irqchip/omap-intc: Remove duplicate setup for IRQ chip type handler
[linux/fpc-iii.git] / arch / arm64 / kvm / sys_regs.c
blobd2650e84faf2f53f2afbdbd15e1f54d217e3fdb8
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/kvm_host.h>
24 #include <linux/mm.h>
25 #include <linux/uaccess.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/esr.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_coproc.h>
33 #include <asm/kvm_emulate.h>
34 #include <asm/kvm_host.h>
35 #include <asm/kvm_mmu.h>
37 #include <trace/events/kvm.h>
39 #include "sys_regs.h"
41 #include "trace.h"
44 * All of this file is extremly similar to the ARM coproc.c, but the
45 * types are different. My gut feeling is that it should be pretty
46 * easy to merge, but that would be an ABI breakage -- again. VFP
47 * would also need to be abstracted.
49 * For AArch32, we only take care of what is being trapped. Anything
50 * that has to do with init and userspace access has to go via the
51 * 64bit interface.
54 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
55 static u32 cache_levels;
57 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
58 #define CSSELR_MAX 12
60 /* Which cache CCSIDR represents depends on CSSELR value. */
61 static u32 get_ccsidr(u32 csselr)
63 u32 ccsidr;
65 /* Make sure noone else changes CSSELR during this! */
66 local_irq_disable();
67 /* Put value into CSSELR */
68 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
69 isb();
70 /* Read result out of CCSIDR */
71 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
72 local_irq_enable();
74 return ccsidr;
78 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
80 static bool access_dcsw(struct kvm_vcpu *vcpu,
81 struct sys_reg_params *p,
82 const struct sys_reg_desc *r)
84 if (!p->is_write)
85 return read_from_write_only(vcpu, p);
87 kvm_set_way_flush(vcpu);
88 return true;
92 * Generic accessor for VM registers. Only called as long as HCR_TVM
93 * is set. If the guest enables the MMU, we stop trapping the VM
94 * sys_regs and leave it in complete control of the caches.
96 static bool access_vm_reg(struct kvm_vcpu *vcpu,
97 struct sys_reg_params *p,
98 const struct sys_reg_desc *r)
100 bool was_enabled = vcpu_has_cache_enabled(vcpu);
102 BUG_ON(!p->is_write);
104 if (!p->is_aarch32) {
105 vcpu_sys_reg(vcpu, r->reg) = p->regval;
106 } else {
107 if (!p->is_32bit)
108 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
109 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
112 kvm_toggle_cache(vcpu, was_enabled);
113 return true;
117 * Trap handler for the GICv3 SGI generation system register.
118 * Forward the request to the VGIC emulation.
119 * The cp15_64 code makes sure this automatically works
120 * for both AArch64 and AArch32 accesses.
122 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
123 struct sys_reg_params *p,
124 const struct sys_reg_desc *r)
126 if (!p->is_write)
127 return read_from_write_only(vcpu, p);
129 vgic_v3_dispatch_sgi(vcpu, p->regval);
131 return true;
134 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
135 struct sys_reg_params *p,
136 const struct sys_reg_desc *r)
138 if (p->is_write)
139 return ignore_write(vcpu, p);
140 else
141 return read_zero(vcpu, p);
144 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
145 struct sys_reg_params *p,
146 const struct sys_reg_desc *r)
148 if (p->is_write) {
149 return ignore_write(vcpu, p);
150 } else {
151 p->regval = (1 << 3);
152 return true;
156 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
157 struct sys_reg_params *p,
158 const struct sys_reg_desc *r)
160 if (p->is_write) {
161 return ignore_write(vcpu, p);
162 } else {
163 u32 val;
164 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
165 p->regval = val;
166 return true;
171 * We want to avoid world-switching all the DBG registers all the
172 * time:
174 * - If we've touched any debug register, it is likely that we're
175 * going to touch more of them. It then makes sense to disable the
176 * traps and start doing the save/restore dance
177 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
178 * then mandatory to save/restore the registers, as the guest
179 * depends on them.
181 * For this, we use a DIRTY bit, indicating the guest has modified the
182 * debug registers, used as follow:
184 * On guest entry:
185 * - If the dirty bit is set (because we're coming back from trapping),
186 * disable the traps, save host registers, restore guest registers.
187 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
188 * set the dirty bit, disable the traps, save host registers,
189 * restore guest registers.
190 * - Otherwise, enable the traps
192 * On guest exit:
193 * - If the dirty bit is set, save guest registers, restore host
194 * registers and clear the dirty bit. This ensure that the host can
195 * now use the debug registers.
197 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
198 struct sys_reg_params *p,
199 const struct sys_reg_desc *r)
201 if (p->is_write) {
202 vcpu_sys_reg(vcpu, r->reg) = p->regval;
203 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
204 } else {
205 p->regval = vcpu_sys_reg(vcpu, r->reg);
208 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
210 return true;
214 * reg_to_dbg/dbg_to_reg
216 * A 32 bit write to a debug register leave top bits alone
217 * A 32 bit read from a debug register only returns the bottom bits
219 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
220 * hyp.S code switches between host and guest values in future.
