1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 * Portions Copyright (C) Tino Reichardt, 2012
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
19 * SERIALIZATION of the Block Allocation Map.
21 * the working state of the block allocation map is accessed in
24 * 1) allocation and free requests that start at the dmap
25 * level and move up through the dmap control pages (i.e.
26 * the vast majority of requests).
28 * 2) allocation requests that start at dmap control page
29 * level and work down towards the dmaps.
31 * the serialization scheme used here is as follows.
33 * requests which start at the bottom are serialized against each
34 * other through buffers and each requests holds onto its buffers
35 * as it works it way up from a single dmap to the required level
36 * of dmap control page.
37 * requests that start at the top are serialized against each other
38 * and request that start from the bottom by the multiple read/single
39 * write inode lock of the bmap inode. requests starting at the top
40 * take this lock in write mode while request starting at the bottom
41 * take the lock in read mode. a single top-down request may proceed
42 * exclusively while multiple bottoms-up requests may proceed
43 * simultaneously (under the protection of busy buffers).
45 * in addition to information found in dmaps and dmap control pages,
46 * the working state of the block allocation map also includes read/
47 * write information maintained in the bmap descriptor (i.e. total
48 * free block count, allocation group level free block counts).
49 * a single exclusive lock (BMAP_LOCK) is used to guard this information
50 * in the face of multiple-bottoms up requests.
51 * (lock ordering: IREAD_LOCK, BMAP_LOCK);
53 * accesses to the persistent state of the block allocation map (limited
54 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
57 #define BMAP_LOCK_INIT(bmp) mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp) mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp) mutex_unlock(&bmp->db_bmaplock)
64 static void dbAllocBits(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
66 static void dbSplit(dmtree_t
* tp
, int leafno
, int splitsz
, int newval
);
67 static int dbBackSplit(dmtree_t
* tp
, int leafno
);
68 static int dbJoin(dmtree_t
* tp
, int leafno
, int newval
);
69 static void dbAdjTree(dmtree_t
* tp
, int leafno
, int newval
);
70 static int dbAdjCtl(struct bmap
* bmp
, s64 blkno
, int newval
, int alloc
,
72 static int dbAllocAny(struct bmap
* bmp
, s64 nblocks
, int l2nb
, s64
* results
);
73 static int dbAllocNext(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
75 static int dbAllocNear(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
77 int l2nb
, s64
* results
);
78 static int dbAllocDmap(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
80 static int dbAllocDmapLev(struct bmap
* bmp
, struct dmap
* dp
, int nblocks
,
83 static int dbAllocAG(struct bmap
* bmp
, int agno
, s64 nblocks
, int l2nb
,
85 static int dbAllocCtl(struct bmap
* bmp
, s64 nblocks
, int l2nb
, s64 blkno
,
87 static int dbExtend(struct inode
*ip
, s64 blkno
, s64 nblocks
, s64 addnblocks
);
88 static int dbFindBits(u32 word
, int l2nb
);
89 static int dbFindCtl(struct bmap
* bmp
, int l2nb
, int level
, s64
* blkno
);
90 static int dbFindLeaf(dmtree_t
* tp
, int l2nb
, int *leafidx
);
91 static int dbFreeBits(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
93 static int dbFreeDmap(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
95 static int dbMaxBud(u8
* cp
);
96 static int blkstol2(s64 nb
);
98 static int cntlz(u32 value
);
99 static int cnttz(u32 word
);
101 static int dbAllocDmapBU(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
103 static int dbInitDmap(struct dmap
* dp
, s64 blkno
, int nblocks
);
104 static int dbInitDmapTree(struct dmap
* dp
);
105 static int dbInitTree(struct dmaptree
* dtp
);
106 static int dbInitDmapCtl(struct dmapctl
* dcp
, int level
, int i
);
107 static int dbGetL2AGSize(s64 nblocks
);
112 * table used for determining buddy sizes within characters of
113 * dmap bitmap words. the characters themselves serve as indexes
114 * into the table, with the table elements yielding the maximum
115 * binary buddy of free bits within the character.
117 static const s8 budtab
[256] = {
118 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
139 * FUNCTION: initializate the block allocation map.
141 * memory is allocated for the in-core bmap descriptor and
142 * the in-core descriptor is initialized from disk.
145 * ipbmap - pointer to in-core inode for the block map.
149 * -ENOMEM - insufficient memory
152 int dbMount(struct inode
*ipbmap
)
155 struct dbmap_disk
*dbmp_le
;
160 * allocate/initialize the in-memory bmap descriptor
162 /* allocate memory for the in-memory bmap descriptor */
163 bmp
= kmalloc(sizeof(struct bmap
), GFP_KERNEL
);
167 /* read the on-disk bmap descriptor. */
168 mp
= read_metapage(ipbmap
,
169 BMAPBLKNO
<< JFS_SBI(ipbmap
->i_sb
)->l2nbperpage
,
176 /* copy the on-disk bmap descriptor to its in-memory version. */
177 dbmp_le
= (struct dbmap_disk
*) mp
->data
;
178 bmp
->db_mapsize
= le64_to_cpu(dbmp_le
->dn_mapsize
);
179 bmp
->db_nfree
= le64_to_cpu(dbmp_le
->dn_nfree
);
180 bmp
->db_l2nbperpage
= le32_to_cpu(dbmp_le
->dn_l2nbperpage
);
181 bmp
->db_numag
= le32_to_cpu(dbmp_le
->dn_numag
);
182 bmp
->db_maxlevel
= le32_to_cpu(dbmp_le
->dn_maxlevel
);
183 bmp
->db_maxag
= le32_to_cpu(dbmp_le
->dn_maxag
);
184 bmp
->db_agpref
= le32_to_cpu(dbmp_le
->dn_agpref
);
185 bmp
->db_aglevel
= le32_to_cpu(dbmp_le
->dn_aglevel
);
186 bmp
->db_agheight
= le32_to_cpu(dbmp_le
->dn_agheight
);
187 bmp
->db_agwidth
= le32_to_cpu(dbmp_le
->dn_agwidth
);
188 bmp
->db_agstart
= le32_to_cpu(dbmp_le
->dn_agstart
);
189 bmp
->db_agl2size
= le32_to_cpu(dbmp_le
->dn_agl2size
);
190 for (i
= 0; i
< MAXAG
; i
++)
191 bmp
->db_agfree
[i
] = le64_to_cpu(dbmp_le
->dn_agfree
[i
]);
192 bmp
->db_agsize
= le64_to_cpu(dbmp_le
->dn_agsize
);
193 bmp
->db_maxfreebud
= dbmp_le
->dn_maxfreebud
;
195 /* release the buffer. */
196 release_metapage(mp
);
198 /* bind the bmap inode and the bmap descriptor to each other. */
199 bmp
->db_ipbmap
= ipbmap
;
200 JFS_SBI(ipbmap
->i_sb
)->bmap
= bmp
;
202 memset(bmp
->db_active
, 0, sizeof(bmp
->db_active
));
205 * allocate/initialize the bmap lock
216 * FUNCTION: terminate the block allocation map in preparation for
217 * file system unmount.
219 * the in-core bmap descriptor is written to disk and
220 * the memory for this descriptor is freed.
223 * ipbmap - pointer to in-core inode for the block map.
229 int dbUnmount(struct inode
*ipbmap
, int mounterror
)
231 struct bmap
*bmp
= JFS_SBI(ipbmap
->i_sb
)->bmap
;
233 if (!(mounterror
|| isReadOnly(ipbmap
)))
237 * Invalidate the page cache buffers
239 truncate_inode_pages(ipbmap
->i_mapping
, 0);
241 /* free the memory for the in-memory bmap. */
250 int dbSync(struct inode
*ipbmap
)
252 struct dbmap_disk
*dbmp_le
;
253 struct bmap
*bmp
= JFS_SBI(ipbmap
->i_sb
)->bmap
;
258 * write bmap global control page
260 /* get the buffer for the on-disk bmap descriptor. */
261 mp
= read_metapage(ipbmap
,
262 BMAPBLKNO
<< JFS_SBI(ipbmap
->i_sb
)->l2nbperpage
,
265 jfs_err("dbSync: read_metapage failed!");
268 /* copy the in-memory version of the bmap to the on-disk version */
269 dbmp_le
= (struct dbmap_disk
*) mp
->data
;
270 dbmp_le
->dn_mapsize
= cpu_to_le64(bmp
->db_mapsize
);
271 dbmp_le
->dn_nfree
= cpu_to_le64(bmp
->db_nfree
);
272 dbmp_le
->dn_l2nbperpage
= cpu_to_le32(bmp
->db_l2nbperpage
);
273 dbmp_le
->dn_numag
= cpu_to_le32(bmp
->db_numag
);
274 dbmp_le
->dn_maxlevel
= cpu_to_le32(bmp
->db_maxlevel
);
275 dbmp_le
->dn_maxag
= cpu_to_le32(bmp
->db_maxag
);
276 dbmp_le
->dn_agpref
= cpu_to_le32(bmp
->db_agpref
);
277 dbmp_le
->dn_aglevel
= cpu_to_le32(bmp
->db_aglevel
);
278 dbmp_le
->dn_agheight
= cpu_to_le32(bmp
->db_agheight
);
279 dbmp_le
->dn_agwidth
= cpu_to_le32(bmp
->db_agwidth
);
280 dbmp_le
->dn_agstart
= cpu_to_le32(bmp
->db_agstart
);
281 dbmp_le
->dn_agl2size
= cpu_to_le32(bmp
->db_agl2size
);
282 for (i
= 0; i
< MAXAG
; i
++)
283 dbmp_le
->dn_agfree
[i
] = cpu_to_le64(bmp
->db_agfree
[i
]);
284 dbmp_le
->dn_agsize
= cpu_to_le64(bmp
->db_agsize
);
285 dbmp_le
->dn_maxfreebud
= bmp
->db_maxfreebud
;
287 /* write the buffer */
291 * write out dirty pages of bmap
293 filemap_write_and_wait(ipbmap
->i_mapping
);
295 diWriteSpecial(ipbmap
, 0);
303 * FUNCTION: free the specified block range from the working block
306 * the blocks will be free from the working map one dmap
310 * ip - pointer to in-core inode;
311 * blkno - starting block number to be freed.
312 * nblocks - number of blocks to be freed.
318 int dbFree(struct inode
*ip
, s64 blkno
, s64 nblocks
)
324 struct inode
*ipbmap
= JFS_SBI(ip
->i_sb
)->ipbmap
;
325 struct bmap
*bmp
= JFS_SBI(ip
->i_sb
)->bmap
;
326 struct super_block
*sb
= ipbmap
->i_sb
;
328 IREAD_LOCK(ipbmap
, RDWRLOCK_DMAP
);
330 /* block to be freed better be within the mapsize. */
331 if (unlikely((blkno
== 0) || (blkno
+ nblocks
> bmp
->db_mapsize
))) {
332 IREAD_UNLOCK(ipbmap
);
333 printk(KERN_ERR
"blkno = %Lx, nblocks = %Lx\n",
334 (unsigned long long) blkno
,
335 (unsigned long long) nblocks
);
336 jfs_error(ip
->i_sb
, "block to be freed is outside the map\n");
341 * TRIM the blocks, when mounted with discard option
343 if (JFS_SBI(sb
)->flag
& JFS_DISCARD
)
344 if (JFS_SBI(sb
)->minblks_trim
<= nblocks
)
345 jfs_issue_discard(ipbmap
, blkno
, nblocks
);
348 * free the blocks a dmap at a time.
351 for (rem
= nblocks
; rem
> 0; rem
-= nb
, blkno
+= nb
) {
352 /* release previous dmap if any */
357 /* get the buffer for the current dmap. */
358 lblkno
= BLKTODMAP(blkno
, bmp
->db_l2nbperpage
);
359 mp
= read_metapage(ipbmap
, lblkno
, PSIZE
, 0);
361 IREAD_UNLOCK(ipbmap
);
364 dp
= (struct dmap
*) mp
->data
;
366 /* determine the number of blocks to be freed from
369 nb
= min(rem
, BPERDMAP
- (blkno
& (BPERDMAP
- 1)));
371 /* free the blocks. */
372 if ((rc
= dbFreeDmap(bmp
, dp
, blkno
, nb
))) {
373 jfs_error(ip
->i_sb
, "error in block map\n");
374 release_metapage(mp
);
375 IREAD_UNLOCK(ipbmap
);
380 /* write the last buffer. */
383 IREAD_UNLOCK(ipbmap
);
390 * NAME: dbUpdatePMap()
392 * FUNCTION: update the allocation state (free or allocate) of the
393 * specified block range in the persistent block allocation map.
395 * the blocks will be updated in the persistent map one
399 * ipbmap - pointer to in-core inode for the block map.
400 * free - 'true' if block range is to be freed from the persistent
401 * map; 'false' if it is to be allocated.
402 * blkno - starting block number of the range.
403 * nblocks - number of contiguous blocks in the range.
404 * tblk - transaction block;
411 dbUpdatePMap(struct inode
*ipbmap
,
412 int free
, s64 blkno
, s64 nblocks
, struct tblock
* tblk
)
414 int nblks
, dbitno
, wbitno
, rbits
;
415 int word
, nbits
, nwords
;
416 struct bmap
*bmp
= JFS_SBI(ipbmap
->i_sb
)->bmap
;
417 s64 lblkno
, rem
, lastlblkno
;
422 int lsn
, difft
, diffp
;
425 /* the blocks better be within the mapsize. */
426 if (blkno
+ nblocks
> bmp
->db_mapsize
) {
427 printk(KERN_ERR
"blkno = %Lx, nblocks = %Lx\n",
428 (unsigned long long) blkno
,
429 (unsigned long long) nblocks
);
430 jfs_error(ipbmap
->i_sb
, "blocks are outside the map\n");
434 /* compute delta of transaction lsn from log syncpt */
436 log
= (struct jfs_log
*) JFS_SBI(tblk
->sb
)->log
;
437 logdiff(difft
, lsn
, log
);
440 * update the block state a dmap at a time.
444 for (rem
= nblocks
; rem
> 0; rem
-= nblks
, blkno
+= nblks
) {
445 /* get the buffer for the current dmap. */
446 lblkno
= BLKTODMAP(blkno
, bmp
->db_l2nbperpage
);
447 if (lblkno
!= lastlblkno
) {
452 mp
= read_metapage(bmp
->db_ipbmap
, lblkno
, PSIZE
,
456 metapage_wait_for_io(mp
);
458 dp
= (struct dmap
*) mp
->data
;
460 /* determine the bit number and word within the dmap of
461 * the starting block. also determine how many blocks
462 * are to be updated within this dmap.
464 dbitno
= blkno
& (BPERDMAP
- 1);
465 word
= dbitno
>> L2DBWORD
;
466 nblks
= min(rem
, (s64
)BPERDMAP
- dbitno
);
468 /* update the bits of the dmap words. the first and last
469 * words may only have a subset of their bits updated. if
470 * this is the case, we'll work against that word (i.e.
