iwlwifi: move HW device registration
[linux/fpc-iii.git] / fs / xfs / linux-2.6 / xfs_lrw.c
blob1663533884902bb749a371271e7e4943f507a3f7
1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_bmap.h"
39 #include "xfs_btree.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_inode_item.h"
48 #include "xfs_buf_item.h"
49 #include "xfs_utils.h"
50 #include "xfs_iomap.h"
51 #include "xfs_vnodeops.h"
53 #include <linux/capability.h>
54 #include <linux/writeback.h>
57 #if defined(XFS_RW_TRACE)
58 void
59 xfs_rw_enter_trace(
60 int tag,
61 xfs_inode_t *ip,
62 void *data,
63 size_t segs,
64 loff_t offset,
65 int ioflags)
67 if (ip->i_rwtrace == NULL)
68 return;
69 ktrace_enter(ip->i_rwtrace,
70 (void *)(unsigned long)tag,
71 (void *)ip,
72 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
73 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
74 (void *)data,
75 (void *)((unsigned long)segs),
76 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
77 (void *)((unsigned long)(offset & 0xffffffff)),
78 (void *)((unsigned long)ioflags),
79 (void *)((unsigned long)((ip->i_new_size >> 32) & 0xffffffff)),
80 (void *)((unsigned long)(ip->i_new_size & 0xffffffff)),
81 (void *)((unsigned long)current_pid()),
82 (void *)NULL,
83 (void *)NULL,
84 (void *)NULL,
85 (void *)NULL);
88 void
89 xfs_inval_cached_trace(
90 xfs_inode_t *ip,
91 xfs_off_t offset,
92 xfs_off_t len,
93 xfs_off_t first,
94 xfs_off_t last)
97 if (ip->i_rwtrace == NULL)
98 return;
99 ktrace_enter(ip->i_rwtrace,
100 (void *)(__psint_t)XFS_INVAL_CACHED,
101 (void *)ip,
102 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
103 (void *)((unsigned long)(offset & 0xffffffff)),
104 (void *)((unsigned long)((len >> 32) & 0xffffffff)),
105 (void *)((unsigned long)(len & 0xffffffff)),
106 (void *)((unsigned long)((first >> 32) & 0xffffffff)),
107 (void *)((unsigned long)(first & 0xffffffff)),
108 (void *)((unsigned long)((last >> 32) & 0xffffffff)),
109 (void *)((unsigned long)(last & 0xffffffff)),
110 (void *)((unsigned long)current_pid()),
111 (void *)NULL,
112 (void *)NULL,
113 (void *)NULL,
114 (void *)NULL,
115 (void *)NULL);
117 #endif
120 * xfs_iozero
122 * xfs_iozero clears the specified range of buffer supplied,
123 * and marks all the affected blocks as valid and modified. If
124 * an affected block is not allocated, it will be allocated. If
125 * an affected block is not completely overwritten, and is not
126 * valid before the operation, it will be read from disk before
127 * being partially zeroed.