222 static inline void reg_to_dbg(struct kvm_vcpu *vcpu,
223 struct sys_reg_params *p,
224 u64 *dbg_reg)
226 u64 val = p->regval;
228 if (p->is_32bit) {
229 val &= 0xffffffffUL;
230 val |= ((*dbg_reg >> 32) << 32);
233 *dbg_reg = val;
234 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
237 static inline void dbg_to_reg(struct kvm_vcpu *vcpu,
238 struct sys_reg_params *p,
239 u64 *dbg_reg)
241 p->regval = *dbg_reg;
242 if (p->is_32bit)
243 p->regval &= 0xffffffffUL;
246 static inline bool trap_bvr(struct kvm_vcpu *vcpu,
247 struct sys_reg_params *p,
248 const struct sys_reg_desc *rd)
250 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
252 if (p->is_write)
253 reg_to_dbg(vcpu, p, dbg_reg);
254 else
255 dbg_to_reg(vcpu, p, dbg_reg);
257 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
259 return true;
262 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
263 const struct kvm_one_reg *reg, void __user *uaddr)
265 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
267 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
268 return -EFAULT;
269 return 0;
272 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
273 const struct kvm_one_reg *reg, void __user *uaddr)
275 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
277 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
278 return -EFAULT;
279 return 0;
282 static inline void reset_bvr(struct kvm_vcpu *vcpu,
283 const struct sys_reg_desc *rd)
285 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
288 static inline bool trap_bcr(struct kvm_vcpu *vcpu,
289 struct sys_reg_params *p,
290 const struct sys_reg_desc *rd)
292 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
294 if (p->is_write)
295 reg_to_dbg(vcpu, p, dbg_reg);
296 else
297 dbg_to_reg(vcpu, p, dbg_reg);
299 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
301 return true;
304 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
305 const struct kvm_one_reg *reg, void __user *uaddr)
307 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
309 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
310 return -EFAULT;
312 return 0;
315 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
316 const struct kvm_one_reg *reg, void __user *uaddr)
318 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
320 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
321 return -EFAULT;
322 return 0;
325 static inline void reset_bcr(struct kvm_vcpu *vcpu,
326 const struct sys_reg_desc *rd)
328 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
331 static inline bool trap_wvr(struct kvm_vcpu *vcpu,
332 struct sys_reg_params *p,
333 const struct sys_reg_desc *rd)
335 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
337 if (p->is_write)
338 reg_to_dbg(vcpu, p, dbg_reg);
339 else
340 dbg_to_reg(vcpu, p, dbg_reg);
342 trace_trap_reg(__func__, rd->reg, p->is_write,
343 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
345 return true;
348 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
349 const struct kvm_one_reg *reg, void __user *uaddr)
351 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
353 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
354 return -EFAULT;
355 return 0;
358 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
359 const struct kvm_one_reg *reg, void __user *uaddr)
361 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
363 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
364 return -EFAULT;
365 return 0;
368 static inline void reset_wvr(struct kvm_vcpu *vcpu,
369 const struct sys_reg_desc *rd)
371 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
374 static inline bool trap_wcr(struct kvm_vcpu *vcpu,
375 struct sys_reg_params *p,
376 const struct sys_reg_desc *rd)
378 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
380 if (p->is_write)
381 reg_to_dbg(vcpu, p, dbg_reg);
382 else
383 dbg_to_reg(vcpu, p, dbg_reg);
385 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
387 return true;
390 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
391 const struct kvm_one_reg *reg, void __user *uaddr)
393 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
395 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
396 return -EFAULT;
397 return 0;
400 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
401 const struct kvm_one_reg *reg, void __user *uaddr)
403 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
405 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
406 return -EFAULT;
407 return 0;
410 static inline void reset_wcr(struct kvm_vcpu *vcpu,
411 const struct sys_reg_desc *rd)
413 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
416 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
418 u64 amair;
420 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
421 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
424 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
426 u64 mpidr;
429 * Map the vcpu_id into the first three affinity level fields of
430 * the MPIDR. We limit the number of VCPUs in level 0 due to a
431 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
432 * of the GICv3 to be able to address each CPU directly when
433 * sending IPIs.
435 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
436 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
437 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
438 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
441 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
442 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
443 /* DBGBVRn_EL1 */ \
444 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
445 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
446 /* DBGBCRn_EL1 */ \
447 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
448 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
449 /* DBGWVRn_EL1 */ \
450 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
451 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
452 /* DBGWCRn_EL1 */ \
453 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
454 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
457 * Architected system registers.
458 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
460 * We could trap ID_DFR0 and tell the guest we don't support performance
461 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
462 * NAKed, so it will read the PMCR anyway.
464 * Therefore we tell the guest we have 0 counters. Unfortunately, we
465 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
466 * all PM registers, which doesn't crash the guest kernel at least.
468 * Debug handling: We do trap most, if not all debug related system
469 * registers. The implementation is good enough to ensure that a guest
470 * can use these with minimal performance degradation. The drawback is
471 * that we don't implement any of the external debug, none of the
472 * OSlock protocol. This should be revisited if we ever encounter a
473 * more demanding guest...
