irqchip/omap-intc: Remove duplicate setup for IRQ chip type handler
[linux/fpc-iii.git] / drivers / bluetooth / hci_intel.c
blob4a414a5a31655a4d3d0a8a0b03749ef73ff14357
1 /*
3 * Bluetooth HCI UART driver for Intel devices
5 * Copyright (C) 2015 Intel Corporation
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
40 #include "hci_uart.h"
41 #include "btintel.h"
43 #define STATE_BOOTLOADER 0
44 #define STATE_DOWNLOADING 1
45 #define STATE_FIRMWARE_LOADED 2
46 #define STATE_FIRMWARE_FAILED 3
47 #define STATE_BOOTING 4
48 #define STATE_LPM_ENABLED 5
49 #define STATE_TX_ACTIVE 6
50 #define STATE_SUSPENDED 7
51 #define STATE_LPM_TRANSACTION 8
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
62 #define LPM_SUSPEND_DELAY_MS 1000
64 struct hci_lpm_pkt {
65 __u8 opcode;
66 __u8 dlen;
67 __u8 data[0];
68 } __packed;
70 struct intel_device {
71 struct list_head list;
72 struct platform_device *pdev;
73 struct gpio_desc *reset;
74 struct hci_uart *hu;
75 struct mutex hu_lock;
76 int irq;
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
82 struct intel_data {
83 struct sk_buff *rx_skb;
84 struct sk_buff_head txq;
85 struct work_struct busy_work;
86 struct hci_uart *hu;
87 unsigned long flags;
90 static u8 intel_convert_speed(unsigned int speed)
92 switch (speed) {
93 case 9600:
94 return 0x00;
95 case 19200:
96 return 0x01;
97 case 38400:
98 return 0x02;
99 case 57600:
100 return 0x03;
101 case 115200:
102 return 0x04;
103 case 230400:
104 return 0x05;
105 case 460800:
106 return 0x06;
107 case 921600:
108 return 0x07;
109 case 1843200:
110 return 0x08;
111 case 3250000:
112 return 0x09;
113 case 2000000:
114 return 0x0a;
115 case 3000000:
116 return 0x0b;
117 default:
118 return 0xff;
122 static int intel_wait_booting(struct hci_uart *hu)
124 struct intel_data *intel = hu->priv;
125 int err;
127 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 TASK_INTERRUPTIBLE,
129 msecs_to_jiffies(1000));
131 if (err == 1) {
132 bt_dev_err(hu->hdev, "Device boot interrupted");
133 return -EINTR;
136 if (err) {
137 bt_dev_err(hu->hdev, "Device boot timeout");
138 return -ETIMEDOUT;
141 return err;
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
147 struct intel_data *intel = hu->priv;
148 int err;
150 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 TASK_INTERRUPTIBLE,
152 msecs_to_jiffies(1000));
154 if (err == 1) {
155 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 return -EINTR;
159 if (err) {
160 bt_dev_err(hu->hdev, "LPM transaction timeout");
161 return -ETIMEDOUT;
164 return err;
167 static int intel_lpm_suspend(struct hci_uart *hu)
169 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 struct intel_data *intel = hu->priv;
171 struct sk_buff *skb;
173 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 test_bit(STATE_SUSPENDED, &intel->flags))
175 return 0;
177 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 return -EAGAIN;
180 bt_dev_dbg(hu->hdev, "Suspending");
182 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 if (!skb) {
184 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 return -ENOMEM;
188 memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189 bt_cb(skb)->pkt_type = HCI_LPM_PKT;
191 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
193 /* LPM flow is a priority, enqueue packet at list head */
194 skb_queue_head(&intel->txq, skb);
195 hci_uart_tx_wakeup(hu);
197 intel_wait_lpm_transaction(hu);