471 * partial first and/or last) only in a single pass. a
472 * single pass will also be used to update all words that
473 * are to have all their bits updated.
475 for (rbits
= nblks
; rbits
> 0;
476 rbits
-= nbits
, dbitno
+= nbits
) {
477 /* determine the bit number within the word and
478 * the number of bits within the word.
480 wbitno
= dbitno
& (DBWORD
- 1);
481 nbits
= min(rbits
, DBWORD
- wbitno
);
483 /* check if only part of the word is to be updated. */
484 if (nbits
< DBWORD
) {
485 /* update (free or allocate) the bits
489 (ONES
<< (DBWORD
- nbits
) >> wbitno
);
499 /* one or more words are to have all
500 * their bits updated. determine how
501 * many words and how many bits.
503 nwords
= rbits
>> L2DBWORD
;
504 nbits
= nwords
<< L2DBWORD
;
506 /* update (free or allocate) the bits
510 memset(&dp
->pmap
[word
], 0,
513 memset(&dp
->pmap
[word
], (int) ONES
,
523 if (lblkno
== lastlblkno
)
528 LOGSYNC_LOCK(log
, flags
);
530 /* inherit older/smaller lsn */
531 logdiff(diffp
, mp
->lsn
, log
);
535 /* move bp after tblock in logsync list */
536 list_move(&mp
->synclist
, &tblk
->synclist
);
539 /* inherit younger/larger clsn */
540 logdiff(difft
, tblk
->clsn
, log
);
541 logdiff(diffp
, mp
->clsn
, log
);
543 mp
->clsn
= tblk
->clsn
;
548 /* insert bp after tblock in logsync list */
550 list_add(&mp
->synclist
, &tblk
->synclist
);
552 mp
->clsn
= tblk
->clsn
;
554 LOGSYNC_UNLOCK(log
, flags
);
557 /* write the last buffer. */
569 * FUNCTION: find the preferred allocation group for new allocations.
571 * Within the allocation groups, we maintain a preferred
572 * allocation group which consists of a group with at least
573 * average free space. It is the preferred group that we target
574 * new inode allocation towards. The tie-in between inode
575 * allocation and block allocation occurs as we allocate the
576 * first (data) block of an inode and specify the inode (block)
577 * as the allocation hint for this block.
579 * We try to avoid having more than one open file growing in
580 * an allocation group, as this will lead to fragmentation.
581 * This differs from the old OS/2 method of trying to keep
582 * empty ags around for large allocations.
585 * ipbmap - pointer to in-core inode for the block map.
588 * the preferred allocation group number.
590 int dbNextAG(struct inode
*ipbmap
)
597 struct bmap
*bmp
= JFS_SBI(ipbmap
->i_sb
)->bmap
;
601 /* determine the average number of free blocks within the ags. */
602 avgfree
= (u32
)bmp
->db_nfree
/ bmp
->db_numag
;
605 * if the current preferred ag does not have an active allocator
606 * and has at least average freespace, return it
608 agpref
= bmp
->db_agpref
;
609 if ((atomic_read(&bmp
->db_active
[agpref
]) == 0) &&
610 (bmp
->db_agfree
[agpref
] >= avgfree
))
613 /* From the last preferred ag, find the next one with at least
614 * average free space.
616 for (i
= 0 ; i
< bmp
->db_numag
; i
++, agpref
++) {
617 if (agpref
== bmp
->db_numag
)
620 if (atomic_read(&bmp
->db_active
[agpref
]))
621 /* open file is currently growing in this ag */
623 if (bmp
->db_agfree
[agpref
] >= avgfree
) {
624 /* Return this one */
625 bmp
->db_agpref
= agpref
;
627 } else if (bmp
->db_agfree
[agpref
] > hwm
) {
628 /* Less than avg. freespace, but best so far */
629 hwm
= bmp
->db_agfree
[agpref
];
635 * If no inactive ag was found with average freespace, use the
639 bmp
->db_agpref
= next_best
;
640 /* else leave db_agpref unchanged */
644 /* return the preferred group.
646 return (bmp
->db_agpref
);
652 * FUNCTION: attempt to allocate a specified number of contiguous free
653 * blocks from the working allocation block map.
655 * the block allocation policy uses hints and a multi-step
658 * for allocation requests smaller than the number of blocks
659 * per dmap, we first try to allocate the new blocks
660 * immediately following the hint. if these blocks are not
661 * available, we try to allocate blocks near the hint. if
662 * no blocks near the hint are available, we next try to
663 * allocate within the same dmap as contains the hint.
665 * if no blocks are available in the dmap or the allocation
666 * request is larger than the dmap size, we try to allocate
667 * within the same allocation group as contains the hint. if
668 * this does not succeed, we finally try to allocate anywhere
669 * within the aggregate.
671 * we also try to allocate anywhere within the aggregate for
672 * for allocation requests larger than the allocation group
673 * size or requests that specify no hint value.
676 * ip - pointer to in-core inode;
677 * hint - allocation hint.
678 * nblocks - number of contiguous blocks in the range.
679 * results - on successful return, set to the starting block number
680 * of the newly allocated contiguous range.
684 * -ENOSPC - insufficient disk resources
687 int dbAlloc(struct inode
*ip
, s64 hint
, s64 nblocks
, s64
* results
)
690 struct inode
*ipbmap
= JFS_SBI(ip
->i_sb
)->ipbmap
;
699 /* assert that nblocks is valid */
702 /* get the log2 number of blocks to be allocated.
703 * if the number of blocks is not a log2 multiple,
704 * it will be rounded up to the next log2 multiple.
706 l2nb
= BLKSTOL2(nblocks
);
708 bmp
= JFS_SBI(ip
->i_sb
)->bmap
;
710 mapSize
= bmp
->db_mapsize
;
712 /* the hint should be within the map */
713 if (hint
>= mapSize
) {
714 jfs_error(ip
->i_sb
, "the hint is outside the map\n");
718 /* if the number of blocks to be allocated is greater than the
719 * allocation group size, try to allocate anywhere.
721 if (l2nb
> bmp
->db_agl2size
) {
722 IWRITE_LOCK(ipbmap
, RDWRLOCK_DMAP
);
724 rc
= dbAllocAny(bmp
, nblocks
, l2nb
, results
);
730 * If no hint, let dbNextAG recommend an allocation group
735 /* we would like to allocate close to the hint. adjust the
736 * hint to the block following the hint since the allocators
737 * will start looking for free space starting at this point.
741 if (blkno
>= bmp
->db_mapsize
)
744 agno
= blkno
>> bmp
->db_agl2size
;
746 /* check if blkno crosses over into a new allocation group.
747 * if so, check if we should allow allocations within this
750 if ((blkno
& (bmp
->db_agsize
- 1)) == 0)
751 /* check if the AG is currently being written to.
752 * if so, call dbNextAG() to find a non-busy
753 * AG with sufficient free space.
755 if (atomic_read(&bmp
->db_active
[agno
]))
758 /* check if the allocation request size can be satisfied from a
759 * single dmap. if so, try to allocate from the dmap containing
760 * the hint using a tiered strategy.
762 if (nblocks
<= BPERDMAP
) {
763 IREAD_LOCK(ipbmap
, RDWRLOCK_DMAP
);
765 /* get the buffer for the dmap containing the hint.
768 lblkno
= BLKTODMAP(blkno
, bmp
->db_l2nbperpage
);
769 mp
= read_metapage(ipbmap
, lblkno
, PSIZE
, 0);
773 dp
= (struct dmap
*) mp
->data
;
775 /* first, try to satisfy the allocation request with the
776 * blocks beginning at the hint.
778 if ((rc
= dbAllocNext(bmp
, dp
, blkno
, (int) nblocks
))
782 mark_metapage_dirty(mp
);
785 release_metapage(mp
);
789 writers
= atomic_read(&bmp
->db_active
[agno
]);
791 ((writers
== 1) && (JFS_IP(ip
)->active_ag
!= agno
))) {
793 * Someone else is writing in this allocation
794 * group. To avoid fragmenting, try another ag
796 release_metapage(mp
);
797 IREAD_UNLOCK(ipbmap
);
801 /* next, try to satisfy the allocation request with blocks
805 dbAllocNear(bmp
, dp
, blkno
, (int) nblocks
, l2nb
, results
))
808 mark_metapage_dirty(mp
);
810 release_metapage(mp
);
814 /* try to satisfy the allocation request with blocks within
815 * the same dmap as the hint.
817 if ((rc
= dbAllocDmapLev(bmp
, dp
, (int) nblocks
, l2nb
, results
))
820 mark_metapage_dirty(mp
);
822 release_metapage(mp
);
826 release_metapage(mp
);
827 IREAD_UNLOCK(ipbmap
);
830 /* try to satisfy the allocation request with blocks within
831 * the same allocation group as the hint.
833 IWRITE_LOCK(ipbmap
, RDWRLOCK_DMAP
);
834 if ((rc
= dbAllocAG(bmp
, agno
, nblocks
, l2nb
, results
)) != -ENOSPC
)
837 IWRITE_UNLOCK(ipbmap
);
842 * Let dbNextAG recommend a preferred allocation group
844 agno
= dbNextAG(ipbmap
);
845 IWRITE_LOCK(ipbmap
, RDWRLOCK_DMAP
);
847 /* Try to allocate within this allocation group. if that fails, try to
848 * allocate anywhere in the map.
850 if ((rc
= dbAllocAG(bmp
, agno
, nblocks
, l2nb
, results
)) == -ENOSPC
)
851 rc
= dbAllocAny(bmp
, nblocks
, l2nb
, results
);
854 IWRITE_UNLOCK(ipbmap
);
859 IREAD_UNLOCK(ipbmap
);
866 * NAME: dbAllocExact()
868 * FUNCTION: try to allocate the requested extent;
871 * ip - pointer to in-core inode;
872 * blkno - extent address;
873 * nblocks - extent length;
877 * -ENOSPC - insufficient disk resources
880 int dbAllocExact(struct inode
*ip
, s64 blkno
, int nblocks
)
883 struct inode
*ipbmap
= JFS_SBI(ip
->i_sb
)->ipbmap
;
884 struct bmap
*bmp
= JFS_SBI(ip
->i_sb
)->bmap
;
889 IREAD_LOCK(ipbmap
, RDWRLOCK_DMAP
);
892 * validate extent request:
894 * note: defragfs policy:
895 * max 64 blocks will be moved.
896 * allocation request size must be satisfied from a single dmap.
898 if (nblocks
<= 0 || nblocks
> BPERDMAP
|| blkno
>= bmp
->db_mapsize
) {
899 IREAD_UNLOCK(ipbmap
);
903 if (nblocks
> ((s64
) 1 << bmp
->db_maxfreebud
)) {
904 /* the free space is no longer available */
905 IREAD_UNLOCK(ipbmap
);
909 /* read in the dmap covering the extent */
910 lblkno
= BLKTODMAP(blkno
, bmp
->db_l2nbperpage
);
911 mp
= read_metapage(ipbmap
, lblkno
, PSIZE
, 0);
913 IREAD_UNLOCK(ipbmap
);
916 dp
= (struct dmap
*) mp
->data
;
918 /* try to allocate the requested extent */
919 rc
= dbAllocNext(bmp
, dp
, blkno
, nblocks
);
921 IREAD_UNLOCK(ipbmap
);
924 mark_metapage_dirty(mp
);
926 release_metapage(mp
);
935 * FUNCTION: attempt to extend a current allocation by a specified
938 * this routine attempts to satisfy the allocation request
939 * by first trying to extend the existing allocation in
940 * place by allocating the additional blocks as the blocks
941 * immediately following the current allocation. if these
942 * blocks are not available, this routine will attempt to
943 * allocate a new set of contiguous blocks large enough
944 * to cover the existing allocation plus the additional
945 * number of blocks required.
948 * ip - pointer to in-core inode requiring allocation.
949 * blkno - starting block of the current allocation.
950 * nblocks - number of contiguous blocks within the current
952 * addnblocks - number of blocks to add to the allocation.
953 * results - on successful return, set to the starting block number
954 * of the existing allocation if the existing allocation
955 * was extended in place or to a newly allocated contiguous
956 * range if the existing allocation could not be extended
961 * -ENOSPC - insufficient disk resources
965 dbReAlloc(struct inode
*ip
,
966 s64 blkno
, s64 nblocks
, s64 addnblocks
, s64
* results
)
970 /* try to extend the allocation in place.
972 if ((rc
= dbExtend(ip
, blkno
, nblocks
, addnblocks
)) == 0) {
980 /* could not extend the allocation in place, so allocate a
981 * new set of blocks for the entire request (i.e. try to get
982 * a range of contiguous blocks large enough to cover the
983 * existing allocation plus the additional blocks.)
986 (ip
, blkno
+ nblocks
- 1, addnblocks
+ nblocks
, results
));
993 * FUNCTION: attempt to extend a current allocation by a specified
996 * this routine attempts to satisfy the allocation request
997 * by first trying to extend the existing allocation in
998 * place by allocating the additional blocks as the blocks
999 * immediately following the current allocation.
1002 * ip - pointer to in-core inode requiring allocation.
1003 * blkno - starting block of the current allocation.
1004 * nblocks - number of contiguous blocks within the current
1006 * addnblocks - number of blocks to add to the allocation.
1010 * -ENOSPC - insufficient disk resources
1013 static int dbExtend(struct inode
*ip
, s64 blkno
, s64 nblocks
, s64 addnblocks
)
1015 struct jfs_sb_info
*sbi
= JFS_SBI(ip
->i_sb
);
1016 s64 lblkno
, lastblkno
, extblkno
;
1018 struct metapage
*mp
;
1021 struct inode
*ipbmap
= sbi
->ipbmap
;
1025 * We don't want a non-aligned extent to cross a page boundary
1027 if (((rel_block
= blkno
& (sbi
->nbperpage
- 1))) &&
1028 (rel_block
+ nblocks
+ addnblocks
> sbi
->nbperpage
))
1031 /* get the last block of the current allocation */
1032 lastblkno
= blkno
+ nblocks
- 1;
1034 /* determine the block number of the block following
1035 * the existing allocation.
1037 extblkno
= lastblkno
+ 1;
1039 IREAD_LOCK(ipbmap
, RDWRLOCK_DMAP
);
1041 /* better be within the file system */
1043 if (lastblkno
< 0 || lastblkno
>= bmp
->db_mapsize
) {
1044 IREAD_UNLOCK(ipbmap
);
1045 jfs_error(ip
->i_sb
, "the block is outside the filesystem\n");
1049 /* we'll attempt to extend the current allocation in place by
1050 * allocating the additional blocks as the blocks immediately
1051 * following the current allocation. we only try to extend the
1052 * current allocation in place if the number of additional blocks
1053 * can fit into a dmap, the last block of the current allocation
1054 * is not the last block of the file system, and the start of the
1055 * inplace extension is not on an allocation group boundary.