475 static const struct sys_reg_desc sys_reg_descs[] = {
476 /* DC ISW */
477 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
478 access_dcsw },
479 /* DC CSW */
480 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
481 access_dcsw },
482 /* DC CISW */
483 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
484 access_dcsw },
486 DBG_BCR_BVR_WCR_WVR_EL1(0),
487 DBG_BCR_BVR_WCR_WVR_EL1(1),
488 /* MDCCINT_EL1 */
489 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
490 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
491 /* MDSCR_EL1 */
492 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
493 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
494 DBG_BCR_BVR_WCR_WVR_EL1(2),
495 DBG_BCR_BVR_WCR_WVR_EL1(3),
496 DBG_BCR_BVR_WCR_WVR_EL1(4),
497 DBG_BCR_BVR_WCR_WVR_EL1(5),
498 DBG_BCR_BVR_WCR_WVR_EL1(6),
499 DBG_BCR_BVR_WCR_WVR_EL1(7),
500 DBG_BCR_BVR_WCR_WVR_EL1(8),
501 DBG_BCR_BVR_WCR_WVR_EL1(9),
502 DBG_BCR_BVR_WCR_WVR_EL1(10),
503 DBG_BCR_BVR_WCR_WVR_EL1(11),
504 DBG_BCR_BVR_WCR_WVR_EL1(12),
505 DBG_BCR_BVR_WCR_WVR_EL1(13),
506 DBG_BCR_BVR_WCR_WVR_EL1(14),
507 DBG_BCR_BVR_WCR_WVR_EL1(15),
509 /* MDRAR_EL1 */
510 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
511 trap_raz_wi },
512 /* OSLAR_EL1 */
513 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
514 trap_raz_wi },
515 /* OSLSR_EL1 */
516 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
517 trap_oslsr_el1 },
518 /* OSDLR_EL1 */
519 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
520 trap_raz_wi },
521 /* DBGPRCR_EL1 */
522 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
523 trap_raz_wi },
524 /* DBGCLAIMSET_EL1 */
525 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
526 trap_raz_wi },
527 /* DBGCLAIMCLR_EL1 */
528 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
529 trap_raz_wi },
530 /* DBGAUTHSTATUS_EL1 */
531 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
532 trap_dbgauthstatus_el1 },
534 /* MDCCSR_EL1 */
535 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
536 trap_raz_wi },
537 /* DBGDTR_EL0 */
538 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
539 trap_raz_wi },
540 /* DBGDTR[TR]X_EL0 */
541 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
542 trap_raz_wi },
544 /* DBGVCR32_EL2 */
545 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
546 NULL, reset_val, DBGVCR32_EL2, 0 },
548 /* MPIDR_EL1 */
549 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
550 NULL, reset_mpidr, MPIDR_EL1 },
551 /* SCTLR_EL1 */
552 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
553 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
554 /* CPACR_EL1 */
555 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
556 NULL, reset_val, CPACR_EL1, 0 },
557 /* TTBR0_EL1 */
558 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
559 access_vm_reg, reset_unknown, TTBR0_EL1 },
560 /* TTBR1_EL1 */
561 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
562 access_vm_reg, reset_unknown, TTBR1_EL1 },
563 /* TCR_EL1 */
564 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
565 access_vm_reg, reset_val, TCR_EL1, 0 },
567 /* AFSR0_EL1 */
568 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
569 access_vm_reg, reset_unknown, AFSR0_EL1 },
570 /* AFSR1_EL1 */
571 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
572 access_vm_reg, reset_unknown, AFSR1_EL1 },
573 /* ESR_EL1 */
574 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
575 access_vm_reg, reset_unknown, ESR_EL1 },
576 /* FAR_EL1 */
577 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
578 access_vm_reg, reset_unknown, FAR_EL1 },
579 /* PAR_EL1 */
580 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
581 NULL, reset_unknown, PAR_EL1 },
583 /* PMINTENSET_EL1 */
584 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
585 trap_raz_wi },
586 /* PMINTENCLR_EL1 */
587 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
588 trap_raz_wi },
590 /* MAIR_EL1 */
591 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
592 access_vm_reg, reset_unknown, MAIR_EL1 },
593 /* AMAIR_EL1 */
594 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
595 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
597 /* VBAR_EL1 */
598 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
599 NULL, reset_val, VBAR_EL1, 0 },
601 /* ICC_SGI1R_EL1 */
602 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
603 access_gic_sgi },
604 /* ICC_SRE_EL1 */
605 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
606 trap_raz_wi },
608 /* CONTEXTIDR_EL1 */
609 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
610 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
611 /* TPIDR_EL1 */
612 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
613 NULL, reset_unknown, TPIDR_EL1 },
615 /* CNTKCTL_EL1 */
616 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
617 NULL, reset_val, CNTKCTL_EL1, 0},
619 /* CSSELR_EL1 */
620 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
621 NULL, reset_unknown, CSSELR_EL1 },
623 /* PMCR_EL0 */
624 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
625 trap_raz_wi },
626 /* PMCNTENSET_EL0 */
627 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
628 trap_raz_wi },
629 /* PMCNTENCLR_EL0 */
630 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
631 trap_raz_wi },
632 /* PMOVSCLR_EL0 */
633 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
634 trap_raz_wi },
635 /* PMSWINC_EL0 */
636 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
637 trap_raz_wi },
638 /* PMSELR_EL0 */
639 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
640 trap_raz_wi },
641 /* PMCEID0_EL0 */
642 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
643 trap_raz_wi },
644 /* PMCEID1_EL0 */
645 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
646 trap_raz_wi },
647 /* PMCCNTR_EL0 */
648 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
649 trap_raz_wi },
650 /* PMXEVTYPER_EL0 */
651 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
652 trap_raz_wi },
653 /* PMXEVCNTR_EL0 */
654 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
655 trap_raz_wi },
656 /* PMUSERENR_EL0 */
657 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
658 trap_raz_wi },
659 /* PMOVSSET_EL0 */
660 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
661 trap_raz_wi },
663 /* TPIDR_EL0 */
664 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
665 NULL, reset_unknown, TPIDR_EL0 },
666 /* TPIDRRO_EL0 */
667 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
668 NULL, reset_unknown, TPIDRRO_EL0 },
670 /* DACR32_EL2 */
671 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
672 NULL, reset_unknown, DACR32_EL2 },
673 /* IFSR32_EL2 */
674 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
675 NULL, reset_unknown, IFSR32_EL2 },
676 /* FPEXC32_EL2 */
677 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
678 NULL, reset_val, FPEXC32_EL2, 0x70 },
681 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
682 struct sys_reg_params *p,
683 const struct sys_reg_desc *r)
685 if (p->is_write) {
686 return ignore_write(vcpu, p);
687 } else {
688 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
689 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
690 u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
692 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
693 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
694 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
695 | (6 << 16) | (el3 << 14) | (el3 << 12));
696 return true;
700 static bool trap_debug32(struct kvm_vcpu *vcpu,
701 struct sys_reg_params *p,
702 const struct sys_reg_desc *r)
704 if (p->is_write) {
705 vcpu_cp14(vcpu, r->reg) = p->regval;
706 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
707 } else {
708 p->regval = vcpu_cp14(vcpu, r->reg);
711 return true;
714 /* AArch32 debug register mappings
716 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
717 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
719 * All control registers and watchpoint value registers are mapped to
720 * the lower 32 bits of their AArch64 equivalents. We share the trap
721 * handlers with the above AArch64 code which checks what mode the
722 * system is in.