198 /* Even in case of failure, continue and test the suspended flag */
200 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
202 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 bt_dev_err(hu->hdev, "Device suspend error");
204 return -EINVAL;
207 bt_dev_dbg(hu->hdev, "Suspended");
209 hci_uart_set_flow_control(hu, true);
211 return 0;
214 static int intel_lpm_resume(struct hci_uart *hu)
216 struct intel_data *intel = hu->priv;
217 struct sk_buff *skb;
219 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 !test_bit(STATE_SUSPENDED, &intel->flags))
221 return 0;
223 bt_dev_dbg(hu->hdev, "Resuming");
225 hci_uart_set_flow_control(hu, false);
227 skb = bt_skb_alloc(0, GFP_KERNEL);
228 if (!skb) {
229 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 return -ENOMEM;
233 bt_cb(skb)->pkt_type = HCI_LPM_WAKE_PKT;
235 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
237 /* LPM flow is a priority, enqueue packet at list head */
238 skb_queue_head(&intel->txq, skb);
239 hci_uart_tx_wakeup(hu);
241 intel_wait_lpm_transaction(hu);
242 /* Even in case of failure, continue and test the suspended flag */
244 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
246 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 bt_dev_err(hu->hdev, "Device resume error");
248 return -EINVAL;
251 bt_dev_dbg(hu->hdev, "Resumed");
253 return 0;
255 #endif /* CONFIG_PM */
257 static int intel_lpm_host_wake(struct hci_uart *hu)
259 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 struct intel_data *intel = hu->priv;
261 struct sk_buff *skb;
263 hci_uart_set_flow_control(hu, false);
265 clear_bit(STATE_SUSPENDED, &intel->flags);
267 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 if (!skb) {
269 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 return -ENOMEM;
273 memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274 sizeof(lpm_resume_ack));
275 bt_cb(skb)->pkt_type = HCI_LPM_PKT;
277 /* LPM flow is a priority, enqueue packet at list head */
278 skb_queue_head(&intel->txq, skb);
279 hci_uart_tx_wakeup(hu);
281 bt_dev_dbg(hu->hdev, "Resumed by controller");
283 return 0;
286 static irqreturn_t intel_irq(int irq, void *dev_id)
288 struct intel_device *idev = dev_id;
290 dev_info(&idev->pdev->dev, "hci_intel irq\n");
292 mutex_lock(&idev->hu_lock);
293 if (idev->hu)
294 intel_lpm_host_wake(idev->hu);
295 mutex_unlock(&idev->hu_lock);
297 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298 pm_runtime_get(&idev->pdev->dev);
299 pm_runtime_mark_last_busy(&idev->pdev->dev);
300 pm_runtime_put_autosuspend(&idev->pdev->dev);
302 return IRQ_HANDLED;
305 static int intel_set_power(struct hci_uart *hu, bool powered)
307 struct list_head *p;
308 int err = -ENODEV;
310 mutex_lock(&intel_device_list_lock);
312 list_for_each(p, &intel_device_list) {
313 struct intel_device *idev = list_entry(p, struct intel_device,
314 list);
316 /* tty device and pdev device should share the same parent
317 * which is the UART port.
319 if (hu->tty->dev->parent != idev->pdev->dev.parent)
320 continue;
322 if (!idev->reset) {
323 err = -ENOTSUPP;
324 break;
327 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
328 hu, dev_name(&idev->pdev->dev), powered);
330 gpiod_set_value(idev->reset, powered);
332 /* Provide to idev a hu reference which is used to run LPM
333 * transactions (lpm suspend/resume) from PM callbacks.
334 * hu needs to be protected against concurrent removing during
335 * these PM ops.