1057 if (addnblocks
> BPERDMAP
|| extblkno
>= bmp
->db_mapsize
||
1058 (extblkno
& (bmp
->db_agsize
- 1)) == 0) {
1059 IREAD_UNLOCK(ipbmap
);
1063 /* get the buffer for the dmap containing the first block
1066 lblkno
= BLKTODMAP(extblkno
, bmp
->db_l2nbperpage
);
1067 mp
= read_metapage(ipbmap
, lblkno
, PSIZE
, 0);
1069 IREAD_UNLOCK(ipbmap
);
1073 dp
= (struct dmap
*) mp
->data
;
1075 /* try to allocate the blocks immediately following the
1076 * current allocation.
1078 rc
= dbAllocNext(bmp
, dp
, extblkno
, (int) addnblocks
);
1080 IREAD_UNLOCK(ipbmap
);
1082 /* were we successful ? */
1086 /* we were not successful */
1087 release_metapage(mp
);
1094 * NAME: dbAllocNext()
1096 * FUNCTION: attempt to allocate the blocks of the specified block
1097 * range within a dmap.
1100 * bmp - pointer to bmap descriptor
1101 * dp - pointer to dmap.
1102 * blkno - starting block number of the range.
1103 * nblocks - number of contiguous free blocks of the range.
1107 * -ENOSPC - insufficient disk resources
1110 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1112 static int dbAllocNext(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
1115 int dbitno
, word
, rembits
, nb
, nwords
, wbitno
, nw
;
1120 if (dp
->tree
.leafidx
!= cpu_to_le32(LEAFIND
)) {
1121 jfs_error(bmp
->db_ipbmap
->i_sb
, "Corrupt dmap page\n");
1125 /* pick up a pointer to the leaves of the dmap tree.
1127 leaf
= dp
->tree
.stree
+ le32_to_cpu(dp
->tree
.leafidx
);
1129 /* determine the bit number and word within the dmap of the
1132 dbitno
= blkno
& (BPERDMAP
- 1);
1133 word
= dbitno
>> L2DBWORD
;
1135 /* check if the specified block range is contained within
1138 if (dbitno
+ nblocks
> BPERDMAP
)
1141 /* check if the starting leaf indicates that anything
1144 if (leaf
[word
] == NOFREE
)
1147 /* check the dmaps words corresponding to block range to see
1148 * if the block range is free. not all bits of the first and
1149 * last words may be contained within the block range. if this
1150 * is the case, we'll work against those words (i.e. partial first
1151 * and/or last) on an individual basis (a single pass) and examine
1152 * the actual bits to determine if they are free. a single pass
1153 * will be used for all dmap words fully contained within the
1154 * specified range. within this pass, the leaves of the dmap
1155 * tree will be examined to determine if the blocks are free. a
1156 * single leaf may describe the free space of multiple dmap
1157 * words, so we may visit only a subset of the actual leaves
1158 * corresponding to the dmap words of the block range.
1160 for (rembits
= nblocks
; rembits
> 0; rembits
-= nb
, dbitno
+= nb
) {
1161 /* determine the bit number within the word and
1162 * the number of bits within the word.
1164 wbitno
= dbitno
& (DBWORD
- 1);
1165 nb
= min(rembits
, DBWORD
- wbitno
);
1167 /* check if only part of the word is to be examined.
1170 /* check if the bits are free.
1172 mask
= (ONES
<< (DBWORD
- nb
) >> wbitno
);
1173 if ((mask
& ~le32_to_cpu(dp
->wmap
[word
])) != mask
)
1178 /* one or more dmap words are fully contained
1179 * within the block range. determine how many
1180 * words and how many bits.
1182 nwords
= rembits
>> L2DBWORD
;
1183 nb
= nwords
<< L2DBWORD
;
1185 /* now examine the appropriate leaves to determine
1186 * if the blocks are free.
1188 while (nwords
> 0) {
1189 /* does the leaf describe any free space ?
1191 if (leaf
[word
] < BUDMIN
)
1194 /* determine the l2 number of bits provided
1198 min_t(int, leaf
[word
], NLSTOL2BSZ(nwords
));
1200 /* determine how many words were handled.
1202 nw
= BUDSIZE(l2size
, BUDMIN
);
1210 /* allocate the blocks.
1212 return (dbAllocDmap(bmp
, dp
, blkno
, nblocks
));
1217 * NAME: dbAllocNear()
1219 * FUNCTION: attempt to allocate a number of contiguous free blocks near
1220 * a specified block (hint) within a dmap.
1222 * starting with the dmap leaf that covers the hint, we'll
1223 * check the next four contiguous leaves for sufficient free
1224 * space. if sufficient free space is found, we'll allocate
1225 * the desired free space.
1228 * bmp - pointer to bmap descriptor
1229 * dp - pointer to dmap.
1230 * blkno - block number to allocate near.
1231 * nblocks - actual number of contiguous free blocks desired.
1232 * l2nb - log2 number of contiguous free blocks desired.
1233 * results - on successful return, set to the starting block number
1234 * of the newly allocated range.
1238 * -ENOSPC - insufficient disk resources
1241 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1244 dbAllocNear(struct bmap
* bmp
,
1245 struct dmap
* dp
, s64 blkno
, int nblocks
, int l2nb
, s64
* results
)
1247 int word
, lword
, rc
;
1250 if (dp
->tree
.leafidx
!= cpu_to_le32(LEAFIND
)) {
1251 jfs_error(bmp
->db_ipbmap
->i_sb
, "Corrupt dmap page\n");
1255 leaf
= dp
->tree
.stree
+ le32_to_cpu(dp
->tree
.leafidx
);
1257 /* determine the word within the dmap that holds the hint
1258 * (i.e. blkno). also, determine the last word in the dmap
1259 * that we'll include in our examination.
1261 word
= (blkno
& (BPERDMAP
- 1)) >> L2DBWORD
;
1262 lword
= min(word
+ 4, LPERDMAP
);
1264 /* examine the leaves for sufficient free space.
1266 for (; word
< lword
; word
++) {
1267 /* does the leaf describe sufficient free space ?
1269 if (leaf
[word
] < l2nb
)
1272 /* determine the block number within the file system
1273 * of the first block described by this dmap word.
1275 blkno
= le64_to_cpu(dp
->start
) + (word
<< L2DBWORD
);
1277 /* if not all bits of the dmap word are free, get the
1278 * starting bit number within the dmap word of the required
1279 * string of free bits and adjust the block number with the
1282 if (leaf
[word
] < BUDMIN
)
1284 dbFindBits(le32_to_cpu(dp
->wmap
[word
]), l2nb
);
1286 /* allocate the blocks.
1288 if ((rc
= dbAllocDmap(bmp
, dp
, blkno
, nblocks
)) == 0)
1301 * FUNCTION: attempt to allocate the specified number of contiguous
1302 * free blocks within the specified allocation group.
1304 * unless the allocation group size is equal to the number
1305 * of blocks per dmap, the dmap control pages will be used to
1306 * find the required free space, if available. we start the
1307 * search at the highest dmap control page level which
1308 * distinctly describes the allocation group's free space
1309 * (i.e. the highest level at which the allocation group's
1310 * free space is not mixed in with that of any other group).
1311 * in addition, we start the search within this level at a
1312 * height of the dmapctl dmtree at which the nodes distinctly
1313 * describe the allocation group's free space. at this height,
1314 * the allocation group's free space may be represented by 1
1315 * or two sub-trees, depending on the allocation group size.
1316 * we search the top nodes of these subtrees left to right for
1317 * sufficient free space. if sufficient free space is found,
1318 * the subtree is searched to find the leftmost leaf that
1319 * has free space. once we have made it to the leaf, we
1320 * move the search to the next lower level dmap control page
1321 * corresponding to this leaf. we continue down the dmap control
1322 * pages until we find the dmap that contains or starts the
1323 * sufficient free space and we allocate at this dmap.
1325 * if the allocation group size is equal to the dmap size,
1326 * we'll start at the dmap corresponding to the allocation
1327 * group and attempt the allocation at this level.
1329 * the dmap control page search is also not performed if the
1330 * allocation group is completely free and we go to the first
1331 * dmap of the allocation group to do the allocation. this is
1332 * done because the allocation group may be part (not the first
1333 * part) of a larger binary buddy system, causing the dmap
1334 * control pages to indicate no free space (NOFREE) within
1335 * the allocation group.
1338 * bmp - pointer to bmap descriptor
1339 * agno - allocation group number.
1340 * nblocks - actual number of contiguous free blocks desired.
1341 * l2nb - log2 number of contiguous free blocks desired.
1342 * results - on successful return, set to the starting block number
1343 * of the newly allocated range.
1347 * -ENOSPC - insufficient disk resources
1350 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1353 dbAllocAG(struct bmap
* bmp
, int agno
, s64 nblocks
, int l2nb
, s64
* results
)
1355 struct metapage
*mp
;
1356 struct dmapctl
*dcp
;
1357 int rc
, ti
, i
, k
, m
, n
, agperlev
;
1361 /* allocation request should not be for more than the
1362 * allocation group size.
1364 if (l2nb
> bmp
->db_agl2size
) {
1365 jfs_error(bmp
->db_ipbmap
->i_sb
,
1366 "allocation request is larger than the allocation group size\n");
1370 /* determine the starting block number of the allocation
1373 blkno
= (s64
) agno
<< bmp
->db_agl2size
;
1375 /* check if the allocation group size is the minimum allocation
1376 * group size or if the allocation group is completely free. if
1377 * the allocation group size is the minimum size of BPERDMAP (i.e.
1378 * 1 dmap), there is no need to search the dmap control page (below)
1379 * that fully describes the allocation group since the allocation
1380 * group is already fully described by a dmap. in this case, we
1381 * just call dbAllocCtl() to search the dmap tree and allocate the
1382 * required space if available.
1384 * if the allocation group is completely free, dbAllocCtl() is
1385 * also called to allocate the required space. this is done for
1386 * two reasons. first, it makes no sense searching the dmap control
1387 * pages for free space when we know that free space exists. second,
1388 * the dmap control pages may indicate that the allocation group
1389 * has no free space if the allocation group is part (not the first
1390 * part) of a larger binary buddy system.
1392 if (bmp
->db_agsize
== BPERDMAP
1393 || bmp
->db_agfree
[agno
] == bmp
->db_agsize
) {
1394 rc
= dbAllocCtl(bmp
, nblocks
, l2nb
, blkno
, results
);
1395 if ((rc
== -ENOSPC
) &&
1396 (bmp
->db_agfree
[agno
] == bmp
->db_agsize
)) {
1397 printk(KERN_ERR
"blkno = %Lx, blocks = %Lx\n",
1398 (unsigned long long) blkno
,
1399 (unsigned long long) nblocks
);
1400 jfs_error(bmp
->db_ipbmap
->i_sb
,
1401 "dbAllocCtl failed in free AG\n");
1406 /* the buffer for the dmap control page that fully describes the
1409 lblkno
= BLKTOCTL(blkno
, bmp
->db_l2nbperpage
, bmp
->db_aglevel
);
1410 mp
= read_metapage(bmp
->db_ipbmap
, lblkno
, PSIZE
, 0);
1413 dcp
= (struct dmapctl
*) mp
->data
;
1414 budmin
= dcp
->budmin
;
1416 if (dcp
->leafidx
!= cpu_to_le32(CTLLEAFIND
)) {
1417 jfs_error(bmp
->db_ipbmap
->i_sb
, "Corrupt dmapctl page\n");
1418 release_metapage(mp
);
1422 /* search the subtree(s) of the dmap control page that describes
1423 * the allocation group, looking for sufficient free space. to begin,
1424 * determine how many allocation groups are represented in a dmap
1425 * control page at the control page level (i.e. L0, L1, L2) that
1426 * fully describes an allocation group. next, determine the starting
1427 * tree index of this allocation group within the control page.
1430 (1 << (L2LPERCTL
- (bmp
->db_agheight
<< 1))) / bmp
->db_agwidth
;
1431 ti
= bmp
->db_agstart
+ bmp
->db_agwidth
* (agno
& (agperlev
- 1));
1433 /* dmap control page trees fan-out by 4 and a single allocation
1434 * group may be described by 1 or 2 subtrees within the ag level
1435 * dmap control page, depending upon the ag size. examine the ag's
1436 * subtrees for sufficient free space, starting with the leftmost
1439 for (i
= 0; i
< bmp
->db_agwidth
; i
++, ti
++) {
1440 /* is there sufficient free space ?
1442 if (l2nb
> dcp
->stree
[ti
])
1445 /* sufficient free space found in a subtree. now search down
1446 * the subtree to find the leftmost leaf that describes this
1449 for (k
= bmp
->db_agheight
; k
> 0; k
--) {
1450 for (n
= 0, m
= (ti
<< 2) + 1; n
< 4; n
++) {
1451 if (l2nb
<= dcp
->stree
[m
+ n
]) {
1457 jfs_error(bmp
->db_ipbmap
->i_sb
,
1458 "failed descending stree\n");
1459 release_metapage(mp
);
1464 /* determine the block number within the file system
1465 * that corresponds to this leaf.
1467 if (bmp
->db_aglevel
== 2)
1469 else if (bmp
->db_aglevel
== 1)
1470 blkno
&= ~(MAXL1SIZE
- 1);
1471 else /* bmp->db_aglevel == 0 */
1472 blkno
&= ~(MAXL0SIZE
- 1);
1475 ((s64
) (ti
- le32_to_cpu(dcp
->leafidx
))) << budmin
;
1477 /* release the buffer in preparation for going down
1478 * the next level of dmap control pages.
1480 release_metapage(mp
);
1482 /* check if we need to continue to search down the lower
1483 * level dmap control pages. we need to if the number of
1484 * blocks required is less than maximum number of blocks
1485 * described at the next lower level.
1487 if (l2nb
< budmin
) {
1489 /* search the lower level dmap control pages to get
1490 * the starting block number of the dmap that
1491 * contains or starts off the free space.
1494 dbFindCtl(bmp
, l2nb
, bmp
->db_aglevel
- 1,
1496 if (rc
== -ENOSPC
) {
1497 jfs_error(bmp
->db_ipbmap
->i_sb
,
1498 "control page inconsistent\n");
1505 /* allocate the blocks.
1507 rc
= dbAllocCtl(bmp
, nblocks
, l2nb
, blkno
, results
);
1508 if (rc
== -ENOSPC
) {
1509 jfs_error(bmp
->db_ipbmap
->i_sb
,
1510 "unable to allocate blocks\n");
1516 /* no space in the allocation group. release the buffer and
1519 release_metapage(mp
);
1526 * NAME: dbAllocAny()
1528 * FUNCTION: attempt to allocate the specified number of contiguous
1529 * free blocks anywhere in the file system.