725 static inline bool trap_xvr(struct kvm_vcpu *vcpu,
726 struct sys_reg_params *p,
727 const struct sys_reg_desc *rd)
729 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
731 if (p->is_write) {
732 u64 val = *dbg_reg;
734 val &= 0xffffffffUL;
735 val |= p->regval << 32;
736 *dbg_reg = val;
738 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
739 } else {
740 p->regval = *dbg_reg >> 32;
743 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
745 return true;
748 #define DBG_BCR_BVR_WCR_WVR(n) \
749 /* DBGBVRn */ \
750 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
751 /* DBGBCRn */ \
752 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
753 /* DBGWVRn */ \
754 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
755 /* DBGWCRn */ \
756 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
758 #define DBGBXVR(n) \
759 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
762 * Trapped cp14 registers. We generally ignore most of the external
763 * debug, on the principle that they don't really make sense to a
764 * guest. Revisit this one day, would this principle change.
766 static const struct sys_reg_desc cp14_regs[] = {
767 /* DBGIDR */
768 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
769 /* DBGDTRRXext */
770 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
772 DBG_BCR_BVR_WCR_WVR(0),
773 /* DBGDSCRint */
774 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
775 DBG_BCR_BVR_WCR_WVR(1),
776 /* DBGDCCINT */
777 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
778 /* DBGDSCRext */
779 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
780 DBG_BCR_BVR_WCR_WVR(2),
781 /* DBGDTR[RT]Xint */
782 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
783 /* DBGDTR[RT]Xext */
784 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
785 DBG_BCR_BVR_WCR_WVR(3),
786 DBG_BCR_BVR_WCR_WVR(4),
787 DBG_BCR_BVR_WCR_WVR(5),
788 /* DBGWFAR */
789 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
790 /* DBGOSECCR */
791 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
792 DBG_BCR_BVR_WCR_WVR(6),
793 /* DBGVCR */
794 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
795 DBG_BCR_BVR_WCR_WVR(7),
796 DBG_BCR_BVR_WCR_WVR(8),
797 DBG_BCR_BVR_WCR_WVR(9),
798 DBG_BCR_BVR_WCR_WVR(10),
799 DBG_BCR_BVR_WCR_WVR(11),
800 DBG_BCR_BVR_WCR_WVR(12),
801 DBG_BCR_BVR_WCR_WVR(13),
802 DBG_BCR_BVR_WCR_WVR(14),
803 DBG_BCR_BVR_WCR_WVR(15),
805 /* DBGDRAR (32bit) */
806 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
808 DBGBXVR(0),
809 /* DBGOSLAR */
810 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
811 DBGBXVR(1),
812 /* DBGOSLSR */
813 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
814 DBGBXVR(2),
815 DBGBXVR(3),
816 /* DBGOSDLR */
817 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
818 DBGBXVR(4),
819 /* DBGPRCR */
820 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
821 DBGBXVR(5),
822 DBGBXVR(6),
823 DBGBXVR(7),
824 DBGBXVR(8),
825 DBGBXVR(9),
826 DBGBXVR(10),
827 DBGBXVR(11),
828 DBGBXVR(12),
829 DBGBXVR(13),
830 DBGBXVR(14),
831 DBGBXVR(15),
833 /* DBGDSAR (32bit) */
834 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
836 /* DBGDEVID2 */
837 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
838 /* DBGDEVID1 */
839 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
840 /* DBGDEVID */
841 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
842 /* DBGCLAIMSET */
843 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
844 /* DBGCLAIMCLR */
845 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
846 /* DBGAUTHSTATUS */
847 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
850 /* Trapped cp14 64bit registers */
851 static const struct sys_reg_desc cp14_64_regs[] = {
852 /* DBGDRAR (64bit) */
853 { Op1( 0), CRm( 1), .access = trap_raz_wi },
855 /* DBGDSAR (64bit) */
856 { Op1( 0), CRm( 2), .access = trap_raz_wi },
860 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
861 * depending on the way they are accessed (as a 32bit or a 64bit
862 * register).
