iwlwifi: move HW device registration
[linux/fpc-iii.git] / fs / xfs / linux-2.6 / xfs_aops.c
blobe0519529c26cca838a9c65cfb370eb593fef16a6
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
45 STATIC void
46 xfs_count_page_state(
47 struct page *page,
48 int *delalloc,
49 int *unmapped,
50 int *unwritten)
52 struct buffer_head *bh, *head;
54 *delalloc = *unmapped = *unwritten = 0;
56 bh = head = page_buffers(page);
57 do {
58 if (buffer_uptodate(bh) && !buffer_mapped(bh))
59 (*unmapped) = 1;
60 else if (buffer_unwritten(bh))
61 (*unwritten) = 1;
62 else if (buffer_delay(bh))
63 (*delalloc) = 1;
64 } while ((bh = bh->b_this_page) != head);
67 #if defined(XFS_RW_TRACE)
68 void
69 xfs_page_trace(
70 int tag,
71 struct inode *inode,
72 struct page *page,
73 unsigned long pgoff)
75 xfs_inode_t *ip;
76 bhv_vnode_t *vp = vn_from_inode(inode);
77 loff_t isize = i_size_read(inode);
78 loff_t offset = page_offset(page);
79 int delalloc = -1, unmapped = -1, unwritten = -1;
81 if (page_has_buffers(page))
82 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
84 ip = xfs_vtoi(vp);
85 if (!ip->i_rwtrace)
86 return;
88 ktrace_enter(ip->i_rwtrace,
89 (void *)((unsigned long)tag),
90 (void *)ip,
91 (void *)inode,
92 (void *)page,
93 (void *)pgoff,
94 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
95 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
96 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
97 (void *)((unsigned long)(isize & 0xffffffff)),
98 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
99 (void *)((unsigned long)(offset & 0xffffffff)),
100 (void *)((unsigned long)delalloc),
101 (void *)((unsigned long)unmapped),
102 (void *)((unsigned long)unwritten),
103 (void *)((unsigned long)current_pid()),
104 (void *)NULL);
106 #else
107 #define xfs_page_trace(tag, inode, page, pgoff)
108 #endif
110 STATIC struct block_device *
111 xfs_find_bdev_for_inode(
112 struct xfs_inode *ip)
114 struct xfs_mount *mp = ip->i_mount;
116 if (XFS_IS_REALTIME_INODE(ip))
117 return mp->m_rtdev_targp->bt_bdev;
118 else
119 return mp->m_ddev_targp->bt_bdev;
123 * Schedule IO completion handling on a xfsdatad if this was
124 * the final hold on this ioend. If we are asked to wait,
125 * flush the workqueue.
127 STATIC void
128 xfs_finish_ioend(
129 xfs_ioend_t *ioend,
130 int wait)
132 if (atomic_dec_and_test(&ioend->io_remaining)) {
133 queue_work(xfsdatad_workqueue, &ioend->io_work);
134 if (wait)
135 flush_workqueue(xfsdatad_workqueue);
140 * We're now finished for good with this ioend structure.
141 * Update the page state via the associated buffer_heads,
142 * release holds on the inode and bio, and finally free
143 * up memory. Do not use the ioend after this.
145 STATIC void
146 xfs_destroy_ioend(
147 xfs_ioend_t *ioend)
149 struct buffer_head *bh, *next;
151 for (bh = ioend->io_buffer_head; bh; bh = next) {
152 next = bh->b_private;
153 bh->b_end_io(bh, !ioend->io_error);
155 if (unlikely(ioend->io_error)) {
156 vn_ioerror(XFS_I(ioend->io_inode), ioend->io_error,
157 __FILE__,__LINE__);
159 vn_iowake(XFS_I(ioend->io_inode));
160 mempool_free(ioend, xfs_ioend_pool);
164 * Update on-disk file size now that data has been written to disk.
165 * The current in-memory file size is i_size. If a write is beyond
166 * eof i_new_size will be the intended file size until i_size is
167 * updated. If this write does not extend all the way to the valid
168 * file size then restrict this update to the end of the write.
170 STATIC void
171 xfs_setfilesize(
172 xfs_ioend_t *ioend)
174 xfs_inode_t *ip = XFS_I(ioend->io_inode);
175 xfs_fsize_t isize;
176 xfs_fsize_t bsize;
178 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
179 ASSERT(ioend->io_type != IOMAP_READ);
181 if (unlikely(ioend->io_error))
182 return;
184 bsize = ioend->io_offset + ioend->io_size;
186 xfs_ilock(ip, XFS_ILOCK_EXCL);
188 isize = MAX(ip->i_size, ip->i_new_size);
189 isize = MIN(isize, bsize);
191 if (ip->i_d.di_size < isize) {
192 ip->i_d.di_size = isize;
193 ip->i_update_core = 1;
194 ip->i_update_size = 1;
195 mark_inode_dirty_sync(ioend->io_inode);
198 xfs_iunlock(ip, XFS_ILOCK_EXCL);
202 * Buffered IO write completion for delayed allocate extents.
204 STATIC void
205 xfs_end_bio_delalloc(
206 struct work_struct *work)
208 xfs_ioend_t *ioend =
209 container_of(work, xfs_ioend_t, io_work);
211 xfs_setfilesize(ioend);
212 xfs_destroy_ioend(ioend);
216 * Buffered IO write completion for regular, written extents.