337 mutex_lock(&idev->hu_lock);
338 idev->hu = powered ? hu : NULL;
339 mutex_unlock(&idev->hu_lock);
341 if (idev->irq < 0)
342 break;
344 if (powered && device_can_wakeup(&idev->pdev->dev)) {
345 err = devm_request_threaded_irq(&idev->pdev->dev,
346 idev->irq, NULL,
347 intel_irq,
348 IRQF_ONESHOT,
349 "bt-host-wake", idev);
350 if (err) {
351 BT_ERR("hu %p, unable to allocate irq-%d",
352 hu, idev->irq);
353 break;
356 device_wakeup_enable(&idev->pdev->dev);
358 pm_runtime_set_active(&idev->pdev->dev);
359 pm_runtime_use_autosuspend(&idev->pdev->dev);
360 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
361 LPM_SUSPEND_DELAY_MS);
362 pm_runtime_enable(&idev->pdev->dev);
363 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
364 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
365 device_wakeup_disable(&idev->pdev->dev);
367 pm_runtime_disable(&idev->pdev->dev);
371 mutex_unlock(&intel_device_list_lock);
373 return err;
376 static void intel_busy_work(struct work_struct *work)
378 struct list_head *p;
379 struct intel_data *intel = container_of(work, struct intel_data,
380 busy_work);
382 /* Link is busy, delay the suspend */
383 mutex_lock(&intel_device_list_lock);
384 list_for_each(p, &intel_device_list) {
385 struct intel_device *idev = list_entry(p, struct intel_device,
386 list);
388 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
389 pm_runtime_get(&idev->pdev->dev);
390 pm_runtime_mark_last_busy(&idev->pdev->dev);
391 pm_runtime_put_autosuspend(&idev->pdev->dev);
392 break;
395 mutex_unlock(&intel_device_list_lock);
398 static int intel_open(struct hci_uart *hu)
400 struct intel_data *intel;
402 BT_DBG("hu %p", hu);
404 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
405 if (!intel)
406 return -ENOMEM;
408 skb_queue_head_init(&intel->txq);
409 INIT_WORK(&intel->busy_work, intel_busy_work);
411 intel->hu = hu;
413 hu->priv = intel;
415 if (!intel_set_power(hu, true))
416 set_bit(STATE_BOOTING, &intel->flags);
418 return 0;
421 static int intel_close(struct hci_uart *hu)
423 struct intel_data *intel = hu->priv;
425 BT_DBG("hu %p", hu);
427 cancel_work_sync(&intel->busy_work);
429 intel_set_power(hu, false);
431 skb_queue_purge(&intel->txq);
432 kfree_skb(intel->rx_skb);
433 kfree(intel);
435 hu->priv = NULL;
436 return 0;
439 static int intel_flush(struct hci_uart *hu)
441 struct intel_data *intel = hu->priv;
443 BT_DBG("hu %p", hu);
445 skb_queue_purge(&intel->txq);
447 return 0;
450 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
452 struct sk_buff *skb;
453 struct hci_event_hdr *hdr;
454 struct hci_ev_cmd_complete *evt;
456 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
457 if (!skb)
458 return -ENOMEM;
460 hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
461 hdr->evt = HCI_EV_CMD_COMPLETE;
462 hdr->plen = sizeof(*evt) + 1;
464 evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
465 evt->ncmd = 0x01;
466 evt->opcode = cpu_to_le16(opcode);
468 *skb_put(skb, 1) = 0x00;
470 bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
472 return hci_recv_frame(hdev, skb);
475 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
477 struct intel_data *intel = hu->priv;
478 struct hci_dev *hdev = hu->hdev;
479 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
480 struct sk_buff *skb;
481 int err;
483 /* This can be the first command sent to the chip, check
484 * that the controller is ready.
486 err = intel_wait_booting(hu);
488 clear_bit(STATE_BOOTING, &intel->flags);
490 /* In case of timeout, try to continue anyway */
491 if (err && err != ETIMEDOUT)
492 return err;
494 bt_dev_info(hdev, "Change controller speed to %d", speed);
496 speed_cmd[3] = intel_convert_speed(speed);
497 if (speed_cmd[3] == 0xff) {
498 bt_dev_err(hdev, "Unsupported speed");
499 return -EINVAL;
502 /* Device will not accept speed change if Intel version has not been
503 * previously requested.