864 static const struct sys_reg_desc cp15_regs[] = {
865 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
867 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
868 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
869 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
870 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
871 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
872 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
873 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
874 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
875 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
876 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
877 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
880 * DC{C,I,CI}SW operations:
882 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
883 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
884 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
886 /* PMU */
887 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
888 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
889 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
890 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
891 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
892 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
893 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
894 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
895 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
896 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
897 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
898 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
899 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
901 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
902 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
903 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
904 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
906 /* ICC_SRE */
907 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
909 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
912 static const struct sys_reg_desc cp15_64_regs[] = {
913 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
914 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
915 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
918 /* Target specific emulation tables */
919 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
921 void kvm_register_target_sys_reg_table(unsigned int target,
922 struct kvm_sys_reg_target_table *table)
924 target_tables[target] = table;
927 /* Get specific register table for this target. */
928 static const struct sys_reg_desc *get_target_table(unsigned target,
929 bool mode_is_64,
930 size_t *num)
932 struct kvm_sys_reg_target_table *table;
934 table = target_tables[target];
935 if (mode_is_64) {
936 *num = table->table64.num;
937 return table->table64.table;
938 } else {
939 *num = table->table32.num;
940 return table->table32.table;
944 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
945 const struct sys_reg_desc table[],
946 unsigned int num)
948 unsigned int i;
950 for (i = 0; i < num; i++) {
951 const struct sys_reg_desc *r = &table[i];
953 if (params->Op0 != r->Op0)
954 continue;
955 if (params->Op1 != r->Op1)
956 continue;
957 if (params->CRn != r->CRn)
958 continue;
959 if (params->CRm != r->CRm)
960 continue;
961 if (params->Op2 != r->Op2)
962 continue;
964 return r;
966 return NULL;
969 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
971 kvm_inject_undefined(vcpu);
972 return 1;
976 * emulate_cp -- tries to match a sys_reg access in a handling table, and
977 * call the corresponding trap handler.
979 * @params: pointer to the descriptor of the access
980 * @table: array of trap descriptors
981 * @num: size of the trap descriptor array
983 * Return 0 if the access has been handled, and -1 if not.
985 static int emulate_cp(struct kvm_vcpu *vcpu,
986 struct sys_reg_params *params,
987 const struct sys_reg_desc *table,
988 size_t num)
990 const struct sys_reg_desc *r;
992 if (!table)
993 return -1; /* Not handled */
995 r = find_reg(params, table, num);
997 if (r) {
999 * Not having an accessor means that we have
1000 * configured a trap that we don't know how to
1001 * handle. This certainly qualifies as a gross bug
1002 * that should be fixed right away.
1004 BUG_ON(!r->access);
1006 if (likely(r->access(vcpu, params, r))) {
1007 /* Skip instruction, since it was emulated */
1008 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1011 /* Handled */
1012 return 0;
1015 /* Not handled */
1016 return -1;
1019 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1020 struct sys_reg_params *params)
1022 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1023 int cp;
1025 switch(hsr_ec) {
1026 case ESR_ELx_EC_CP15_32:
1027 case ESR_ELx_EC_CP15_64:
1028 cp = 15;
1029 break;
1030 case ESR_ELx_EC_CP14_MR:
1031 case ESR_ELx_EC_CP14_64:
1032 cp = 14;
1033 break;
1034 default:
1035 WARN_ON((cp = -1));
1038 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1039 cp, *vcpu_pc(vcpu));
1040 print_sys_reg_instr(params);
1041 kvm_inject_undefined(vcpu);
1045 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
1046 * @vcpu: The VCPU pointer
1047 * @run: The kvm_run struct
1049 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1050 const struct sys_reg_desc *global,
1051 size_t nr_global,
1052 const struct sys_reg_desc *target_specific,
1053 size_t nr_specific)
1055 struct sys_reg_params params;
1056 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1057 int Rt = (hsr >> 5) & 0xf;
1058 int Rt2 = (hsr >> 10) & 0xf;
1060 params.is_aarch32 = true;
1061 params.is_32bit = false;
1062 params.CRm = (hsr >> 1) & 0xf;
1063 params.is_write = ((hsr & 1) == 0);
1065 params.Op0 = 0;
1066 params.Op1 = (hsr >> 16) & 0xf;
1067 params.Op2 = 0;
1068 params.CRn = 0;
1071 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1072 * backends between AArch32 and AArch64, we get away with it.