1531 * dbAllocAny() attempts to find the sufficient free space by
1532 * searching down the dmap control pages, starting with the
1533 * highest level (i.e. L0, L1, L2) control page. if free space
1534 * large enough to satisfy the desired free space is found, the
1535 * desired free space is allocated.
1538 * bmp - pointer to bmap descriptor
1539 * nblocks - actual number of contiguous free blocks desired.
1540 * l2nb - log2 number of contiguous free blocks desired.
1541 * results - on successful return, set to the starting block number
1542 * of the newly allocated range.
1546 * -ENOSPC - insufficient disk resources
1549 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1551 static int dbAllocAny(struct bmap
* bmp
, s64 nblocks
, int l2nb
, s64
* results
)
1556 /* starting with the top level dmap control page, search
1557 * down the dmap control levels for sufficient free space.
1558 * if free space is found, dbFindCtl() returns the starting
1559 * block number of the dmap that contains or starts off the
1560 * range of free space.
1562 if ((rc
= dbFindCtl(bmp
, l2nb
, bmp
->db_maxlevel
, &blkno
)))
1565 /* allocate the blocks.
1567 rc
= dbAllocCtl(bmp
, nblocks
, l2nb
, blkno
, results
);
1568 if (rc
== -ENOSPC
) {
1569 jfs_error(bmp
->db_ipbmap
->i_sb
, "unable to allocate blocks\n");
1577 * NAME: dbDiscardAG()
1579 * FUNCTION: attempt to discard (TRIM) all free blocks of specific AG
1582 * 1) allocate blocks, as large as possible and save them
1583 * while holding IWRITE_LOCK on ipbmap
1584 * 2) trim all these saved block/length values
1585 * 3) mark the blocks free again
1588 * - we work only on one ag at some time, minimizing how long we
1589 * need to lock ipbmap
1590 * - reading / writing the fs is possible most time, even on
1594 * - we write two times to the dmapctl and dmap pages
1595 * - but for me, this seems the best way, better ideas?
1599 * ip - pointer to in-core inode
1601 * minlen - minimum value of contiguous blocks
1604 * s64 - actual number of blocks trimmed
1606 s64
dbDiscardAG(struct inode
*ip
, int agno
, s64 minlen
)
1608 struct inode
*ipbmap
= JFS_SBI(ip
->i_sb
)->ipbmap
;
1609 struct bmap
*bmp
= JFS_SBI(ip
->i_sb
)->bmap
;
1613 struct super_block
*sb
= ipbmap
->i_sb
;
1620 /* max blkno / nblocks pairs to trim */
1621 int count
= 0, range_cnt
;
1624 /* prevent others from writing new stuff here, while trimming */
1625 IWRITE_LOCK(ipbmap
, RDWRLOCK_DMAP
);
1627 nblocks
= bmp
->db_agfree
[agno
];
1628 max_ranges
= nblocks
;
1629 do_div(max_ranges
, minlen
);
1630 range_cnt
= min_t(u64
, max_ranges
+ 1, 32 * 1024);
1631 totrim
= kmalloc_array(range_cnt
, sizeof(struct range2trim
), GFP_NOFS
);
1632 if (totrim
== NULL
) {
1633 jfs_error(bmp
->db_ipbmap
->i_sb
, "no memory for trim array\n");
1634 IWRITE_UNLOCK(ipbmap
);
1639 while (nblocks
>= minlen
) {
1640 l2nb
= BLKSTOL2(nblocks
);
1642 /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1643 rc
= dbAllocAG(bmp
, agno
, nblocks
, l2nb
, &blkno
);
1646 tt
->nblocks
= nblocks
;
1649 /* the whole ag is free, trim now */
1650 if (bmp
->db_agfree
[agno
] == 0)
1653 /* give a hint for the next while */
1654 nblocks
= bmp
->db_agfree
[agno
];
1656 } else if (rc
== -ENOSPC
) {
1657 /* search for next smaller log2 block */
1658 l2nb
= BLKSTOL2(nblocks
) - 1;
1659 nblocks
= 1 << l2nb
;
1661 /* Trim any already allocated blocks */
1662 jfs_error(bmp
->db_ipbmap
->i_sb
, "-EIO\n");
1666 /* check, if our trim array is full */
1667 if (unlikely(count
>= range_cnt
- 1))
1670 IWRITE_UNLOCK(ipbmap
);
1672 tt
->nblocks
= 0; /* mark the current end */
1673 for (tt
= totrim
; tt
->nblocks
!= 0; tt
++) {
1674 /* when mounted with online discard, dbFree() will
1675 * call jfs_issue_discard() itself */
1676 if (!(JFS_SBI(sb
)->flag
& JFS_DISCARD
))
1677 jfs_issue_discard(ip
, tt
->blkno
, tt
->nblocks
);
1678 dbFree(ip
, tt
->blkno
, tt
->nblocks
);
1679 trimmed
+= tt
->nblocks
;
1689 * FUNCTION: starting at a specified dmap control page level and block
1690 * number, search down the dmap control levels for a range of
1691 * contiguous free blocks large enough to satisfy an allocation
1692 * request for the specified number of free blocks.
1694 * if sufficient contiguous free blocks are found, this routine
1695 * returns the starting block number within a dmap page that
1696 * contains or starts a range of contiqious free blocks that
1697 * is sufficient in size.
1700 * bmp - pointer to bmap descriptor
1701 * level - starting dmap control page level.
1702 * l2nb - log2 number of contiguous free blocks desired.
1703 * *blkno - on entry, starting block number for conducting the search.
1704 * on successful return, the first block within a dmap page
1705 * that contains or starts a range of contiguous free blocks.
1709 * -ENOSPC - insufficient disk resources
1712 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1714 static int dbFindCtl(struct bmap
* bmp
, int l2nb
, int level
, s64
* blkno
)
1716 int rc
, leafidx
, lev
;
1718 struct dmapctl
*dcp
;
1720 struct metapage
*mp
;
1722 /* starting at the specified dmap control page level and block
1723 * number, search down the dmap control levels for the starting
1724 * block number of a dmap page that contains or starts off
1725 * sufficient free blocks.
1727 for (lev
= level
, b
= *blkno
; lev
>= 0; lev
--) {
1728 /* get the buffer of the dmap control page for the block
1729 * number and level (i.e. L0, L1, L2).
1731 lblkno
= BLKTOCTL(b
, bmp
->db_l2nbperpage
, lev
);
1732 mp
= read_metapage(bmp
->db_ipbmap
, lblkno
, PSIZE
, 0);
1735 dcp
= (struct dmapctl
*) mp
->data
;
1736 budmin
= dcp
->budmin
;
1738 if (dcp
->leafidx
!= cpu_to_le32(CTLLEAFIND
)) {
1739 jfs_error(bmp
->db_ipbmap
->i_sb
,
1740 "Corrupt dmapctl page\n");
1741 release_metapage(mp
);
1745 /* search the tree within the dmap control page for
1746 * sufficient free space. if sufficient free space is found,
1747 * dbFindLeaf() returns the index of the leaf at which
1748 * free space was found.
1750 rc
= dbFindLeaf((dmtree_t
*) dcp
, l2nb
, &leafidx
);
1752 /* release the buffer.
1754 release_metapage(mp
);
1760 jfs_error(bmp
->db_ipbmap
->i_sb
,
1761 "dmap inconsistent\n");
1767 /* adjust the block number to reflect the location within
1768 * the dmap control page (i.e. the leaf) at which free
1771 b
+= (((s64
) leafidx
) << budmin
);
1773 /* we stop the search at this dmap control page level if
1774 * the number of blocks required is greater than or equal
1775 * to the maximum number of blocks described at the next
1788 * NAME: dbAllocCtl()
1790 * FUNCTION: attempt to allocate a specified number of contiguous
1791 * blocks starting within a specific dmap.
1793 * this routine is called by higher level routines that search
1794 * the dmap control pages above the actual dmaps for contiguous
1795 * free space. the result of successful searches by these
1796 * routines are the starting block numbers within dmaps, with
1797 * the dmaps themselves containing the desired contiguous free
1798 * space or starting a contiguous free space of desired size
1799 * that is made up of the blocks of one or more dmaps. these
1800 * calls should not fail due to insufficent resources.
1802 * this routine is called in some cases where it is not known
1803 * whether it will fail due to insufficient resources. more
1804 * specifically, this occurs when allocating from an allocation
1805 * group whose size is equal to the number of blocks per dmap.
1806 * in this case, the dmap control pages are not examined prior
1807 * to calling this routine (to save pathlength) and the call
1810 * for a request size that fits within a dmap, this routine relies
1811 * upon the dmap's dmtree to find the requested contiguous free
1812 * space. for request sizes that are larger than a dmap, the
1813 * requested free space will start at the first block of the
1814 * first dmap (i.e. blkno).
1817 * bmp - pointer to bmap descriptor
1818 * nblocks - actual number of contiguous free blocks to allocate.
1819 * l2nb - log2 number of contiguous free blocks to allocate.
1820 * blkno - starting block number of the dmap to start the allocation
1822 * results - on successful return, set to the starting block number
1823 * of the newly allocated range.
1827 * -ENOSPC - insufficient disk resources
1830 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1833 dbAllocCtl(struct bmap
* bmp
, s64 nblocks
, int l2nb
, s64 blkno
, s64
* results
)
1837 struct metapage
*mp
;
1840 /* check if the allocation request is confined to a single dmap.
1842 if (l2nb
<= L2BPERDMAP
) {
1843 /* get the buffer for the dmap.
1845 lblkno
= BLKTODMAP(blkno
, bmp
->db_l2nbperpage
);
1846 mp
= read_metapage(bmp
->db_ipbmap
, lblkno
, PSIZE
, 0);
1849 dp
= (struct dmap
*) mp
->data
;
1851 /* try to allocate the blocks.
1853 rc
= dbAllocDmapLev(bmp
, dp
, (int) nblocks
, l2nb
, results
);
1855 mark_metapage_dirty(mp
);
1857 release_metapage(mp
);
1862 /* allocation request involving multiple dmaps. it must start on
1865 assert((blkno
& (BPERDMAP
- 1)) == 0);
1867 /* allocate the blocks dmap by dmap.
1869 for (n
= nblocks
, b
= blkno
; n
> 0; n
-= nb
, b
+= nb
) {
1870 /* get the buffer for the dmap.
1872 lblkno
= BLKTODMAP(b
, bmp
->db_l2nbperpage
);
1873 mp
= read_metapage(bmp
->db_ipbmap
, lblkno
, PSIZE
, 0);
1878 dp
= (struct dmap
*) mp
->data
;
1880 /* the dmap better be all free.
1882 if (dp
->tree
.stree
[ROOT
] != L2BPERDMAP
) {
1883 release_metapage(mp
);
1884 jfs_error(bmp
->db_ipbmap
->i_sb
,
1885 "the dmap is not all free\n");
1890 /* determine how many blocks to allocate from this dmap.
1892 nb
= min_t(s64
, n
, BPERDMAP
);
1894 /* allocate the blocks from the dmap.
1896 if ((rc
= dbAllocDmap(bmp
, dp
, b
, nb
))) {
1897 release_metapage(mp
);
1901 /* write the buffer.
1906 /* set the results (starting block number) and return.
1911 /* something failed in handling an allocation request involving
1912 * multiple dmaps. we'll try to clean up by backing out any
1913 * allocation that has already happened for this request. if
1914 * we fail in backing out the allocation, we'll mark the file
1915 * system to indicate that blocks have been leaked.
1919 /* try to backout the allocations dmap by dmap.
1921 for (n
= nblocks
- n
, b
= blkno
; n
> 0;
1922 n
-= BPERDMAP
, b
+= BPERDMAP
) {
1923 /* get the buffer for this dmap.
1925 lblkno
= BLKTODMAP(b
, bmp
->db_l2nbperpage
);
1926 mp
= read_metapage(bmp
->db_ipbmap
, lblkno
, PSIZE
, 0);
1928 /* could not back out. mark the file system
1929 * to indicate that we have leaked blocks.
1931 jfs_error(bmp
->db_ipbmap
->i_sb
,
1932 "I/O Error: Block Leakage\n");
1935 dp
= (struct dmap
*) mp
->data
;
1937 /* free the blocks is this dmap.
1939 if (dbFreeDmap(bmp
, dp
, b
, BPERDMAP
)) {
1940 /* could not back out. mark the file system
1941 * to indicate that we have leaked blocks.
1943 release_metapage(mp
);
1944 jfs_error(bmp
->db_ipbmap
->i_sb
, "Block Leakage\n");
1948 /* write the buffer.
1958 * NAME: dbAllocDmapLev()
1960 * FUNCTION: attempt to allocate a specified number of contiguous blocks
1961 * from a specified dmap.
1963 * this routine checks if the contiguous blocks are available.
1964 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1968 * mp - pointer to bmap descriptor
1969 * dp - pointer to dmap to attempt to allocate blocks from.
1970 * l2nb - log2 number of contiguous block desired.
1971 * nblocks - actual number of contiguous block desired.
1972 * results - on successful return, set to the starting block number
1973 * of the newly allocated range.
1977 * -ENOSPC - insufficient disk resources
1980 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1981 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1984 dbAllocDmapLev(struct bmap
* bmp
,
1985 struct dmap
* dp
, int nblocks
, int l2nb
, s64
* results
)
1990 /* can't be more than a dmaps worth of blocks */
1991 assert(l2nb
<= L2BPERDMAP
);
1993 /* search the tree within the dmap page for sufficient
1994 * free space. if sufficient free space is found, dbFindLeaf()
1995 * returns the index of the leaf at which free space was found.
1997 if (dbFindLeaf((dmtree_t
*) & dp
->tree
, l2nb
, &leafidx
))
2000 /* determine the block number within the file system corresponding
2001 * to the leaf at which free space was found.
2003 blkno
= le64_to_cpu(dp
->start
) + (leafidx
<< L2DBWORD
);
2005 /* if not all bits of the dmap word are free, get the starting
2006 * bit number within the dmap word of the required string of free
2007 * bits and adjust the block number with this value.
2009 if (dp
->tree
.stree
[leafidx
+ LEAFIND
] < BUDMIN
)
2010 blkno
+= dbFindBits(le32_to_cpu(dp
->wmap
[leafidx
]), l2nb
);
2012 /* allocate the blocks */
2013 if ((rc
= dbAllocDmap(bmp
, dp
, blkno
, nblocks
)) == 0)
2021 * NAME: dbAllocDmap()
2023 * FUNCTION: adjust the disk allocation map to reflect the allocation
2024 * of a specified block range within a dmap.
2026 * this routine allocates the specified blocks from the dmap
2027 * through a call to dbAllocBits(). if the allocation of the
2028 * block range causes the maximum string of free blocks within
2029 * the dmap to change (i.e. the value of the root of the dmap's
2030 * dmtree), this routine will cause this change to be reflected
2031 * up through the appropriate levels of the dmap control pages
2032 * by a call to dbAdjCtl() for the L0 dmap control page that
2036 * bmp - pointer to bmap descriptor
2037 * dp - pointer to dmap to allocate the block range from.