505 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
506 if (IS_ERR(skb)) {
507 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
508 PTR_ERR(skb));
509 return PTR_ERR(skb);
511 kfree_skb(skb);
513 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
514 if (!skb) {
515 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
516 return -ENOMEM;
519 memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
520 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
522 hci_uart_set_flow_control(hu, true);
524 skb_queue_tail(&intel->txq, skb);
525 hci_uart_tx_wakeup(hu);
527 /* wait 100ms to change baudrate on controller side */
528 msleep(100);
530 hci_uart_set_baudrate(hu, speed);
531 hci_uart_set_flow_control(hu, false);
533 return 0;
536 static int intel_setup(struct hci_uart *hu)
538 static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
539 0x00, 0x08, 0x04, 0x00 };
540 static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b };
541 struct intel_data *intel = hu->priv;
542 struct intel_device *idev = NULL;
543 struct hci_dev *hdev = hu->hdev;
544 struct sk_buff *skb;
545 struct intel_version *ver;
546 struct intel_boot_params *params;
547 struct list_head *p;
548 const struct firmware *fw;
549 const u8 *fw_ptr;
550 char fwname[64];
551 u32 frag_len;
552 ktime_t calltime, delta, rettime;
553 unsigned long long duration;
554 unsigned int init_speed, oper_speed;
555 int speed_change = 0;
556 int err;
558 bt_dev_dbg(hdev, "start intel_setup");
560 hu->hdev->set_diag = btintel_set_diag;
561 hu->hdev->set_bdaddr = btintel_set_bdaddr;
563 calltime = ktime_get();
565 if (hu->init_speed)
566 init_speed = hu->init_speed;
567 else
568 init_speed = hu->proto->init_speed;
570 if (hu->oper_speed)
571 oper_speed = hu->oper_speed;
572 else
573 oper_speed = hu->proto->oper_speed;
575 if (oper_speed && init_speed && oper_speed != init_speed)
576 speed_change = 1;
578 /* Check that the controller is ready */
579 err = intel_wait_booting(hu);
581 clear_bit(STATE_BOOTING, &intel->flags);
583 /* In case of timeout, try to continue anyway */
584 if (err && err != ETIMEDOUT)
585 return err;
587 set_bit(STATE_BOOTLOADER, &intel->flags);
589 /* Read the Intel version information to determine if the device
590 * is in bootloader mode or if it already has operational firmware
591 * loaded.
593 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
594 if (IS_ERR(skb)) {
595 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
596 PTR_ERR(skb));
597 return PTR_ERR(skb);
600 if (skb->len != sizeof(*ver)) {
601 bt_dev_err(hdev, "Intel version event size mismatch");
602 kfree_skb(skb);
603 return -EILSEQ;
606 ver = (struct intel_version *)skb->data;
607 if (ver->status) {
608 bt_dev_err(hdev, "Intel version command failure (%02x)",
609 ver->status);
610 err = -bt_to_errno(ver->status);
611 kfree_skb(skb);
612 return err;
615 /* The hardware platform number has a fixed value of 0x37 and
616 * for now only accept this single value.
618 if (ver->hw_platform != 0x37) {
619 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
620 ver->hw_platform);
621 kfree_skb(skb);
622 return -EINVAL;
625 /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
626 * supported by this firmware loading method. This check has been
627 * put in place to ensure correct forward compatibility options
628 * when newer hardware variants come along.
630 if (ver->hw_variant != 0x0b) {
631 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
632 ver->hw_variant);
633 kfree_skb(skb);
634 return -EINVAL;
637 btintel_version_info(hdev, ver);
639 /* The firmware variant determines if the device is in bootloader
640 * mode or is running operational firmware. The value 0x06 identifies
641 * the bootloader and the value 0x23 identifies the operational
642 * firmware.
644 * When the operational firmware is already present, then only
645 * the check for valid Bluetooth device address is needed. This
646 * determines if the device will be added as configured or
647 * unconfigured controller.
649 * It is not possible to use the Secure Boot Parameters in this
650 * case since that command is only available in bootloader mode.
652 if (ver->fw_variant == 0x23) {
653 kfree_skb(skb);
654 clear_bit(STATE_BOOTLOADER, &intel->flags);
655 btintel_check_bdaddr(hdev);
656 return 0;
659 /* If the device is not in bootloader mode, then the only possible
660 * choice is to return an error and abort the device initialization.
662 if (ver->fw_variant != 0x06) {
663 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
664 ver->fw_variant);
665 kfree_skb(skb);
666 return -ENODEV;
669 kfree_skb(skb);
671 /* Read the secure boot parameters to identify the operating
672 * details of the bootloader.