218 STATIC void
219 xfs_end_bio_written(
220 struct work_struct *work)
222 xfs_ioend_t *ioend =
223 container_of(work, xfs_ioend_t, io_work);
225 xfs_setfilesize(ioend);
226 xfs_destroy_ioend(ioend);
230 * IO write completion for unwritten extents.
232 * Issue transactions to convert a buffer range from unwritten
233 * to written extents.
235 STATIC void
236 xfs_end_bio_unwritten(
237 struct work_struct *work)
239 xfs_ioend_t *ioend =
240 container_of(work, xfs_ioend_t, io_work);
241 struct xfs_inode *ip = XFS_I(ioend->io_inode);
242 xfs_off_t offset = ioend->io_offset;
243 size_t size = ioend->io_size;
245 if (likely(!ioend->io_error)) {
246 if (!XFS_FORCED_SHUTDOWN(ip->i_mount))
247 xfs_iomap_write_unwritten(ip, offset, size);
248 xfs_setfilesize(ioend);
250 xfs_destroy_ioend(ioend);
254 * IO read completion for regular, written extents.
256 STATIC void
257 xfs_end_bio_read(
258 struct work_struct *work)
260 xfs_ioend_t *ioend =
261 container_of(work, xfs_ioend_t, io_work);
263 xfs_destroy_ioend(ioend);
267 * Allocate and initialise an IO completion structure.
268 * We need to track unwritten extent write completion here initially.
269 * We'll need to extend this for updating the ondisk inode size later
270 * (vs. incore size).
272 STATIC xfs_ioend_t *
273 xfs_alloc_ioend(
274 struct inode *inode,
275 unsigned int type)
277 xfs_ioend_t *ioend;
279 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
282 * Set the count to 1 initially, which will prevent an I/O
283 * completion callback from happening before we have started
284 * all the I/O from calling the completion routine too early.
286 atomic_set(&ioend->io_remaining, 1);
287 ioend->io_error = 0;
288 ioend->io_list = NULL;
289 ioend->io_type = type;
290 ioend->io_inode = inode;
291 ioend->io_buffer_head = NULL;
292 ioend->io_buffer_tail = NULL;
293 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
294 ioend->io_offset = 0;
295 ioend->io_size = 0;
297 if (type == IOMAP_UNWRITTEN)
298 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
299 else if (type == IOMAP_DELAY)
300 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
301 else if (type == IOMAP_READ)
302 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
303 else
304 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
306 return ioend;
309 STATIC int
310 xfs_map_blocks(
311 struct inode *inode,
312 loff_t offset,
313 ssize_t count,
314 xfs_iomap_t *mapp,
315 int flags)
317 xfs_inode_t *ip = XFS_I(inode);
318 int error, nmaps = 1;
320 error = xfs_iomap(ip, offset, count,
321 flags, mapp, &nmaps);
322 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
323 xfs_iflags_set(ip, XFS_IMODIFIED);
324 return -error;
327 STATIC_INLINE int
328 xfs_iomap_valid(
329 xfs_iomap_t *iomapp,
330 loff_t offset)
332 return offset >= iomapp->iomap_offset &&
333 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
337 * BIO completion handler for buffered IO.
339 STATIC void
340 xfs_end_bio(
341 struct bio *bio,
342 int error)
344 xfs_ioend_t *ioend = bio->bi_private;
346 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
347 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
349 /* Toss bio and pass work off to an xfsdatad thread */
350 bio->bi_private = NULL;
351 bio->bi_end_io = NULL;
352 bio_put(bio);
354 xfs_finish_ioend(ioend, 0);
357 STATIC void
358 xfs_submit_ioend_bio(
359 xfs_ioend_t *ioend,
360 struct bio *bio)
362 atomic_inc(&ioend->io_remaining);
364 bio->bi_private = ioend;
365 bio->bi_end_io = xfs_end_bio;
367 submit_bio(WRITE, bio);
368 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
369 bio_put(bio);
372 STATIC struct bio *
373 xfs_alloc_ioend_bio(
374 struct buffer_head *bh)
376 struct bio *bio;
377 int nvecs = bio_get_nr_vecs(bh->b_bdev);
379 do {
380 bio = bio_alloc(GFP_NOIO, nvecs);
381 nvecs >>= 1;
382 } while (!bio);
384 ASSERT(bio->bi_private == NULL);
385 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
386 bio->bi_bdev = bh->b_bdev;
387 bio_get(bio);
388 return bio;
391 STATIC void
392 xfs_start_buffer_writeback(
393 struct buffer_head *bh)
395 ASSERT(buffer_mapped(bh));
396 ASSERT(buffer_locked(bh));
397 ASSERT(!buffer_delay(bh));
398 ASSERT(!buffer_unwritten(bh));
400 mark_buffer_async_write(bh);
401 set_buffer_uptodate(bh);
402 clear_buffer_dirty(bh);
405 STATIC void
406 xfs_start_page_writeback(
407 struct page *page,
408 struct writeback_control *wbc,
409 int clear_dirty,
410 int buffers)
412 ASSERT(PageLocked(page));
413 ASSERT(!PageWriteback(page));
414 if (clear_dirty)
415 clear_page_dirty_for_io(page);
416 set_page_writeback(page);
417 unlock_page(page);
418 /* If no buffers on the page are to be written, finish it here */
419 if (!buffers)
420 end_page_writeback(page);
423 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
425 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
429 * Submit all of the bios for all of the ioends we have saved up, covering the
430 * initial writepage page and also any probed pages.