2038 * blkno - starting block number of the block to be allocated.
2039 * nblocks - number of blocks to be allocated.
2045 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2047 static int dbAllocDmap(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
2053 /* save the current value of the root (i.e. maximum free string)
2056 oldroot
= dp
->tree
.stree
[ROOT
];
2058 /* allocate the specified (blocks) bits */
2059 dbAllocBits(bmp
, dp
, blkno
, nblocks
);
2061 /* if the root has not changed, done. */
2062 if (dp
->tree
.stree
[ROOT
] == oldroot
)
2065 /* root changed. bubble the change up to the dmap control pages.
2066 * if the adjustment of the upper level control pages fails,
2067 * backout the bit allocation (thus making everything consistent).
2069 if ((rc
= dbAdjCtl(bmp
, blkno
, dp
->tree
.stree
[ROOT
], 1, 0)))
2070 dbFreeBits(bmp
, dp
, blkno
, nblocks
);
2077 * NAME: dbFreeDmap()
2079 * FUNCTION: adjust the disk allocation map to reflect the allocation
2080 * of a specified block range within a dmap.
2082 * this routine frees the specified blocks from the dmap through
2083 * a call to dbFreeBits(). if the deallocation of the block range
2084 * causes the maximum string of free blocks within the dmap to
2085 * change (i.e. the value of the root of the dmap's dmtree), this
2086 * routine will cause this change to be reflected up through the
2087 * appropriate levels of the dmap control pages by a call to
2088 * dbAdjCtl() for the L0 dmap control page that covers this dmap.
2091 * bmp - pointer to bmap descriptor
2092 * dp - pointer to dmap to free the block range from.
2093 * blkno - starting block number of the block to be freed.
2094 * nblocks - number of blocks to be freed.
2100 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2102 static int dbFreeDmap(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
2108 /* save the current value of the root (i.e. maximum free string)
2111 oldroot
= dp
->tree
.stree
[ROOT
];
2113 /* free the specified (blocks) bits */
2114 rc
= dbFreeBits(bmp
, dp
, blkno
, nblocks
);
2116 /* if error or the root has not changed, done. */
2117 if (rc
|| (dp
->tree
.stree
[ROOT
] == oldroot
))
2120 /* root changed. bubble the change up to the dmap control pages.
2121 * if the adjustment of the upper level control pages fails,
2122 * backout the deallocation.
2124 if ((rc
= dbAdjCtl(bmp
, blkno
, dp
->tree
.stree
[ROOT
], 0, 0))) {
2125 word
= (blkno
& (BPERDMAP
- 1)) >> L2DBWORD
;
2127 /* as part of backing out the deallocation, we will have
2128 * to back split the dmap tree if the deallocation caused
2129 * the freed blocks to become part of a larger binary buddy
2132 if (dp
->tree
.stree
[word
] == NOFREE
)
2133 dbBackSplit((dmtree_t
*) & dp
->tree
, word
);
2135 dbAllocBits(bmp
, dp
, blkno
, nblocks
);
2143 * NAME: dbAllocBits()
2145 * FUNCTION: allocate a specified block range from a dmap.
2147 * this routine updates the dmap to reflect the working
2148 * state allocation of the specified block range. it directly
2149 * updates the bits of the working map and causes the adjustment
2150 * of the binary buddy system described by the dmap's dmtree
2151 * leaves to reflect the bits allocated. it also causes the
2152 * dmap's dmtree, as a whole, to reflect the allocated range.
2155 * bmp - pointer to bmap descriptor
2156 * dp - pointer to dmap to allocate bits from.
2157 * blkno - starting block number of the bits to be allocated.
2158 * nblocks - number of bits to be allocated.
2160 * RETURN VALUES: none
2162 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2164 static void dbAllocBits(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
2167 int dbitno
, word
, rembits
, nb
, nwords
, wbitno
, nw
, agno
;
2168 dmtree_t
*tp
= (dmtree_t
*) & dp
->tree
;
2172 /* pick up a pointer to the leaves of the dmap tree */
2173 leaf
= dp
->tree
.stree
+ LEAFIND
;
2175 /* determine the bit number and word within the dmap of the
2178 dbitno
= blkno
& (BPERDMAP
- 1);
2179 word
= dbitno
>> L2DBWORD
;
2181 /* block range better be within the dmap */
2182 assert(dbitno
+ nblocks
<= BPERDMAP
);
2184 /* allocate the bits of the dmap's words corresponding to the block
2185 * range. not all bits of the first and last words may be contained
2186 * within the block range. if this is the case, we'll work against
2187 * those words (i.e. partial first and/or last) on an individual basis
2188 * (a single pass), allocating the bits of interest by hand and
2189 * updating the leaf corresponding to the dmap word. a single pass
2190 * will be used for all dmap words fully contained within the
2191 * specified range. within this pass, the bits of all fully contained
2192 * dmap words will be marked as free in a single shot and the leaves
2193 * will be updated. a single leaf may describe the free space of
2194 * multiple dmap words, so we may update only a subset of the actual
2195 * leaves corresponding to the dmap words of the block range.
2197 for (rembits
= nblocks
; rembits
> 0; rembits
-= nb
, dbitno
+= nb
) {
2198 /* determine the bit number within the word and
2199 * the number of bits within the word.
2201 wbitno
= dbitno
& (DBWORD
- 1);
2202 nb
= min(rembits
, DBWORD
- wbitno
);
2204 /* check if only part of a word is to be allocated.
2207 /* allocate (set to 1) the appropriate bits within
2210 dp
->wmap
[word
] |= cpu_to_le32(ONES
<< (DBWORD
- nb
)
2213 /* update the leaf for this dmap word. in addition
2214 * to setting the leaf value to the binary buddy max
2215 * of the updated dmap word, dbSplit() will split
2216 * the binary system of the leaves if need be.
2218 dbSplit(tp
, word
, BUDMIN
,
2219 dbMaxBud((u8
*) & dp
->wmap
[word
]));
2223 /* one or more dmap words are fully contained
2224 * within the block range. determine how many
2225 * words and allocate (set to 1) the bits of these
2228 nwords
= rembits
>> L2DBWORD
;
2229 memset(&dp
->wmap
[word
], (int) ONES
, nwords
* 4);
2231 /* determine how many bits.
2233 nb
= nwords
<< L2DBWORD
;
2235 /* now update the appropriate leaves to reflect
2236 * the allocated words.
2238 for (; nwords
> 0; nwords
-= nw
) {
2239 if (leaf
[word
] < BUDMIN
) {
2240 jfs_error(bmp
->db_ipbmap
->i_sb
,
2241 "leaf page corrupt\n");
2245 /* determine what the leaf value should be
2246 * updated to as the minimum of the l2 number
2247 * of bits being allocated and the l2 number
2248 * of bits currently described by this leaf.
2250 size
= min_t(int, leaf
[word
],
2251 NLSTOL2BSZ(nwords
));
2253 /* update the leaf to reflect the allocation.
2254 * in addition to setting the leaf value to
2255 * NOFREE, dbSplit() will split the binary
2256 * system of the leaves to reflect the current
2257 * allocation (size).
2259 dbSplit(tp
, word
, size
, NOFREE
);
2261 /* get the number of dmap words handled */
2262 nw
= BUDSIZE(size
, BUDMIN
);
2268 /* update the free count for this dmap */
2269 le32_add_cpu(&dp
->nfree
, -nblocks
);
2273 /* if this allocation group is completely free,
2274 * update the maximum allocation group number if this allocation
2275 * group is the new max.
2277 agno
= blkno
>> bmp
->db_agl2size
;
2278 if (agno
> bmp
->db_maxag
)
2279 bmp
->db_maxag
= agno
;
2281 /* update the free count for the allocation group and map */
2282 bmp
->db_agfree
[agno
] -= nblocks
;
2283 bmp
->db_nfree
-= nblocks
;
2290 * NAME: dbFreeBits()
2292 * FUNCTION: free a specified block range from a dmap.
2294 * this routine updates the dmap to reflect the working
2295 * state allocation of the specified block range. it directly
2296 * updates the bits of the working map and causes the adjustment
2297 * of the binary buddy system described by the dmap's dmtree
2298 * leaves to reflect the bits freed. it also causes the dmap's
2299 * dmtree, as a whole, to reflect the deallocated range.
2302 * bmp - pointer to bmap descriptor
2303 * dp - pointer to dmap to free bits from.
2304 * blkno - starting block number of the bits to be freed.
2305 * nblocks - number of bits to be freed.
2307 * RETURN VALUES: 0 for success
2309 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2311 static int dbFreeBits(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
2314 int dbitno
, word
, rembits
, nb
, nwords
, wbitno
, nw
, agno
;
2315 dmtree_t
*tp
= (dmtree_t
*) & dp
->tree
;
2319 /* determine the bit number and word within the dmap of the
2322 dbitno
= blkno
& (BPERDMAP
- 1);
2323 word
= dbitno
>> L2DBWORD
;
2325 /* block range better be within the dmap.
2327 assert(dbitno
+ nblocks
<= BPERDMAP
);
2329 /* free the bits of the dmaps words corresponding to the block range.
2330 * not all bits of the first and last words may be contained within
2331 * the block range. if this is the case, we'll work against those
2332 * words (i.e. partial first and/or last) on an individual basis
2333 * (a single pass), freeing the bits of interest by hand and updating
2334 * the leaf corresponding to the dmap word. a single pass will be used
2335 * for all dmap words fully contained within the specified range.
2336 * within this pass, the bits of all fully contained dmap words will
2337 * be marked as free in a single shot and the leaves will be updated. a
2338 * single leaf may describe the free space of multiple dmap words,
2339 * so we may update only a subset of the actual leaves corresponding
2340 * to the dmap words of the block range.
2342 * dbJoin() is used to update leaf values and will join the binary
2343 * buddy system of the leaves if the new leaf values indicate this
2346 for (rembits
= nblocks
; rembits
> 0; rembits
-= nb
, dbitno
+= nb
) {
2347 /* determine the bit number within the word and
2348 * the number of bits within the word.
2350 wbitno
= dbitno
& (DBWORD
- 1);
2351 nb
= min(rembits
, DBWORD
- wbitno
);
2353 /* check if only part of a word is to be freed.
2356 /* free (zero) the appropriate bits within this
2360 cpu_to_le32(~(ONES
<< (DBWORD
- nb
)
2363 /* update the leaf for this dmap word.
2365 rc
= dbJoin(tp
, word
,
2366 dbMaxBud((u8
*) & dp
->wmap
[word
]));
2372 /* one or more dmap words are fully contained
2373 * within the block range. determine how many
2374 * words and free (zero) the bits of these words.
2376 nwords
= rembits
>> L2DBWORD
;
2377 memset(&dp
->wmap
[word
], 0, nwords
* 4);
2379 /* determine how many bits.
2381 nb
= nwords
<< L2DBWORD
;
2383 /* now update the appropriate leaves to reflect
2386 for (; nwords
> 0; nwords
-= nw
) {
2387 /* determine what the leaf value should be
2388 * updated to as the minimum of the l2 number
2389 * of bits being freed and the l2 (max) number
2390 * of bits that can be described by this leaf.
2394 (word
, L2LPERDMAP
, BUDMIN
),
2395 NLSTOL2BSZ(nwords
));
2399 rc
= dbJoin(tp
, word
, size
);
2403 /* get the number of dmap words handled.
2405 nw
= BUDSIZE(size
, BUDMIN
);
2411 /* update the free count for this dmap.
2413 le32_add_cpu(&dp
->nfree
, nblocks
);
2417 /* update the free count for the allocation group and
2420 agno
= blkno
>> bmp
->db_agl2size
;
2421 bmp
->db_nfree
+= nblocks
;
2422 bmp
->db_agfree
[agno
] += nblocks
;
2424 /* check if this allocation group is not completely free and
2425 * if it is currently the maximum (rightmost) allocation group.
2426 * if so, establish the new maximum allocation group number by
2427 * searching left for the first allocation group with allocation.
2429 if ((bmp
->db_agfree
[agno
] == bmp
->db_agsize
&& agno
== bmp
->db_maxag
) ||
2430 (agno
== bmp
->db_numag
- 1 &&
2431 bmp
->db_agfree
[agno
] == (bmp
-> db_mapsize
& (BPERDMAP
- 1)))) {
2432 while (bmp
->db_maxag
> 0) {
2434 if (bmp
->db_agfree
[bmp
->db_maxag
] !=
2439 /* re-establish the allocation group preference if the
2440 * current preference is right of the maximum allocation
2443 if (bmp
->db_agpref
> bmp
->db_maxag
)
2444 bmp
->db_agpref
= bmp
->db_maxag
;
2456 * FUNCTION: adjust a dmap control page at a specified level to reflect
2457 * the change in a lower level dmap or dmap control page's
2458 * maximum string of free blocks (i.e. a change in the root
2459 * of the lower level object's dmtree) due to the allocation
2460 * or deallocation of a range of blocks with a single dmap.
2462 * on entry, this routine is provided with the new value of
2463 * the lower level dmap or dmap control page root and the
2464 * starting block number of the block range whose allocation
2465 * or deallocation resulted in the root change. this range
2466 * is respresented by a single leaf of the current dmapctl
2467 * and the leaf will be updated with this value, possibly
2468 * causing a binary buddy system within the leaves to be
2469 * split or joined. the update may also cause the dmapctl's
2470 * dmtree to be updated.
2472 * if the adjustment of the dmap control page, itself, causes its
2473 * root to change, this change will be bubbled up to the next dmap
2474 * control level by a recursive call to this routine, specifying
2475 * the new root value and the next dmap control page level to
2478 * bmp - pointer to bmap descriptor
2479 * blkno - the first block of a block range within a dmap. it is
2480 * the allocation or deallocation of this block range that
2481 * requires the dmap control page to be adjusted.
2482 * newval - the new value of the lower level dmap or dmap control
2484 * alloc - 'true' if adjustment is due to an allocation.
2485 * level - current level of dmap control page (i.e. L0, L1, L2) to
2492 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2495 dbAdjCtl(struct bmap
* bmp
, s64 blkno
, int newval
, int alloc
, int level
)
2497 struct metapage
*mp
;
2501 struct dmapctl
*dcp
;
2504 /* get the buffer for the dmap control page for the specified
2505 * block number and control page level.
2507 lblkno
= BLKTOCTL(blkno
, bmp
->db_l2nbperpage
, level
);
2508 mp
= read_metapage(bmp
->db_ipbmap
, lblkno
, PSIZE
, 0);
2511 dcp
= (struct dmapctl
*) mp
->data
;
2513 if (dcp
->leafidx
!= cpu_to_le32(CTLLEAFIND
)) {
2514 jfs_error(bmp
->db_ipbmap
->i_sb
, "Corrupt dmapctl page\n");
2515 release_metapage(mp
);
2519 /* determine the leaf number corresponding to the block and
2520 * the index within the dmap control tree.
