1 // SPDX-License-Identifier: GPL-2.0
5 * memory buffer pool support. Such pools are mostly used
6 * for guaranteed, deadlock-free memory allocations during
9 * started by Ingo Molnar, Copyright (C) 2001
10 * debugging by David Rientjes, Copyright (C) 2015
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kasan.h>
17 #include <linux/kmemleak.h>
18 #include <linux/export.h>
19 #include <linux/mempool.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
24 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
25 static void poison_error(mempool_t
*pool
, void *element
, size_t size
,
28 const int nr
= pool
->curr_nr
;
29 const int start
= max_t(int, byte
- (BITS_PER_LONG
/ 8), 0);
30 const int end
= min_t(int, byte
+ (BITS_PER_LONG
/ 8), size
);
33 pr_err("BUG: mempool element poison mismatch\n");
34 pr_err("Mempool %p size %zu\n", pool
, size
);
35 pr_err(" nr=%d @ %p: %s0x", nr
, element
, start
> 0 ? "... " : "");
36 for (i
= start
; i
< end
; i
++)
37 pr_cont("%x ", *(u8
*)(element
+ i
));
38 pr_cont("%s\n", end
< size
? "..." : "");
42 static void __check_element(mempool_t
*pool
, void *element
, size_t size
)
47 for (i
= 0; i
< size
; i
++) {
48 u8 exp
= (i
< size
- 1) ? POISON_FREE
: POISON_END
;
51 poison_error(pool
, element
, size
, i
);
55 memset(obj
, POISON_INUSE
, size
);
58 static void check_element(mempool_t
*pool
, void *element
)
60 /* Mempools backed by slab allocator */
61 if (pool
->free
== mempool_free_slab
|| pool
->free
== mempool_kfree
)
62 __check_element(pool
, element
, ksize(element
));
64 /* Mempools backed by page allocator */
65 if (pool
->free
== mempool_free_pages
) {
66 int order
= (int)(long)pool
->pool_data
;
67 void *addr
= kmap_atomic((struct page
*)element
);
69 __check_element(pool
, addr
, 1UL << (PAGE_SHIFT
+ order
));
74 static void __poison_element(void *element
, size_t size
)
78 memset(obj
, POISON_FREE
, size
- 1);
79 obj
[size
- 1] = POISON_END
;
82 static void poison_element(mempool_t
*pool
, void *element
)
84 /* Mempools backed by slab allocator */
85 if (pool
->alloc
== mempool_alloc_slab
|| pool
->alloc
== mempool_kmalloc
)
86 __poison_element(element
, ksize(element
));
88 /* Mempools backed by page allocator */
89 if (pool
->alloc
== mempool_alloc_pages
) {
90 int order
= (int)(long)pool
->pool_data
;
91 void *addr
= kmap_atomic((struct page
*)element
);
93 __poison_element(addr
, 1UL << (PAGE_SHIFT
+ order
));
97 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
98 static inline void check_element(mempool_t
*pool
, void *element
)
101 static inline void poison_element(mempool_t
*pool
, void *element
)
104 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
106 static __always_inline
void kasan_poison_element(mempool_t
*pool
, void *element
)
108 if (pool
->alloc
== mempool_alloc_slab
|| pool
->alloc
== mempool_kmalloc
)
109 kasan_poison_kfree(element
, _RET_IP_
);
110 if (pool
->alloc
== mempool_alloc_pages
)
111 kasan_free_pages(element
, (unsigned long)pool
->pool_data
);
114 static void kasan_unpoison_element(mempool_t
*pool
, void *element
, gfp_t flags
)
116 if (pool
->alloc
== mempool_alloc_slab
|| pool
->alloc
== mempool_kmalloc
)
117 kasan_unpoison_slab(element
);
118 if (pool
->alloc
== mempool_alloc_pages
)
119 kasan_alloc_pages(element
, (unsigned long)pool
->pool_data
);
122 static __always_inline
void add_element(mempool_t
*pool
, void *element
)
124 BUG_ON(pool
->curr_nr
>= pool
->min_nr
);
125 poison_element(pool
, element
);
126 kasan_poison_element(pool
, element
);
127 pool
->elements
[pool
->curr_nr
++] = element
;
130 static void *remove_element(mempool_t
*pool
, gfp_t flags
)
132 void *element
= pool
->elements
[--pool
->curr_nr
];
134 BUG_ON(pool
->curr_nr
< 0);
135 kasan_unpoison_element(pool
, element
, flags
);
136 check_element(pool
, element
);
141 * mempool_destroy - deallocate a memory pool
142 * @pool: pointer to the memory pool which was allocated via
145 * Free all reserved elements in @pool and @pool itself. This function
146 * only sleeps if the free_fn() function sleeps.