432 * Because we may have multiple ioends spanning a page, we need to start
433 * writeback on all the buffers before we submit them for I/O. If we mark the
434 * buffers as we got, then we can end up with a page that only has buffers
435 * marked async write and I/O complete on can occur before we mark the other
436 * buffers async write.
438 * The end result of this is that we trip a bug in end_page_writeback() because
439 * we call it twice for the one page as the code in end_buffer_async_write()
440 * assumes that all buffers on the page are started at the same time.
442 * The fix is two passes across the ioend list - one to start writeback on the
443 * buffer_heads, and then submit them for I/O on the second pass.
445 STATIC void
446 xfs_submit_ioend(
447 xfs_ioend_t *ioend)
449 xfs_ioend_t *head = ioend;
450 xfs_ioend_t *next;
451 struct buffer_head *bh;
452 struct bio *bio;
453 sector_t lastblock = 0;
455 /* Pass 1 - start writeback */
456 do {
457 next = ioend->io_list;
458 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
459 xfs_start_buffer_writeback(bh);
461 } while ((ioend = next) != NULL);
463 /* Pass 2 - submit I/O */
464 ioend = head;
465 do {
466 next = ioend->io_list;
467 bio = NULL;
469 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
471 if (!bio) {
472 retry:
473 bio = xfs_alloc_ioend_bio(bh);
474 } else if (bh->b_blocknr != lastblock + 1) {
475 xfs_submit_ioend_bio(ioend, bio);
476 goto retry;
479 if (bio_add_buffer(bio, bh) != bh->b_size) {
480 xfs_submit_ioend_bio(ioend, bio);
481 goto retry;
484 lastblock = bh->b_blocknr;
486 if (bio)
487 xfs_submit_ioend_bio(ioend, bio);
488 xfs_finish_ioend(ioend, 0);
489 } while ((ioend = next) != NULL);
493 * Cancel submission of all buffer_heads so far in this endio.
494 * Toss the endio too. Only ever called for the initial page
495 * in a writepage request, so only ever one page.
497 STATIC void
498 xfs_cancel_ioend(
499 xfs_ioend_t *ioend)
501 xfs_ioend_t *next;
502 struct buffer_head *bh, *next_bh;
504 do {
505 next = ioend->io_list;
506 bh = ioend->io_buffer_head;
507 do {
508 next_bh = bh->b_private;
509 clear_buffer_async_write(bh);
510 unlock_buffer(bh);
511 } while ((bh = next_bh) != NULL);
513 vn_iowake(XFS_I(ioend->io_inode));
514 mempool_free(ioend, xfs_ioend_pool);
515 } while ((ioend = next) != NULL);
519 * Test to see if we've been building up a completion structure for
520 * earlier buffers -- if so, we try to append to this ioend if we
521 * can, otherwise we finish off any current ioend and start another.
522 * Return true if we've finished the given ioend.
524 STATIC void
525 xfs_add_to_ioend(
526 struct inode *inode,
527 struct buffer_head *bh,
528 xfs_off_t offset,
529 unsigned int type,
530 xfs_ioend_t **result,
531 int need_ioend)
533 xfs_ioend_t *ioend = *result;
535 if (!ioend || need_ioend || type != ioend->io_type) {
536 xfs_ioend_t *previous = *result;
538 ioend = xfs_alloc_ioend(inode, type);
539 ioend->io_offset = offset;
540 ioend->io_buffer_head = bh;
541 ioend->io_buffer_tail = bh;
542 if (previous)
543 previous->io_list = ioend;
544 *result = ioend;
545 } else {
546 ioend->io_buffer_tail->b_private = bh;
547 ioend->io_buffer_tail = bh;
550 bh->b_private = NULL;
551 ioend->io_size += bh->b_size;
554 STATIC void
555 xfs_map_buffer(
556 struct buffer_head *bh,
557 xfs_iomap_t *mp,
558 xfs_off_t offset,
559 uint block_bits)
561 sector_t bn;
563 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
565 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
566 ((offset - mp->iomap_offset) >> block_bits);
568 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
570 bh->b_blocknr = bn;
571 set_buffer_mapped(bh);
574 STATIC void
575 xfs_map_at_offset(
576 struct buffer_head *bh,
577 loff_t offset,
578 int block_bits,
579 xfs_iomap_t *iomapp)
581 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
582 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
584 lock_buffer(bh);
585 xfs_map_buffer(bh, iomapp, offset, block_bits);
586 bh->b_bdev = iomapp->iomap_target->bt_bdev;
587 set_buffer_mapped(bh);
588 clear_buffer_delay(bh);
589 clear_buffer_unwritten(bh);
593 * Look for a page at index that is suitable for clustering.