129 STATIC int
130 xfs_iozero(
131 struct xfs_inode *ip, /* inode */
132 loff_t pos, /* offset in file */
133 size_t count) /* size of data to zero */
135 struct page *page;
136 struct address_space *mapping;
137 int status;
139 mapping = ip->i_vnode->i_mapping;
140 do {
141 unsigned offset, bytes;
142 void *fsdata;
144 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
145 bytes = PAGE_CACHE_SIZE - offset;
146 if (bytes > count)
147 bytes = count;
149 status = pagecache_write_begin(NULL, mapping, pos, bytes,
150 AOP_FLAG_UNINTERRUPTIBLE,
151 &page, &fsdata);
152 if (status)
153 break;
155 zero_user(page, offset, bytes);
157 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
158 page, fsdata);
159 WARN_ON(status <= 0); /* can't return less than zero! */
160 pos += bytes;
161 count -= bytes;
162 status = 0;
163 } while (count);
165 return (-status);
168 ssize_t /* bytes read, or (-) error */
169 xfs_read(
170 xfs_inode_t *ip,
171 struct kiocb *iocb,
172 const struct iovec *iovp,
173 unsigned int segs,
174 loff_t *offset,
175 int ioflags)
177 struct file *file = iocb->ki_filp;
178 struct inode *inode = file->f_mapping->host;
179 bhv_vnode_t *vp = XFS_ITOV(ip);
180 xfs_mount_t *mp = ip->i_mount;
181 size_t size = 0;
182 ssize_t ret = 0;
183 xfs_fsize_t n;
184 unsigned long seg;
187 XFS_STATS_INC(xs_read_calls);
189 /* START copy & waste from filemap.c */
190 for (seg = 0; seg < segs; seg++) {
191 const struct iovec *iv = &iovp[seg];
194 * If any segment has a negative length, or the cumulative
195 * length ever wraps negative then return -EINVAL.
197 size += iv->iov_len;
198 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
199 return XFS_ERROR(-EINVAL);
201 /* END copy & waste from filemap.c */
203 if (unlikely(ioflags & IO_ISDIRECT)) {
204 xfs_buftarg_t *target =
205 XFS_IS_REALTIME_INODE(ip) ?
206 mp->m_rtdev_targp : mp->m_ddev_targp;
207 if ((*offset & target->bt_smask) ||
208 (size & target->bt_smask)) {
209 if (*offset == ip->i_size) {
210 return (0);
212 return -XFS_ERROR(EINVAL);
216 n = XFS_MAXIOFFSET(mp) - *offset;
217 if ((n <= 0) || (size == 0))
218 return 0;
220 if (n < size)
221 size = n;
223 if (XFS_FORCED_SHUTDOWN(mp))
224 return -EIO;
226 if (unlikely(ioflags & IO_ISDIRECT))
227 mutex_lock(&inode->i_mutex);
228 xfs_ilock(ip, XFS_IOLOCK_SHARED);
230 if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
231 bhv_vrwlock_t locktype = VRWLOCK_READ;
232 int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);
234 ret = -XFS_SEND_DATA(mp, DM_EVENT_READ, vp, *offset, size,
235 dmflags, &locktype);
236 if (ret) {
237 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
238 if (unlikely(ioflags & IO_ISDIRECT))
239 mutex_unlock(&inode->i_mutex);
240 return ret;
244 if (unlikely(ioflags & IO_ISDIRECT)) {
245 if (VN_CACHED(vp))
246 ret = xfs_flushinval_pages(ip, (*offset & PAGE_CACHE_MASK),
247 -1, FI_REMAPF_LOCKED);
248 mutex_unlock(&inode->i_mutex);
249 if (ret) {
250 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
251 return ret;
255 xfs_rw_enter_trace(XFS_READ_ENTER, ip,
256 (void *)iovp, segs, *offset, ioflags);
258 iocb->ki_pos = *offset;
259 ret = generic_file_aio_read(iocb, iovp, segs, *offset);
260 if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
261 ret = wait_on_sync_kiocb(iocb);
262 if (ret > 0)
263 XFS_STATS_ADD(xs_read_bytes, ret);
265 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
266 return ret;
269 ssize_t
270 xfs_splice_read(
271 xfs_inode_t *ip,
272 struct file *infilp,
273 loff_t *ppos,
274 struct pipe_inode_info *pipe,
275 size_t count,
276 int flags,
277 int ioflags)
279 bhv_vnode_t *vp = XFS_ITOV(ip);