674 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
675 if (IS_ERR(skb)) {
676 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
677 PTR_ERR(skb));
678 return PTR_ERR(skb);
681 if (skb->len != sizeof(*params)) {
682 bt_dev_err(hdev, "Intel boot parameters size mismatch");
683 kfree_skb(skb);
684 return -EILSEQ;
687 params = (struct intel_boot_params *)skb->data;
688 if (params->status) {
689 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
690 params->status);
691 err = -bt_to_errno(params->status);
692 kfree_skb(skb);
693 return err;
696 bt_dev_info(hdev, "Device revision is %u",
697 le16_to_cpu(params->dev_revid));
699 bt_dev_info(hdev, "Secure boot is %s",
700 params->secure_boot ? "enabled" : "disabled");
702 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
703 params->min_fw_build_nn, params->min_fw_build_cw,
704 2000 + params->min_fw_build_yy);
706 /* It is required that every single firmware fragment is acknowledged
707 * with a command complete event. If the boot parameters indicate
708 * that this bootloader does not send them, then abort the setup.
710 if (params->limited_cce != 0x00) {
711 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
712 params->limited_cce);
713 kfree_skb(skb);
714 return -EINVAL;
717 /* If the OTP has no valid Bluetooth device address, then there will
718 * also be no valid address for the operational firmware.
720 if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
721 bt_dev_info(hdev, "No device address configured");
722 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
725 /* With this Intel bootloader only the hardware variant and device
726 * revision information are used to select the right firmware.
728 * Currently this bootloader support is limited to hardware variant
729 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
731 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
732 le16_to_cpu(params->dev_revid));
734 err = request_firmware(&fw, fwname, &hdev->dev);
735 if (err < 0) {
736 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
737 err);
738 kfree_skb(skb);
739 return err;
742 bt_dev_info(hdev, "Found device firmware: %s", fwname);
744 /* Save the DDC file name for later */
745 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
746 le16_to_cpu(params->dev_revid));
748 kfree_skb(skb);
750 if (fw->size < 644) {
751 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
752 fw->size);
753 err = -EBADF;
754 goto done;
757 set_bit(STATE_DOWNLOADING, &intel->flags);
759 /* Start the firmware download transaction with the Init fragment
760 * represented by the 128 bytes of CSS header.
762 err = btintel_secure_send(hdev, 0x00, 128, fw->data);
763 if (err < 0) {
764 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
765 goto done;
768 /* Send the 256 bytes of public key information from the firmware
769 * as the PKey fragment.
771 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
772 if (err < 0) {
773 bt_dev_err(hdev, "Failed to send firmware public key (%d)",
774 err);
775 goto done;
778 /* Send the 256 bytes of signature information from the firmware
779 * as the Sign fragment.
781 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
782 if (err < 0) {
783 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
784 err);
785 goto done;
788 fw_ptr = fw->data + 644;
789 frag_len = 0;
791 while (fw_ptr - fw->data < fw->size) {
792 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
794 frag_len += sizeof(*cmd) + cmd->plen;
796 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
797 fw->size);
799 /* The parameter length of the secure send command requires
800 * a 4 byte alignment. It happens so that the firmware file
801 * contains proper Intel_NOP commands to align the fragments
802 * as needed.
804 * Send set of commands with 4 byte alignment from the
805 * firmware data buffer as a single Data fragement.
807 if (frag_len % 4)
808 continue;
810 /* Send each command from the firmware data buffer as
811 * a single Data fragment.
813 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
814 if (err < 0) {
815 bt_dev_err(hdev, "Failed to send firmware data (%d)",
816 err);
817 goto done;
820 fw_ptr += frag_len;
821 frag_len = 0;
824 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
826 bt_dev_info(hdev, "Waiting for firmware download to complete");
828 /* Before switching the device into operational mode and with that
829 * booting the loaded firmware, wait for the bootloader notification
830 * that all fragments have been successfully received.
832 * When the event processing receives the notification, then the
833 * STATE_DOWNLOADING flag will be cleared.
835 * The firmware loading should not take longer than 5 seconds
836 * and thus just timeout if that happens and fail the setup
837 * of this device.