595 STATIC unsigned int
596 xfs_probe_page(
597 struct page *page,
598 unsigned int pg_offset,
599 int mapped)
601 int ret = 0;
603 if (PageWriteback(page))
604 return 0;
606 if (page->mapping && PageDirty(page)) {
607 if (page_has_buffers(page)) {
608 struct buffer_head *bh, *head;
610 bh = head = page_buffers(page);
611 do {
612 if (!buffer_uptodate(bh))
613 break;
614 if (mapped != buffer_mapped(bh))
615 break;
616 ret += bh->b_size;
617 if (ret >= pg_offset)
618 break;
619 } while ((bh = bh->b_this_page) != head);
620 } else
621 ret = mapped ? 0 : PAGE_CACHE_SIZE;
624 return ret;
627 STATIC size_t
628 xfs_probe_cluster(
629 struct inode *inode,
630 struct page *startpage,
631 struct buffer_head *bh,
632 struct buffer_head *head,
633 int mapped)
635 struct pagevec pvec;
636 pgoff_t tindex, tlast, tloff;
637 size_t total = 0;
638 int done = 0, i;
640 /* First sum forwards in this page */
641 do {
642 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
643 return total;
644 total += bh->b_size;
645 } while ((bh = bh->b_this_page) != head);
647 /* if we reached the end of the page, sum forwards in following pages */
648 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
649 tindex = startpage->index + 1;
651 /* Prune this back to avoid pathological behavior */
652 tloff = min(tlast, startpage->index + 64);
654 pagevec_init(&pvec, 0);
655 while (!done && tindex <= tloff) {
656 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
658 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
659 break;
661 for (i = 0; i < pagevec_count(&pvec); i++) {
662 struct page *page = pvec.pages[i];
663 size_t pg_offset, pg_len = 0;
665 if (tindex == tlast) {
666 pg_offset =
667 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
668 if (!pg_offset) {
669 done = 1;
670 break;
672 } else
673 pg_offset = PAGE_CACHE_SIZE;
675 if (page->index == tindex && !TestSetPageLocked(page)) {
676 pg_len = xfs_probe_page(page, pg_offset, mapped);
677 unlock_page(page);
680 if (!pg_len) {
681 done = 1;
682 break;
685 total += pg_len;
686 tindex++;
689 pagevec_release(&pvec);
690 cond_resched();
693 return total;
697 * Test if a given page is suitable for writing as part of an unwritten
698 * or delayed allocate extent.
700 STATIC int
701 xfs_is_delayed_page(
702 struct page *page,
703 unsigned int type)
705 if (PageWriteback(page))
706 return 0;
708 if (page->mapping && page_has_buffers(page)) {
709 struct buffer_head *bh, *head;
710 int acceptable = 0;
712 bh = head = page_buffers(page);
713 do {
714 if (buffer_unwritten(bh))
715 acceptable = (type == IOMAP_UNWRITTEN);
716 else if (buffer_delay(bh))
717 acceptable = (type == IOMAP_DELAY);
718 else if (buffer_dirty(bh) && buffer_mapped(bh))
719 acceptable = (type == IOMAP_NEW);
720 else
721 break;
722 } while ((bh = bh->b_this_page) != head);
724 if (acceptable)
725 return 1;
728 return 0;
732 * Allocate & map buffers for page given the extent map. Write it out.
733 * except for the original page of a writepage, this is called on
734 * delalloc/unwritten pages only, for the original page it is possible
735 * that the page has no mapping at all.
737 STATIC int
738 xfs_convert_page(
739 struct inode *inode,
740 struct page *page,
741 loff_t tindex,
742 xfs_iomap_t *mp,
743 xfs_ioend_t **ioendp,
744 struct writeback_control *wbc,
745 int startio,
746 int all_bh)
748 struct buffer_head *bh, *head;
749 xfs_off_t end_offset;
750 unsigned long p_offset;
751 unsigned int type;
752 int bbits = inode->i_blkbits;
753 int len, page_dirty;
754 int count = 0, done = 0, uptodate = 1;
755 xfs_off_t offset = page_offset(page);
757 if (page->index != tindex)
758 goto fail;
759 if (TestSetPageLocked(page))
760 goto fail;
761 if (PageWriteback(page))
762 goto fail_unlock_page;
763 if (page->mapping != inode->i_mapping)
764 goto fail_unlock_page;
765 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
766 goto fail_unlock_page;
769 * page_dirty is initially a count of buffers on the page before
770 * EOF and is decremented as we move each into a cleanable state.
772 * Derivation:
774 * End offset is the highest offset that this page should represent.
775 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
776 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
777 * hence give us the correct page_dirty count. On any other page,
778 * it will be zero and in that case we need page_dirty to be the
779 * count of buffers on the page.