1074 if (params.is_write) {
1075 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1076 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1079 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1080 goto out;
1081 if (!emulate_cp(vcpu, &params, global, nr_global))
1082 goto out;
1084 unhandled_cp_access(vcpu, &params);
1086 out:
1087 /* Split up the value between registers for the read side */
1088 if (!params.is_write) {
1089 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1090 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1093 return 1;
1097 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
1098 * @vcpu: The VCPU pointer
1099 * @run: The kvm_run struct
1101 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1102 const struct sys_reg_desc *global,
1103 size_t nr_global,
1104 const struct sys_reg_desc *target_specific,
1105 size_t nr_specific)
1107 struct sys_reg_params params;
1108 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1109 int Rt = (hsr >> 5) & 0xf;
1111 params.is_aarch32 = true;
1112 params.is_32bit = true;
1113 params.CRm = (hsr >> 1) & 0xf;
1114 params.regval = vcpu_get_reg(vcpu, Rt);
1115 params.is_write = ((hsr & 1) == 0);
1116 params.CRn = (hsr >> 10) & 0xf;
1117 params.Op0 = 0;
1118 params.Op1 = (hsr >> 14) & 0x7;
1119 params.Op2 = (hsr >> 17) & 0x7;
1121 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1122 !emulate_cp(vcpu, &params, global, nr_global)) {
1123 if (!params.is_write)
1124 vcpu_set_reg(vcpu, Rt, params.regval);
1125 return 1;
1128 unhandled_cp_access(vcpu, &params);
1129 return 1;
1132 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1134 const struct sys_reg_desc *target_specific;
1135 size_t num;
1137 target_specific = get_target_table(vcpu->arch.target, false, &num);
1138 return kvm_handle_cp_64(vcpu,
1139 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1140 target_specific, num);
1143 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1145 const struct sys_reg_desc *target_specific;
1146 size_t num;
1148 target_specific = get_target_table(vcpu->arch.target, false, &num);
1149 return kvm_handle_cp_32(vcpu,
1150 cp15_regs, ARRAY_SIZE(cp15_regs),
1151 target_specific, num);
1154 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1156 return kvm_handle_cp_64(vcpu,
1157 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1158 NULL, 0);
1161 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1163 return kvm_handle_cp_32(vcpu,
1164 cp14_regs, ARRAY_SIZE(cp14_regs),
1165 NULL, 0);
1168 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1169 struct sys_reg_params *params)
1171 size_t num;
1172 const struct sys_reg_desc *table, *r;
1174 table = get_target_table(vcpu->arch.target, true, &num);
1176 /* Search target-specific then generic table. */
1177 r = find_reg(params, table, num);
1178 if (!r)
1179 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1181 if (likely(r)) {
1183 * Not having an accessor means that we have
1184 * configured a trap that we don't know how to
1185 * handle. This certainly qualifies as a gross bug
1186 * that should be fixed right away.
1188 BUG_ON(!r->access);
1190 if (likely(r->access(vcpu, params, r))) {
1191 /* Skip instruction, since it was emulated */
1192 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1193 return 1;
1195 /* If access function fails, it should complain. */
1196 } else {
1197 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1198 *vcpu_pc(vcpu));
1199 print_sys_reg_instr(params);
1201 kvm_inject_undefined(vcpu);
1202 return 1;
1205 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1206 const struct sys_reg_desc *table, size_t num)
1208 unsigned long i;
1210 for (i = 0; i < num; i++)
1211 if (table[i].reset)
1212 table[i].reset(vcpu, &table[i]);
1216 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1217 * @vcpu: The VCPU pointer
1218 * @run: The kvm_run struct
1220 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1222 struct sys_reg_params params;
1223 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1224 int Rt = (esr >> 5) & 0x1f;
1225 int ret;
1227 trace_kvm_handle_sys_reg(esr);
1229 params.is_aarch32 = false;
1230 params.is_32bit = false;
1231 params.Op0 = (esr >> 20) & 3;
1232 params.Op1 = (esr >> 14) & 0x7;
1233 params.CRn = (esr >> 10) & 0xf;
1234 params.CRm = (esr >> 1) & 0xf;
1235 params.Op2 = (esr >> 17) & 0x7;
1236 params.regval = vcpu_get_reg(vcpu, Rt);
1237 params.is_write = !(esr & 1);
1239 ret = emulate_sys_reg(vcpu, &params);
1241 if (!params.is_write)
1242 vcpu_set_reg(vcpu, Rt, params.regval);
1243 return ret;
1246 /******************************************************************************
1247 * Userspace API
1248 *****************************************************************************/
1250 static bool index_to_params(u64 id, struct sys_reg_params *params)
1252 switch (id & KVM_REG_SIZE_MASK) {
1253 case KVM_REG_SIZE_U64:
1254 /* Any unused index bits means it's not valid. */
1255 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1256 | KVM_REG_ARM_COPROC_MASK
1257 | KVM_REG_ARM64_SYSREG_OP0_MASK
1258 | KVM_REG_ARM64_SYSREG_OP1_MASK
1259 | KVM_REG_ARM64_SYSREG_CRN_MASK
1260 | KVM_REG_ARM64_SYSREG_CRM_MASK
1261 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1262 return false;
1263 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1264 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1265 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1266 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1267 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1268 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1269 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1270 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1271 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1272 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1273 return true;
1274 default:
1275 return false;
1279 /* Decode an index value, and find the sys_reg_desc entry. */
1280 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1281 u64 id)
1283 size_t num;
1284 const struct sys_reg_desc *table, *r;
1285 struct sys_reg_params params;
1287 /* We only do sys_reg for now. */
1288 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1289 return NULL;
1291 if (!index_to_params(id, &params))
1292 return NULL;
1294 table = get_target_table(vcpu->arch.target, true, &num);
1295 r = find_reg(&params, table, num);
1296 if (!r)
1297 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1299 /* Not saved in the sys_reg array? */
1300 if (r && !r->reg)
1301 r = NULL;
1303 return r;
1307 * These are the invariant sys_reg registers: we let the guest see the
1308 * host versions of these, so they're part of the guest state.
1310 * A future CPU may provide a mechanism to present different values to
1311 * the guest, or a future kvm may trap them.