839 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
840 TASK_INTERRUPTIBLE,
841 msecs_to_jiffies(5000));
842 if (err == 1) {
843 bt_dev_err(hdev, "Firmware loading interrupted");
844 err = -EINTR;
845 goto done;
848 if (err) {
849 bt_dev_err(hdev, "Firmware loading timeout");
850 err = -ETIMEDOUT;
851 goto done;
854 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
855 bt_dev_err(hdev, "Firmware loading failed");
856 err = -ENOEXEC;
857 goto done;
860 rettime = ktime_get();
861 delta = ktime_sub(rettime, calltime);
862 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
864 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
866 done:
867 release_firmware(fw);
869 if (err < 0)
870 return err;
872 /* We need to restore the default speed before Intel reset */
873 if (speed_change) {
874 err = intel_set_baudrate(hu, init_speed);
875 if (err)
876 return err;
879 calltime = ktime_get();
881 set_bit(STATE_BOOTING, &intel->flags);
883 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
884 HCI_INIT_TIMEOUT);
885 if (IS_ERR(skb))
886 return PTR_ERR(skb);
888 kfree_skb(skb);
890 /* The bootloader will not indicate when the device is ready. This
891 * is done by the operational firmware sending bootup notification.
893 * Booting into operational firmware should not take longer than
894 * 1 second. However if that happens, then just fail the setup
895 * since something went wrong.
897 bt_dev_info(hdev, "Waiting for device to boot");
899 err = intel_wait_booting(hu);
900 if (err)
901 return err;
903 clear_bit(STATE_BOOTING, &intel->flags);
905 rettime = ktime_get();
906 delta = ktime_sub(rettime, calltime);
907 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
909 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
911 /* Enable LPM if matching pdev with wakeup enabled */
912 mutex_lock(&intel_device_list_lock);
913 list_for_each(p, &intel_device_list) {
914 struct intel_device *dev = list_entry(p, struct intel_device,
915 list);
916 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
917 if (device_may_wakeup(&dev->pdev->dev))
918 idev = dev;
919 break;
922 mutex_unlock(&intel_device_list_lock);
924 if (!idev)
925 goto no_lpm;
927 bt_dev_info(hdev, "Enabling LPM");
929 skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param,
930 HCI_CMD_TIMEOUT);
931 if (IS_ERR(skb)) {
932 bt_dev_err(hdev, "Failed to enable LPM");
933 goto no_lpm;
935 kfree_skb(skb);
937 set_bit(STATE_LPM_ENABLED, &intel->flags);
939 no_lpm:
940 /* Ignore errors, device can work without DDC parameters */
941 btintel_load_ddc_config(hdev, fwname);
943 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
944 if (IS_ERR(skb))
945 return PTR_ERR(skb);
946 kfree_skb(skb);
948 if (speed_change) {
949 err = intel_set_baudrate(hu, oper_speed);
950 if (err)
951 return err;
954 bt_dev_info(hdev, "Setup complete");
956 clear_bit(STATE_BOOTLOADER, &intel->flags);
958 return 0;
961 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
963 struct hci_uart *hu = hci_get_drvdata(hdev);
964 struct intel_data *intel = hu->priv;
965 struct hci_event_hdr *hdr;
967 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
968 !test_bit(STATE_BOOTING, &intel->flags))
969 goto recv;
971 hdr = (void *)skb->data;
973 /* When the firmware loading completes the device sends
974 * out a vendor specific event indicating the result of
975 * the firmware loading.
977 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
978 skb->data[2] == 0x06) {
979 if (skb->data[3] != 0x00)
980 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
982 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
983 test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
984 smp_mb__after_atomic();
985 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
988 /* When switching to the operational firmware the device
989 * sends a vendor specific event indicating that the bootup
990 * completed.