781 end_offset = min_t(unsigned long long,
782 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
783 i_size_read(inode));
785 len = 1 << inode->i_blkbits;
786 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
787 PAGE_CACHE_SIZE);
788 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
789 page_dirty = p_offset / len;
791 bh = head = page_buffers(page);
792 do {
793 if (offset >= end_offset)
794 break;
795 if (!buffer_uptodate(bh))
796 uptodate = 0;
797 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
798 done = 1;
799 continue;
802 if (buffer_unwritten(bh) || buffer_delay(bh)) {
803 if (buffer_unwritten(bh))
804 type = IOMAP_UNWRITTEN;
805 else
806 type = IOMAP_DELAY;
808 if (!xfs_iomap_valid(mp, offset)) {
809 done = 1;
810 continue;
813 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
814 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
816 xfs_map_at_offset(bh, offset, bbits, mp);
817 if (startio) {
818 xfs_add_to_ioend(inode, bh, offset,
819 type, ioendp, done);
820 } else {
821 set_buffer_dirty(bh);
822 unlock_buffer(bh);
823 mark_buffer_dirty(bh);
825 page_dirty--;
826 count++;
827 } else {
828 type = IOMAP_NEW;
829 if (buffer_mapped(bh) && all_bh && startio) {
830 lock_buffer(bh);
831 xfs_add_to_ioend(inode, bh, offset,
832 type, ioendp, done);
833 count++;
834 page_dirty--;
835 } else {
836 done = 1;
839 } while (offset += len, (bh = bh->b_this_page) != head);
841 if (uptodate && bh == head)
842 SetPageUptodate(page);
844 if (startio) {
845 if (count) {
846 struct backing_dev_info *bdi;
848 bdi = inode->i_mapping->backing_dev_info;
849 wbc->nr_to_write--;
850 if (bdi_write_congested(bdi)) {
851 wbc->encountered_congestion = 1;
852 done = 1;
853 } else if (wbc->nr_to_write <= 0) {
854 done = 1;
857 xfs_start_page_writeback(page, wbc, !page_dirty, count);
860 return done;
861 fail_unlock_page:
862 unlock_page(page);
863 fail:
864 return 1;
868 * Convert & write out a cluster of pages in the same extent as defined
869 * by mp and following the start page.
871 STATIC void
872 xfs_cluster_write(
873 struct inode *inode,
874 pgoff_t tindex,
875 xfs_iomap_t *iomapp,
876 xfs_ioend_t **ioendp,
877 struct writeback_control *wbc,
878 int startio,
879 int all_bh,
880 pgoff_t tlast)
882 struct pagevec pvec;
883 int done = 0, i;
885 pagevec_init(&pvec, 0);
886 while (!done && tindex <= tlast) {
887 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
889 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
890 break;
892 for (i = 0; i < pagevec_count(&pvec); i++) {
893 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
894 iomapp, ioendp, wbc, startio, all_bh);
895 if (done)
896 break;
899 pagevec_release(&pvec);
900 cond_resched();
905 * Calling this without startio set means we are being asked to make a dirty
906 * page ready for freeing it's buffers. When called with startio set then
907 * we are coming from writepage.
909 * When called with startio set it is important that we write the WHOLE
910 * page if possible.
911 * The bh->b_state's cannot know if any of the blocks or which block for
912 * that matter are dirty due to mmap writes, and therefore bh uptodate is
913 * only valid if the page itself isn't completely uptodate. Some layers
914 * may clear the page dirty flag prior to calling write page, under the
915 * assumption the entire page will be written out; by not writing out the
916 * whole page the page can be reused before all valid dirty data is
917 * written out. Note: in the case of a page that has been dirty'd by
918 * mapwrite and but partially setup by block_prepare_write the
919 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
920 * valid state, thus the whole page must be written out thing.
923 STATIC int
924 xfs_page_state_convert(
925 struct inode *inode,
926 struct page *page,
927 struct writeback_control *wbc,
928 int startio,
929 int unmapped) /* also implies page uptodate */
931 struct buffer_head *bh, *head;
932 xfs_iomap_t iomap;
933 xfs_ioend_t *ioend = NULL, *iohead = NULL;
934 loff_t offset;
935 unsigned long p_offset = 0;
936 unsigned int type;
937 __uint64_t end_offset;
938 pgoff_t end_index, last_index, tlast;
939 ssize_t size, len;
940 int flags, err, iomap_valid = 0, uptodate = 1;
941 int page_dirty, count = 0;
942 int trylock = 0;
943 int all_bh = unmapped;
945 if (startio) {
946 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
947 trylock |= BMAPI_TRYLOCK;
950 /* Is this page beyond the end of the file? */
951 offset = i_size_read(inode);
952 end_index = offset >> PAGE_CACHE_SHIFT;
953 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
954 if (page->index >= end_index) {
955 if ((page->index >= end_index + 1) ||
956 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
957 if (startio)
958 unlock_page(page);
959 return 0;
964 * page_dirty is initially a count of buffers on the page before
965 * EOF and is decremented as we move each into a cleanable state.
967 * Derivation:
969 * End offset is the highest offset that this page should represent.
970 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
971 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
972 * hence give us the correct page_dirty count. On any other page,
973 * it will be zero and in that case we need page_dirty to be the
974 * count of buffers on the page.
976 end_offset = min_t(unsigned long long,
977 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
978 len = 1 << inode->i_blkbits;
979 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
980 PAGE_CACHE_SIZE);
981 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
982 page_dirty = p_offset / len;
984 bh = head = page_buffers(page);
985 offset = page_offset(page);
986 flags = BMAPI_READ;
987 type = IOMAP_NEW;
989 /* TODO: cleanup count and page_dirty */
991 do {
992 if (offset >= end_offset)
993 break;
994 if (!buffer_uptodate(bh))
995 uptodate = 0;
996 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
998 * the iomap is actually still valid, but the ioend
999 * isn't. shouldn't happen too often.
1001 iomap_valid = 0;
1002 continue;
1005 if (iomap_valid)
1006 iomap_valid = xfs_iomap_valid(&iomap, offset);
1009 * First case, map an unwritten extent and prepare for
1010 * extent state conversion transaction on completion.
1012 * Second case, allocate space for a delalloc buffer.
1013 * We can return EAGAIN here in the release page case.
1015 * Third case, an unmapped buffer was found, and we are
1016 * in a path where we need to write the whole page out.