280 xfs_mount_t *mp = ip->i_mount;
281 ssize_t ret;
283 XFS_STATS_INC(xs_read_calls);
284 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
285 return -EIO;
287 xfs_ilock(ip, XFS_IOLOCK_SHARED);
289 if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
290 bhv_vrwlock_t locktype = VRWLOCK_READ;
291 int error;
293 error = XFS_SEND_DATA(mp, DM_EVENT_READ, vp, *ppos, count,
294 FILP_DELAY_FLAG(infilp), &locktype);
295 if (error) {
296 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
297 return -error;
300 xfs_rw_enter_trace(XFS_SPLICE_READ_ENTER, ip,
301 pipe, count, *ppos, ioflags);
302 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
303 if (ret > 0)
304 XFS_STATS_ADD(xs_read_bytes, ret);
306 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
307 return ret;
310 ssize_t
311 xfs_splice_write(
312 xfs_inode_t *ip,
313 struct pipe_inode_info *pipe,
314 struct file *outfilp,
315 loff_t *ppos,
316 size_t count,
317 int flags,
318 int ioflags)
320 bhv_vnode_t *vp = XFS_ITOV(ip);
321 xfs_mount_t *mp = ip->i_mount;
322 ssize_t ret;
323 struct inode *inode = outfilp->f_mapping->host;
324 xfs_fsize_t isize, new_size;
326 XFS_STATS_INC(xs_write_calls);
327 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
328 return -EIO;
330 xfs_ilock(ip, XFS_IOLOCK_EXCL);
332 if (DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) && !(ioflags & IO_INVIS)) {
333 bhv_vrwlock_t locktype = VRWLOCK_WRITE;
334 int error;
336 error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, vp, *ppos, count,
337 FILP_DELAY_FLAG(outfilp), &locktype);
338 if (error) {
339 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
340 return -error;
344 new_size = *ppos + count;
346 xfs_ilock(ip, XFS_ILOCK_EXCL);
347 if (new_size > ip->i_size)
348 ip->i_new_size = new_size;
349 xfs_iunlock(ip, XFS_ILOCK_EXCL);
351 xfs_rw_enter_trace(XFS_SPLICE_WRITE_ENTER, ip,
352 pipe, count, *ppos, ioflags);
353 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
354 if (ret > 0)
355 XFS_STATS_ADD(xs_write_bytes, ret);
357 isize = i_size_read(inode);
358 if (unlikely(ret < 0 && ret != -EFAULT && *ppos > isize))
359 *ppos = isize;
361 if (*ppos > ip->i_size) {
362 xfs_ilock(ip, XFS_ILOCK_EXCL);
363 if (*ppos > ip->i_size)
364 ip->i_size = *ppos;
365 xfs_iunlock(ip, XFS_ILOCK_EXCL);
368 if (ip->i_new_size) {
369 xfs_ilock(ip, XFS_ILOCK_EXCL);
370 ip->i_new_size = 0;
371 if (ip->i_d.di_size > ip->i_size)
372 ip->i_d.di_size = ip->i_size;
373 xfs_iunlock(ip, XFS_ILOCK_EXCL);
375 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
376 return ret;
380 * This routine is called to handle zeroing any space in the last
381 * block of the file that is beyond the EOF. We do this since the
382 * size is being increased without writing anything to that block
383 * and we don't want anyone to read the garbage on the disk.
385 STATIC int /* error (positive) */
386 xfs_zero_last_block(
387 xfs_inode_t *ip,
388 xfs_fsize_t offset,
389 xfs_fsize_t isize)
391 xfs_fileoff_t last_fsb;
392 xfs_mount_t *mp = ip->i_mount;
393 int nimaps;
394 int zero_offset;
395 int zero_len;
396 int error = 0;
397 xfs_bmbt_irec_t imap;
399 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
401 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
402 if (zero_offset == 0) {
404 * There are no extra bytes in the last block on disk to
405 * zero, so return.
407 return 0;
410 last_fsb = XFS_B_TO_FSBT(mp, isize);
411 nimaps = 1;
412 error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
413 &nimaps, NULL, NULL);
414 if (error) {
415 return error;
417 ASSERT(nimaps > 0);
419 * If the block underlying isize is just a hole, then there
420 * is nothing to zero.
