1281 * is nothing.
1283 static void rcu_prepare_for_idle(void)
1288 * Don't bother keeping a running count of the number of RCU callbacks
1289 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1291 static void rcu_idle_count_callbacks_posted(void)
1295 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1298 * This code is invoked when a CPU goes idle, at which point we want
1299 * to have the CPU do everything required for RCU so that it can enter
1300 * the energy-efficient dyntick-idle mode. This is handled by a
1301 * state machine implemented by rcu_prepare_for_idle() below.
1303 * The following three proprocessor symbols control this state machine:
1305 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1306 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1307 * is sized to be roughly one RCU grace period. Those energy-efficiency
1308 * benchmarkers who might otherwise be tempted to set this to a large
1309 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1310 * system. And if you are -that- concerned about energy efficiency,
1311 * just power the system down and be done with it!
1312 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1313 * permitted to sleep in dyntick-idle mode with only lazy RCU
1314 * callbacks pending. Setting this too high can OOM your system.
1316 * The values below work well in practice. If future workloads require
1317 * adjustment, they can be converted into kernel config parameters, though
1318 * making the state machine smarter might be a better option.
1320 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1321 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1323 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1324 module_param(rcu_idle_gp_delay, int, 0644);
1325 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1326 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1329 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1330 * only if it has been awhile since the last time we did so. Afterwards,
1331 * if there are any callbacks ready for immediate invocation, return true.
1333 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1335 bool cbs_ready = false;
1336 struct rcu_data *rdp;
1337 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1338 struct rcu_node *rnp;
1339 struct rcu_state *rsp;
1341 /* Exit early if we advanced recently. */
1342 if (jiffies == rdtp->last_advance_all)
1343 return false;
1344 rdtp->last_advance_all = jiffies;
1346 for_each_rcu_flavor(rsp) {
1347 rdp = this_cpu_ptr(rsp->rda);
1348 rnp = rdp->mynode;
1351 * Don't bother checking unless a grace period has
1352 * completed since we last checked and there are
1353 * callbacks not yet ready to invoke.
1355 if ((rdp->completed != rnp->completed ||
1356 unlikely(READ_ONCE(rdp->gpwrap))) &&
1357 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1358 note_gp_changes(rsp, rdp);
1360 if (cpu_has_callbacks_ready_to_invoke(rdp))
1361 cbs_ready = true;
1363 return cbs_ready;
1367 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1368 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1369 * caller to set the timeout based on whether or not there are non-lazy
1370 * callbacks.
1372 * The caller must have disabled interrupts.
1374 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1376 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1377 unsigned long dj;
1379 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1380 *nextevt = KTIME_MAX;
1381 return 0;
1384 /* Snapshot to detect later posting of non-lazy callback. */
1385 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1387 /* If no callbacks, RCU doesn't need the CPU. */
1388 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1389 *nextevt = KTIME_MAX;
1390 return 0;
1393 /* Attempt to advance callbacks. */
1394 if (rcu_try_advance_all_cbs()) {
1395 /* Some ready to invoke, so initiate later invocation. */
1396 invoke_rcu_core();
1397 return 1;
1399 rdtp->last_accelerate = jiffies;
1401 /* Request timer delay depending on laziness, and round. */
1402 if (!rdtp->all_lazy) {
1403 dj = round_up(rcu_idle_gp_delay + jiffies,
1404 rcu_idle_gp_delay) - jiffies;
1405 } else {
1406 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1408 *nextevt = basemono + dj * TICK_NSEC;
1409 return 0;
1413 * Prepare a CPU for idle from an RCU perspective. The first major task
1414 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1415 * The second major task is to check to see if a non-lazy callback has
1416 * arrived at a CPU that previously had only lazy callbacks. The third
1417 * major task is to accelerate (that is, assign grace-period numbers to)
1418 * any recently arrived callbacks.
1420 * The caller must have disabled interrupts.
1422 static void rcu_prepare_for_idle(void)
1424 bool needwake;
1425 struct rcu_data *rdp;
1426 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1427 struct rcu_node *rnp;
1428 struct rcu_state *rsp;
1429 int tne;
1431 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1432 rcu_is_nocb_cpu(smp_processor_id()))
1433 return;
1435 /* Handle nohz enablement switches conservatively. */
1436 tne = READ_ONCE(tick_nohz_active);
1437 if (tne != rdtp->tick_nohz_enabled_snap) {
1438 if (rcu_cpu_has_callbacks(NULL))
1439 invoke_rcu_core(); /* force nohz to see update. */
1440 rdtp->tick_nohz_enabled_snap = tne;
1441 return;
1443 if (!tne)
1444 return;
1447 * If a non-lazy callback arrived at a CPU having only lazy
1448 * callbacks, invoke RCU core for the side-effect of recalculating
1449 * idle duration on re-entry to idle.
1451 if (rdtp->all_lazy &&
1452 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1453 rdtp->all_lazy = false;
1454 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1455 invoke_rcu_core();
1456 return;
1460 * If we have not yet accelerated this jiffy, accelerate all
1461 * callbacks on this CPU.
1463 if (rdtp->last_accelerate == jiffies)
1464 return;
1465 rdtp->last_accelerate = jiffies;
1466 for_each_rcu_flavor(rsp) {
1467 rdp = this_cpu_ptr(rsp->rda);
1468 if (!*rdp->nxttail[RCU_DONE_TAIL])
1469 continue;
1470 rnp = rdp->mynode;
1471 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1472 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1473 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1474 if (needwake)
1475 rcu_gp_kthread_wake(rsp);
1480 * Clean up for exit from idle. Attempt to advance callbacks based on
1481 * any grace periods that elapsed while the CPU was idle, and if any
1482 * callbacks are now ready to invoke, initiate invocation.