992 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
993 skb->data[2] == 0x02) {
994 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
995 smp_mb__after_atomic();
996 wake_up_bit(&intel->flags, STATE_BOOTING);
999 recv:
1000 return hci_recv_frame(hdev, skb);
1003 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
1005 struct hci_uart *hu = hci_get_drvdata(hdev);
1006 struct intel_data *intel = hu->priv;
1008 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
1010 if (value) {
1011 set_bit(STATE_TX_ACTIVE, &intel->flags);
1012 schedule_work(&intel->busy_work);
1013 } else {
1014 clear_bit(STATE_TX_ACTIVE, &intel->flags);
1018 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
1020 struct hci_lpm_pkt *lpm = (void *)skb->data;
1021 struct hci_uart *hu = hci_get_drvdata(hdev);
1022 struct intel_data *intel = hu->priv;
1024 switch (lpm->opcode) {
1025 case LPM_OP_TX_NOTIFY:
1026 if (lpm->dlen < 1) {
1027 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1028 break;
1030 intel_recv_lpm_notify(hdev, lpm->data[0]);
1031 break;
1032 case LPM_OP_SUSPEND_ACK:
1033 set_bit(STATE_SUSPENDED, &intel->flags);
1034 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1035 smp_mb__after_atomic();
1036 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1038 break;
1039 case LPM_OP_RESUME_ACK:
1040 clear_bit(STATE_SUSPENDED, &intel->flags);
1041 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1042 smp_mb__after_atomic();
1043 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1045 break;
1046 default:
1047 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1048 break;
1051 kfree_skb(skb);
1053 return 0;
1056 #define INTEL_RECV_LPM \
1057 .type = HCI_LPM_PKT, \
1058 .hlen = HCI_LPM_HDR_SIZE, \
1059 .loff = 1, \
1060 .lsize = 1, \
1061 .maxlen = HCI_LPM_MAX_SIZE
1063 static const struct h4_recv_pkt intel_recv_pkts[] = {
1064 { H4_RECV_ACL, .recv = hci_recv_frame },
1065 { H4_RECV_SCO, .recv = hci_recv_frame },
1066 { H4_RECV_EVENT, .recv = intel_recv_event },
1067 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
1070 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1072 struct intel_data *intel = hu->priv;
1074 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1075 return -EUNATCH;
1077 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1078 intel_recv_pkts,
1079 ARRAY_SIZE(intel_recv_pkts));
1080 if (IS_ERR(intel->rx_skb)) {
1081 int err = PTR_ERR(intel->rx_skb);
1082 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1083 intel->rx_skb = NULL;
1084 return err;
1087 return count;
1090 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1092 struct intel_data *intel = hu->priv;
1093 struct list_head *p;
1095 BT_DBG("hu %p skb %p", hu, skb);
1097 /* Be sure our controller is resumed and potential LPM transaction
1098 * completed before enqueuing any packet.
1100 mutex_lock(&intel_device_list_lock);
1101 list_for_each(p, &intel_device_list) {
1102 struct intel_device *idev = list_entry(p, struct intel_device,
1103 list);
1105 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1106 pm_runtime_get_sync(&idev->pdev->dev);
1107 pm_runtime_mark_last_busy(&idev->pdev->dev);
1108 pm_runtime_put_autosuspend(&idev->pdev->dev);
1109 break;
1112 mutex_unlock(&intel_device_list_lock);
1114 skb_queue_tail(&intel->txq, skb);
1116 return 0;
1119 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1121 struct intel_data *intel = hu->priv;
1122 struct sk_buff *skb;
1124 skb = skb_dequeue(&intel->txq);
1125 if (!skb)
1126 return skb;
1128 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1129 (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)) {
1130 struct hci_command_hdr *cmd = (void *)skb->data;
1131 __u16 opcode = le16_to_cpu(cmd->opcode);
1133 /* When the 0xfc01 command is issued to boot into
1134 * the operational firmware, it will actually not
1135 * send a command complete event. To keep the flow
1136 * control working inject that event here.