1314 #define FUNCTION_INVARIANT(reg) \
1315 static void get_##reg(struct kvm_vcpu *v, \
1316 const struct sys_reg_desc *r) \
1318 u64 val; \
1320 asm volatile("mrs %0, " __stringify(reg) "\n" \
1321 : "=r" (val)); \
1322 ((struct sys_reg_desc *)r)->val = val; \
1325 FUNCTION_INVARIANT(midr_el1)
1326 FUNCTION_INVARIANT(ctr_el0)
1327 FUNCTION_INVARIANT(revidr_el1)
1328 FUNCTION_INVARIANT(id_pfr0_el1)
1329 FUNCTION_INVARIANT(id_pfr1_el1)
1330 FUNCTION_INVARIANT(id_dfr0_el1)
1331 FUNCTION_INVARIANT(id_afr0_el1)
1332 FUNCTION_INVARIANT(id_mmfr0_el1)
1333 FUNCTION_INVARIANT(id_mmfr1_el1)
1334 FUNCTION_INVARIANT(id_mmfr2_el1)
1335 FUNCTION_INVARIANT(id_mmfr3_el1)
1336 FUNCTION_INVARIANT(id_isar0_el1)
1337 FUNCTION_INVARIANT(id_isar1_el1)
1338 FUNCTION_INVARIANT(id_isar2_el1)
1339 FUNCTION_INVARIANT(id_isar3_el1)
1340 FUNCTION_INVARIANT(id_isar4_el1)
1341 FUNCTION_INVARIANT(id_isar5_el1)
1342 FUNCTION_INVARIANT(clidr_el1)
1343 FUNCTION_INVARIANT(aidr_el1)
1345 /* ->val is filled in by kvm_sys_reg_table_init() */
1346 static struct sys_reg_desc invariant_sys_regs[] = {
1347 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1348 NULL, get_midr_el1 },
1349 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1350 NULL, get_revidr_el1 },
1351 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1352 NULL, get_id_pfr0_el1 },
1353 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1354 NULL, get_id_pfr1_el1 },
1355 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1356 NULL, get_id_dfr0_el1 },
1357 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1358 NULL, get_id_afr0_el1 },
1359 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1360 NULL, get_id_mmfr0_el1 },
1361 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1362 NULL, get_id_mmfr1_el1 },
1363 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1364 NULL, get_id_mmfr2_el1 },
1365 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1366 NULL, get_id_mmfr3_el1 },
1367 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1368 NULL, get_id_isar0_el1 },
1369 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1370 NULL, get_id_isar1_el1 },
1371 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1372 NULL, get_id_isar2_el1 },
1373 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1374 NULL, get_id_isar3_el1 },
1375 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1376 NULL, get_id_isar4_el1 },
1377 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1378 NULL, get_id_isar5_el1 },
1379 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1380 NULL, get_clidr_el1 },
1381 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1382 NULL, get_aidr_el1 },
1383 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1384 NULL, get_ctr_el0 },
1387 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1389 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1390 return -EFAULT;
1391 return 0;
1394 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1396 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1397 return -EFAULT;
1398 return 0;
1401 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1403 struct sys_reg_params params;
1404 const struct sys_reg_desc *r;
1406 if (!index_to_params(id, &params))
1407 return -ENOENT;
1409 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1410 if (!r)
1411 return -ENOENT;
1413 return reg_to_user(uaddr, &r->val, id);
1416 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1418 struct sys_reg_params params;
1419 const struct sys_reg_desc *r;
1420 int err;
1421 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1423 if (!index_to_params(id, &params))
1424 return -ENOENT;
1425 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1426 if (!r)
1427 return -ENOENT;
1429 err = reg_from_user(&val, uaddr, id);
1430 if (err)
1431 return err;
1433 /* This is what we mean by invariant: you can't change it. */
1434 if (r->val != val)
1435 return -EINVAL;
1437 return 0;
1440 static bool is_valid_cache(u32 val)
1442 u32 level, ctype;
1444 if (val >= CSSELR_MAX)
1445 return false;
1447 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1448 level = (val >> 1);
1449 ctype = (cache_levels >> (level * 3)) & 7;
1451 switch (ctype) {
1452 case 0: /* No cache */
1453 return false;
1454 case 1: /* Instruction cache only */
1455 return (val & 1);
1456 case 2: /* Data cache only */
1457 case 4: /* Unified cache */
1458 return !(val & 1);
1459 case 3: /* Separate instruction and data caches */
1460 return true;
1461 default: /* Reserved: we can't know instruction or data. */
1462 return false;
1466 static int demux_c15_get(u64 id, void __user *uaddr)
1468 u32 val;
1469 u32 __user *uval = uaddr;
1471 /* Fail if we have unknown bits set. */
1472 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1473 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1474 return -ENOENT;
1476 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1477 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1478 if (KVM_REG_SIZE(id) != 4)
1479 return -ENOENT;
1480 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1481 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1482 if (!is_valid_cache(val))
1483 return -ENOENT;
1485 return put_user(get_ccsidr(val), uval);
1486 default:
1487 return -ENOENT;
1491 static int demux_c15_set(u64 id, void __user *uaddr)
1493 u32 val, newval;
1494 u32 __user *uval = uaddr;
1496 /* Fail if we have unknown bits set. */
1497 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1498 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1499 return -ENOENT;
1501 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1502 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1503 if (KVM_REG_SIZE(id) != 4)
1504 return -ENOENT;
1505 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1506 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1507 if (!is_valid_cache(val))
1508 return -ENOENT;
1510 if (get_user(newval, uval))
1511 return -EFAULT;
1513 /* This is also invariant: you can't change it. */
1514 if (newval != get_ccsidr(val))
1515 return -EINVAL;
1516 return 0;
1517 default:
1518 return -ENOENT;
1522 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1524 const struct sys_reg_desc *r;
1525 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1527 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1528 return demux_c15_get(reg->id, uaddr);