1484 static void rcu_cleanup_after_idle(void)
1486 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1487 rcu_is_nocb_cpu(smp_processor_id()))
1488 return;
1489 if (rcu_try_advance_all_cbs())
1490 invoke_rcu_core();
1494 * Keep a running count of the number of non-lazy callbacks posted
1495 * on this CPU. This running counter (which is never decremented) allows
1496 * rcu_prepare_for_idle() to detect when something out of the idle loop
1497 * posts a callback, even if an equal number of callbacks are invoked.
1498 * Of course, callbacks should only be posted from within a trace event
1499 * designed to be called from idle or from within RCU_NONIDLE().
1501 static void rcu_idle_count_callbacks_posted(void)
1503 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1507 * Data for flushing lazy RCU callbacks at OOM time.
1509 static atomic_t oom_callback_count;
1510 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1513 * RCU OOM callback -- decrement the outstanding count and deliver the
1514 * wake-up if we are the last one.
1516 static void rcu_oom_callback(struct rcu_head *rhp)
1518 if (atomic_dec_and_test(&oom_callback_count))
1519 wake_up(&oom_callback_wq);
1523 * Post an rcu_oom_notify callback on the current CPU if it has at
1524 * least one lazy callback. This will unnecessarily post callbacks
1525 * to CPUs that already have a non-lazy callback at the end of their
1526 * callback list, but this is an infrequent operation, so accept some
1527 * extra overhead to keep things simple.
1529 static void rcu_oom_notify_cpu(void *unused)
1531 struct rcu_state *rsp;
1532 struct rcu_data *rdp;
1534 for_each_rcu_flavor(rsp) {
1535 rdp = raw_cpu_ptr(rsp->rda);
1536 if (rdp->qlen_lazy != 0) {
1537 atomic_inc(&oom_callback_count);
1538 rsp->call(&rdp->oom_head, rcu_oom_callback);
1544 * If low on memory, ensure that each CPU has a non-lazy callback.
1545 * This will wake up CPUs that have only lazy callbacks, in turn
1546 * ensuring that they free up the corresponding memory in a timely manner.
1547 * Because an uncertain amount of memory will be freed in some uncertain
1548 * timeframe, we do not claim to have freed anything.
1550 static int rcu_oom_notify(struct notifier_block *self,
1551 unsigned long notused, void *nfreed)
1553 int cpu;
1555 /* Wait for callbacks from earlier instance to complete. */
1556 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1557 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1560 * Prevent premature wakeup: ensure that all increments happen
1561 * before there is a chance of the counter reaching zero.
1563 atomic_set(&oom_callback_count, 1);
1565 for_each_online_cpu(cpu) {
1566 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1567 cond_resched_rcu_qs();
1570 /* Unconditionally decrement: no need to wake ourselves up. */
1571 atomic_dec(&oom_callback_count);
1573 return NOTIFY_OK;
1576 static struct notifier_block rcu_oom_nb = {
1577 .notifier_call = rcu_oom_notify
1580 static int __init rcu_register_oom_notifier(void)
1582 register_oom_notifier(&rcu_oom_nb);
1583 return 0;
1585 early_initcall(rcu_register_oom_notifier);
1587 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1589 #ifdef CONFIG_RCU_FAST_NO_HZ
1591 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1593 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1594 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1596 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1597 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1598 ulong2long(nlpd),
1599 rdtp->all_lazy ? 'L' : '.',
1600 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1603 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1605 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1607 *cp = '\0';
1610 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1612 /* Initiate the stall-info list. */
1613 static void print_cpu_stall_info_begin(void)
1615 pr_cont("\n");
1619 * Print out diagnostic information for the specified stalled CPU.
1621 * If the specified CPU is aware of the current RCU grace period
1622 * (flavor specified by rsp), then print the number of scheduling
1623 * clock interrupts the CPU has taken during the time that it has
1624 * been aware. Otherwise, print the number of RCU grace periods
1625 * that this CPU is ignorant of, for example, "1" if the CPU was
1626 * aware of the previous grace period.
1628 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1630 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1632 char fast_no_hz[72];
1633 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1634 struct rcu_dynticks *rdtp = rdp->dynticks;
1635 char *ticks_title;
1636 unsigned long ticks_value;
1639 * We could be printing a lot while holding a spinlock. Avoid
1640 * triggering hard lockup.
1642 touch_nmi_watchdog();
1644 if (rsp->gpnum == rdp->gpnum) {
1645 ticks_title = "ticks this GP";
1646 ticks_value = rdp->ticks_this_gp;
1647 } else {
1648 ticks_title = "GPs behind";
1649 ticks_value = rsp->gpnum - rdp->gpnum;
1651 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1652 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1653 cpu,
1654 "O."[!!cpu_online(cpu)],
1655 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1656 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1657 ticks_value, ticks_title,
1658 atomic_read(&rdtp->dynticks) & 0xfff,
1659 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1660 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1661 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1662 fast_no_hz);
1665 /* Terminate the stall-info list. */
1666 static void print_cpu_stall_info_end(void)
1668 pr_err("\t");
1671 /* Zero ->ticks_this_gp for all flavors of RCU. */
1672 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1674 rdp->ticks_this_gp = 0;
1675 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1678 /* Increment ->ticks_this_gp for all flavors of RCU. */
1679 static void increment_cpu_stall_ticks(void)
1681 struct rcu_state *rsp;
1683 for_each_rcu_flavor(rsp)
1684 raw_cpu_inc(rsp->rda->ticks_this_gp);
1687 #ifdef CONFIG_RCU_NOCB_CPU
1690 * Offload callback processing from the boot-time-specified set of CPUs
1691 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1692 * kthread created that pulls the callbacks from the corresponding CPU,
1693 * waits for a grace period to elapse, and invokes the callbacks.