2522 leafno
= BLKTOCTLLEAF(blkno
, dcp
->budmin
);
2523 ti
= leafno
+ le32_to_cpu(dcp
->leafidx
);
2525 /* save the current leaf value and the current root level (i.e.
2526 * maximum l2 free string described by this dmapctl).
2528 oldval
= dcp
->stree
[ti
];
2529 oldroot
= dcp
->stree
[ROOT
];
2531 /* check if this is a control page update for an allocation.
2532 * if so, update the leaf to reflect the new leaf value using
2533 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2534 * the leaf with the new value. in addition to updating the
2535 * leaf, dbSplit() will also split the binary buddy system of
2536 * the leaves, if required, and bubble new values within the
2537 * dmapctl tree, if required. similarly, dbJoin() will join
2538 * the binary buddy system of leaves and bubble new values up
2539 * the dmapctl tree as required by the new leaf value.
2542 /* check if we are in the middle of a binary buddy
2543 * system. this happens when we are performing the
2544 * first allocation out of an allocation group that
2545 * is part (not the first part) of a larger binary
2546 * buddy system. if we are in the middle, back split
2547 * the system prior to calling dbSplit() which assumes
2548 * that it is at the front of a binary buddy system.
2550 if (oldval
== NOFREE
) {
2551 rc
= dbBackSplit((dmtree_t
*) dcp
, leafno
);
2554 oldval
= dcp
->stree
[ti
];
2556 dbSplit((dmtree_t
*) dcp
, leafno
, dcp
->budmin
, newval
);
2558 rc
= dbJoin((dmtree_t
*) dcp
, leafno
, newval
);
2563 /* check if the root of the current dmap control page changed due
2564 * to the update and if the current dmap control page is not at
2565 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e.
2566 * root changed and this is not the top level), call this routine
2567 * again (recursion) for the next higher level of the mapping to
2568 * reflect the change in root for the current dmap control page.
2570 if (dcp
->stree
[ROOT
] != oldroot
) {
2571 /* are we below the top level of the map. if so,
2572 * bubble the root up to the next higher level.
2574 if (level
< bmp
->db_maxlevel
) {
2575 /* bubble up the new root of this dmap control page to
2579 dbAdjCtl(bmp
, blkno
, dcp
->stree
[ROOT
], alloc
,
2581 /* something went wrong in bubbling up the new
2582 * root value, so backout the changes to the
2583 * current dmap control page.
2586 dbJoin((dmtree_t
*) dcp
, leafno
,
2589 /* the dbJoin() above might have
2590 * caused a larger binary buddy system
2591 * to form and we may now be in the
2592 * middle of it. if this is the case,
2593 * back split the buddies.
2595 if (dcp
->stree
[ti
] == NOFREE
)
2596 dbBackSplit((dmtree_t
*)
2598 dbSplit((dmtree_t
*) dcp
, leafno
,
2599 dcp
->budmin
, oldval
);
2602 /* release the buffer and return the error.
2604 release_metapage(mp
);
2608 /* we're at the top level of the map. update
2609 * the bmap control page to reflect the size
2610 * of the maximum free buddy system.
2612 assert(level
== bmp
->db_maxlevel
);
2613 if (bmp
->db_maxfreebud
!= oldroot
) {
2614 jfs_error(bmp
->db_ipbmap
->i_sb
,
2615 "the maximum free buddy is not the old root\n");
2617 bmp
->db_maxfreebud
= dcp
->stree
[ROOT
];
2621 /* write the buffer.
2632 * FUNCTION: update the leaf of a dmtree with a new value, splitting
2633 * the leaf from the binary buddy system of the dmtree's
2634 * leaves, as required.
2637 * tp - pointer to the tree containing the leaf.
2638 * leafno - the number of the leaf to be updated.
2639 * splitsz - the size the binary buddy system starting at the leaf
2640 * must be split to, specified as the log2 number of blocks.
2641 * newval - the new value for the leaf.
2643 * RETURN VALUES: none
2645 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2647 static void dbSplit(dmtree_t
* tp
, int leafno
, int splitsz
, int newval
)
2651 s8
*leaf
= tp
->dmt_stree
+ le32_to_cpu(tp
->dmt_leafidx
);
2653 /* check if the leaf needs to be split.
2655 if (leaf
[leafno
] > tp
->dmt_budmin
) {
2656 /* the split occurs by cutting the buddy system in half
2657 * at the specified leaf until we reach the specified
2658 * size. pick up the starting split size (current size
2659 * - 1 in l2) and the corresponding buddy size.
2661 cursz
= leaf
[leafno
] - 1;
2662 budsz
= BUDSIZE(cursz
, tp
->dmt_budmin
);
2664 /* split until we reach the specified size.
2666 while (cursz
>= splitsz
) {
2667 /* update the buddy's leaf with its new value.
2669 dbAdjTree(tp
, leafno
^ budsz
, cursz
);
2671 /* on to the next size and buddy.
2678 /* adjust the dmap tree to reflect the specified leaf's new
2681 dbAdjTree(tp
, leafno
, newval
);
2686 * NAME: dbBackSplit()
2688 * FUNCTION: back split the binary buddy system of dmtree leaves
2689 * that hold a specified leaf until the specified leaf
2690 * starts its own binary buddy system.
2692 * the allocators typically perform allocations at the start
2693 * of binary buddy systems and dbSplit() is used to accomplish
2694 * any required splits. in some cases, however, allocation
2695 * may occur in the middle of a binary system and requires a
2696 * back split, with the split proceeding out from the middle of
2697 * the system (less efficient) rather than the start of the
2698 * system (more efficient). the cases in which a back split
2699 * is required are rare and are limited to the first allocation
2700 * within an allocation group which is a part (not first part)
2701 * of a larger binary buddy system and a few exception cases
2702 * in which a previous join operation must be backed out.
2705 * tp - pointer to the tree containing the leaf.
2706 * leafno - the number of the leaf to be updated.
2708 * RETURN VALUES: none
2710 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2712 static int dbBackSplit(dmtree_t
* tp
, int leafno
)
2714 int budsz
, bud
, w
, bsz
, size
;
2716 s8
*leaf
= tp
->dmt_stree
+ le32_to_cpu(tp
->dmt_leafidx
);
2718 /* leaf should be part (not first part) of a binary
2721 assert(leaf
[leafno
] == NOFREE
);
2723 /* the back split is accomplished by iteratively finding the leaf
2724 * that starts the buddy system that contains the specified leaf and
2725 * splitting that system in two. this iteration continues until
2726 * the specified leaf becomes the start of a buddy system.
2728 * determine maximum possible l2 size for the specified leaf.
2731 LITOL2BSZ(leafno
, le32_to_cpu(tp
->dmt_l2nleafs
),
2734 /* determine the number of leaves covered by this size. this
2735 * is the buddy size that we will start with as we search for
2736 * the buddy system that contains the specified leaf.
2738 budsz
= BUDSIZE(size
, tp
->dmt_budmin
);
2742 while (leaf
[leafno
] == NOFREE
) {
2743 /* find the leftmost buddy leaf.
2745 for (w
= leafno
, bsz
= budsz
;; bsz
<<= 1,
2746 w
= (w
< bud
) ? w
: bud
) {
2747 if (bsz
>= le32_to_cpu(tp
->dmt_nleafs
)) {
2748 jfs_err("JFS: block map error in dbBackSplit");
2752 /* determine the buddy.
2756 /* check if this buddy is the start of the system.
2758 if (leaf
[bud
] != NOFREE
) {
2759 /* split the leaf at the start of the
2762 cursz
= leaf
[bud
] - 1;
2763 dbSplit(tp
, bud
, cursz
, cursz
);
2769 if (leaf
[leafno
] != size
) {
2770 jfs_err("JFS: wrong leaf value in dbBackSplit");
2780 * FUNCTION: update the leaf of a dmtree with a new value, joining
2781 * the leaf with other leaves of the dmtree into a multi-leaf
2782 * binary buddy system, as required.
2785 * tp - pointer to the tree containing the leaf.
2786 * leafno - the number of the leaf to be updated.
2787 * newval - the new value for the leaf.
2789 * RETURN VALUES: none
2791 static int dbJoin(dmtree_t
* tp
, int leafno
, int newval
)
2796 /* can the new leaf value require a join with other leaves ?
2798 if (newval
>= tp
->dmt_budmin
) {
2799 /* pickup a pointer to the leaves of the tree.
2801 leaf
= tp
->dmt_stree
+ le32_to_cpu(tp
->dmt_leafidx
);
2803 /* try to join the specified leaf into a large binary
2804 * buddy system. the join proceeds by attempting to join
2805 * the specified leafno with its buddy (leaf) at new value.
2806 * if the join occurs, we attempt to join the left leaf
2807 * of the joined buddies with its buddy at new value + 1.
2808 * we continue to join until we find a buddy that cannot be
2809 * joined (does not have a value equal to the size of the
2810 * last join) or until all leaves have been joined into a
2813 * get the buddy size (number of words covered) of
2816 budsz
= BUDSIZE(newval
, tp
->dmt_budmin
);
2820 while (budsz
< le32_to_cpu(tp
->dmt_nleafs
)) {
2821 /* get the buddy leaf.
2823 buddy
= leafno
^ budsz
;
2825 /* if the leaf's new value is greater than its
2826 * buddy's value, we join no more.
2828 if (newval
> leaf
[buddy
])
2831 /* It shouldn't be less */
2832 if (newval
< leaf
[buddy
])
2835 /* check which (leafno or buddy) is the left buddy.
2836 * the left buddy gets to claim the blocks resulting
2837 * from the join while the right gets to claim none.
2838 * the left buddy is also eligible to participate in
2839 * a join at the next higher level while the right
2843 if (leafno
< buddy
) {
2844 /* leafno is the left buddy.
2846 dbAdjTree(tp
, buddy
, NOFREE
);
2848 /* buddy is the left buddy and becomes
2851 dbAdjTree(tp
, leafno
, NOFREE
);
2855 /* on to try the next join.
2862 /* update the leaf value.
2864 dbAdjTree(tp
, leafno
, newval
);
2873 * FUNCTION: update a leaf of a dmtree with a new value, adjusting
2874 * the dmtree, as required, to reflect the new leaf value.
2875 * the combination of any buddies must already be done before
2879 * tp - pointer to the tree to be adjusted.
2880 * leafno - the number of the leaf to be updated.
2881 * newval - the new value for the leaf.
2883 * RETURN VALUES: none
2885 static void dbAdjTree(dmtree_t
* tp
, int leafno
, int newval
)
2890 /* pick up the index of the leaf for this leafno.
2892 lp
= leafno
+ le32_to_cpu(tp
->dmt_leafidx
);
2894 /* is the current value the same as the old value ? if so,
2895 * there is nothing to do.
2897 if (tp
->dmt_stree
[lp
] == newval
)
2900 /* set the new value.
2902 tp
->dmt_stree
[lp
] = newval
;
2904 /* bubble the new value up the tree as required.
2906 for (k
= 0; k
< le32_to_cpu(tp
->dmt_height
); k
++) {
2907 /* get the index of the first leaf of the 4 leaf
2908 * group containing the specified leaf (leafno).
2910 lp
= ((lp
- 1) & ~0x03) + 1;
2912 /* get the index of the parent of this 4 leaf group.
2916 /* determine the maximum of the 4 leaves.
2918 max
= TREEMAX(&tp
->dmt_stree
[lp
]);
2920 /* if the maximum of the 4 is the same as the
2921 * parent's value, we're done.
2923 if (tp
->dmt_stree
[pp
] == max
)
2926 /* parent gets new value.
2928 tp
->dmt_stree
[pp
] = max
;
2930 /* parent becomes leaf for next go-round.
2938 * NAME: dbFindLeaf()
2940 * FUNCTION: search a dmtree_t for sufficient free blocks, returning
2941 * the index of a leaf describing the free blocks if
2942 * sufficient free blocks are found.
2944 * the search starts at the top of the dmtree_t tree and
2945 * proceeds down the tree to the leftmost leaf with sufficient
2949 * tp - pointer to the tree to be searched.
2950 * l2nb - log2 number of free blocks to search for.
2951 * leafidx - return pointer to be set to the index of the leaf
2952 * describing at least l2nb free blocks if sufficient
2953 * free blocks are found.
2957 * -ENOSPC - insufficient free blocks.
2959 static int dbFindLeaf(dmtree_t
* tp
, int l2nb
, int *leafidx
)
2961 int ti
, n
= 0, k
, x
= 0;
2963 /* first check the root of the tree to see if there is
2964 * sufficient free space.
2966 if (l2nb
> tp
->dmt_stree
[ROOT
])
2969 /* sufficient free space available. now search down the tree
2970 * starting at the next level for the leftmost leaf that
2971 * describes sufficient free space.
2973 for (k
= le32_to_cpu(tp
->dmt_height
), ti
= 1;
2974 k
> 0; k
--, ti
= ((ti
+ n
) << 2) + 1) {
2975 /* search the four nodes at this level, starting from
2978 for (x
= ti
, n
= 0; n
< 4; n
++) {
2979 /* sufficient free space found. move to the next
2980 * level (or quit if this is the last level).
2982 if (l2nb
<= tp
->dmt_stree
[x
+ n
])
2986 /* better have found something since the higher
2987 * levels of the tree said it was here.
2992 /* set the return to the leftmost leaf describing sufficient
2995 *leafidx
= x
+ n
- le32_to_cpu(tp
->dmt_leafidx
);
3002 * NAME: dbFindBits()
3004 * FUNCTION: find a specified number of binary buddy free bits within a
3005 * dmap bitmap word value.
3007 * this routine searches the bitmap value for (1 << l2nb) free
3008 * bits at (1 << l2nb) alignments within the value.
3011 * word - dmap bitmap word value.
3012 * l2nb - number of free bits specified as a log2 number.
3015 * starting bit number of free bits.
3017 static int dbFindBits(u32 word
, int l2nb
)
3022 /* get the number of bits.
3025 assert(nb
<= DBWORD
);
3027 /* complement the word so we can use a mask (i.e. 0s represent
3028 * free bits) and compute the mask.
3031 mask
= ONES
<< (DBWORD
- nb
);
3033 /* scan the word for nb free bits at nb alignments.
3035 for (bitno
= 0; mask
!= 0; bitno
+= nb
, mask
>>= nb
) {
3036 if ((mask
& word
) == mask
)
3042 /* return the bit number.
3049 * NAME: dbMaxBud(u8 *cp)
3051 * FUNCTION: determine the largest binary buddy string of free
3052 * bits within 32-bits of the map.
3055 * cp - pointer to the 32-bit value.
3058 * largest binary buddy of free bits within a dmap word.
3060 static int dbMaxBud(u8
* cp
)
3062 signed char tmp1
, tmp2
;
3064 /* check if the wmap word is all free. if so, the
3065 * free buddy size is BUDMIN.