422 if (imap.br_startblock == HOLESTARTBLOCK) {
423 return 0;
426 * Zero the part of the last block beyond the EOF, and write it
427 * out sync. We need to drop the ilock while we do this so we
428 * don't deadlock when the buffer cache calls back to us.
430 xfs_iunlock(ip, XFS_ILOCK_EXCL| XFS_EXTSIZE_RD);
432 zero_len = mp->m_sb.sb_blocksize - zero_offset;
433 if (isize + zero_len > offset)
434 zero_len = offset - isize;
435 error = xfs_iozero(ip, isize, zero_len);
437 xfs_ilock(ip, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
438 ASSERT(error >= 0);
439 return error;
443 * Zero any on disk space between the current EOF and the new,
444 * larger EOF. This handles the normal case of zeroing the remainder
445 * of the last block in the file and the unusual case of zeroing blocks
446 * out beyond the size of the file. This second case only happens
447 * with fixed size extents and when the system crashes before the inode
448 * size was updated but after blocks were allocated. If fill is set,
449 * then any holes in the range are filled and zeroed. If not, the holes
450 * are left alone as holes.
453 int /* error (positive) */
454 xfs_zero_eof(
455 xfs_inode_t *ip,
456 xfs_off_t offset, /* starting I/O offset */
457 xfs_fsize_t isize) /* current inode size */
459 xfs_mount_t *mp = ip->i_mount;
460 xfs_fileoff_t start_zero_fsb;
461 xfs_fileoff_t end_zero_fsb;
462 xfs_fileoff_t zero_count_fsb;
463 xfs_fileoff_t last_fsb;
464 xfs_fileoff_t zero_off;
465 xfs_fsize_t zero_len;
466 int nimaps;
467 int error = 0;
468 xfs_bmbt_irec_t imap;
470 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
471 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
472 ASSERT(offset > isize);
475 * First handle zeroing the block on which isize resides.
476 * We only zero a part of that block so it is handled specially.
478 error = xfs_zero_last_block(ip, offset, isize);
479 if (error) {
480 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
481 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
482 return error;
486 * Calculate the range between the new size and the old
487 * where blocks needing to be zeroed may exist. To get the
488 * block where the last byte in the file currently resides,
489 * we need to subtract one from the size and truncate back
490 * to a block boundary. We subtract 1 in case the size is
491 * exactly on a block boundary.
493 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
494 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
495 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
496 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
497 if (last_fsb == end_zero_fsb) {
499 * The size was only incremented on its last block.
500 * We took care of that above, so just return.
502 return 0;
505 ASSERT(start_zero_fsb <= end_zero_fsb);
506 while (start_zero_fsb <= end_zero_fsb) {
507 nimaps = 1;
508 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
509 error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
510 0, NULL, 0, &imap, &nimaps, NULL, NULL);
511 if (error) {
512 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
513 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
514 return error;
516 ASSERT(nimaps > 0);
518 if (imap.br_state == XFS_EXT_UNWRITTEN ||
519 imap.br_startblock == HOLESTARTBLOCK) {
521 * This loop handles initializing pages that were
522 * partially initialized by the code below this
523 * loop. It basically zeroes the part of the page
524 * that sits on a hole and sets the page as P_HOLE
525 * and calls remapf if it is a mapped file.
527 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
528 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
529 continue;
533 * There are blocks we need to zero.
534 * Drop the inode lock while we're doing the I/O.
535 * We'll still have the iolock to protect us.