1018 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1019 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1020 !buffer_mapped(bh) && (unmapped || startio))) {
1021 int new_ioend = 0;
1024 * Make sure we don't use a read-only iomap
1026 if (flags == BMAPI_READ)
1027 iomap_valid = 0;
1029 if (buffer_unwritten(bh)) {
1030 type = IOMAP_UNWRITTEN;
1031 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1032 } else if (buffer_delay(bh)) {
1033 type = IOMAP_DELAY;
1034 flags = BMAPI_ALLOCATE | trylock;
1035 } else {
1036 type = IOMAP_NEW;
1037 flags = BMAPI_WRITE | BMAPI_MMAP;
1040 if (!iomap_valid) {
1042 * if we didn't have a valid mapping then we
1043 * need to ensure that we put the new mapping
1044 * in a new ioend structure. This needs to be
1045 * done to ensure that the ioends correctly
1046 * reflect the block mappings at io completion
1047 * for unwritten extent conversion.
1049 new_ioend = 1;
1050 if (type == IOMAP_NEW) {
1051 size = xfs_probe_cluster(inode,
1052 page, bh, head, 0);
1053 } else {
1054 size = len;
1057 err = xfs_map_blocks(inode, offset, size,
1058 &iomap, flags);
1059 if (err)
1060 goto error;
1061 iomap_valid = xfs_iomap_valid(&iomap, offset);
1063 if (iomap_valid) {
1064 xfs_map_at_offset(bh, offset,
1065 inode->i_blkbits, &iomap);
1066 if (startio) {
1067 xfs_add_to_ioend(inode, bh, offset,
1068 type, &ioend,
1069 new_ioend);
1070 } else {
1071 set_buffer_dirty(bh);
1072 unlock_buffer(bh);
1073 mark_buffer_dirty(bh);
1075 page_dirty--;
1076 count++;
1078 } else if (buffer_uptodate(bh) && startio) {
1080 * we got here because the buffer is already mapped.
1081 * That means it must already have extents allocated
1082 * underneath it. Map the extent by reading it.
1084 if (!iomap_valid || flags != BMAPI_READ) {
1085 flags = BMAPI_READ;
1086 size = xfs_probe_cluster(inode, page, bh,
1087 head, 1);
1088 err = xfs_map_blocks(inode, offset, size,
1089 &iomap, flags);
1090 if (err)
1091 goto error;
1092 iomap_valid = xfs_iomap_valid(&iomap, offset);
1096 * We set the type to IOMAP_NEW in case we are doing a
1097 * small write at EOF that is extending the file but
1098 * without needing an allocation. We need to update the
1099 * file size on I/O completion in this case so it is
1100 * the same case as having just allocated a new extent
1101 * that we are writing into for the first time.
1103 type = IOMAP_NEW;
1104 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1105 ASSERT(buffer_mapped(bh));
1106 if (iomap_valid)
1107 all_bh = 1;
1108 xfs_add_to_ioend(inode, bh, offset, type,
1109 &ioend, !iomap_valid);
1110 page_dirty--;
1111 count++;
1112 } else {
1113 iomap_valid = 0;
1115 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1116 (unmapped || startio)) {
1117 iomap_valid = 0;
1120 if (!iohead)
1121 iohead = ioend;
1123 } while (offset += len, ((bh = bh->b_this_page) != head));
1125 if (uptodate && bh == head)
1126 SetPageUptodate(page);
1128 if (startio)
1129 xfs_start_page_writeback(page, wbc, 1, count);
1131 if (ioend && iomap_valid) {
1132 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1133 PAGE_CACHE_SHIFT;
1134 tlast = min_t(pgoff_t, offset, last_index);
1135 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1136 wbc, startio, all_bh, tlast);
1139 if (iohead)
1140 xfs_submit_ioend(iohead);
1142 return page_dirty;
1144 error:
1145 if (iohead)
1146 xfs_cancel_ioend(iohead);
1149 * If it's delalloc and we have nowhere to put it,
1150 * throw it away, unless the lower layers told
1151 * us to try again.
1153 if (err != -EAGAIN) {
1154 if (!unmapped)
1155 block_invalidatepage(page, 0);
1156 ClearPageUptodate(page);
1158 return err;
1162 * writepage: Called from one of two places:
1164 * 1. we are flushing a delalloc buffer head.
1166 * 2. we are writing out a dirty page. Typically the page dirty
1167 * state is cleared before we get here. In this case is it
1168 * conceivable we have no buffer heads.
1170 * For delalloc space on the page we need to allocate space and
1171 * flush it. For unmapped buffer heads on the page we should
1172 * allocate space if the page is uptodate. For any other dirty
1173 * buffer heads on the page we should flush them.
1175 * If we detect that a transaction would be required to flush
1176 * the page, we have to check the process flags first, if we
1177 * are already in a transaction or disk I/O during allocations
1178 * is off, we need to fail the writepage and redirty the page.