1694 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1695 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1696 * has been specified, in which case each kthread actively polls its
1697 * CPU. (Which isn't so great for energy efficiency, but which does
1698 * reduce RCU's overhead on that CPU.)
1700 * This is intended to be used in conjunction with Frederic Weisbecker's
1701 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1702 * running CPU-bound user-mode computations.
1704 * Offloading of callback processing could also in theory be used as
1705 * an energy-efficiency measure because CPUs with no RCU callbacks
1706 * queued are more aggressive about entering dyntick-idle mode.
1710 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1711 static int __init rcu_nocb_setup(char *str)
1713 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1714 have_rcu_nocb_mask = true;
1715 cpulist_parse(str, rcu_nocb_mask);
1716 return 1;
1718 __setup("rcu_nocbs=", rcu_nocb_setup);
1720 static int __init parse_rcu_nocb_poll(char *arg)
1722 rcu_nocb_poll = 1;
1723 return 0;
1725 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1728 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1729 * grace period.
1731 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1733 swake_up_all(sq);
1737 * Set the root rcu_node structure's ->need_future_gp field
1738 * based on the sum of those of all rcu_node structures. This does
1739 * double-count the root rcu_node structure's requests, but this
1740 * is necessary to handle the possibility of a rcu_nocb_kthread()
1741 * having awakened during the time that the rcu_node structures
1742 * were being updated for the end of the previous grace period.
1744 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1746 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1749 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1751 return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1754 static void rcu_init_one_nocb(struct rcu_node *rnp)
1756 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1757 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1760 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1761 /* Is the specified CPU a no-CBs CPU? */
1762 bool rcu_is_nocb_cpu(int cpu)
1764 if (have_rcu_nocb_mask)
1765 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1766 return false;
1768 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1771 * Kick the leader kthread for this NOCB group.
1773 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1775 struct rcu_data *rdp_leader = rdp->nocb_leader;
1777 if (!READ_ONCE(rdp_leader->nocb_kthread))
1778 return;
1779 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1780 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1781 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1782 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1783 swake_up(&rdp_leader->nocb_wq);
1788 * Does the specified CPU need an RCU callback for the specified flavor
1789 * of rcu_barrier()?
1791 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1793 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1794 unsigned long ret;
1795 #ifdef CONFIG_PROVE_RCU
1796 struct rcu_head *rhp;
1797 #endif /* #ifdef CONFIG_PROVE_RCU */
1800 * Check count of all no-CBs callbacks awaiting invocation.
1801 * There needs to be a barrier before this function is called,
1802 * but associated with a prior determination that no more
1803 * callbacks would be posted. In the worst case, the first
1804 * barrier in _rcu_barrier() suffices (but the caller cannot
1805 * necessarily rely on this, not a substitute for the caller
1806 * getting the concurrency design right!). There must also be
1807 * a barrier between the following load an posting of a callback
1808 * (if a callback is in fact needed). This is associated with an
1809 * atomic_inc() in the caller.
1811 ret = atomic_long_read(&rdp->nocb_q_count);
1813 #ifdef CONFIG_PROVE_RCU
1814 rhp = READ_ONCE(rdp->nocb_head);
1815 if (!rhp)
1816 rhp = READ_ONCE(rdp->nocb_gp_head);
1817 if (!rhp)
1818 rhp = READ_ONCE(rdp->nocb_follower_head);
1820 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1821 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1822 rcu_scheduler_fully_active) {
1823 /* RCU callback enqueued before CPU first came online??? */
1824 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1825 cpu, rhp->func);
1826 WARN_ON_ONCE(1);
1828 #endif /* #ifdef CONFIG_PROVE_RCU */
1830 return !!ret;
1834 * Enqueue the specified string of rcu_head structures onto the specified
1835 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1836 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1837 * counts are supplied by rhcount and rhcount_lazy.
1839 * If warranted, also wake up the kthread servicing this CPUs queues.
1841 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1842 struct rcu_head *rhp,
1843 struct rcu_head **rhtp,
1844 int rhcount, int rhcount_lazy,
1845 unsigned long flags)
1847 int len;
1848 struct rcu_head **old_rhpp;
1849 struct task_struct *t;
1851 /* Enqueue the callback on the nocb list and update counts. */
1852 atomic_long_add(rhcount, &rdp->nocb_q_count);
1853 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1854 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1855 WRITE_ONCE(*old_rhpp, rhp);
1856 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1857 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1859 /* If we are not being polled and there is a kthread, awaken it ... */
1860 t = READ_ONCE(rdp->nocb_kthread);
1861 if (rcu_nocb_poll || !t) {
1862 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1863 TPS("WakeNotPoll"));
1864 return;
1866 len = atomic_long_read(&rdp->nocb_q_count);
1867 if (old_rhpp == &rdp->nocb_head) {
1868 if (!irqs_disabled_flags(flags)) {
1869 /* ... if queue was empty ... */
1870 wake_nocb_leader(rdp, false);
1871 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1872 TPS("WakeEmpty"));
1873 } else {
1874 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1875 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1876 TPS("WakeEmptyIsDeferred"));
1878 rdp->qlen_last_fqs_check = 0;
1879 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1880 /* ... or if many callbacks queued. */
1881 if (!irqs_disabled_flags(flags)) {
1882 wake_nocb_leader(rdp, true);
1883 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1884 TPS("WakeOvf"));
1885 } else {
1886 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1887 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1888 TPS("WakeOvfIsDeferred"));
1890 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1891 } else {
1892 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1894 return;
1898 * This is a helper for __call_rcu(), which invokes this when the normal
1899 * callback queue is inoperable. If this is not a no-CBs CPU, this
1900 * function returns failure back to __call_rcu(), which can complain
1901 * appropriately.