537 xfs_iunlock(ip, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
539 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
540 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
542 if ((zero_off + zero_len) > offset)
543 zero_len = offset - zero_off;
545 error = xfs_iozero(ip, zero_off, zero_len);
546 if (error) {
547 goto out_lock;
550 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
551 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
553 xfs_ilock(ip, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
556 return 0;
558 out_lock:
559 xfs_ilock(ip, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
560 ASSERT(error >= 0);
561 return error;
564 ssize_t /* bytes written, or (-) error */
565 xfs_write(
566 struct xfs_inode *xip,
567 struct kiocb *iocb,
568 const struct iovec *iovp,
569 unsigned int nsegs,
570 loff_t *offset,
571 int ioflags)
573 struct file *file = iocb->ki_filp;
574 struct address_space *mapping = file->f_mapping;
575 struct inode *inode = mapping->host;
576 bhv_vnode_t *vp = XFS_ITOV(xip);
577 unsigned long segs = nsegs;
578 xfs_mount_t *mp;
579 ssize_t ret = 0, error = 0;
580 xfs_fsize_t isize, new_size;
581 int iolock;
582 int eventsent = 0;
583 bhv_vrwlock_t locktype;
584 size_t ocount = 0, count;
585 loff_t pos;
586 int need_i_mutex;
588 XFS_STATS_INC(xs_write_calls);
590 error = generic_segment_checks(iovp, &segs, &ocount, VERIFY_READ);
591 if (error)
592 return error;
594 count = ocount;
595 pos = *offset;
597 if (count == 0)
598 return 0;
600 mp = xip->i_mount;
602 xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
604 if (XFS_FORCED_SHUTDOWN(mp))
605 return -EIO;
607 relock:
608 if (ioflags & IO_ISDIRECT) {
609 iolock = XFS_IOLOCK_SHARED;
610 locktype = VRWLOCK_WRITE_DIRECT;
611 need_i_mutex = 0;
612 } else {
613 iolock = XFS_IOLOCK_EXCL;
614 locktype = VRWLOCK_WRITE;
615 need_i_mutex = 1;
616 mutex_lock(&inode->i_mutex);
619 xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
621 start:
622 error = -generic_write_checks(file, &pos, &count,
623 S_ISBLK(inode->i_mode));
624 if (error) {
625 xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
626 goto out_unlock_mutex;
629 if ((DM_EVENT_ENABLED(xip, DM_EVENT_WRITE) &&
630 !(ioflags & IO_INVIS) && !eventsent)) {
631 int dmflags = FILP_DELAY_FLAG(file);
633 if (need_i_mutex)
634 dmflags |= DM_FLAGS_IMUX;
636 xfs_iunlock(xip, XFS_ILOCK_EXCL);
637 error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
638 pos, count,
639 dmflags, &locktype);
640 if (error) {
641 goto out_unlock_internal;
643 xfs_ilock(xip, XFS_ILOCK_EXCL);
644 eventsent = 1;
647 * The iolock was dropped and reacquired in XFS_SEND_DATA
648 * so we have to recheck the size when appending.
649 * We will only "goto start;" once, since having sent the
650 * event prevents another call to XFS_SEND_DATA, which is
651 * what allows the size to change in the first place.
653 if ((file->f_flags & O_APPEND) && pos != xip->i_size)
654 goto start;
657 if (ioflags & IO_ISDIRECT) {
658 xfs_buftarg_t *target =
659 XFS_IS_REALTIME_INODE(xip) ?
660 mp->m_rtdev_targp : mp->m_ddev_targp;
662 if ((pos & target->bt_smask) || (count & target->bt_smask)) {
663 xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
664 return XFS_ERROR(-EINVAL);
667 if (!need_i_mutex && (VN_CACHED(vp) || pos > xip->i_size)) {
668 xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
669 iolock = XFS_IOLOCK_EXCL;
670 locktype = VRWLOCK_WRITE;
671 need_i_mutex = 1;
672 mutex_lock(&inode->i_mutex);
673 xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
674 goto start;
678 new_size = pos + count;
679 if (new_size > xip->i_size)
680 xip->i_new_size = new_size;
682 if (likely(!(ioflags & IO_INVIS))) {
683 file_update_time(file);
684 xfs_ichgtime_fast(xip, inode,
685 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
689 * If the offset is beyond the size of the file, we have a couple
690 * of things to do. First, if there is already space allocated
691 * we need to either create holes or zero the disk or ...