148 void mempool_destroy(mempool_t
*pool
)
153 while (pool
->curr_nr
) {
154 void *element
= remove_element(pool
, GFP_KERNEL
);
155 pool
->free(element
, pool
->pool_data
);
157 kfree(pool
->elements
);
160 EXPORT_SYMBOL(mempool_destroy
);
163 * mempool_create - create a memory pool
164 * @min_nr: the minimum number of elements guaranteed to be
165 * allocated for this pool.
166 * @alloc_fn: user-defined element-allocation function.
167 * @free_fn: user-defined element-freeing function.
168 * @pool_data: optional private data available to the user-defined functions.
170 * this function creates and allocates a guaranteed size, preallocated
171 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
172 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
173 * functions might sleep - as long as the mempool_alloc() function is not called
176 mempool_t
*mempool_create(int min_nr
, mempool_alloc_t
*alloc_fn
,
177 mempool_free_t
*free_fn
, void *pool_data
)
179 return mempool_create_node(min_nr
,alloc_fn
,free_fn
, pool_data
,
180 GFP_KERNEL
, NUMA_NO_NODE
);
182 EXPORT_SYMBOL(mempool_create
);
184 mempool_t
*mempool_create_node(int min_nr
, mempool_alloc_t
*alloc_fn
,
185 mempool_free_t
*free_fn
, void *pool_data
,
186 gfp_t gfp_mask
, int node_id
)
189 pool
= kzalloc_node(sizeof(*pool
), gfp_mask
, node_id
);
192 pool
->elements
= kmalloc_array_node(min_nr
, sizeof(void *),
194 if (!pool
->elements
) {
198 spin_lock_init(&pool
->lock
);
199 pool
->min_nr
= min_nr
;
200 pool
->pool_data
= pool_data
;
201 init_waitqueue_head(&pool
->wait
);
202 pool
->alloc
= alloc_fn
;
203 pool
->free
= free_fn
;
206 * First pre-allocate the guaranteed number of buffers.
208 while (pool
->curr_nr
< pool
->min_nr
) {
211 element
= pool
->alloc(gfp_mask
, pool
->pool_data
);
212 if (unlikely(!element
)) {
213 mempool_destroy(pool
);
216 add_element(pool
, element
);
220 EXPORT_SYMBOL(mempool_create_node
);
223 * mempool_resize - resize an existing memory pool
224 * @pool: pointer to the memory pool which was allocated via
226 * @new_min_nr: the new minimum number of elements guaranteed to be
227 * allocated for this pool.
229 * This function shrinks/grows the pool. In the case of growing,
230 * it cannot be guaranteed that the pool will be grown to the new
231 * size immediately, but new mempool_free() calls will refill it.
232 * This function may sleep.
234 * Note, the caller must guarantee that no mempool_destroy is called
235 * while this function is running. mempool_alloc() & mempool_free()
236 * might be called (eg. from IRQ contexts) while this function executes.