1903 * Otherwise, this function queues the callback where the corresponding
1904 * "rcuo" kthread can find it.
1906 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1907 bool lazy, unsigned long flags)
1910 if (!rcu_is_nocb_cpu(rdp->cpu))
1911 return false;
1912 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1913 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1914 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1915 (unsigned long)rhp->func,
1916 -atomic_long_read(&rdp->nocb_q_count_lazy),
1917 -atomic_long_read(&rdp->nocb_q_count));
1918 else
1919 trace_rcu_callback(rdp->rsp->name, rhp,
1920 -atomic_long_read(&rdp->nocb_q_count_lazy),
1921 -atomic_long_read(&rdp->nocb_q_count));
1924 * If called from an extended quiescent state with interrupts
1925 * disabled, invoke the RCU core in order to allow the idle-entry
1926 * deferred-wakeup check to function.
1928 if (irqs_disabled_flags(flags) &&
1929 !rcu_is_watching() &&
1930 cpu_online(smp_processor_id()))
1931 invoke_rcu_core();
1933 return true;
1937 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1938 * not a no-CBs CPU.
1940 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1941 struct rcu_data *rdp,
1942 unsigned long flags)
1944 long ql = rsp->qlen;
1945 long qll = rsp->qlen_lazy;
1947 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1948 if (!rcu_is_nocb_cpu(smp_processor_id()))
1949 return false;
1950 rsp->qlen = 0;
1951 rsp->qlen_lazy = 0;
1953 /* First, enqueue the donelist, if any. This preserves CB ordering. */
1954 if (rsp->orphan_donelist != NULL) {
1955 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1956 rsp->orphan_donetail, ql, qll, flags);
1957 ql = qll = 0;
1958 rsp->orphan_donelist = NULL;
1959 rsp->orphan_donetail = &rsp->orphan_donelist;
1961 if (rsp->orphan_nxtlist != NULL) {
1962 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1963 rsp->orphan_nxttail, ql, qll, flags);
1964 ql = qll = 0;
1965 rsp->orphan_nxtlist = NULL;
1966 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1968 return true;
1972 * If necessary, kick off a new grace period, and either way wait
1973 * for a subsequent grace period to complete.
1975 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1977 unsigned long c;
1978 bool d;
1979 unsigned long flags;
1980 bool needwake;
1981 struct rcu_node *rnp = rdp->mynode;
1983 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1984 needwake = rcu_start_future_gp(rnp, rdp, &c);
1985 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1986 if (needwake)
1987 rcu_gp_kthread_wake(rdp->rsp);
1990 * Wait for the grace period. Do so interruptibly to avoid messing
1991 * up the load average.
1993 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1994 for (;;) {
1995 swait_event_interruptible(
1996 rnp->nocb_gp_wq[c & 0x1],
1997 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1998 if (likely(d))
1999 break;
2000 WARN_ON(signal_pending(current));
2001 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2003 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2004 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2008 * Leaders come here to wait for additional callbacks to show up.
2009 * This function does not return until callbacks appear.
2011 static void nocb_leader_wait(struct rcu_data *my_rdp)
2013 bool firsttime = true;
2014 bool gotcbs;
2015 struct rcu_data *rdp;
2016 struct rcu_head **tail;
2018 wait_again:
2020 /* Wait for callbacks to appear. */
2021 if (!rcu_nocb_poll) {
2022 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2023 swait_event_interruptible(my_rdp->nocb_wq,
2024 !READ_ONCE(my_rdp->nocb_leader_sleep));
2025 /* Memory barrier handled by smp_mb() calls below and repoll. */
2026 } else if (firsttime) {
2027 firsttime = false; /* Don't drown trace log with "Poll"! */
2028 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2032 * Each pass through the following loop checks a follower for CBs.
2033 * We are our own first follower. Any CBs found are moved to
2034 * nocb_gp_head, where they await a grace period.
2036 gotcbs = false;
2037 smp_mb(); /* wakeup before ->nocb_head reads. */
2038 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2039 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2040 if (!rdp->nocb_gp_head)
2041 continue; /* No CBs here, try next follower. */
2043 /* Move callbacks to wait-for-GP list, which is empty. */
2044 WRITE_ONCE(rdp->nocb_head, NULL);
2045 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2046 gotcbs = true;
2050 * If there were no callbacks, sleep a bit, rescan after a
2051 * memory barrier, and go retry.
2053 if (unlikely(!gotcbs)) {
2054 if (!rcu_nocb_poll)
2055 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2056 "WokeEmpty");
2057 WARN_ON(signal_pending(current));
2058 schedule_timeout_interruptible(1);
2060 /* Rescan in case we were a victim of memory ordering. */
2061 my_rdp->nocb_leader_sleep = true;
2062 smp_mb(); /* Ensure _sleep true before scan. */
2063 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2064 if (READ_ONCE(rdp->nocb_head)) {
2065 /* Found CB, so short-circuit next wait. */
2066 my_rdp->nocb_leader_sleep = false;
2067 break;
2069 goto wait_again;
2072 /* Wait for one grace period. */
2073 rcu_nocb_wait_gp(my_rdp);
2076 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2077 * We set it now, but recheck for new callbacks while
2078 * traversing our follower list.