1138 if (opcode == 0xfc01)
1139 inject_cmd_complete(hu->hdev, opcode);
1142 /* Prepend skb with frame type */
1143 memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1);
1145 return skb;
1148 static const struct hci_uart_proto intel_proto = {
1149 .id = HCI_UART_INTEL,
1150 .name = "Intel",
1151 .manufacturer = 2,
1152 .init_speed = 115200,
1153 .oper_speed = 3000000,
1154 .open = intel_open,
1155 .close = intel_close,
1156 .flush = intel_flush,
1157 .setup = intel_setup,
1158 .set_baudrate = intel_set_baudrate,
1159 .recv = intel_recv,
1160 .enqueue = intel_enqueue,
1161 .dequeue = intel_dequeue,
1164 #ifdef CONFIG_ACPI
1165 static const struct acpi_device_id intel_acpi_match[] = {
1166 { "INT33E1", 0 },
1167 { },
1169 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1170 #endif
1172 #ifdef CONFIG_PM
1173 static int intel_suspend_device(struct device *dev)
1175 struct intel_device *idev = dev_get_drvdata(dev);
1177 mutex_lock(&idev->hu_lock);
1178 if (idev->hu)
1179 intel_lpm_suspend(idev->hu);
1180 mutex_unlock(&idev->hu_lock);
1182 return 0;
1185 static int intel_resume_device(struct device *dev)
1187 struct intel_device *idev = dev_get_drvdata(dev);
1189 mutex_lock(&idev->hu_lock);
1190 if (idev->hu)
1191 intel_lpm_resume(idev->hu);
1192 mutex_unlock(&idev->hu_lock);
1194 return 0;
1196 #endif
1198 #ifdef CONFIG_PM_SLEEP
1199 static int intel_suspend(struct device *dev)
1201 struct intel_device *idev = dev_get_drvdata(dev);
1203 if (device_may_wakeup(dev))
1204 enable_irq_wake(idev->irq);
1206 return intel_suspend_device(dev);
1209 static int intel_resume(struct device *dev)
1211 struct intel_device *idev = dev_get_drvdata(dev);
1213 if (device_may_wakeup(dev))
1214 disable_irq_wake(idev->irq);
1216 return intel_resume_device(dev);
1218 #endif
1220 static const struct dev_pm_ops intel_pm_ops = {
1221 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1222 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1225 static int intel_probe(struct platform_device *pdev)
1227 struct intel_device *idev;
1229 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1230 if (!idev)
1231 return -ENOMEM;
1233 mutex_init(&idev->hu_lock);
1235 idev->pdev = pdev;
1237 idev->reset = devm_gpiod_get_optional(&pdev->dev, "reset",
1238 GPIOD_OUT_LOW);
1239 if (IS_ERR(idev->reset)) {
1240 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1241 return PTR_ERR(idev->reset);
1244 idev->irq = platform_get_irq(pdev, 0);
1245 if (idev->irq < 0) {
1246 struct gpio_desc *host_wake;
1248 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1250 host_wake = devm_gpiod_get_optional(&pdev->dev, "host-wake",
1251 GPIOD_IN);
1252 if (IS_ERR(host_wake)) {
1253 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1254 goto no_irq;
1257 idev->irq = gpiod_to_irq(host_wake);
1258 if (idev->irq < 0) {
1259 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1260 goto no_irq;
1264 /* Only enable wake-up/irq when controller is powered */
1265 device_set_wakeup_capable(&pdev->dev, true);
1266 device_wakeup_disable(&pdev->dev);
1268 no_irq:
1269 platform_set_drvdata(pdev, idev);
1271 /* Place this instance on the device list */
1272 mutex_lock(&intel_device_list_lock);
1273 list_add_tail(&idev->list, &intel_device_list);
1274 mutex_unlock(&intel_device_list_lock);
1276 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1277 desc_to_gpio(idev->reset), idev->irq);
1279 return 0;
1282 static int intel_remove(struct platform_device *pdev)
1284 struct intel_device *idev = platform_get_drvdata(pdev);
1286 device_wakeup_disable(&pdev->dev);
1288 mutex_lock(&intel_device_list_lock);
1289 list_del(&idev->list);
1290 mutex_unlock(&intel_device_list_lock);
1292 dev_info(&pdev->dev, "unregistered.\n");
1294 return 0;
1297 static struct platform_driver intel_driver = {
1298 .probe = intel_probe,
1299 .remove = intel_remove,
1300 .driver = {
1301 .name = "hci_intel",
1302 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1303 .pm = &intel_pm_ops,
1307 int __init intel_init(void)
1309 platform_driver_register(&intel_driver);
1311 return hci_uart_register_proto(&intel_proto);
1314 int __exit intel_deinit(void)
1316 platform_driver_unregister(&intel_driver);
1318 return hci_uart_unregister_proto(&intel_proto);