238 int mempool_resize(mempool_t
*pool
, int new_min_nr
)
244 BUG_ON(new_min_nr
<= 0);
247 spin_lock_irqsave(&pool
->lock
, flags
);
248 if (new_min_nr
<= pool
->min_nr
) {
249 while (new_min_nr
< pool
->curr_nr
) {
250 element
= remove_element(pool
, GFP_KERNEL
);
251 spin_unlock_irqrestore(&pool
->lock
, flags
);
252 pool
->free(element
, pool
->pool_data
);
253 spin_lock_irqsave(&pool
->lock
, flags
);
255 pool
->min_nr
= new_min_nr
;
258 spin_unlock_irqrestore(&pool
->lock
, flags
);
261 new_elements
= kmalloc_array(new_min_nr
, sizeof(*new_elements
),
266 spin_lock_irqsave(&pool
->lock
, flags
);
267 if (unlikely(new_min_nr
<= pool
->min_nr
)) {
268 /* Raced, other resize will do our work */
269 spin_unlock_irqrestore(&pool
->lock
, flags
);
273 memcpy(new_elements
, pool
->elements
,
274 pool
->curr_nr
* sizeof(*new_elements
));
275 kfree(pool
->elements
);
276 pool
->elements
= new_elements
;
277 pool
->min_nr
= new_min_nr
;
279 while (pool
->curr_nr
< pool
->min_nr
) {
280 spin_unlock_irqrestore(&pool
->lock
, flags
);
281 element
= pool
->alloc(GFP_KERNEL
, pool
->pool_data
);
284 spin_lock_irqsave(&pool
->lock
, flags
);
285 if (pool
->curr_nr
< pool
->min_nr
) {
286 add_element(pool
, element
);
288 spin_unlock_irqrestore(&pool
->lock
, flags
);
289 pool
->free(element
, pool
->pool_data
); /* Raced */
294 spin_unlock_irqrestore(&pool
->lock
, flags
);
298 EXPORT_SYMBOL(mempool_resize
);
301 * mempool_alloc - allocate an element from a specific memory pool
302 * @pool: pointer to the memory pool which was allocated via
304 * @gfp_mask: the usual allocation bitmask.
306 * this function only sleeps if the alloc_fn() function sleeps or
307 * returns NULL. Note that due to preallocation, this function
308 * *never* fails when called from process contexts. (it might
309 * fail if called from an IRQ context.)
310 * Note: using __GFP_ZERO is not supported.
312 void *mempool_alloc(mempool_t
*pool
, gfp_t gfp_mask
)
316 wait_queue_entry_t wait
;
319 VM_WARN_ON_ONCE(gfp_mask
& __GFP_ZERO
);
320 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
322 gfp_mask
|= __GFP_NOMEMALLOC
; /* don't allocate emergency reserves */
323 gfp_mask
|= __GFP_NORETRY
; /* don't loop in __alloc_pages */
324 gfp_mask
|= __GFP_NOWARN
; /* failures are OK */
326 gfp_temp
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
|__GFP_IO
);
330 element
= pool
->alloc(gfp_temp
, pool
->pool_data
);
331 if (likely(element
!= NULL
))
334 spin_lock_irqsave(&pool
->lock
, flags
);
335 if (likely(pool
->curr_nr
)) {
336 element
= remove_element(pool
, gfp_temp
);
337 spin_unlock_irqrestore(&pool
->lock
, flags
);
338 /* paired with rmb in mempool_free(), read comment there */
341 * Update the allocation stack trace as this is more useful
344 kmemleak_update_trace(element
);
349 * We use gfp mask w/o direct reclaim or IO for the first round. If
350 * alloc failed with that and @pool was empty, retry immediately.
352 if (gfp_temp
!= gfp_mask
) {
353 spin_unlock_irqrestore(&pool
->lock
, flags
);
358 /* We must not sleep if !__GFP_DIRECT_RECLAIM */
359 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
)) {
360 spin_unlock_irqrestore(&pool
->lock
, flags
);
364 /* Let's wait for someone else to return an element to @pool */
366 prepare_to_wait(&pool
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
368 spin_unlock_irqrestore(&pool
->lock
, flags
);
371 * FIXME: this should be io_schedule(). The timeout is there as a
372 * workaround for some DM problems in 2.6.18.