693 * If there is a page where the previous size lands, we need
694 * to zero it out up to the new size.
697 if (pos > xip->i_size) {
698 error = xfs_zero_eof(xip, pos, xip->i_size);
699 if (error) {
700 xfs_iunlock(xip, XFS_ILOCK_EXCL);
701 goto out_unlock_internal;
704 xfs_iunlock(xip, XFS_ILOCK_EXCL);
707 * If we're writing the file then make sure to clear the
708 * setuid and setgid bits if the process is not being run
709 * by root. This keeps people from modifying setuid and
710 * setgid binaries.
713 if (((xip->i_d.di_mode & S_ISUID) ||
714 ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
715 (S_ISGID | S_IXGRP))) &&
716 !capable(CAP_FSETID)) {
717 error = xfs_write_clear_setuid(xip);
718 if (likely(!error))
719 error = -remove_suid(file->f_path.dentry);
720 if (unlikely(error)) {
721 goto out_unlock_internal;
725 retry:
726 /* We can write back this queue in page reclaim */
727 current->backing_dev_info = mapping->backing_dev_info;
729 if ((ioflags & IO_ISDIRECT)) {
730 if (VN_CACHED(vp)) {
731 WARN_ON(need_i_mutex == 0);
732 xfs_inval_cached_trace(xip, pos, -1,
733 (pos & PAGE_CACHE_MASK), -1);
734 error = xfs_flushinval_pages(xip,
735 (pos & PAGE_CACHE_MASK),
736 -1, FI_REMAPF_LOCKED);
737 if (error)
738 goto out_unlock_internal;
741 if (need_i_mutex) {
742 /* demote the lock now the cached pages are gone */
743 xfs_ilock_demote(xip, XFS_IOLOCK_EXCL);
744 mutex_unlock(&inode->i_mutex);
746 iolock = XFS_IOLOCK_SHARED;
747 locktype = VRWLOCK_WRITE_DIRECT;
748 need_i_mutex = 0;
751 xfs_rw_enter_trace(XFS_DIOWR_ENTER, xip, (void *)iovp, segs,
752 *offset, ioflags);
753 ret = generic_file_direct_write(iocb, iovp,
754 &segs, pos, offset, count, ocount);
757 * direct-io write to a hole: fall through to buffered I/O
758 * for completing the rest of the request.
760 if (ret >= 0 && ret != count) {
761 XFS_STATS_ADD(xs_write_bytes, ret);
763 pos += ret;
764 count -= ret;
766 ioflags &= ~IO_ISDIRECT;
767 xfs_iunlock(xip, iolock);
768 goto relock;
770 } else {
771 xfs_rw_enter_trace(XFS_WRITE_ENTER, xip, (void *)iovp, segs,
772 *offset, ioflags);
773 ret = generic_file_buffered_write(iocb, iovp, segs,
774 pos, offset, count, ret);
777 current->backing_dev_info = NULL;
779 if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
780 ret = wait_on_sync_kiocb(iocb);
782 if (ret == -ENOSPC &&
783 DM_EVENT_ENABLED(xip, DM_EVENT_NOSPACE) && !(ioflags & IO_INVIS)) {
784 xfs_rwunlock(xip, locktype);
785 if (need_i_mutex)
786 mutex_unlock(&inode->i_mutex);
787 error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp,
788 DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL,
789 0, 0, 0); /* Delay flag intentionally unused */
790 if (need_i_mutex)
791 mutex_lock(&inode->i_mutex);
792 xfs_rwlock(xip, locktype);
793 if (error)
794 goto out_unlock_internal;
795 pos = xip->i_size;
796 ret = 0;
797 goto retry;
800 isize = i_size_read(inode);
801 if (unlikely(ret < 0 && ret != -EFAULT && *offset > isize))
802 *offset = isize;
804 if (*offset > xip->i_size) {
805 xfs_ilock(xip, XFS_ILOCK_EXCL);
806 if (*offset > xip->i_size)
807 xip->i_size = *offset;