1181 STATIC int
1182 xfs_vm_writepage(
1183 struct page *page,
1184 struct writeback_control *wbc)
1186 int error;
1187 int need_trans;
1188 int delalloc, unmapped, unwritten;
1189 struct inode *inode = page->mapping->host;
1191 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1194 * We need a transaction if:
1195 * 1. There are delalloc buffers on the page
1196 * 2. The page is uptodate and we have unmapped buffers
1197 * 3. The page is uptodate and we have no buffers
1198 * 4. There are unwritten buffers on the page
1201 if (!page_has_buffers(page)) {
1202 unmapped = 1;
1203 need_trans = 1;
1204 } else {
1205 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1206 if (!PageUptodate(page))
1207 unmapped = 0;
1208 need_trans = delalloc + unmapped + unwritten;
1212 * If we need a transaction and the process flags say
1213 * we are already in a transaction, or no IO is allowed
1214 * then mark the page dirty again and leave the page
1215 * as is.
1217 if (current_test_flags(PF_FSTRANS) && need_trans)
1218 goto out_fail;
1221 * Delay hooking up buffer heads until we have
1222 * made our go/no-go decision.
1224 if (!page_has_buffers(page))
1225 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1228 * Convert delayed allocate, unwritten or unmapped space
1229 * to real space and flush out to disk.
1231 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1232 if (error == -EAGAIN)
1233 goto out_fail;
1234 if (unlikely(error < 0))
1235 goto out_unlock;
1237 return 0;
1239 out_fail:
1240 redirty_page_for_writepage(wbc, page);
1241 unlock_page(page);
1242 return 0;
1243 out_unlock:
1244 unlock_page(page);
1245 return error;
1248 STATIC int
1249 xfs_vm_writepages(
1250 struct address_space *mapping,
1251 struct writeback_control *wbc)
1253 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1254 return generic_writepages(mapping, wbc);
1258 * Called to move a page into cleanable state - and from there
1259 * to be released. Possibly the page is already clean. We always
1260 * have buffer heads in this call.
1262 * Returns 0 if the page is ok to release, 1 otherwise.
1264 * Possible scenarios are:
1266 * 1. We are being called to release a page which has been written
1267 * to via regular I/O. buffer heads will be dirty and possibly
1268 * delalloc. If no delalloc buffer heads in this case then we
1269 * can just return zero.
1271 * 2. We are called to release a page which has been written via
1272 * mmap, all we need to do is ensure there is no delalloc
1273 * state in the buffer heads, if not we can let the caller
1274 * free them and we should come back later via writepage.
1276 STATIC int
1277 xfs_vm_releasepage(
1278 struct page *page,
1279 gfp_t gfp_mask)
1281 struct inode *inode = page->mapping->host;
1282 int dirty, delalloc, unmapped, unwritten;
1283 struct writeback_control wbc = {
1284 .sync_mode = WB_SYNC_ALL,
1285 .nr_to_write = 1,
1288 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1290 if (!page_has_buffers(page))
1291 return 0;
1293 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1294 if (!delalloc && !unwritten)
1295 goto free_buffers;
1297 if (!(gfp_mask & __GFP_FS))
1298 return 0;
1300 /* If we are already inside a transaction or the thread cannot
1301 * do I/O, we cannot release this page.
1303 if (current_test_flags(PF_FSTRANS))
1304 return 0;
1307 * Convert delalloc space to real space, do not flush the
1308 * data out to disk, that will be done by the caller.
1309 * Never need to allocate space here - we will always
1310 * come back to writepage in that case.
1312 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1313 if (dirty == 0 && !unwritten)
1314 goto free_buffers;
1315 return 0;
1317 free_buffers:
1318 return try_to_free_buffers(page);
1321 STATIC int
1322 __xfs_get_blocks(
1323 struct inode *inode,
1324 sector_t iblock,
1325 struct buffer_head *bh_result,
1326 int create,
1327 int direct,
1328 bmapi_flags_t flags)
1330 xfs_iomap_t iomap;
1331 xfs_off_t offset;
1332 ssize_t size;
1333 int niomap = 1;
1334 int error;
1336 offset = (xfs_off_t)iblock << inode->i_blkbits;
1337 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1338 size = bh_result->b_size;
1339 error = xfs_iomap(XFS_I(inode), offset, size,
1340 create ? flags : BMAPI_READ, &iomap, &niomap);
1341 if (error)
1342 return -error;
1343 if (niomap == 0)
1344 return 0;
1346 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1348 * For unwritten extents do not report a disk address on
1349 * the read case (treat as if we're reading into a hole).
1351 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1352 xfs_map_buffer(bh_result, &iomap, offset,
1353 inode->i_blkbits);
1355 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1356 if (direct)
1357 bh_result->b_private = inode;
1358 set_buffer_unwritten(bh_result);
1363 * If this is a realtime file, data may be on a different device.
1364 * to that pointed to from the buffer_head b_bdev currently.
1366 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1369 * If we previously allocated a block out beyond eof and we are now
1370 * coming back to use it then we will need to flag it as new even if it
1371 * has a disk address.
1373 * With sub-block writes into unwritten extents we also need to mark
1374 * the buffer as new so that the unwritten parts of the buffer gets
1375 * correctly zeroed.