374 io_schedule_timeout(5*HZ
);
376 finish_wait(&pool
->wait
, &wait
);
379 EXPORT_SYMBOL(mempool_alloc
);
382 * mempool_free - return an element to the pool.
383 * @element: pool element pointer.
384 * @pool: pointer to the memory pool which was allocated via
387 * this function only sleeps if the free_fn() function sleeps.
389 void mempool_free(void *element
, mempool_t
*pool
)
393 if (unlikely(element
== NULL
))
397 * Paired with the wmb in mempool_alloc(). The preceding read is
398 * for @element and the following @pool->curr_nr. This ensures
399 * that the visible value of @pool->curr_nr is from after the
400 * allocation of @element. This is necessary for fringe cases
401 * where @element was passed to this task without going through
404 * For example, assume @p is %NULL at the beginning and one task
405 * performs "p = mempool_alloc(...);" while another task is doing
406 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function
407 * may end up using curr_nr value which is from before allocation
408 * of @p without the following rmb.
413 * For correctness, we need a test which is guaranteed to trigger
414 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
415 * without locking achieves that and refilling as soon as possible
418 * Because curr_nr visible here is always a value after the
419 * allocation of @element, any task which decremented curr_nr below
420 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
421 * incremented to min_nr afterwards. If curr_nr gets incremented
422 * to min_nr after the allocation of @element, the elements
423 * allocated after that are subject to the same guarantee.
425 * Waiters happen iff curr_nr is 0 and the above guarantee also
426 * ensures that there will be frees which return elements to the
427 * pool waking up the waiters.
429 if (unlikely(pool
->curr_nr
< pool
->min_nr
)) {
430 spin_lock_irqsave(&pool
->lock
, flags
);
431 if (likely(pool
->curr_nr
< pool
->min_nr
)) {
432 add_element(pool
, element
);
433 spin_unlock_irqrestore(&pool
->lock
, flags
);
434 wake_up(&pool
->wait
);
437 spin_unlock_irqrestore(&pool
->lock
, flags
);
439 pool
->free(element
, pool
->pool_data
);
441 EXPORT_SYMBOL(mempool_free
);
444 * A commonly used alloc and free fn.
446 void *mempool_alloc_slab(gfp_t gfp_mask
, void *pool_data
)
448 struct kmem_cache
*mem
= pool_data
;
449 VM_BUG_ON(mem
->ctor
);
450 return kmem_cache_alloc(mem
, gfp_mask
);
452 EXPORT_SYMBOL(mempool_alloc_slab
);
454 void mempool_free_slab(void *element
, void *pool_data
)
456 struct kmem_cache
*mem
= pool_data
;
457 kmem_cache_free(mem
, element
);
459 EXPORT_SYMBOL(mempool_free_slab
);
462 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
463 * specified by pool_data
465 void *mempool_kmalloc(gfp_t gfp_mask
, void *pool_data
)
467 size_t size
= (size_t)pool_data
;
468 return kmalloc(size
, gfp_mask
);
470 EXPORT_SYMBOL(mempool_kmalloc
);
472 void mempool_kfree(void *element
, void *pool_data
)
476 EXPORT_SYMBOL(mempool_kfree
);
479 * A simple mempool-backed page allocator that allocates pages
480 * of the order specified by pool_data.
482 void *mempool_alloc_pages(gfp_t gfp_mask
, void *pool_data
)
484 int order
= (int)(long)pool_data
;
485 return alloc_pages(gfp_mask
, order
);
487 EXPORT_SYMBOL(mempool_alloc_pages
);
489 void mempool_free_pages(void *element
, void *pool_data
)
491 int order
= (int)(long)pool_data
;
492 __free_pages(element
, order
);
494 EXPORT_SYMBOL(mempool_free_pages
);