1530 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1531 return -ENOENT;
1533 r = index_to_sys_reg_desc(vcpu, reg->id);
1534 if (!r)
1535 return get_invariant_sys_reg(reg->id, uaddr);
1537 if (r->get_user)
1538 return (r->get_user)(vcpu, r, reg, uaddr);
1540 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1543 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1545 const struct sys_reg_desc *r;
1546 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1548 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1549 return demux_c15_set(reg->id, uaddr);
1551 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1552 return -ENOENT;
1554 r = index_to_sys_reg_desc(vcpu, reg->id);
1555 if (!r)
1556 return set_invariant_sys_reg(reg->id, uaddr);
1558 if (r->set_user)
1559 return (r->set_user)(vcpu, r, reg, uaddr);
1561 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1564 static unsigned int num_demux_regs(void)
1566 unsigned int i, count = 0;
1568 for (i = 0; i < CSSELR_MAX; i++)
1569 if (is_valid_cache(i))
1570 count++;
1572 return count;
1575 static int write_demux_regids(u64 __user *uindices)
1577 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1578 unsigned int i;
1580 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1581 for (i = 0; i < CSSELR_MAX; i++) {
1582 if (!is_valid_cache(i))
1583 continue;
1584 if (put_user(val | i, uindices))
1585 return -EFAULT;
1586 uindices++;
1588 return 0;
1591 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1593 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1594 KVM_REG_ARM64_SYSREG |
1595 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1596 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1597 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1598 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1599 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1602 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1604 if (!*uind)
1605 return true;
1607 if (put_user(sys_reg_to_index(reg), *uind))
1608 return false;
1610 (*uind)++;
1611 return true;
1614 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1615 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1617 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1618 unsigned int total = 0;
1619 size_t num;
1621 /* We check for duplicates here, to allow arch-specific overrides. */
1622 i1 = get_target_table(vcpu->arch.target, true, &num);
1623 end1 = i1 + num;
1624 i2 = sys_reg_descs;
1625 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1627 BUG_ON(i1 == end1 || i2 == end2);
1629 /* Walk carefully, as both tables may refer to the same register. */
1630 while (i1 || i2) {
1631 int cmp = cmp_sys_reg(i1, i2);
1632 /* target-specific overrides generic entry. */
1633 if (cmp <= 0) {
1634 /* Ignore registers we trap but don't save. */
1635 if (i1->reg) {
1636 if (!copy_reg_to_user(i1, &uind))
1637 return -EFAULT;
1638 total++;
1640 } else {
1641 /* Ignore registers we trap but don't save. */
1642 if (i2->reg) {
1643 if (!copy_reg_to_user(i2, &uind))
1644 return -EFAULT;
1645 total++;
1649 if (cmp <= 0 && ++i1 == end1)
1650 i1 = NULL;
1651 if (cmp >= 0 && ++i2 == end2)
1652 i2 = NULL;
1654 return total;
1657 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1659 return ARRAY_SIZE(invariant_sys_regs)
1660 + num_demux_regs()
1661 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1664 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1666 unsigned int i;
1667 int err;
1669 /* Then give them all the invariant registers' indices. */
1670 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1671 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1672 return -EFAULT;
1673 uindices++;
1676 err = walk_sys_regs(vcpu, uindices);
1677 if (err < 0)
1678 return err;
1679 uindices += err;
1681 return write_demux_regids(uindices);
1684 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1686 unsigned int i;
1688 for (i = 1; i < n; i++) {
1689 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1690 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1691 return 1;
1695 return 0;
1698 void kvm_sys_reg_table_init(void)
1700 unsigned int i;
1701 struct sys_reg_desc clidr;
1703 /* Make sure tables are unique and in order. */
1704 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1705 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1706 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1707 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1708 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1709 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1711 /* We abuse the reset function to overwrite the table itself. */
1712 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1713 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1716 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1718 * If software reads the Cache Type fields from Ctype1
1719 * upwards, once it has seen a value of 0b000, no caches
1720 * exist at further-out levels of the hierarchy. So, for
1721 * example, if Ctype3 is the first Cache Type field with a
1722 * value of 0b000, the values of Ctype4 to Ctype7 must be
1723 * ignored.
1725 get_clidr_el1(NULL, &clidr); /* Ugly... */
1726 cache_levels = clidr.val;
1727 for (i = 0; i < 7; i++)
1728 if (((cache_levels >> (i*3)) & 7) == 0)
1729 break;
1730 /* Clear all higher bits. */
1731 cache_levels &= (1 << (i*3))-1;
1735 * kvm_reset_sys_regs - sets system registers to reset value
1736 * @vcpu: The VCPU pointer
1738 * This function finds the right table above and sets the registers on the
1739 * virtual CPU struct to their architecturally defined reset values.
1741 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1743 size_t num;
1744 const struct sys_reg_desc *table;
1746 /* Catch someone adding a register without putting in reset entry. */
1747 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1749 /* Generic chip reset first (so target could override). */
1750 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1752 table = get_target_table(vcpu->arch.target, true, &num);
1753 reset_sys_reg_descs(vcpu, table, num);
1755 for (num = 1; num < NR_SYS_REGS; num++)
1756 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1757 panic("Didn't reset vcpu_sys_reg(%zi)", num);