1377 if (create &&
1378 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1379 (offset >= i_size_read(inode)) ||
1380 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1381 set_buffer_new(bh_result);
1383 if (iomap.iomap_flags & IOMAP_DELAY) {
1384 BUG_ON(direct);
1385 if (create) {
1386 set_buffer_uptodate(bh_result);
1387 set_buffer_mapped(bh_result);
1388 set_buffer_delay(bh_result);
1392 if (direct || size > (1 << inode->i_blkbits)) {
1393 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1394 offset = min_t(xfs_off_t,
1395 iomap.iomap_bsize - iomap.iomap_delta, size);
1396 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1399 return 0;
1403 xfs_get_blocks(
1404 struct inode *inode,
1405 sector_t iblock,
1406 struct buffer_head *bh_result,
1407 int create)
1409 return __xfs_get_blocks(inode, iblock,
1410 bh_result, create, 0, BMAPI_WRITE);
1413 STATIC int
1414 xfs_get_blocks_direct(
1415 struct inode *inode,
1416 sector_t iblock,
1417 struct buffer_head *bh_result,
1418 int create)
1420 return __xfs_get_blocks(inode, iblock,
1421 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1424 STATIC void
1425 xfs_end_io_direct(
1426 struct kiocb *iocb,
1427 loff_t offset,
1428 ssize_t size,
1429 void *private)
1431 xfs_ioend_t *ioend = iocb->private;
1434 * Non-NULL private data means we need to issue a transaction to
1435 * convert a range from unwritten to written extents. This needs
1436 * to happen from process context but aio+dio I/O completion
1437 * happens from irq context so we need to defer it to a workqueue.
1438 * This is not necessary for synchronous direct I/O, but we do
1439 * it anyway to keep the code uniform and simpler.
1441 * Well, if only it were that simple. Because synchronous direct I/O
1442 * requires extent conversion to occur *before* we return to userspace,
1443 * we have to wait for extent conversion to complete. Look at the
1444 * iocb that has been passed to us to determine if this is AIO or
1445 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1446 * workqueue and wait for it to complete.
1448 * The core direct I/O code might be changed to always call the
1449 * completion handler in the future, in which case all this can
1450 * go away.
1452 ioend->io_offset = offset;
1453 ioend->io_size = size;
1454 if (ioend->io_type == IOMAP_READ) {
1455 xfs_finish_ioend(ioend, 0);
1456 } else if (private && size > 0) {
1457 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1458 } else {
1460 * A direct I/O write ioend starts it's life in unwritten
1461 * state in case they map an unwritten extent. This write
1462 * didn't map an unwritten extent so switch it's completion
1463 * handler.
1465 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1466 xfs_finish_ioend(ioend, 0);
1470 * blockdev_direct_IO can return an error even after the I/O
1471 * completion handler was called. Thus we need to protect
1472 * against double-freeing.
1474 iocb->private = NULL;
1477 STATIC ssize_t
1478 xfs_vm_direct_IO(
1479 int rw,
1480 struct kiocb *iocb,
1481 const struct iovec *iov,
1482 loff_t offset,
1483 unsigned long nr_segs)
1485 struct file *file = iocb->ki_filp;
1486 struct inode *inode = file->f_mapping->host;
1487 struct block_device *bdev;
1488 ssize_t ret;
1490 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1492 if (rw == WRITE) {
1493 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1494 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1495 bdev, iov, offset, nr_segs,
1496 xfs_get_blocks_direct,
1497 xfs_end_io_direct);
1498 } else {
1499 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1500 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1501 bdev, iov, offset, nr_segs,
1502 xfs_get_blocks_direct,
1503 xfs_end_io_direct);
1506 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1507 xfs_destroy_ioend(iocb->private);
1508 return ret;
1511 STATIC int
1512 xfs_vm_write_begin(
1513 struct file *file,
1514 struct address_space *mapping,
1515 loff_t pos,
1516 unsigned len,
1517 unsigned flags,
1518 struct page **pagep,
1519 void **fsdata)
1521 *pagep = NULL;
1522 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1523 xfs_get_blocks);
1526 STATIC sector_t
1527 xfs_vm_bmap(
1528 struct address_space *mapping,
1529 sector_t block)
1531 struct inode *inode = (struct inode *)mapping->host;
1532 struct xfs_inode *ip = XFS_I(inode);
1534 xfs_itrace_entry(XFS_I(inode));
1535 xfs_rwlock(ip, VRWLOCK_READ);
1536 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1537 xfs_rwunlock(ip, VRWLOCK_READ);
1538 return generic_block_bmap(mapping, block, xfs_get_blocks);
1541 STATIC int
1542 xfs_vm_readpage(
1543 struct file *unused,
1544 struct page *page)
1546 return mpage_readpage(page, xfs_get_blocks);
1549 STATIC int
1550 xfs_vm_readpages(
1551 struct file *unused,
1552 struct address_space *mapping,
1553 struct list_head *pages,
1554 unsigned nr_pages)
1556 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1559 STATIC void
1560 xfs_vm_invalidatepage(
1561 struct page *page,
1562 unsigned long offset)
1564 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1565 page->mapping->host, page, offset);
1566 block_invalidatepage(page, offset);
1569 const struct address_space_operations xfs_address_space_operations = {
1570 .readpage = xfs_vm_readpage,
1571 .readpages = xfs_vm_readpages,
1572 .writepage = xfs_vm_writepage,
1573 .writepages = xfs_vm_writepages,
1574 .sync_page = block_sync_page,
1575 .releasepage = xfs_vm_releasepage,
1576 .invalidatepage = xfs_vm_invalidatepage,
1577 .write_begin = xfs_vm_write_begin,
1578 .write_end = generic_write_end,
1579 .bmap = xfs_vm_bmap,
1580 .direct_IO = xfs_vm_direct_IO,
1581 .migratepage = buffer_migrate_page,