3067 if (*((uint
*) cp
) == 0)
3070 /* check if the wmap word is half free. if so, the
3071 * free buddy size is BUDMIN-1.
3073 if (*((u16
*) cp
) == 0 || *((u16
*) cp
+ 1) == 0)
3074 return (BUDMIN
- 1);
3076 /* not all free or half free. determine the free buddy
3077 * size thru table lookup using quarters of the wmap word.
3079 tmp1
= max(budtab
[cp
[2]], budtab
[cp
[3]]);
3080 tmp2
= max(budtab
[cp
[0]], budtab
[cp
[1]]);
3081 return (max(tmp1
, tmp2
));
3086 * NAME: cnttz(uint word)
3088 * FUNCTION: determine the number of trailing zeros within a 32-bit
3092 * value - 32-bit value to be examined.
3095 * count of trailing zeros
3097 static int cnttz(u32 word
)
3101 for (n
= 0; n
< 32; n
++, word
>>= 1) {
3111 * NAME: cntlz(u32 value)
3113 * FUNCTION: determine the number of leading zeros within a 32-bit
3117 * value - 32-bit value to be examined.
3120 * count of leading zeros
3122 static int cntlz(u32 value
)
3126 for (n
= 0; n
< 32; n
++, value
<<= 1) {
3127 if (value
& HIGHORDER
)
3135 * NAME: blkstol2(s64 nb)
3137 * FUNCTION: convert a block count to its log2 value. if the block
3138 * count is not a l2 multiple, it is rounded up to the next
3139 * larger l2 multiple.
3142 * nb - number of blocks
3145 * log2 number of blocks
3147 static int blkstol2(s64 nb
)
3150 s64 mask
; /* meant to be signed */
3152 mask
= (s64
) 1 << (64 - 1);
3154 /* count the leading bits.
3156 for (l2nb
= 0; l2nb
< 64; l2nb
++, mask
>>= 1) {
3157 /* leading bit found.
3160 /* determine the l2 value.
3162 l2nb
= (64 - 1) - l2nb
;
3164 /* check if we need to round up.
3173 return 0; /* fix compiler warning */
3178 * NAME: dbAllocBottomUp()
3180 * FUNCTION: alloc the specified block range from the working block
3183 * the blocks will be alloc from the working map one dmap
3187 * ip - pointer to in-core inode;
3188 * blkno - starting block number to be freed.
3189 * nblocks - number of blocks to be freed.
3195 int dbAllocBottomUp(struct inode
*ip
, s64 blkno
, s64 nblocks
)
3197 struct metapage
*mp
;
3201 struct inode
*ipbmap
= JFS_SBI(ip
->i_sb
)->ipbmap
;
3202 struct bmap
*bmp
= JFS_SBI(ip
->i_sb
)->bmap
;
3204 IREAD_LOCK(ipbmap
, RDWRLOCK_DMAP
);
3206 /* block to be allocated better be within the mapsize. */
3207 ASSERT(nblocks
<= bmp
->db_mapsize
- blkno
);
3210 * allocate the blocks a dmap at a time.
3213 for (rem
= nblocks
; rem
> 0; rem
-= nb
, blkno
+= nb
) {
3214 /* release previous dmap if any */
3219 /* get the buffer for the current dmap. */
3220 lblkno
= BLKTODMAP(blkno
, bmp
->db_l2nbperpage
);
3221 mp
= read_metapage(ipbmap
, lblkno
, PSIZE
, 0);
3223 IREAD_UNLOCK(ipbmap
);
3226 dp
= (struct dmap
*) mp
->data
;
3228 /* determine the number of blocks to be allocated from
3231 nb
= min(rem
, BPERDMAP
- (blkno
& (BPERDMAP
- 1)));
3233 /* allocate the blocks. */
3234 if ((rc
= dbAllocDmapBU(bmp
, dp
, blkno
, nb
))) {
3235 release_metapage(mp
);
3236 IREAD_UNLOCK(ipbmap
);
3241 /* write the last buffer. */
3244 IREAD_UNLOCK(ipbmap
);
3250 static int dbAllocDmapBU(struct bmap
* bmp
, struct dmap
* dp
, s64 blkno
,
3254 int dbitno
, word
, rembits
, nb
, nwords
, wbitno
, agno
;
3256 struct dmaptree
*tp
= (struct dmaptree
*) & dp
->tree
;
3258 /* save the current value of the root (i.e. maximum free string)
3261 oldroot
= tp
->stree
[ROOT
];
3263 /* determine the bit number and word within the dmap of the
3266 dbitno
= blkno
& (BPERDMAP
- 1);
3267 word
= dbitno
>> L2DBWORD
;
3269 /* block range better be within the dmap */
3270 assert(dbitno
+ nblocks
<= BPERDMAP
);
3272 /* allocate the bits of the dmap's words corresponding to the block
3273 * range. not all bits of the first and last words may be contained
3274 * within the block range. if this is the case, we'll work against
3275 * those words (i.e. partial first and/or last) on an individual basis
3276 * (a single pass), allocating the bits of interest by hand and
3277 * updating the leaf corresponding to the dmap word. a single pass
3278 * will be used for all dmap words fully contained within the
3279 * specified range. within this pass, the bits of all fully contained
3280 * dmap words will be marked as free in a single shot and the leaves
3281 * will be updated. a single leaf may describe the free space of
3282 * multiple dmap words, so we may update only a subset of the actual
3283 * leaves corresponding to the dmap words of the block range.
3285 for (rembits
= nblocks
; rembits
> 0; rembits
-= nb
, dbitno
+= nb
) {
3286 /* determine the bit number within the word and
3287 * the number of bits within the word.
3289 wbitno
= dbitno
& (DBWORD
- 1);
3290 nb
= min(rembits
, DBWORD
- wbitno
);
3292 /* check if only part of a word is to be allocated.
3295 /* allocate (set to 1) the appropriate bits within
3298 dp
->wmap
[word
] |= cpu_to_le32(ONES
<< (DBWORD
- nb
)
3303 /* one or more dmap words are fully contained
3304 * within the block range. determine how many
3305 * words and allocate (set to 1) the bits of these
3308 nwords
= rembits
>> L2DBWORD
;
3309 memset(&dp
->wmap
[word
], (int) ONES
, nwords
* 4);
3311 /* determine how many bits */
3312 nb
= nwords
<< L2DBWORD
;
3317 /* update the free count for this dmap */
3318 le32_add_cpu(&dp
->nfree
, -nblocks
);
3320 /* reconstruct summary tree */
3325 /* if this allocation group is completely free,
3326 * update the highest active allocation group number
3327 * if this allocation group is the new max.
3329 agno
= blkno
>> bmp
->db_agl2size
;
3330 if (agno
> bmp
->db_maxag
)
3331 bmp
->db_maxag
= agno
;
3333 /* update the free count for the allocation group and map */
3334 bmp
->db_agfree
[agno
] -= nblocks
;
3335 bmp
->db_nfree
-= nblocks
;
3339 /* if the root has not changed, done. */
3340 if (tp
->stree
[ROOT
] == oldroot
)
3343 /* root changed. bubble the change up to the dmap control pages.
3344 * if the adjustment of the upper level control pages fails,
3345 * backout the bit allocation (thus making everything consistent).
3347 if ((rc
= dbAdjCtl(bmp
, blkno
, tp
->stree
[ROOT
], 1, 0)))
3348 dbFreeBits(bmp
, dp
, blkno
, nblocks
);
3355 * NAME: dbExtendFS()
3357 * FUNCTION: extend bmap from blkno for nblocks;
3358 * dbExtendFS() updates bmap ready for dbAllocBottomUp();
3362 * L1---------------------------------L1
3364 * L0---------L0---------L0 L0---------L0---------L0
3366 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm;
3367 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3369 * <---old---><----------------------------extend----------------------->
3371 int dbExtendFS(struct inode
*ipbmap
, s64 blkno
, s64 nblocks
)
3373 struct jfs_sb_info
*sbi
= JFS_SBI(ipbmap
->i_sb
);
3374 int nbperpage
= sbi
->nbperpage
;
3375 int i
, i0
= true, j
, j0
= true, k
, n
;
3378 struct metapage
*mp
, *l2mp
, *l1mp
= NULL
, *l0mp
= NULL
;
3379 struct dmapctl
*l2dcp
, *l1dcp
, *l0dcp
;
3381 s8
*l0leaf
, *l1leaf
, *l2leaf
;
3382 struct bmap
*bmp
= sbi
->bmap
;
3383 int agno
, l2agsize
, oldl2agsize
;
3386 newsize
= blkno
+ nblocks
;
3388 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3389 (long long) blkno
, (long long) nblocks
, (long long) newsize
);
3392 * initialize bmap control page.
3394 * all the data in bmap control page should exclude
3395 * the mkfs hidden dmap page.
3398 /* update mapsize */
3399 bmp
->db_mapsize
= newsize
;
3400 bmp
->db_maxlevel
= BMAPSZTOLEV(bmp
->db_mapsize
);
3402 /* compute new AG size */
3403 l2agsize
= dbGetL2AGSize(newsize
);
3404 oldl2agsize
= bmp
->db_agl2size
;
3406 bmp
->db_agl2size
= l2agsize
;
3407 bmp
->db_agsize
= 1 << l2agsize
;
3409 /* compute new number of AG */
3410 agno
= bmp
->db_numag
;
3411 bmp
->db_numag
= newsize
>> l2agsize
;
3412 bmp
->db_numag
+= ((u32
) newsize
% (u32
) bmp
->db_agsize
) ? 1 : 0;
3415 * reconfigure db_agfree[]
3416 * from old AG configuration to new AG configuration;
3418 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3419 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3420 * note: new AG size = old AG size * (2**x).
3422 if (l2agsize
== oldl2agsize
)
3424 k
= 1 << (l2agsize
- oldl2agsize
);
3425 ag_rem
= bmp
->db_agfree
[0]; /* save agfree[0] */
3426 for (i
= 0, n
= 0; i
< agno
; n
++) {
3427 bmp
->db_agfree
[n
] = 0; /* init collection point */
3429 /* coalesce contiguous k AGs; */
3430 for (j
= 0; j
< k
&& i
< agno
; j
++, i
++) {
3431 /* merge AGi to AGn */
3432 bmp
->db_agfree
[n
] += bmp
->db_agfree
[i
];
3435 bmp
->db_agfree
[0] += ag_rem
; /* restore agfree[0] */
3437 for (; n
< MAXAG
; n
++)
3438 bmp
->db_agfree
[n
] = 0;
3441 * update highest active ag number
3444 bmp
->db_maxag
= bmp
->db_maxag
/ k
;
3449 * update bit maps and corresponding level control pages;
3450 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3454 p
= BMAPBLKNO
+ nbperpage
; /* L2 page */
3455 l2mp
= read_metapage(ipbmap
, p
, PSIZE
, 0);
3457 jfs_error(ipbmap
->i_sb
, "L2 page could not be read\n");
3460 l2dcp
= (struct dmapctl
*) l2mp
->data
;
3462 /* compute start L1 */
3463 k
= blkno
>> L2MAXL1SIZE
;
3464 l2leaf
= l2dcp
->stree
+ CTLLEAFIND
+ k
;
3465 p
= BLKTOL1(blkno
, sbi
->l2nbperpage
); /* L1 page */
3468 * extend each L1 in L2
3470 for (; k
< LPERCTL
; k
++, p
+= nbperpage
) {
3473 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3474 l1mp
= read_metapage(ipbmap
, p
, PSIZE
, 0);
3477 l1dcp
= (struct dmapctl
*) l1mp
->data
;
3479 /* compute start L0 */
3480 j
= (blkno
& (MAXL1SIZE
- 1)) >> L2MAXL0SIZE
;
3481 l1leaf
= l1dcp
->stree
+ CTLLEAFIND
+ j
;
3482 p
= BLKTOL0(blkno
, sbi
->l2nbperpage
);
3485 /* assign/init L1 page */
3486 l1mp
= get_metapage(ipbmap
, p
, PSIZE
, 0);
3490 l1dcp
= (struct dmapctl
*) l1mp
->data
;
3492 /* compute start L0 */
3494 l1leaf
= l1dcp
->stree
+ CTLLEAFIND
;
3495 p
+= nbperpage
; /* 1st L0 of L1.k */
3499 * extend each L0 in L1
3501 for (; j
< LPERCTL
; j
++) {
3504 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3506 l0mp
= read_metapage(ipbmap
, p
, PSIZE
, 0);
3509 l0dcp
= (struct dmapctl
*) l0mp
->data
;
3511 /* compute start dmap */
3512 i
= (blkno
& (MAXL0SIZE
- 1)) >>
3514 l0leaf
= l0dcp
->stree
+ CTLLEAFIND
+ i
;
3515 p
= BLKTODMAP(blkno
,
3519 /* assign/init L0 page */
3520 l0mp
= get_metapage(ipbmap
, p
, PSIZE
, 0);
3524 l0dcp
= (struct dmapctl
*) l0mp
->data
;
3526 /* compute start dmap */
3528 l0leaf
= l0dcp
->stree
+ CTLLEAFIND
;
3529 p
+= nbperpage
; /* 1st dmap of L0.j */
3533 * extend each dmap in L0
3535 for (; i
< LPERCTL
; i
++) {
3537 * reconstruct the dmap page, and
3538 * initialize corresponding parent L0 leaf
3540 if ((n
= blkno
& (BPERDMAP
- 1))) {
3541 /* read in dmap page: */
3542 mp
= read_metapage(ipbmap
, p
,
3546 n
= min(nblocks
, (s64
)BPERDMAP
- n
);
3548 /* assign/init dmap page */
3549 mp
= read_metapage(ipbmap
, p
,
3554 n
= min_t(s64
, nblocks
, BPERDMAP
);
3557 dp
= (struct dmap
*) mp
->data
;
3558 *l0leaf
= dbInitDmap(dp
, blkno
, n
);
3561 agno
= le64_to_cpu(dp
->start
) >> l2agsize
;
3562 bmp
->db_agfree
[agno
] += n
;
3573 } /* for each dmap in a L0 */
3576 * build current L0 page from its leaves, and
3577 * initialize corresponding parent L1 leaf
3579 *l1leaf
= dbInitDmapCtl(l0dcp
, 0, ++i
);
3580 write_metapage(l0mp
);
3584 l1leaf
++; /* continue for next L0 */
3586 /* more than 1 L0 ? */
3588 break; /* build L1 page */
3590 /* summarize in global bmap page */
3591 bmp
->db_maxfreebud
= *l1leaf
;
3592 release_metapage(l1mp
);
3593 release_metapage(l2mp
);
3597 } /* for each L0 in a L1 */
3600 * build current L1 page from its leaves, and
3601 * initialize corresponding parent L2 leaf
3603 *l2leaf
= dbInitDmapCtl(l1dcp
, 1, ++j
);
3604 write_metapage(l1mp
);
3608 l2leaf
++; /* continue for next L1 */
3610 /* more than 1 L1 ? */
3612 break; /* build L2 page */
3614 /* summarize in global bmap page */
3615 bmp
->db_maxfreebud
= *l2leaf
;
3616 release_metapage(l2mp
);
3620 } /* for each L1 in a L2 */
3622 jfs_error(ipbmap
->i_sb
, "function has not returned as expected\n");
3625 release_metapage(l0mp
);
3627 release_metapage(l1mp
);
3628 release_metapage(l2mp
);
3632 * finalize bmap control page
3643 void dbFinalizeBmap(struct inode
*ipbmap
)
3645 struct bmap
*bmp
= JFS_SBI(ipbmap
->i_sb
)->bmap
;
3646 int actags
, inactags
, l2nl
;
3647 s64 ag_rem
, actfree
, inactfree
, avgfree
;
3651 * finalize bmap control page
3655 * compute db_agpref: preferred ag to allocate from
3656 * (the leftmost ag with average free space in it);
3659 /* get the number of active ags and inacitve ags */
3660 actags
= bmp
->db_maxag
+ 1;
3661 inactags
= bmp
->db_numag
- actags
;
3662 ag_rem
= bmp
->db_mapsize
& (bmp
->db_agsize
- 1); /* ??? */
3664 /* determine how many blocks are in the inactive allocation
3665 * groups. in doing this, we must account for the fact that
3666 * the rightmost group might be a partial group (i.e. file
3667 * system size is not a multiple of the group size).