2080 my_rdp->nocb_leader_sleep = true;
2081 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2083 /* Each pass through the following loop wakes a follower, if needed. */
2084 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2085 if (READ_ONCE(rdp->nocb_head))
2086 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2087 if (!rdp->nocb_gp_head)
2088 continue; /* No CBs, so no need to wake follower. */
2090 /* Append callbacks to follower's "done" list. */
2091 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2092 *tail = rdp->nocb_gp_head;
2093 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2094 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2096 * List was empty, wake up the follower.
2097 * Memory barriers supplied by atomic_long_add().
2099 swake_up(&rdp->nocb_wq);
2103 /* If we (the leader) don't have CBs, go wait some more. */
2104 if (!my_rdp->nocb_follower_head)
2105 goto wait_again;
2109 * Followers come here to wait for additional callbacks to show up.
2110 * This function does not return until callbacks appear.
2112 static void nocb_follower_wait(struct rcu_data *rdp)
2114 bool firsttime = true;
2116 for (;;) {
2117 if (!rcu_nocb_poll) {
2118 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2119 "FollowerSleep");
2120 swait_event_interruptible(rdp->nocb_wq,
2121 READ_ONCE(rdp->nocb_follower_head));
2122 } else if (firsttime) {
2123 /* Don't drown trace log with "Poll"! */
2124 firsttime = false;
2125 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2127 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2128 /* ^^^ Ensure CB invocation follows _head test. */
2129 return;
2131 if (!rcu_nocb_poll)
2132 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2133 "WokeEmpty");
2134 WARN_ON(signal_pending(current));
2135 schedule_timeout_interruptible(1);
2140 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2141 * callbacks queued by the corresponding no-CBs CPU, however, there is
2142 * an optional leader-follower relationship so that the grace-period
2143 * kthreads don't have to do quite so many wakeups.
2145 static int rcu_nocb_kthread(void *arg)
2147 int c, cl;
2148 struct rcu_head *list;
2149 struct rcu_head *next;
2150 struct rcu_head **tail;
2151 struct rcu_data *rdp = arg;
2153 /* Each pass through this loop invokes one batch of callbacks */
2154 for (;;) {
2155 /* Wait for callbacks. */
2156 if (rdp->nocb_leader == rdp)
2157 nocb_leader_wait(rdp);
2158 else
2159 nocb_follower_wait(rdp);
2161 /* Pull the ready-to-invoke callbacks onto local list. */
2162 list = READ_ONCE(rdp->nocb_follower_head);
2163 BUG_ON(!list);
2164 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2165 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2166 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2168 /* Each pass through the following loop invokes a callback. */
2169 trace_rcu_batch_start(rdp->rsp->name,
2170 atomic_long_read(&rdp->nocb_q_count_lazy),
2171 atomic_long_read(&rdp->nocb_q_count), -1);
2172 c = cl = 0;
2173 while (list) {
2174 next = list->next;
2175 /* Wait for enqueuing to complete, if needed. */
2176 while (next == NULL && &list->next != tail) {
2177 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2178 TPS("WaitQueue"));
2179 schedule_timeout_interruptible(1);
2180 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2181 TPS("WokeQueue"));
2182 next = list->next;
2184 debug_rcu_head_unqueue(list);
2185 local_bh_disable();
2186 if (__rcu_reclaim(rdp->rsp->name, list))
2187 cl++;
2188 c++;
2189 local_bh_enable();
2190 cond_resched_rcu_qs();
2191 list = next;
2193 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2194 smp_mb__before_atomic(); /* _add after CB invocation. */
2195 atomic_long_add(-c, &rdp->nocb_q_count);
2196 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2197 rdp->n_nocbs_invoked += c;
2199 return 0;
2202 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2203 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2205 return READ_ONCE(rdp->nocb_defer_wakeup);
2208 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2209 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2211 int ndw;
2213 if (!rcu_nocb_need_deferred_wakeup(rdp))
2214 return;
2215 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2216 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2217 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2218 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2221 void __init rcu_init_nohz(void)
2223 int cpu;
2224 bool need_rcu_nocb_mask = true;
2225 struct rcu_state *rsp;
2227 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2228 need_rcu_nocb_mask = false;
2229 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2231 #if defined(CONFIG_NO_HZ_FULL)
2232 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2233 need_rcu_nocb_mask = true;
2234 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2236 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2237 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2238 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2239 return;
2241 have_rcu_nocb_mask = true;
2243 if (!have_rcu_nocb_mask)
2244 return;
2246 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2247 pr_info("\tOffload RCU callbacks from CPU 0\n");
2248 cpumask_set_cpu(0, rcu_nocb_mask);
2249 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2250 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2251 pr_info("\tOffload RCU callbacks from all CPUs\n");
2252 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2253 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2254 #if defined(CONFIG_NO_HZ_FULL)
2255 if (tick_nohz_full_running)
2256 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2257 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2259 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2260 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2261 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2262 rcu_nocb_mask);
2264 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2265 cpumask_pr_args(rcu_nocb_mask));
2266 if (rcu_nocb_poll)
2267 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2269 for_each_rcu_flavor(rsp) {
2270 for_each_cpu(cpu, rcu_nocb_mask)
2271 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2272 rcu_organize_nocb_kthreads(rsp);
2276 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2277 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2279 rdp->nocb_tail = &rdp->nocb_head;
2280 init_swait_queue_head(&rdp->nocb_wq);
2281 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2285 * If the specified CPU is a no-CBs CPU that does not already have its
2286 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2287 * brought online out of order, this can require re-organizing the
2288 * leader-follower relationships.
2290 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2292 struct rcu_data *rdp;
2293 struct rcu_data *rdp_last;
2294 struct rcu_data *rdp_old_leader;
2295 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2296 struct task_struct *t;
2299 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2300 * then nothing to do.