808 xfs_iunlock(xip, XFS_ILOCK_EXCL);
811 error = -ret;
812 if (ret <= 0)
813 goto out_unlock_internal;
815 XFS_STATS_ADD(xs_write_bytes, ret);
817 /* Handle various SYNC-type writes */
818 if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
819 int error2;
820 xfs_rwunlock(xip, locktype);
821 if (need_i_mutex)
822 mutex_unlock(&inode->i_mutex);
823 error2 = sync_page_range(inode, mapping, pos, ret);
824 if (!error)
825 error = error2;
826 if (need_i_mutex)
827 mutex_lock(&inode->i_mutex);
828 xfs_rwlock(xip, locktype);
829 error2 = xfs_write_sync_logforce(mp, xip);
830 if (!error)
831 error = error2;
834 out_unlock_internal:
835 if (xip->i_new_size) {
836 xfs_ilock(xip, XFS_ILOCK_EXCL);
837 xip->i_new_size = 0;
839 * If this was a direct or synchronous I/O that failed (such
840 * as ENOSPC) then part of the I/O may have been written to
841 * disk before the error occured. In this case the on-disk
842 * file size may have been adjusted beyond the in-memory file
843 * size and now needs to be truncated back.
845 if (xip->i_d.di_size > xip->i_size)
846 xip->i_d.di_size = xip->i_size;
847 xfs_iunlock(xip, XFS_ILOCK_EXCL);
849 xfs_rwunlock(xip, locktype);
850 out_unlock_mutex:
851 if (need_i_mutex)
852 mutex_unlock(&inode->i_mutex);
853 return -error;
857 * All xfs metadata buffers except log state machine buffers
858 * get this attached as their b_bdstrat callback function.
859 * This is so that we can catch a buffer
860 * after prematurely unpinning it to forcibly shutdown the filesystem.
863 xfs_bdstrat_cb(struct xfs_buf *bp)
865 xfs_mount_t *mp;
867 mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
868 if (!XFS_FORCED_SHUTDOWN(mp)) {
869 xfs_buf_iorequest(bp);
870 return 0;
871 } else {
872 xfs_buftrace("XFS__BDSTRAT IOERROR", bp);
874 * Metadata write that didn't get logged but
875 * written delayed anyway. These aren't associated
876 * with a transaction, and can be ignored.
878 if (XFS_BUF_IODONE_FUNC(bp) == NULL &&
879 (XFS_BUF_ISREAD(bp)) == 0)
880 return (xfs_bioerror_relse(bp));
881 else
882 return (xfs_bioerror(bp));
887 * Wrapper around bdstrat so that we can stop data
888 * from going to disk in case we are shutting down the filesystem.
889 * Typically user data goes thru this path; one of the exceptions
890 * is the superblock.
893 xfsbdstrat(
894 struct xfs_mount *mp,
895 struct xfs_buf *bp)
897 ASSERT(mp);
898 if (!XFS_FORCED_SHUTDOWN(mp)) {
899 /* Grio redirection would go here
900 * if (XFS_BUF_IS_GRIO(bp)) {
903 xfs_buf_iorequest(bp);
904 return 0;
907 xfs_buftrace("XFSBDSTRAT IOERROR", bp);
908 return (xfs_bioerror_relse(bp));
912 * If the underlying (data/log/rt) device is readonly, there are some
913 * operations that cannot proceed.
916 xfs_dev_is_read_only(
917 xfs_mount_t *mp,
918 char *message)
920 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
921 xfs_readonly_buftarg(mp->m_logdev_targp) ||
922 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
923 cmn_err(CE_NOTE,
924 "XFS: %s required on read-only device.", message);
925 cmn_err(CE_NOTE,
926 "XFS: write access unavailable, cannot proceed.");
927 return EROFS;
929 return 0;