3669 inactfree
= (inactags
&& ag_rem
) ?
3670 ((inactags
- 1) << bmp
->db_agl2size
) + ag_rem
3671 : inactags
<< bmp
->db_agl2size
;
3673 /* determine how many free blocks are in the active
3674 * allocation groups plus the average number of free blocks
3675 * within the active ags.
3677 actfree
= bmp
->db_nfree
- inactfree
;
3678 avgfree
= (u32
) actfree
/ (u32
) actags
;
3680 /* if the preferred allocation group has not average free space.
3681 * re-establish the preferred group as the leftmost
3682 * group with average free space.
3684 if (bmp
->db_agfree
[bmp
->db_agpref
] < avgfree
) {
3685 for (bmp
->db_agpref
= 0; bmp
->db_agpref
< actags
;
3687 if (bmp
->db_agfree
[bmp
->db_agpref
] >= avgfree
)
3690 if (bmp
->db_agpref
>= bmp
->db_numag
) {
3691 jfs_error(ipbmap
->i_sb
,
3692 "cannot find ag with average freespace\n");
3697 * compute db_aglevel, db_agheight, db_width, db_agstart:
3698 * an ag is covered in aglevel dmapctl summary tree,
3699 * at agheight level height (from leaf) with agwidth number of nodes
3700 * each, which starts at agstart index node of the smmary tree node
3703 bmp
->db_aglevel
= BMAPSZTOLEV(bmp
->db_agsize
);
3705 bmp
->db_agl2size
- (L2BPERDMAP
+ bmp
->db_aglevel
* L2LPERCTL
);
3706 bmp
->db_agheight
= l2nl
>> 1;
3707 bmp
->db_agwidth
= 1 << (l2nl
- (bmp
->db_agheight
<< 1));
3708 for (i
= 5 - bmp
->db_agheight
, bmp
->db_agstart
= 0, n
= 1; i
> 0;
3710 bmp
->db_agstart
+= n
;
3718 * NAME: dbInitDmap()/ujfs_idmap_page()
3720 * FUNCTION: initialize working/persistent bitmap of the dmap page
3721 * for the specified number of blocks:
3723 * at entry, the bitmaps had been initialized as free (ZEROS);
3724 * The number of blocks will only account for the actually
3725 * existing blocks. Blocks which don't actually exist in
3726 * the aggregate will be marked as allocated (ONES);
3729 * dp - pointer to page of map
3730 * nblocks - number of blocks this page
3734 static int dbInitDmap(struct dmap
* dp
, s64 Blkno
, int nblocks
)
3736 int blkno
, w
, b
, r
, nw
, nb
, i
;
3738 /* starting block number within the dmap */
3739 blkno
= Blkno
& (BPERDMAP
- 1);
3742 dp
->nblocks
= dp
->nfree
= cpu_to_le32(nblocks
);
3743 dp
->start
= cpu_to_le64(Blkno
);
3745 if (nblocks
== BPERDMAP
) {
3746 memset(&dp
->wmap
[0], 0, LPERDMAP
* 4);
3747 memset(&dp
->pmap
[0], 0, LPERDMAP
* 4);
3751 le32_add_cpu(&dp
->nblocks
, nblocks
);
3752 le32_add_cpu(&dp
->nfree
, nblocks
);
3755 /* word number containing start block number */
3756 w
= blkno
>> L2DBWORD
;
3759 * free the bits corresponding to the block range (ZEROS):
3760 * note: not all bits of the first and last words may be contained
3761 * within the block range.
3763 for (r
= nblocks
; r
> 0; r
-= nb
, blkno
+= nb
) {
3764 /* number of bits preceding range to be freed in the word */
3765 b
= blkno
& (DBWORD
- 1);
3766 /* number of bits to free in the word */
3767 nb
= min(r
, DBWORD
- b
);
3769 /* is partial word to be freed ? */
3771 /* free (set to 0) from the bitmap word */
3772 dp
->wmap
[w
] &= cpu_to_le32(~(ONES
<< (DBWORD
- nb
)
3774 dp
->pmap
[w
] &= cpu_to_le32(~(ONES
<< (DBWORD
- nb
)
3777 /* skip the word freed */
3780 /* free (set to 0) contiguous bitmap words */
3782 memset(&dp
->wmap
[w
], 0, nw
* 4);
3783 memset(&dp
->pmap
[w
], 0, nw
* 4);
3785 /* skip the words freed */
3786 nb
= nw
<< L2DBWORD
;
3792 * mark bits following the range to be freed (non-existing
3793 * blocks) as allocated (ONES)
3796 if (blkno
== BPERDMAP
)
3799 /* the first word beyond the end of existing blocks */
3800 w
= blkno
>> L2DBWORD
;
3802 /* does nblocks fall on a 32-bit boundary ? */
3803 b
= blkno
& (DBWORD
- 1);
3805 /* mark a partial word allocated */
3806 dp
->wmap
[w
] = dp
->pmap
[w
] = cpu_to_le32(ONES
>> b
);
3810 /* set the rest of the words in the page to allocated (ONES) */
3811 for (i
= w
; i
< LPERDMAP
; i
++)
3812 dp
->pmap
[i
] = dp
->wmap
[i
] = cpu_to_le32(ONES
);
3818 return (dbInitDmapTree(dp
));
3823 * NAME: dbInitDmapTree()/ujfs_complete_dmap()
3825 * FUNCTION: initialize summary tree of the specified dmap:
3827 * at entry, bitmap of the dmap has been initialized;
3830 * dp - dmap to complete
3831 * blkno - starting block number for this dmap
3832 * treemax - will be filled in with max free for this dmap
3834 * RETURNS: max free string at the root of the tree
3836 static int dbInitDmapTree(struct dmap
* dp
)
3838 struct dmaptree
*tp
;
3842 /* init fixed info of tree */
3844 tp
->nleafs
= cpu_to_le32(LPERDMAP
);
3845 tp
->l2nleafs
= cpu_to_le32(L2LPERDMAP
);
3846 tp
->leafidx
= cpu_to_le32(LEAFIND
);
3847 tp
->height
= cpu_to_le32(4);
3848 tp
->budmin
= BUDMIN
;
3850 /* init each leaf from corresponding wmap word:
3851 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3852 * bitmap word are allocated.
3854 cp
= tp
->stree
+ le32_to_cpu(tp
->leafidx
);
3855 for (i
= 0; i
< LPERDMAP
; i
++)
3856 *cp
++ = dbMaxBud((u8
*) & dp
->wmap
[i
]);
3858 /* build the dmap's binary buddy summary tree */
3859 return (dbInitTree(tp
));
3864 * NAME: dbInitTree()/ujfs_adjtree()
3866 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl.
3868 * at entry, the leaves of the tree has been initialized
3869 * from corresponding bitmap word or root of summary tree
3870 * of the child control page;
3871 * configure binary buddy system at the leaf level, then
3872 * bubble up the values of the leaf nodes up the tree.
3875 * cp - Pointer to the root of the tree
3876 * l2leaves- Number of leaf nodes as a power of 2
3877 * l2min - Number of blocks that can be covered by a leaf
3880 * RETURNS: max free string at the root of the tree
3882 static int dbInitTree(struct dmaptree
* dtp
)
3884 int l2max
, l2free
, bsize
, nextb
, i
;
3885 int child
, parent
, nparent
;
3890 /* Determine the maximum free string possible for the leaves */
3891 l2max
= le32_to_cpu(dtp
->l2nleafs
) + dtp
->budmin
;
3894 * configure the leaf levevl into binary buddy system
3896 * Try to combine buddies starting with a buddy size of 1
3897 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3898 * can be combined if both buddies have a maximum free of l2min;
3899 * the combination will result in the left-most buddy leaf having
3900 * a maximum free of l2min+1.
3901 * After processing all buddies for a given size, process buddies
3902 * at the next higher buddy size (i.e. current size * 2) and
3903 * the next maximum free (current free + 1).
3904 * This continues until the maximum possible buddy combination
3905 * yields maximum free.
3907 for (l2free
= dtp
->budmin
, bsize
= 1; l2free
< l2max
;
3908 l2free
++, bsize
= nextb
) {
3909 /* get next buddy size == current buddy pair size */
3912 /* scan each adjacent buddy pair at current buddy size */
3913 for (i
= 0, cp
= tp
+ le32_to_cpu(dtp
->leafidx
);
3914 i
< le32_to_cpu(dtp
->nleafs
);
3915 i
+= nextb
, cp
+= nextb
) {
3916 /* coalesce if both adjacent buddies are max free */
3917 if (*cp
== l2free
&& *(cp
+ bsize
) == l2free
) {
3918 *cp
= l2free
+ 1; /* left take right */
3919 *(cp
+ bsize
) = -1; /* right give left */
3925 * bubble summary information of leaves up the tree.
3927 * Starting at the leaf node level, the four nodes described by
3928 * the higher level parent node are compared for a maximum free and
3929 * this maximum becomes the value of the parent node.
3930 * when all lower level nodes are processed in this fashion then
3931 * move up to the next level (parent becomes a lower level node) and
3932 * continue the process for that level.
3934 for (child
= le32_to_cpu(dtp
->leafidx
),
3935 nparent
= le32_to_cpu(dtp
->nleafs
) >> 2;
3936 nparent
> 0; nparent
>>= 2, child
= parent
) {
3937 /* get index of 1st node of parent level */
3938 parent
= (child
- 1) >> 2;
3940 /* set the value of the parent node as the maximum
3941 * of the four nodes of the current level.
3943 for (i
= 0, cp
= tp
+ child
, cp1
= tp
+ parent
;
3944 i
< nparent
; i
++, cp
+= 4, cp1
++)
3955 * function: initialize dmapctl page
3957 static int dbInitDmapCtl(struct dmapctl
* dcp
, int level
, int i
)
3958 { /* start leaf index not covered by range */
3961 dcp
->nleafs
= cpu_to_le32(LPERCTL
);
3962 dcp
->l2nleafs
= cpu_to_le32(L2LPERCTL
);
3963 dcp
->leafidx
= cpu_to_le32(CTLLEAFIND
);
3964 dcp
->height
= cpu_to_le32(5);
3965 dcp
->budmin
= L2BPERDMAP
+ L2LPERCTL
* level
;
3968 * initialize the leaves of current level that were not covered
3969 * by the specified input block range (i.e. the leaves have no
3970 * low level dmapctl or dmap).
3972 cp
= &dcp
->stree
[CTLLEAFIND
+ i
];
3973 for (; i
< LPERCTL
; i
++)
3976 /* build the dmap's binary buddy summary tree */
3977 return (dbInitTree((struct dmaptree
*) dcp
));
3982 * NAME: dbGetL2AGSize()/ujfs_getagl2size()
3984 * FUNCTION: Determine log2(allocation group size) from aggregate size
3987 * nblocks - Number of blocks in aggregate
3989 * RETURNS: log2(allocation group size) in aggregate blocks
3991 static int dbGetL2AGSize(s64 nblocks
)
3997 if (nblocks
< BPERDMAP
* MAXAG
)
3998 return (L2BPERDMAP
);
4000 /* round up aggregate size to power of 2 */
4001 m
= ((u64
) 1 << (64 - 1));
4002 for (l2sz
= 64; l2sz
>= 0; l2sz
--, m
>>= 1) {
4007 sz
= (s64
) 1 << l2sz
;
4011 /* agsize = roundupSize/max_number_of_ag */
4012 return (l2sz
- L2MAXAG
);
4017 * NAME: dbMapFileSizeToMapSize()
4019 * FUNCTION: compute number of blocks the block allocation map file
4020 * can cover from the map file size;
4022 * RETURNS: Number of blocks which can be covered by this block map file;
4026 * maximum number of map pages at each level including control pages
4028 #define MAXL0PAGES (1 + LPERCTL)
4029 #define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES)
4030 #define MAXL2PAGES (1 + LPERCTL * MAXL1PAGES)
4033 * convert number of map pages to the zero origin top dmapctl level
4035 #define BMAPPGTOLEV(npages) \
4036 (((npages) <= 3 + MAXL0PAGES) ? 0 : \
4037 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4039 s64
dbMapFileSizeToMapSize(struct inode
* ipbmap
)
4041 struct super_block
*sb
= ipbmap
->i_sb
;
4045 int complete
, factor
;
4047 nblocks
= ipbmap
->i_size
>> JFS_SBI(sb
)->l2bsize
;
4048 npages
= nblocks
>> JFS_SBI(sb
)->l2nbperpage
;
4049 level
= BMAPPGTOLEV(npages
);
4051 /* At each level, accumulate the number of dmap pages covered by
4052 * the number of full child levels below it;
4053 * repeat for the last incomplete child level.
4056 npages
--; /* skip the first global control page */
4057 /* skip higher level control pages above top level covered by map */
4058 npages
-= (2 - level
);
4059 npages
--; /* skip top level's control page */
4060 for (i
= level
; i
>= 0; i
--) {
4062 (i
== 2) ? MAXL1PAGES
: ((i
== 1) ? MAXL0PAGES
: 1);
4063 complete
= (u32
) npages
/ factor
;
4064 ndmaps
+= complete
* ((i
== 2) ? LPERCTL
* LPERCTL
:
4065 ((i
== 1) ? LPERCTL
: 1));
4067 /* pages in last/incomplete child */
4068 npages
= (u32
) npages
% factor
;
4069 /* skip incomplete child's level control page */
4073 /* convert the number of dmaps into the number of blocks
4074 * which can be covered by the dmaps;
4076 nblocks
= ndmaps
<< L2BPERDMAP
;