2302 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2303 return;
2305 /* If we didn't spawn the leader first, reorganize! */
2306 rdp_old_leader = rdp_spawn->nocb_leader;
2307 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2308 rdp_last = NULL;
2309 rdp = rdp_old_leader;
2310 do {
2311 rdp->nocb_leader = rdp_spawn;
2312 if (rdp_last && rdp != rdp_spawn)
2313 rdp_last->nocb_next_follower = rdp;
2314 if (rdp == rdp_spawn) {
2315 rdp = rdp->nocb_next_follower;
2316 } else {
2317 rdp_last = rdp;
2318 rdp = rdp->nocb_next_follower;
2319 rdp_last->nocb_next_follower = NULL;
2321 } while (rdp);
2322 rdp_spawn->nocb_next_follower = rdp_old_leader;
2325 /* Spawn the kthread for this CPU and RCU flavor. */
2326 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2327 "rcuo%c/%d", rsp->abbr, cpu);
2328 BUG_ON(IS_ERR(t));
2329 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2333 * If the specified CPU is a no-CBs CPU that does not already have its
2334 * rcuo kthreads, spawn them.
2336 static void rcu_spawn_all_nocb_kthreads(int cpu)
2338 struct rcu_state *rsp;
2340 if (rcu_scheduler_fully_active)
2341 for_each_rcu_flavor(rsp)
2342 rcu_spawn_one_nocb_kthread(rsp, cpu);
2346 * Once the scheduler is running, spawn rcuo kthreads for all online
2347 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2348 * non-boot CPUs come online -- if this changes, we will need to add
2349 * some mutual exclusion.
2351 static void __init rcu_spawn_nocb_kthreads(void)
2353 int cpu;
2355 for_each_online_cpu(cpu)
2356 rcu_spawn_all_nocb_kthreads(cpu);
2359 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2360 static int rcu_nocb_leader_stride = -1;
2361 module_param(rcu_nocb_leader_stride, int, 0444);
2364 * Initialize leader-follower relationships for all no-CBs CPU.
2366 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2368 int cpu;
2369 int ls = rcu_nocb_leader_stride;
2370 int nl = 0; /* Next leader. */
2371 struct rcu_data *rdp;
2372 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2373 struct rcu_data *rdp_prev = NULL;
2375 if (!have_rcu_nocb_mask)
2376 return;
2377 if (ls == -1) {
2378 ls = int_sqrt(nr_cpu_ids);
2379 rcu_nocb_leader_stride = ls;
2383 * Each pass through this loop sets up one rcu_data structure and
2384 * spawns one rcu_nocb_kthread().
2386 for_each_cpu(cpu, rcu_nocb_mask) {
2387 rdp = per_cpu_ptr(rsp->rda, cpu);
2388 if (rdp->cpu >= nl) {
2389 /* New leader, set up for followers & next leader. */
2390 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2391 rdp->nocb_leader = rdp;
2392 rdp_leader = rdp;
2393 } else {
2394 /* Another follower, link to previous leader. */
2395 rdp->nocb_leader = rdp_leader;
2396 rdp_prev->nocb_next_follower = rdp;
2398 rdp_prev = rdp;
2402 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2403 static bool init_nocb_callback_list(struct rcu_data *rdp)
2405 if (!rcu_is_nocb_cpu(rdp->cpu))
2406 return false;
2408 /* If there are early-boot callbacks, move them to nocb lists. */
2409 if (rdp->nxtlist) {
2410 rdp->nocb_head = rdp->nxtlist;
2411 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2412 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2413 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2414 rdp->nxtlist = NULL;
2415 rdp->qlen = 0;
2416 rdp->qlen_lazy = 0;
2418 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2419 return true;
2422 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2424 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2426 WARN_ON_ONCE(1); /* Should be dead code. */
2427 return false;
2430 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2434 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2438 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2440 return NULL;
2443 static void rcu_init_one_nocb(struct rcu_node *rnp)
2447 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2448 bool lazy, unsigned long flags)
2450 return false;
2453 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2454 struct rcu_data *rdp,
2455 unsigned long flags)
2457 return false;
2460 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2464 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2466 return false;
2469 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2473 static void rcu_spawn_all_nocb_kthreads(int cpu)
2477 static void __init rcu_spawn_nocb_kthreads(void)
2481 static bool init_nocb_callback_list(struct rcu_data *rdp)
2483 return false;
2486 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2489 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2490 * arbitrarily long period of time with the scheduling-clock tick turned
2491 * off. RCU will be paying attention to this CPU because it is in the
2492 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2493 * machine because the scheduling-clock tick has been disabled. Therefore,
2494 * if an adaptive-ticks CPU is failing to respond to the current grace
2495 * period and has not be idle from an RCU perspective, kick it.
2497 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2499 #ifdef CONFIG_NO_HZ_FULL
2500 if (tick_nohz_full_cpu(cpu))
2501 smp_send_reschedule(cpu);
2502 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2506 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2508 static int full_sysidle_state; /* Current system-idle state. */
2509 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2510 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2511 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2512 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2513 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2516 * Invoked to note exit from irq or task transition to idle. Note that
2517 * usermode execution does -not- count as idle here! After all, we want
2518 * to detect full-system idle states, not RCU quiescent states and grace
2519 * periods. The caller must have disabled interrupts.
2521 static void rcu_sysidle_enter(int irq)
2523 unsigned long j;
2524 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2526 /* If there are no nohz_full= CPUs, no need to track this. */
2527 if (!tick_nohz_full_enabled())
2528 return;
2530 /* Adjust nesting, check for fully idle. */
2531 if (irq) {
2532 rdtp->dynticks_idle_nesting--;
2533 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2534 if (rdtp->dynticks_idle_nesting != 0)
2535 return; /* Still not fully idle. */
2536 } else {
2537 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2538 DYNTICK_TASK_NEST_VALUE) {
2539 rdtp->dynticks_idle_nesting = 0;
2540 } else {
2541 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2542 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2543 return; /* Still not fully idle. */
2547 /* Record start of fully idle period. */
2548 j = jiffies;
2549 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2550 smp_mb__before_atomic();
2551 atomic_inc(&rdtp->dynticks_idle);
2552 smp_mb__after_atomic();
2553 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2557 * Unconditionally force exit from full system-idle state. This is
2558 * invoked when a normal CPU exits idle, but must be called separately
2559 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2560 * is that the timekeeping CPU is permitted to take scheduling-clock
2561 * interrupts while the system is in system-idle state, and of course
2562 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2563 * interrupt from any other type of interrupt.
2565 void rcu_sysidle_force_exit(void)
2567 int oldstate = READ_ONCE(full_sysidle_state);
2568 int newoldstate;
2571 * Each pass through the following loop attempts to exit full
2572 * system-idle state. If contention proves to be a problem,
2573 * a trylock-based contention tree could be used here.
2575 while (oldstate > RCU_SYSIDLE_SHORT) {
2576 newoldstate = cmpxchg(&full_sysidle_state,
2577 oldstate, RCU_SYSIDLE_NOT);
2578 if (oldstate == newoldstate &&
2579 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2580 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2581 return; /* We cleared it, done! */
2583 oldstate = newoldstate;
2585 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2589 * Invoked to note entry to irq or task transition from idle. Note that
2590 * usermode execution does -not- count as idle here! The caller must
2591 * have disabled interrupts.
2593 static void rcu_sysidle_exit(int irq)
2595 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2597 /* If there are no nohz_full= CPUs, no need to track this. */
2598 if (!tick_nohz_full_enabled())
2599 return;
2601 /* Adjust nesting, check for already non-idle. */
2602 if (irq) {
2603 rdtp->dynticks_idle_nesting++;
2604 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2605 if (rdtp->dynticks_idle_nesting != 1)
2606 return; /* Already non-idle. */
2607 } else {
2609 * Allow for irq misnesting. Yes, it really is possible
2610 * to enter an irq handler then never leave it, and maybe
2611 * also vice versa. Handle both possibilities.
2613 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2614 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2615 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2616 return; /* Already non-idle. */
2617 } else {
2618 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2622 /* Record end of idle period. */
2623 smp_mb__before_atomic();
2624 atomic_inc(&rdtp->dynticks_idle);
2625 smp_mb__after_atomic();
2626 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2629 * If we are the timekeeping CPU, we are permitted to be non-idle
2630 * during a system-idle state. This must be the case, because
2631 * the timekeeping CPU has to take scheduling-clock interrupts
2632 * during the time that the system is transitioning to full
2633 * system-idle state. This means that the timekeeping CPU must
2634 * invoke rcu_sysidle_force_exit() directly if it does anything
2635 * more than take a scheduling-clock interrupt.
2637 if (smp_processor_id() == tick_do_timer_cpu)
2638 return;
2640 /* Update system-idle state: We are clearly no longer fully idle! */
2641 rcu_sysidle_force_exit();
2645 * Check to see if the current CPU is idle. Note that usermode execution
2646 * does not count as idle. The caller must have disabled interrupts,
2647 * and must be running on tick_do_timer_cpu.
2649 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2650 unsigned long *maxj)
2652 int cur;
2653 unsigned long j;
2654 struct rcu_dynticks *rdtp = rdp->dynticks;
2656 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2657 if (!tick_nohz_full_enabled())
2658 return;
2661 * If some other CPU has already reported non-idle, if this is
2662 * not the flavor of RCU that tracks sysidle state, or if this
2663 * is an offline or the timekeeping CPU, nothing to do.
2665 if (!*isidle || rdp->rsp != rcu_state_p ||
2666 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2667 return;
2668 /* Verify affinity of current kthread. */
2669 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2671 /* Pick up current idle and NMI-nesting counter and check. */
2672 cur = atomic_read(&rdtp->dynticks_idle);
2673 if (cur & 0x1) {
2674 *isidle = false; /* We are not idle! */
2675 return;
2677 smp_mb(); /* Read counters before timestamps. */
2679 /* Pick up timestamps. */
2680 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2681 /* If this CPU entered idle more recently, update maxj timestamp. */
2682 if (ULONG_CMP_LT(*maxj, j))
2683 *maxj = j;
2687 * Is this the flavor of RCU that is handling full-system idle?
2689 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2691 return rsp == rcu_state_p;
2695 * Return a delay in jiffies based on the number of CPUs, rcu_node
2696 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2697 * systems more time to transition to full-idle state in order to
2698 * avoid the cache thrashing that otherwise occur on the state variable.
2699 * Really small systems (less than a couple of tens of CPUs) should
2700 * instead use a single global atomically incremented counter, and later
2701 * versions of this will automatically reconfigure themselves accordingly.
2703 static unsigned long rcu_sysidle_delay(void)
2705 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2706 return 0;
2707 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2711 * Advance the full-system-idle state. This is invoked when all of
2712 * the non-timekeeping CPUs are idle.
2714 static void rcu_sysidle(unsigned long j)
2716 /* Check the current state. */
2717 switch (READ_ONCE(full_sysidle_state)) {
2718 case RCU_SYSIDLE_NOT:
2720 /* First time all are idle, so note a short idle period. */
2721 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2722 break;
2724 case RCU_SYSIDLE_SHORT:
2727 * Idle for a bit, time to advance to next state?
2728 * cmpxchg failure means race with non-idle, let them win.
2730 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2731 (void)cmpxchg(&full_sysidle_state,
2732 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2733 break;
2735 case RCU_SYSIDLE_LONG:
2738 * Do an additional check pass before advancing to full.
2739 * cmpxchg failure means race with non-idle, let them win.
2741 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2742 (void)cmpxchg(&full_sysidle_state,
2743 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2744 break;
2746 default:
2747 break;
2752 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2753 * back to the beginning.
2755 static void rcu_sysidle_cancel(void)
2757 smp_mb();
2758 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2759 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2763 * Update the sysidle state based on the results of a force-quiescent-state
2764 * scan of the CPUs' dyntick-idle state.
2766 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2767 unsigned long maxj, bool gpkt)
2769 if (rsp != rcu_state_p)
2770 return; /* Wrong flavor, ignore. */
2771 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2772 return; /* Running state machine from timekeeping CPU. */
2773 if (isidle)
2774 rcu_sysidle(maxj); /* More idle! */
2775 else
2776 rcu_sysidle_cancel(); /* Idle is over. */
2780 * Wrapper for rcu_sysidle_report() when called from the grace-period
2781 * kthread's context.
2783 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2784 unsigned long maxj)
2786 /* If there are no nohz_full= CPUs, no need to track this. */
2787 if (!tick_nohz_full_enabled())
2788 return;
2790 rcu_sysidle_report(rsp, isidle, maxj, true);
2793 /* Callback and function for forcing an RCU grace period. */
2794 struct rcu_sysidle_head {
2795 struct rcu_head rh;
2796 int inuse;
2799 static void rcu_sysidle_cb(struct rcu_head *rhp)
2801 struct rcu_sysidle_head *rshp;
2804 * The following memory barrier is needed to replace the
2805 * memory barriers that would normally be in the memory
2806 * allocator.
2808 smp_mb(); /* grace period precedes setting inuse. */
2810 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2811 WRITE_ONCE(rshp->inuse, 0);
2815 * Check to see if the system is fully idle, other than the timekeeping CPU.
2816 * The caller must have disabled interrupts. This is not intended to be
2817 * called unless tick_nohz_full_enabled().
2819 bool rcu_sys_is_idle(void)
2821 static struct rcu_sysidle_head rsh;
2822 int rss = READ_ONCE(full_sysidle_state);
2824 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2825 return false;
2827 /* Handle small-system case by doing a full scan of CPUs. */
2828 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2829 int oldrss = rss - 1;
2832 * One pass to advance to each state up to _FULL.
2833 * Give up if any pass fails to advance the state.
2835 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2836 int cpu;
2837 bool isidle = true;
2838 unsigned long maxj = jiffies - ULONG_MAX / 4;
2839 struct rcu_data *rdp;
2841 /* Scan all the CPUs looking for nonidle CPUs. */
2842 for_each_possible_cpu(cpu) {
2843 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2844 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2845 if (!isidle)
2846 break;
2848 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2849 oldrss = rss;
2850 rss = READ_ONCE(full_sysidle_state);
2854 /* If this is the first observation of an idle period, record it. */
2855 if (rss == RCU_SYSIDLE_FULL) {
2856 rss = cmpxchg(&full_sysidle_state,
2857 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2858 return rss == RCU_SYSIDLE_FULL;
2861 smp_mb(); /* ensure rss load happens before later caller actions. */
2863 /* If already fully idle, tell the caller (in case of races). */
2864 if (rss == RCU_SYSIDLE_FULL_NOTED)
2865 return true;
2868 * If we aren't there yet, and a grace period is not in flight,
2869 * initiate a grace period. Either way, tell the caller that
2870 * we are not there yet. We use an xchg() rather than an assignment
2871 * to make up for the memory barriers that would otherwise be
2872 * provided by the memory allocator.
2874 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2875 !rcu_gp_in_progress(rcu_state_p) &&
2876 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2877 call_rcu(&rsh.rh, rcu_sysidle_cb);
2878 return false;
2882 * Initialize dynticks sysidle state for CPUs coming online.
2884 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2886 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2889 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2891 static void rcu_sysidle_enter(int irq)
2895 static void rcu_sysidle_exit(int irq)
2899 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2900 unsigned long *maxj)
2904 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2906 return false;
2909 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2910 unsigned long maxj)
2914 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2918 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2921 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2922 * grace-period kthread will do force_quiescent_state() processing?
2923 * The idea is to avoid waking up RCU core processing on such a
2924 * CPU unless the grace period has extended for too long.
2926 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2927 * CONFIG_RCU_NOCB_CPU CPUs.
2929 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2931 #ifdef CONFIG_NO_HZ_FULL
2932 if (tick_nohz_full_cpu(smp_processor_id()) &&
2933 (!rcu_gp_in_progress(rsp) ||
2934 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2935 return true;
2936 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2937 return false;
2941 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2942 * timekeeping CPU.
2944 static void rcu_bind_gp_kthread(void)
2946 int __maybe_unused cpu;
2948 if (!tick_nohz_full_enabled())
2949 return;
2950 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2951 cpu = tick_do_timer_cpu;
2952 if (cpu >= 0 && cpu < nr_cpu_ids)
2953 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2954 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2955 housekeeping_affine(current);
2956 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2959 /* Record the current task on dyntick-idle entry. */
2960 static void rcu_dynticks_task_enter(void)
2962 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2963 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2964 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2967 /* Record no current task on dyntick-idle exit. */
2968 static void rcu_dynticks_task_exit(void)
2970 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2971 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2972 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */