1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 /* 82562G 10/100 Network Connection
23 * 82562G-2 10/100 Network Connection
24 * 82562GT 10/100 Network Connection
25 * 82562GT-2 10/100 Network Connection
26 * 82562V 10/100 Network Connection
27 * 82562V-2 10/100 Network Connection
28 * 82566DC-2 Gigabit Network Connection
29 * 82566DC Gigabit Network Connection
30 * 82566DM-2 Gigabit Network Connection
31 * 82566DM Gigabit Network Connection
32 * 82566MC Gigabit Network Connection
33 * 82566MM Gigabit Network Connection
34 * 82567LM Gigabit Network Connection
35 * 82567LF Gigabit Network Connection
36 * 82567V Gigabit Network Connection
37 * 82567LM-2 Gigabit Network Connection
38 * 82567LF-2 Gigabit Network Connection
39 * 82567V-2 Gigabit Network Connection
40 * 82567LF-3 Gigabit Network Connection
41 * 82567LM-3 Gigabit Network Connection
42 * 82567LM-4 Gigabit Network Connection
43 * 82577LM Gigabit Network Connection
44 * 82577LC Gigabit Network Connection
45 * 82578DM Gigabit Network Connection
46 * 82578DC Gigabit Network Connection
47 * 82579LM Gigabit Network Connection
48 * 82579V Gigabit Network Connection
49 * Ethernet Connection I217-LM
50 * Ethernet Connection I217-V
51 * Ethernet Connection I218-V
52 * Ethernet Connection I218-LM
53 * Ethernet Connection (2) I218-LM
54 * Ethernet Connection (2) I218-V
55 * Ethernet Connection (3) I218-LM
56 * Ethernet Connection (3) I218-V
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status
{
65 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
66 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
67 u16 dael
:1; /* bit 2 Direct Access error Log */
68 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
69 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
70 u16 reserved1
:2; /* bit 13:6 Reserved */
71 u16 reserved2
:6; /* bit 13:6 Reserved */
72 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
73 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl
{
82 u16 flcgo
:1; /* 0 Flash Cycle Go */
83 u16 flcycle
:2; /* 2:1 Flash Cycle */
84 u16 reserved
:5; /* 7:3 Reserved */
85 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
86 u16 flockdn
:6; /* 15:10 Reserved */
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc
{
94 u32 grra
:8; /* 0:7 GbE region Read Access */
95 u32 grwa
:8; /* 8:15 GbE region Write Access */
96 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
97 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range
{
105 u32 base
:13; /* 0:12 Protected Range Base */
106 u32 reserved1
:2; /* 13:14 Reserved */
107 u32 rpe
:1; /* 15 Read Protection Enable */
108 u32 limit
:13; /* 16:28 Protected Range Limit */
109 u32 reserved2
:2; /* 29:30 Reserved */
110 u32 wpe
:1; /* 31 Write Protection Enable */
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
117 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
118 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
119 u32 offset
, u8 byte
);
120 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
122 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
124 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
126 static s32
e1000_read_flash_data32_ich8lan(struct e1000_hw
*hw
, u32 offset
,
128 static s32
e1000_read_flash_dword_ich8lan(struct e1000_hw
*hw
,
129 u32 offset
, u32
*data
);
130 static s32
e1000_write_flash_data32_ich8lan(struct e1000_hw
*hw
,
131 u32 offset
, u32 data
);
132 static s32
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw
*hw
,
133 u32 offset
, u32 dword
);
134 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
135 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
136 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
137 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
138 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
139 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
140 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
141 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
142 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
143 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
146 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
147 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
);
150 static int e1000_rar_set_pch2lan(struct e1000_hw
*hw
, u8
*addr
, u32 index
);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw
*hw
, u8
*addr
, u32 index
);
152 static u32
e1000_rar_get_count_pch_lpt(struct e1000_hw
*hw
);
153 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
);
155 static s32
e1000_disable_ulp_lpt_lp(struct e1000_hw
*hw
, bool force
);
156 static s32
e1000_setup_copper_link_pch_lpt(struct e1000_hw
*hw
);
157 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
);
159 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
161 return readw(hw
->flash_address
+ reg
);
164 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
166 return readl(hw
->flash_address
+ reg
);
169 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
171 writew(val
, hw
->flash_address
+ reg
);
174 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
176 writel(val
, hw
->flash_address
+ reg
);
179 #define er16flash(reg) __er16flash(hw, (reg))
180 #define er32flash(reg) __er32flash(hw, (reg))
181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186 * @hw: pointer to the HW structure
188 * Test access to the PHY registers by reading the PHY ID registers. If
189 * the PHY ID is already known (e.g. resume path) compare it with known ID,
190 * otherwise assume the read PHY ID is correct if it is valid.
192 * Assumes the sw/fw/hw semaphore is already acquired.
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw
*hw
)
202 for (retry_count
= 0; retry_count
< 2; retry_count
++) {
203 ret_val
= e1e_rphy_locked(hw
, MII_PHYSID1
, &phy_reg
);
204 if (ret_val
|| (phy_reg
== 0xFFFF))
206 phy_id
= (u32
)(phy_reg
<< 16);
208 ret_val
= e1e_rphy_locked(hw
, MII_PHYSID2
, &phy_reg
);
209 if (ret_val
|| (phy_reg
== 0xFFFF)) {
213 phy_id
|= (u32
)(phy_reg
& PHY_REVISION_MASK
);
218 if (hw
->phy
.id
== phy_id
)
222 hw
->phy
.revision
= (u32
)(phy_reg
& ~PHY_REVISION_MASK
);
226 /* In case the PHY needs to be in mdio slow mode,
227 * set slow mode and try to get the PHY id again.
229 if (hw
->mac
.type
< e1000_pch_lpt
) {
230 hw
->phy
.ops
.release(hw
);
231 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
233 ret_val
= e1000e_get_phy_id(hw
);
234 hw
->phy
.ops
.acquire(hw
);
240 if ((hw
->mac
.type
== e1000_pch_lpt
) || (hw
->mac
.type
== e1000_pch_spt
)) {
241 /* Only unforce SMBus if ME is not active */
242 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
243 /* Unforce SMBus mode in PHY */
244 e1e_rphy_locked(hw
, CV_SMB_CTRL
, &phy_reg
);
245 phy_reg
&= ~CV_SMB_CTRL_FORCE_SMBUS
;
246 e1e_wphy_locked(hw
, CV_SMB_CTRL
, phy_reg
);
248 /* Unforce SMBus mode in MAC */
249 mac_reg
= er32(CTRL_EXT
);
250 mac_reg
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
251 ew32(CTRL_EXT
, mac_reg
);
259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260 * @hw: pointer to the HW structure
262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263 * used to reset the PHY to a quiescent state when necessary.
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw
*hw
)
269 /* Set Phy Config Counter to 50msec */
270 mac_reg
= er32(FEXTNVM3
);
271 mac_reg
&= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK
;
272 mac_reg
|= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC
;
273 ew32(FEXTNVM3
, mac_reg
);
275 /* Toggle LANPHYPC Value bit */
276 mac_reg
= er32(CTRL
);
277 mac_reg
|= E1000_CTRL_LANPHYPC_OVERRIDE
;
278 mac_reg
&= ~E1000_CTRL_LANPHYPC_VALUE
;
281 usleep_range(10, 20);
282 mac_reg
&= ~E1000_CTRL_LANPHYPC_OVERRIDE
;
286 if (hw
->mac
.type
< e1000_pch_lpt
) {
292 usleep_range(5000, 10000);
293 } while (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LPCD
) && count
--);
300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301 * @hw: pointer to the HW structure
303 * Workarounds/flow necessary for PHY initialization during driver load
306 static s32
e1000_init_phy_workarounds_pchlan(struct e1000_hw
*hw
)
308 struct e1000_adapter
*adapter
= hw
->adapter
;
309 u32 mac_reg
, fwsm
= er32(FWSM
);
312 /* Gate automatic PHY configuration by hardware on managed and
313 * non-managed 82579 and newer adapters.
315 e1000_gate_hw_phy_config_ich8lan(hw
, true);
317 /* It is not possible to be certain of the current state of ULP
318 * so forcibly disable it.
320 hw
->dev_spec
.ich8lan
.ulp_state
= e1000_ulp_state_unknown
;
321 e1000_disable_ulp_lpt_lp(hw
, true);
323 ret_val
= hw
->phy
.ops
.acquire(hw
);
325 e_dbg("Failed to initialize PHY flow\n");
329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
330 * inaccessible and resetting the PHY is not blocked, toggle the
331 * LANPHYPC Value bit to force the interconnect to PCIe mode.
333 switch (hw
->mac
.type
) {
336 if (e1000_phy_is_accessible_pchlan(hw
))
339 /* Before toggling LANPHYPC, see if PHY is accessible by
340 * forcing MAC to SMBus mode first.
342 mac_reg
= er32(CTRL_EXT
);
343 mac_reg
|= E1000_CTRL_EXT_FORCE_SMBUS
;
344 ew32(CTRL_EXT
, mac_reg
);
346 /* Wait 50 milliseconds for MAC to finish any retries
347 * that it might be trying to perform from previous
348 * attempts to acknowledge any phy read requests.
354 if (e1000_phy_is_accessible_pchlan(hw
))
359 if ((hw
->mac
.type
== e1000_pchlan
) &&
360 (fwsm
& E1000_ICH_FWSM_FW_VALID
))
363 if (hw
->phy
.ops
.check_reset_block(hw
)) {
364 e_dbg("Required LANPHYPC toggle blocked by ME\n");
365 ret_val
= -E1000_ERR_PHY
;
369 /* Toggle LANPHYPC Value bit */
370 e1000_toggle_lanphypc_pch_lpt(hw
);
371 if (hw
->mac
.type
>= e1000_pch_lpt
) {
372 if (e1000_phy_is_accessible_pchlan(hw
))
375 /* Toggling LANPHYPC brings the PHY out of SMBus mode
376 * so ensure that the MAC is also out of SMBus mode
378 mac_reg
= er32(CTRL_EXT
);
379 mac_reg
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
380 ew32(CTRL_EXT
, mac_reg
);
382 if (e1000_phy_is_accessible_pchlan(hw
))
385 ret_val
= -E1000_ERR_PHY
;
392 hw
->phy
.ops
.release(hw
);
395 /* Check to see if able to reset PHY. Print error if not */
396 if (hw
->phy
.ops
.check_reset_block(hw
)) {
397 e_err("Reset blocked by ME\n");
401 /* Reset the PHY before any access to it. Doing so, ensures
402 * that the PHY is in a known good state before we read/write
403 * PHY registers. The generic reset is sufficient here,
404 * because we haven't determined the PHY type yet.
406 ret_val
= e1000e_phy_hw_reset_generic(hw
);
410 /* On a successful reset, possibly need to wait for the PHY
411 * to quiesce to an accessible state before returning control
412 * to the calling function. If the PHY does not quiesce, then
413 * return E1000E_BLK_PHY_RESET, as this is the condition that
416 ret_val
= hw
->phy
.ops
.check_reset_block(hw
);
418 e_err("ME blocked access to PHY after reset\n");
422 /* Ungate automatic PHY configuration on non-managed 82579 */
423 if ((hw
->mac
.type
== e1000_pch2lan
) &&
424 !(fwsm
& E1000_ICH_FWSM_FW_VALID
)) {
425 usleep_range(10000, 20000);
426 e1000_gate_hw_phy_config_ich8lan(hw
, false);
433 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
434 * @hw: pointer to the HW structure
436 * Initialize family-specific PHY parameters and function pointers.
438 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
440 struct e1000_phy_info
*phy
= &hw
->phy
;
444 phy
->reset_delay_us
= 100;
446 phy
->ops
.set_page
= e1000_set_page_igp
;
447 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
448 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
449 phy
->ops
.read_reg_page
= e1000_read_phy_reg_page_hv
;
450 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
451 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
452 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
453 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
454 phy
->ops
.write_reg_page
= e1000_write_phy_reg_page_hv
;
455 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
456 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
457 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
459 phy
->id
= e1000_phy_unknown
;
461 ret_val
= e1000_init_phy_workarounds_pchlan(hw
);
465 if (phy
->id
== e1000_phy_unknown
)
466 switch (hw
->mac
.type
) {
468 ret_val
= e1000e_get_phy_id(hw
);
471 if ((phy
->id
!= 0) && (phy
->id
!= PHY_REVISION_MASK
))
477 /* In case the PHY needs to be in mdio slow mode,
478 * set slow mode and try to get the PHY id again.
480 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
483 ret_val
= e1000e_get_phy_id(hw
);
488 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
491 case e1000_phy_82577
:
492 case e1000_phy_82579
:
494 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
495 phy
->ops
.force_speed_duplex
=
496 e1000_phy_force_speed_duplex_82577
;
497 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
498 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
499 phy
->ops
.commit
= e1000e_phy_sw_reset
;
501 case e1000_phy_82578
:
502 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
503 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
504 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
505 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
508 ret_val
= -E1000_ERR_PHY
;
516 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
517 * @hw: pointer to the HW structure
519 * Initialize family-specific PHY parameters and function pointers.
521 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
523 struct e1000_phy_info
*phy
= &hw
->phy
;
528 phy
->reset_delay_us
= 100;
530 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
531 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
533 /* We may need to do this twice - once for IGP and if that fails,
534 * we'll set BM func pointers and try again
536 ret_val
= e1000e_determine_phy_address(hw
);
538 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
539 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
540 ret_val
= e1000e_determine_phy_address(hw
);
542 e_dbg("Cannot determine PHY addr. Erroring out\n");
548 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
550 usleep_range(1000, 2000);
551 ret_val
= e1000e_get_phy_id(hw
);
558 case IGP03E1000_E_PHY_ID
:
559 phy
->type
= e1000_phy_igp_3
;
560 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
561 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
562 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
563 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
564 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
565 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
568 case IFE_PLUS_E_PHY_ID
:
570 phy
->type
= e1000_phy_ife
;
571 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
572 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
573 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
574 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
576 case BME1000_E_PHY_ID
:
577 phy
->type
= e1000_phy_bm
;
578 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
579 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
580 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
581 phy
->ops
.commit
= e1000e_phy_sw_reset
;
582 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
583 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
584 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
587 return -E1000_ERR_PHY
;
594 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
595 * @hw: pointer to the HW structure
597 * Initialize family-specific NVM parameters and function
600 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
602 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
603 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
604 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
608 nvm
->type
= e1000_nvm_flash_sw
;
610 if (hw
->mac
.type
== e1000_pch_spt
) {
611 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
612 * STRAP register. This is because in SPT the GbE Flash region
613 * is no longer accessed through the flash registers. Instead,
614 * the mechanism has changed, and the Flash region access
615 * registers are now implemented in GbE memory space.
617 nvm
->flash_base_addr
= 0;
618 nvm_size
= (((er32(STRAP
) >> 1) & 0x1F) + 1)
619 * NVM_SIZE_MULTIPLIER
;
620 nvm
->flash_bank_size
= nvm_size
/ 2;
621 /* Adjust to word count */
622 nvm
->flash_bank_size
/= sizeof(u16
);
623 /* Set the base address for flash register access */
624 hw
->flash_address
= hw
->hw_addr
+ E1000_FLASH_BASE_ADDR
;
626 /* Can't read flash registers if register set isn't mapped. */
627 if (!hw
->flash_address
) {
628 e_dbg("ERROR: Flash registers not mapped\n");
629 return -E1000_ERR_CONFIG
;
632 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
634 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
635 * Add 1 to sector_end_addr since this sector is included in
638 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
639 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
641 /* flash_base_addr is byte-aligned */
642 nvm
->flash_base_addr
= sector_base_addr
643 << FLASH_SECTOR_ADDR_SHIFT
;
645 /* find total size of the NVM, then cut in half since the total
646 * size represents two separate NVM banks.
648 nvm
->flash_bank_size
= ((sector_end_addr
- sector_base_addr
)
649 << FLASH_SECTOR_ADDR_SHIFT
);
650 nvm
->flash_bank_size
/= 2;
651 /* Adjust to word count */
652 nvm
->flash_bank_size
/= sizeof(u16
);
655 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
657 /* Clear shadow ram */
658 for (i
= 0; i
< nvm
->word_size
; i
++) {
659 dev_spec
->shadow_ram
[i
].modified
= false;
660 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
667 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
668 * @hw: pointer to the HW structure
670 * Initialize family-specific MAC parameters and function
673 static s32
e1000_init_mac_params_ich8lan(struct e1000_hw
*hw
)
675 struct e1000_mac_info
*mac
= &hw
->mac
;
677 /* Set media type function pointer */
678 hw
->phy
.media_type
= e1000_media_type_copper
;
680 /* Set mta register count */
681 mac
->mta_reg_count
= 32;
682 /* Set rar entry count */
683 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
684 if (mac
->type
== e1000_ich8lan
)
685 mac
->rar_entry_count
--;
687 mac
->has_fwsm
= true;
688 /* ARC subsystem not supported */
689 mac
->arc_subsystem_valid
= false;
690 /* Adaptive IFS supported */
691 mac
->adaptive_ifs
= true;
693 /* LED and other operations */
698 /* check management mode */
699 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_ich8lan
;
701 mac
->ops
.id_led_init
= e1000e_id_led_init_generic
;
703 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
705 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
707 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
708 /* turn on/off LED */
709 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
710 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
713 mac
->rar_entry_count
= E1000_PCH2_RAR_ENTRIES
;
714 mac
->ops
.rar_set
= e1000_rar_set_pch2lan
;
719 /* check management mode */
720 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_pchlan
;
722 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
724 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
726 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
727 /* turn on/off LED */
728 mac
->ops
.led_on
= e1000_led_on_pchlan
;
729 mac
->ops
.led_off
= e1000_led_off_pchlan
;
735 if ((mac
->type
== e1000_pch_lpt
) || (mac
->type
== e1000_pch_spt
)) {
736 mac
->rar_entry_count
= E1000_PCH_LPT_RAR_ENTRIES
;
737 mac
->ops
.rar_set
= e1000_rar_set_pch_lpt
;
738 mac
->ops
.setup_physical_interface
=
739 e1000_setup_copper_link_pch_lpt
;
740 mac
->ops
.rar_get_count
= e1000_rar_get_count_pch_lpt
;
743 /* Enable PCS Lock-loss workaround for ICH8 */
744 if (mac
->type
== e1000_ich8lan
)
745 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
751 * __e1000_access_emi_reg_locked - Read/write EMI register
752 * @hw: pointer to the HW structure
753 * @addr: EMI address to program
754 * @data: pointer to value to read/write from/to the EMI address
755 * @read: boolean flag to indicate read or write
757 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
759 static s32
__e1000_access_emi_reg_locked(struct e1000_hw
*hw
, u16 address
,
760 u16
*data
, bool read
)
764 ret_val
= e1e_wphy_locked(hw
, I82579_EMI_ADDR
, address
);
769 ret_val
= e1e_rphy_locked(hw
, I82579_EMI_DATA
, data
);
771 ret_val
= e1e_wphy_locked(hw
, I82579_EMI_DATA
, *data
);
777 * e1000_read_emi_reg_locked - Read Extended Management Interface register
778 * @hw: pointer to the HW structure
779 * @addr: EMI address to program
780 * @data: value to be read from the EMI address
782 * Assumes the SW/FW/HW Semaphore is already acquired.
784 s32
e1000_read_emi_reg_locked(struct e1000_hw
*hw
, u16 addr
, u16
*data
)
786 return __e1000_access_emi_reg_locked(hw
, addr
, data
, true);
790 * e1000_write_emi_reg_locked - Write Extended Management Interface register
791 * @hw: pointer to the HW structure
792 * @addr: EMI address to program
793 * @data: value to be written to the EMI address
795 * Assumes the SW/FW/HW Semaphore is already acquired.
797 s32
e1000_write_emi_reg_locked(struct e1000_hw
*hw
, u16 addr
, u16 data
)
799 return __e1000_access_emi_reg_locked(hw
, addr
, &data
, false);
803 * e1000_set_eee_pchlan - Enable/disable EEE support
804 * @hw: pointer to the HW structure
806 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
807 * the link and the EEE capabilities of the link partner. The LPI Control
808 * register bits will remain set only if/when link is up.
810 * EEE LPI must not be asserted earlier than one second after link is up.
811 * On 82579, EEE LPI should not be enabled until such time otherwise there
812 * can be link issues with some switches. Other devices can have EEE LPI
813 * enabled immediately upon link up since they have a timer in hardware which
814 * prevents LPI from being asserted too early.
816 s32
e1000_set_eee_pchlan(struct e1000_hw
*hw
)
818 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
820 u16 lpa
, pcs_status
, adv
, adv_addr
, lpi_ctrl
, data
;
822 switch (hw
->phy
.type
) {
823 case e1000_phy_82579
:
824 lpa
= I82579_EEE_LP_ABILITY
;
825 pcs_status
= I82579_EEE_PCS_STATUS
;
826 adv_addr
= I82579_EEE_ADVERTISEMENT
;
829 lpa
= I217_EEE_LP_ABILITY
;
830 pcs_status
= I217_EEE_PCS_STATUS
;
831 adv_addr
= I217_EEE_ADVERTISEMENT
;
837 ret_val
= hw
->phy
.ops
.acquire(hw
);
841 ret_val
= e1e_rphy_locked(hw
, I82579_LPI_CTRL
, &lpi_ctrl
);
845 /* Clear bits that enable EEE in various speeds */
846 lpi_ctrl
&= ~I82579_LPI_CTRL_ENABLE_MASK
;
848 /* Enable EEE if not disabled by user */
849 if (!dev_spec
->eee_disable
) {
850 /* Save off link partner's EEE ability */
851 ret_val
= e1000_read_emi_reg_locked(hw
, lpa
,
852 &dev_spec
->eee_lp_ability
);
856 /* Read EEE advertisement */
857 ret_val
= e1000_read_emi_reg_locked(hw
, adv_addr
, &adv
);
861 /* Enable EEE only for speeds in which the link partner is
862 * EEE capable and for which we advertise EEE.
864 if (adv
& dev_spec
->eee_lp_ability
& I82579_EEE_1000_SUPPORTED
)
865 lpi_ctrl
|= I82579_LPI_CTRL_1000_ENABLE
;
867 if (adv
& dev_spec
->eee_lp_ability
& I82579_EEE_100_SUPPORTED
) {
868 e1e_rphy_locked(hw
, MII_LPA
, &data
);
869 if (data
& LPA_100FULL
)
870 lpi_ctrl
|= I82579_LPI_CTRL_100_ENABLE
;
872 /* EEE is not supported in 100Half, so ignore
873 * partner's EEE in 100 ability if full-duplex
876 dev_spec
->eee_lp_ability
&=
877 ~I82579_EEE_100_SUPPORTED
;
881 if (hw
->phy
.type
== e1000_phy_82579
) {
882 ret_val
= e1000_read_emi_reg_locked(hw
, I82579_LPI_PLL_SHUT
,
887 data
&= ~I82579_LPI_100_PLL_SHUT
;
888 ret_val
= e1000_write_emi_reg_locked(hw
, I82579_LPI_PLL_SHUT
,
892 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
893 ret_val
= e1000_read_emi_reg_locked(hw
, pcs_status
, &data
);
897 ret_val
= e1e_wphy_locked(hw
, I82579_LPI_CTRL
, lpi_ctrl
);
899 hw
->phy
.ops
.release(hw
);
905 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
906 * @hw: pointer to the HW structure
907 * @link: link up bool flag
909 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
910 * preventing further DMA write requests. Workaround the issue by disabling
911 * the de-assertion of the clock request when in 1Gpbs mode.
912 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
913 * speeds in order to avoid Tx hangs.
915 static s32
e1000_k1_workaround_lpt_lp(struct e1000_hw
*hw
, bool link
)
917 u32 fextnvm6
= er32(FEXTNVM6
);
918 u32 status
= er32(STATUS
);
922 if (link
&& (status
& E1000_STATUS_SPEED_1000
)) {
923 ret_val
= hw
->phy
.ops
.acquire(hw
);
928 e1000e_read_kmrn_reg_locked(hw
, E1000_KMRNCTRLSTA_K1_CONFIG
,
934 e1000e_write_kmrn_reg_locked(hw
,
935 E1000_KMRNCTRLSTA_K1_CONFIG
,
937 ~E1000_KMRNCTRLSTA_K1_ENABLE
);
941 usleep_range(10, 20);
943 ew32(FEXTNVM6
, fextnvm6
| E1000_FEXTNVM6_REQ_PLL_CLK
);
946 e1000e_write_kmrn_reg_locked(hw
,
947 E1000_KMRNCTRLSTA_K1_CONFIG
,
950 hw
->phy
.ops
.release(hw
);
952 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
953 fextnvm6
&= ~E1000_FEXTNVM6_REQ_PLL_CLK
;
955 if ((hw
->phy
.revision
> 5) || !link
||
956 ((status
& E1000_STATUS_SPEED_100
) &&
957 (status
& E1000_STATUS_FD
)))
958 goto update_fextnvm6
;
960 ret_val
= e1e_rphy(hw
, I217_INBAND_CTRL
, ®
);
964 /* Clear link status transmit timeout */
965 reg
&= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK
;
967 if (status
& E1000_STATUS_SPEED_100
) {
968 /* Set inband Tx timeout to 5x10us for 100Half */
969 reg
|= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT
;
971 /* Do not extend the K1 entry latency for 100Half */
972 fextnvm6
&= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION
;
974 /* Set inband Tx timeout to 50x10us for 10Full/Half */
976 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT
;
978 /* Extend the K1 entry latency for 10 Mbps */
979 fextnvm6
|= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION
;
982 ret_val
= e1e_wphy(hw
, I217_INBAND_CTRL
, reg
);
987 ew32(FEXTNVM6
, fextnvm6
);
994 * e1000_platform_pm_pch_lpt - Set platform power management values
995 * @hw: pointer to the HW structure
996 * @link: bool indicating link status
998 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
999 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 * when link is up (which must not exceed the maximum latency supported
1001 * by the platform), otherwise specify there is no LTR requirement.
1002 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 * Capability register set, on this device LTR is set by writing the
1005 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 * message to the PMC.
1009 static s32
e1000_platform_pm_pch_lpt(struct e1000_hw
*hw
, bool link
)
1011 u32 reg
= link
<< (E1000_LTRV_REQ_SHIFT
+ E1000_LTRV_NOSNOOP_SHIFT
) |
1012 link
<< E1000_LTRV_REQ_SHIFT
| E1000_LTRV_SEND
;
1013 u16 lat_enc
= 0; /* latency encoded */
1016 u16 speed
, duplex
, scale
= 0;
1017 u16 max_snoop
, max_nosnoop
;
1018 u16 max_ltr_enc
; /* max LTR latency encoded */
1022 if (!hw
->adapter
->max_frame_size
) {
1023 e_dbg("max_frame_size not set.\n");
1024 return -E1000_ERR_CONFIG
;
1027 hw
->mac
.ops
.get_link_up_info(hw
, &speed
, &duplex
);
1029 e_dbg("Speed not set.\n");
1030 return -E1000_ERR_CONFIG
;
1033 /* Rx Packet Buffer Allocation size (KB) */
1034 rxa
= er32(PBA
) & E1000_PBA_RXA_MASK
;
1036 /* Determine the maximum latency tolerated by the device.
1038 * Per the PCIe spec, the tolerated latencies are encoded as
1039 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1042 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1045 value
= (rxa
> hw
->adapter
->max_frame_size
) ?
1046 (rxa
- hw
->adapter
->max_frame_size
) * (16000 / speed
) :
1049 while (value
> PCI_LTR_VALUE_MASK
) {
1051 value
= DIV_ROUND_UP(value
, (1 << 5));
1053 if (scale
> E1000_LTRV_SCALE_MAX
) {
1054 e_dbg("Invalid LTR latency scale %d\n", scale
);
1055 return -E1000_ERR_CONFIG
;
1057 lat_enc
= (u16
)((scale
<< PCI_LTR_SCALE_SHIFT
) | value
);
1059 /* Determine the maximum latency tolerated by the platform */
1060 pci_read_config_word(hw
->adapter
->pdev
, E1000_PCI_LTR_CAP_LPT
,
1062 pci_read_config_word(hw
->adapter
->pdev
,
1063 E1000_PCI_LTR_CAP_LPT
+ 2, &max_nosnoop
);
1064 max_ltr_enc
= max_t(u16
, max_snoop
, max_nosnoop
);
1066 if (lat_enc
> max_ltr_enc
)
1067 lat_enc
= max_ltr_enc
;
1070 /* Set Snoop and No-Snoop latencies the same */
1071 reg
|= lat_enc
| (lat_enc
<< E1000_LTRV_NOSNOOP_SHIFT
);
1078 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079 * @hw: pointer to the HW structure
1080 * @to_sx: boolean indicating a system power state transition to Sx
1082 * When link is down, configure ULP mode to significantly reduce the power
1083 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1084 * ME firmware to start the ULP configuration. If not on an ME enabled
1085 * system, configure the ULP mode by software.
1087 s32
e1000_enable_ulp_lpt_lp(struct e1000_hw
*hw
, bool to_sx
)
1094 if ((hw
->mac
.type
< e1000_pch_lpt
) ||
1095 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_LM
) ||
1096 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_V
) ||
1097 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_LM2
) ||
1098 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_V2
) ||
1099 (hw
->dev_spec
.ich8lan
.ulp_state
== e1000_ulp_state_on
))
1102 if (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
) {
1103 /* Request ME configure ULP mode in the PHY */
1104 mac_reg
= er32(H2ME
);
1105 mac_reg
|= E1000_H2ME_ULP
| E1000_H2ME_ENFORCE_SETTINGS
;
1106 ew32(H2ME
, mac_reg
);
1114 /* Poll up to 5 seconds for Cable Disconnected indication */
1115 while (!(er32(FEXT
) & E1000_FEXT_PHY_CABLE_DISCONNECTED
)) {
1116 /* Bail if link is re-acquired */
1117 if (er32(STATUS
) & E1000_STATUS_LU
)
1118 return -E1000_ERR_PHY
;
1125 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1127 E1000_FEXT_PHY_CABLE_DISCONNECTED
) ? "" : "not", i
* 50);
1130 ret_val
= hw
->phy
.ops
.acquire(hw
);
1134 /* Force SMBus mode in PHY */
1135 ret_val
= e1000_read_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, &phy_reg
);
1138 phy_reg
|= CV_SMB_CTRL_FORCE_SMBUS
;
1139 e1000_write_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, phy_reg
);
1141 /* Force SMBus mode in MAC */
1142 mac_reg
= er32(CTRL_EXT
);
1143 mac_reg
|= E1000_CTRL_EXT_FORCE_SMBUS
;
1144 ew32(CTRL_EXT
, mac_reg
);
1146 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1147 * LPLU and disable Gig speed when entering ULP
1149 if ((hw
->phy
.type
== e1000_phy_i217
) && (hw
->phy
.revision
== 6)) {
1150 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_OEM_BITS
,
1156 phy_reg
|= HV_OEM_BITS_LPLU
| HV_OEM_BITS_GBE_DIS
;
1158 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_OEM_BITS
,
1165 /* Set Inband ULP Exit, Reset to SMBus mode and
1166 * Disable SMBus Release on PERST# in PHY
1168 ret_val
= e1000_read_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, &phy_reg
);
1171 phy_reg
|= (I218_ULP_CONFIG1_RESET_TO_SMBUS
|
1172 I218_ULP_CONFIG1_DISABLE_SMB_PERST
);
1174 if (er32(WUFC
) & E1000_WUFC_LNKC
)
1175 phy_reg
|= I218_ULP_CONFIG1_WOL_HOST
;
1177 phy_reg
&= ~I218_ULP_CONFIG1_WOL_HOST
;
1179 phy_reg
|= I218_ULP_CONFIG1_STICKY_ULP
;
1180 phy_reg
&= ~I218_ULP_CONFIG1_INBAND_EXIT
;
1182 phy_reg
|= I218_ULP_CONFIG1_INBAND_EXIT
;
1183 phy_reg
&= ~I218_ULP_CONFIG1_STICKY_ULP
;
1184 phy_reg
&= ~I218_ULP_CONFIG1_WOL_HOST
;
1186 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1188 /* Set Disable SMBus Release on PERST# in MAC */
1189 mac_reg
= er32(FEXTNVM7
);
1190 mac_reg
|= E1000_FEXTNVM7_DISABLE_SMB_PERST
;
1191 ew32(FEXTNVM7
, mac_reg
);
1193 /* Commit ULP changes in PHY by starting auto ULP configuration */
1194 phy_reg
|= I218_ULP_CONFIG1_START
;
1195 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1197 if ((hw
->phy
.type
== e1000_phy_i217
) && (hw
->phy
.revision
== 6) &&
1198 to_sx
&& (er32(STATUS
) & E1000_STATUS_LU
)) {
1199 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_OEM_BITS
,
1206 hw
->phy
.ops
.release(hw
);
1209 e_dbg("Error in ULP enable flow: %d\n", ret_val
);
1211 hw
->dev_spec
.ich8lan
.ulp_state
= e1000_ulp_state_on
;
1217 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218 * @hw: pointer to the HW structure
1219 * @force: boolean indicating whether or not to force disabling ULP
1221 * Un-configure ULP mode when link is up, the system is transitioned from
1222 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1223 * system, poll for an indication from ME that ULP has been un-configured.
1224 * If not on an ME enabled system, un-configure the ULP mode by software.
1226 * During nominal operation, this function is called when link is acquired
1227 * to disable ULP mode (force=false); otherwise, for example when unloading
1228 * the driver or during Sx->S0 transitions, this is called with force=true
1229 * to forcibly disable ULP.
1231 static s32
e1000_disable_ulp_lpt_lp(struct e1000_hw
*hw
, bool force
)
1238 if ((hw
->mac
.type
< e1000_pch_lpt
) ||
1239 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_LM
) ||
1240 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_V
) ||
1241 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_LM2
) ||
1242 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_V2
) ||
1243 (hw
->dev_spec
.ich8lan
.ulp_state
== e1000_ulp_state_off
))
1246 if (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
) {
1248 /* Request ME un-configure ULP mode in the PHY */
1249 mac_reg
= er32(H2ME
);
1250 mac_reg
&= ~E1000_H2ME_ULP
;
1251 mac_reg
|= E1000_H2ME_ENFORCE_SETTINGS
;
1252 ew32(H2ME
, mac_reg
);
1255 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1256 while (er32(FWSM
) & E1000_FWSM_ULP_CFG_DONE
) {
1258 ret_val
= -E1000_ERR_PHY
;
1262 usleep_range(10000, 20000);
1264 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i
* 10);
1267 mac_reg
= er32(H2ME
);
1268 mac_reg
&= ~E1000_H2ME_ENFORCE_SETTINGS
;
1269 ew32(H2ME
, mac_reg
);
1271 /* Clear H2ME.ULP after ME ULP configuration */
1272 mac_reg
= er32(H2ME
);
1273 mac_reg
&= ~E1000_H2ME_ULP
;
1274 ew32(H2ME
, mac_reg
);
1280 ret_val
= hw
->phy
.ops
.acquire(hw
);
1285 /* Toggle LANPHYPC Value bit */
1286 e1000_toggle_lanphypc_pch_lpt(hw
);
1288 /* Unforce SMBus mode in PHY */
1289 ret_val
= e1000_read_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, &phy_reg
);
1291 /* The MAC might be in PCIe mode, so temporarily force to
1292 * SMBus mode in order to access the PHY.
1294 mac_reg
= er32(CTRL_EXT
);
1295 mac_reg
|= E1000_CTRL_EXT_FORCE_SMBUS
;
1296 ew32(CTRL_EXT
, mac_reg
);
1300 ret_val
= e1000_read_phy_reg_hv_locked(hw
, CV_SMB_CTRL
,
1305 phy_reg
&= ~CV_SMB_CTRL_FORCE_SMBUS
;
1306 e1000_write_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, phy_reg
);
1308 /* Unforce SMBus mode in MAC */
1309 mac_reg
= er32(CTRL_EXT
);
1310 mac_reg
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
1311 ew32(CTRL_EXT
, mac_reg
);
1313 /* When ULP mode was previously entered, K1 was disabled by the
1314 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1316 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_PM_CTRL
, &phy_reg
);
1319 phy_reg
|= HV_PM_CTRL_K1_ENABLE
;
1320 e1000_write_phy_reg_hv_locked(hw
, HV_PM_CTRL
, phy_reg
);
1322 /* Clear ULP enabled configuration */
1323 ret_val
= e1000_read_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, &phy_reg
);
1326 phy_reg
&= ~(I218_ULP_CONFIG1_IND
|
1327 I218_ULP_CONFIG1_STICKY_ULP
|
1328 I218_ULP_CONFIG1_RESET_TO_SMBUS
|
1329 I218_ULP_CONFIG1_WOL_HOST
|
1330 I218_ULP_CONFIG1_INBAND_EXIT
|
1331 I218_ULP_CONFIG1_DISABLE_SMB_PERST
);
1332 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1334 /* Commit ULP changes by starting auto ULP configuration */
1335 phy_reg
|= I218_ULP_CONFIG1_START
;
1336 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1338 /* Clear Disable SMBus Release on PERST# in MAC */
1339 mac_reg
= er32(FEXTNVM7
);
1340 mac_reg
&= ~E1000_FEXTNVM7_DISABLE_SMB_PERST
;
1341 ew32(FEXTNVM7
, mac_reg
);
1344 hw
->phy
.ops
.release(hw
);
1346 e1000_phy_hw_reset(hw
);
1351 e_dbg("Error in ULP disable flow: %d\n", ret_val
);
1353 hw
->dev_spec
.ich8lan
.ulp_state
= e1000_ulp_state_off
;
1359 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1360 * @hw: pointer to the HW structure
1362 * Checks to see of the link status of the hardware has changed. If a
1363 * change in link status has been detected, then we read the PHY registers
1364 * to get the current speed/duplex if link exists.
1366 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
1368 struct e1000_mac_info
*mac
= &hw
->mac
;
1369 s32 ret_val
, tipg_reg
= 0;
1370 u16 emi_addr
, emi_val
= 0;
1374 /* We only want to go out to the PHY registers to see if Auto-Neg
1375 * has completed and/or if our link status has changed. The
1376 * get_link_status flag is set upon receiving a Link Status
1377 * Change or Rx Sequence Error interrupt.
1379 if (!mac
->get_link_status
)
1382 /* First we want to see if the MII Status Register reports
1383 * link. If so, then we want to get the current speed/duplex
1386 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1390 if (hw
->mac
.type
== e1000_pchlan
) {
1391 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
1396 /* When connected at 10Mbps half-duplex, some parts are excessively
1397 * aggressive resulting in many collisions. To avoid this, increase
1398 * the IPG and reduce Rx latency in the PHY.
1400 if (((hw
->mac
.type
== e1000_pch2lan
) ||
1401 (hw
->mac
.type
== e1000_pch_lpt
) ||
1402 (hw
->mac
.type
== e1000_pch_spt
)) && link
) {
1405 e1000e_get_speed_and_duplex_copper(hw
, &speed
, &duplex
);
1406 tipg_reg
= er32(TIPG
);
1407 tipg_reg
&= ~E1000_TIPG_IPGT_MASK
;
1409 if (duplex
== HALF_DUPLEX
&& speed
== SPEED_10
) {
1411 /* Reduce Rx latency in analog PHY */
1413 } else if (hw
->mac
.type
== e1000_pch_spt
&&
1414 duplex
== FULL_DUPLEX
&& speed
!= SPEED_1000
) {
1419 /* Roll back the default values */
1424 ew32(TIPG
, tipg_reg
);
1426 ret_val
= hw
->phy
.ops
.acquire(hw
);
1430 if (hw
->mac
.type
== e1000_pch2lan
)
1431 emi_addr
= I82579_RX_CONFIG
;
1433 emi_addr
= I217_RX_CONFIG
;
1434 ret_val
= e1000_write_emi_reg_locked(hw
, emi_addr
, emi_val
);
1436 hw
->phy
.ops
.release(hw
);
1441 if (hw
->mac
.type
== e1000_pch_spt
) {
1445 if (speed
== SPEED_1000
) {
1446 ret_val
= hw
->phy
.ops
.acquire(hw
);
1450 ret_val
= e1e_rphy_locked(hw
,
1454 hw
->phy
.ops
.release(hw
);
1458 ptr_gap
= (data
& (0x3FF << 2)) >> 2;
1459 if (ptr_gap
< 0x18) {
1460 data
&= ~(0x3FF << 2);
1461 data
|= (0x18 << 2);
1467 hw
->phy
.ops
.release(hw
);
1474 /* I217 Packet Loss issue:
1475 * ensure that FEXTNVM4 Beacon Duration is set correctly
1477 * Set the Beacon Duration for I217 to 8 usec
1479 if ((hw
->mac
.type
== e1000_pch_lpt
) || (hw
->mac
.type
== e1000_pch_spt
)) {
1482 mac_reg
= er32(FEXTNVM4
);
1483 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
1484 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_8USEC
;
1485 ew32(FEXTNVM4
, mac_reg
);
1488 /* Work-around I218 hang issue */
1489 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPTLP_I218_LM
) ||
1490 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPTLP_I218_V
) ||
1491 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_LM3
) ||
1492 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_V3
)) {
1493 ret_val
= e1000_k1_workaround_lpt_lp(hw
, link
);
1497 if ((hw
->mac
.type
== e1000_pch_lpt
) ||
1498 (hw
->mac
.type
== e1000_pch_spt
)) {
1499 /* Set platform power management values for
1500 * Latency Tolerance Reporting (LTR)
1502 ret_val
= e1000_platform_pm_pch_lpt(hw
, link
);
1507 /* Clear link partner's EEE ability */
1508 hw
->dev_spec
.ich8lan
.eee_lp_ability
= 0;
1510 /* FEXTNVM6 K1-off workaround */
1511 if (hw
->mac
.type
== e1000_pch_spt
) {
1512 u32 pcieanacfg
= er32(PCIEANACFG
);
1513 u32 fextnvm6
= er32(FEXTNVM6
);
1515 if (pcieanacfg
& E1000_FEXTNVM6_K1_OFF_ENABLE
)
1516 fextnvm6
|= E1000_FEXTNVM6_K1_OFF_ENABLE
;
1518 fextnvm6
&= ~E1000_FEXTNVM6_K1_OFF_ENABLE
;
1520 ew32(FEXTNVM6
, fextnvm6
);
1524 return 0; /* No link detected */
1526 mac
->get_link_status
= false;
1528 switch (hw
->mac
.type
) {
1530 ret_val
= e1000_k1_workaround_lv(hw
);
1535 if (hw
->phy
.type
== e1000_phy_82578
) {
1536 ret_val
= e1000_link_stall_workaround_hv(hw
);
1541 /* Workaround for PCHx parts in half-duplex:
1542 * Set the number of preambles removed from the packet
1543 * when it is passed from the PHY to the MAC to prevent
1544 * the MAC from misinterpreting the packet type.
1546 e1e_rphy(hw
, HV_KMRN_FIFO_CTRLSTA
, &phy_reg
);
1547 phy_reg
&= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK
;
1549 if ((er32(STATUS
) & E1000_STATUS_FD
) != E1000_STATUS_FD
)
1550 phy_reg
|= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT
);
1552 e1e_wphy(hw
, HV_KMRN_FIFO_CTRLSTA
, phy_reg
);
1558 /* Check if there was DownShift, must be checked
1559 * immediately after link-up
1561 e1000e_check_downshift(hw
);
1563 /* Enable/Disable EEE after link up */
1564 if (hw
->phy
.type
> e1000_phy_82579
) {
1565 ret_val
= e1000_set_eee_pchlan(hw
);
1570 /* If we are forcing speed/duplex, then we simply return since
1571 * we have already determined whether we have link or not.
1574 return -E1000_ERR_CONFIG
;
1576 /* Auto-Neg is enabled. Auto Speed Detection takes care
1577 * of MAC speed/duplex configuration. So we only need to
1578 * configure Collision Distance in the MAC.
1580 mac
->ops
.config_collision_dist(hw
);
1582 /* Configure Flow Control now that Auto-Neg has completed.
1583 * First, we need to restore the desired flow control
1584 * settings because we may have had to re-autoneg with a
1585 * different link partner.
1587 ret_val
= e1000e_config_fc_after_link_up(hw
);
1589 e_dbg("Error configuring flow control\n");
1594 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
1596 struct e1000_hw
*hw
= &adapter
->hw
;
1599 rc
= e1000_init_mac_params_ich8lan(hw
);
1603 rc
= e1000_init_nvm_params_ich8lan(hw
);
1607 switch (hw
->mac
.type
) {
1610 case e1000_ich10lan
:
1611 rc
= e1000_init_phy_params_ich8lan(hw
);
1617 rc
= e1000_init_phy_params_pchlan(hw
);
1625 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1626 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1628 if ((adapter
->hw
.phy
.type
== e1000_phy_ife
) ||
1629 ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
1630 (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LSECCK
)))) {
1631 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
1632 adapter
->max_hw_frame_size
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
1634 hw
->mac
.ops
.blink_led
= NULL
;
1637 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
1638 (adapter
->hw
.phy
.type
!= e1000_phy_ife
))
1639 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
1641 /* Enable workaround for 82579 w/ ME enabled */
1642 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
1643 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
1644 adapter
->flags2
|= FLAG2_PCIM2PCI_ARBITER_WA
;
1649 static DEFINE_MUTEX(nvm_mutex
);
1652 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1653 * @hw: pointer to the HW structure
1655 * Acquires the mutex for performing NVM operations.
1657 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused
*hw
)
1659 mutex_lock(&nvm_mutex
);
1665 * e1000_release_nvm_ich8lan - Release NVM mutex
1666 * @hw: pointer to the HW structure
1668 * Releases the mutex used while performing NVM operations.
1670 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused
*hw
)
1672 mutex_unlock(&nvm_mutex
);
1676 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1677 * @hw: pointer to the HW structure
1679 * Acquires the software control flag for performing PHY and select
1682 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
1684 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
1687 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE
,
1688 &hw
->adapter
->state
)) {
1689 e_dbg("contention for Phy access\n");
1690 return -E1000_ERR_PHY
;
1694 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1695 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
1703 e_dbg("SW has already locked the resource.\n");
1704 ret_val
= -E1000_ERR_CONFIG
;
1708 timeout
= SW_FLAG_TIMEOUT
;
1710 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
1711 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1714 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1715 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
1723 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1724 er32(FWSM
), extcnf_ctrl
);
1725 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
1726 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1727 ret_val
= -E1000_ERR_CONFIG
;
1733 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
1739 * e1000_release_swflag_ich8lan - Release software control flag
1740 * @hw: pointer to the HW structure
1742 * Releases the software control flag for performing PHY and select
1745 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
1749 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1751 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
) {
1752 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
1753 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1755 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1758 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
1762 * e1000_check_mng_mode_ich8lan - Checks management mode
1763 * @hw: pointer to the HW structure
1765 * This checks if the adapter has any manageability enabled.
1766 * This is a function pointer entry point only called by read/write
1767 * routines for the PHY and NVM parts.
1769 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
1774 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
1775 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
1776 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
1780 * e1000_check_mng_mode_pchlan - Checks management mode
1781 * @hw: pointer to the HW structure
1783 * This checks if the adapter has iAMT enabled.
1784 * This is a function pointer entry point only called by read/write
1785 * routines for the PHY and NVM parts.
1787 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
)
1792 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
1793 (fwsm
& (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
1797 * e1000_rar_set_pch2lan - Set receive address register
1798 * @hw: pointer to the HW structure
1799 * @addr: pointer to the receive address
1800 * @index: receive address array register
1802 * Sets the receive address array register at index to the address passed
1803 * in by addr. For 82579, RAR[0] is the base address register that is to
1804 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1805 * Use SHRA[0-3] in place of those reserved for ME.
1807 static int e1000_rar_set_pch2lan(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
1809 u32 rar_low
, rar_high
;
1811 /* HW expects these in little endian so we reverse the byte order
1812 * from network order (big endian) to little endian
1814 rar_low
= ((u32
)addr
[0] |
1815 ((u32
)addr
[1] << 8) |
1816 ((u32
)addr
[2] << 16) | ((u32
)addr
[3] << 24));
1818 rar_high
= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1820 /* If MAC address zero, no need to set the AV bit */
1821 if (rar_low
|| rar_high
)
1822 rar_high
|= E1000_RAH_AV
;
1825 ew32(RAL(index
), rar_low
);
1827 ew32(RAH(index
), rar_high
);
1832 /* RAR[1-6] are owned by manageability. Skip those and program the
1833 * next address into the SHRA register array.
1835 if (index
< (u32
)(hw
->mac
.rar_entry_count
)) {
1838 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1842 ew32(SHRAL(index
- 1), rar_low
);
1844 ew32(SHRAH(index
- 1), rar_high
);
1847 e1000_release_swflag_ich8lan(hw
);
1849 /* verify the register updates */
1850 if ((er32(SHRAL(index
- 1)) == rar_low
) &&
1851 (er32(SHRAH(index
- 1)) == rar_high
))
1854 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1855 (index
- 1), er32(FWSM
));
1859 e_dbg("Failed to write receive address at index %d\n", index
);
1860 return -E1000_ERR_CONFIG
;
1864 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1865 * @hw: pointer to the HW structure
1867 * Get the number of available receive registers that the Host can
1868 * program. SHRA[0-10] are the shared receive address registers
1869 * that are shared between the Host and manageability engine (ME).
1870 * ME can reserve any number of addresses and the host needs to be
1871 * able to tell how many available registers it has access to.
1873 static u32
e1000_rar_get_count_pch_lpt(struct e1000_hw
*hw
)
1878 wlock_mac
= er32(FWSM
) & E1000_FWSM_WLOCK_MAC_MASK
;
1879 wlock_mac
>>= E1000_FWSM_WLOCK_MAC_SHIFT
;
1881 switch (wlock_mac
) {
1883 /* All SHRA[0..10] and RAR[0] available */
1884 num_entries
= hw
->mac
.rar_entry_count
;
1887 /* Only RAR[0] available */
1891 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1892 num_entries
= wlock_mac
+ 1;
1900 * e1000_rar_set_pch_lpt - Set receive address registers
1901 * @hw: pointer to the HW structure
1902 * @addr: pointer to the receive address
1903 * @index: receive address array register
1905 * Sets the receive address register array at index to the address passed
1906 * in by addr. For LPT, RAR[0] is the base address register that is to
1907 * contain the MAC address. SHRA[0-10] are the shared receive address
1908 * registers that are shared between the Host and manageability engine (ME).
1910 static int e1000_rar_set_pch_lpt(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
1912 u32 rar_low
, rar_high
;
1915 /* HW expects these in little endian so we reverse the byte order
1916 * from network order (big endian) to little endian
1918 rar_low
= ((u32
)addr
[0] | ((u32
)addr
[1] << 8) |
1919 ((u32
)addr
[2] << 16) | ((u32
)addr
[3] << 24));
1921 rar_high
= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1923 /* If MAC address zero, no need to set the AV bit */
1924 if (rar_low
|| rar_high
)
1925 rar_high
|= E1000_RAH_AV
;
1928 ew32(RAL(index
), rar_low
);
1930 ew32(RAH(index
), rar_high
);
1935 /* The manageability engine (ME) can lock certain SHRAR registers that
1936 * it is using - those registers are unavailable for use.
1938 if (index
< hw
->mac
.rar_entry_count
) {
1939 wlock_mac
= er32(FWSM
) & E1000_FWSM_WLOCK_MAC_MASK
;
1940 wlock_mac
>>= E1000_FWSM_WLOCK_MAC_SHIFT
;
1942 /* Check if all SHRAR registers are locked */
1946 if ((wlock_mac
== 0) || (index
<= wlock_mac
)) {
1949 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1954 ew32(SHRAL_PCH_LPT(index
- 1), rar_low
);
1956 ew32(SHRAH_PCH_LPT(index
- 1), rar_high
);
1959 e1000_release_swflag_ich8lan(hw
);
1961 /* verify the register updates */
1962 if ((er32(SHRAL_PCH_LPT(index
- 1)) == rar_low
) &&
1963 (er32(SHRAH_PCH_LPT(index
- 1)) == rar_high
))
1969 e_dbg("Failed to write receive address at index %d\n", index
);
1970 return -E1000_ERR_CONFIG
;
1974 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1975 * @hw: pointer to the HW structure
1977 * Checks if firmware is blocking the reset of the PHY.
1978 * This is a function pointer entry point only called by
1981 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
1983 bool blocked
= false;
1986 while ((blocked
= !(er32(FWSM
) & E1000_ICH_FWSM_RSPCIPHY
)) &&
1988 usleep_range(10000, 20000);
1989 return blocked
? E1000_BLK_PHY_RESET
: 0;
1993 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1994 * @hw: pointer to the HW structure
1996 * Assumes semaphore already acquired.
1999 static s32
e1000_write_smbus_addr(struct e1000_hw
*hw
)
2002 u32 strap
= er32(STRAP
);
2003 u32 freq
= (strap
& E1000_STRAP_SMT_FREQ_MASK
) >>
2004 E1000_STRAP_SMT_FREQ_SHIFT
;
2007 strap
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
2009 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, &phy_data
);
2013 phy_data
&= ~HV_SMB_ADDR_MASK
;
2014 phy_data
|= (strap
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
);
2015 phy_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
2017 if (hw
->phy
.type
== e1000_phy_i217
) {
2018 /* Restore SMBus frequency */
2020 phy_data
&= ~HV_SMB_ADDR_FREQ_MASK
;
2021 phy_data
|= (freq
& (1 << 0)) <<
2022 HV_SMB_ADDR_FREQ_LOW_SHIFT
;
2023 phy_data
|= (freq
& (1 << 1)) <<
2024 (HV_SMB_ADDR_FREQ_HIGH_SHIFT
- 1);
2026 e_dbg("Unsupported SMB frequency in PHY\n");
2030 return e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, phy_data
);
2034 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2035 * @hw: pointer to the HW structure
2037 * SW should configure the LCD from the NVM extended configuration region
2038 * as a workaround for certain parts.
2040 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
2042 struct e1000_phy_info
*phy
= &hw
->phy
;
2043 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
2045 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
2047 /* Initialize the PHY from the NVM on ICH platforms. This
2048 * is needed due to an issue where the NVM configuration is
2049 * not properly autoloaded after power transitions.
2050 * Therefore, after each PHY reset, we will load the
2051 * configuration data out of the NVM manually.
2053 switch (hw
->mac
.type
) {
2055 if (phy
->type
!= e1000_phy_igp_3
)
2058 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_AMT
) ||
2059 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_C
)) {
2060 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
2068 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
2074 ret_val
= hw
->phy
.ops
.acquire(hw
);
2078 data
= er32(FEXTNVM
);
2079 if (!(data
& sw_cfg_mask
))
2082 /* Make sure HW does not configure LCD from PHY
2083 * extended configuration before SW configuration
2085 data
= er32(EXTCNF_CTRL
);
2086 if ((hw
->mac
.type
< e1000_pch2lan
) &&
2087 (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
))
2090 cnf_size
= er32(EXTCNF_SIZE
);
2091 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
2092 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
2096 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
2097 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
2099 if (((hw
->mac
.type
== e1000_pchlan
) &&
2100 !(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)) ||
2101 (hw
->mac
.type
> e1000_pchlan
)) {
2102 /* HW configures the SMBus address and LEDs when the
2103 * OEM and LCD Write Enable bits are set in the NVM.
2104 * When both NVM bits are cleared, SW will configure
2107 ret_val
= e1000_write_smbus_addr(hw
);
2111 data
= er32(LEDCTL
);
2112 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_LED_CONFIG
,
2118 /* Configure LCD from extended configuration region. */
2120 /* cnf_base_addr is in DWORD */
2121 word_addr
= (u16
)(cnf_base_addr
<< 1);
2123 for (i
= 0; i
< cnf_size
; i
++) {
2124 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1, ®_data
);
2128 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
2133 /* Save off the PHY page for future writes. */
2134 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
2135 phy_page
= reg_data
;
2139 reg_addr
&= PHY_REG_MASK
;
2140 reg_addr
|= phy_page
;
2142 ret_val
= e1e_wphy_locked(hw
, (u32
)reg_addr
, reg_data
);
2148 hw
->phy
.ops
.release(hw
);
2153 * e1000_k1_gig_workaround_hv - K1 Si workaround
2154 * @hw: pointer to the HW structure
2155 * @link: link up bool flag
2157 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2158 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2159 * If link is down, the function will restore the default K1 setting located
2162 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
2166 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
2168 if (hw
->mac
.type
!= e1000_pchlan
)
2171 /* Wrap the whole flow with the sw flag */
2172 ret_val
= hw
->phy
.ops
.acquire(hw
);
2176 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2178 if (hw
->phy
.type
== e1000_phy_82578
) {
2179 ret_val
= e1e_rphy_locked(hw
, BM_CS_STATUS
,
2184 status_reg
&= (BM_CS_STATUS_LINK_UP
|
2185 BM_CS_STATUS_RESOLVED
|
2186 BM_CS_STATUS_SPEED_MASK
);
2188 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
2189 BM_CS_STATUS_RESOLVED
|
2190 BM_CS_STATUS_SPEED_1000
))
2194 if (hw
->phy
.type
== e1000_phy_82577
) {
2195 ret_val
= e1e_rphy_locked(hw
, HV_M_STATUS
, &status_reg
);
2199 status_reg
&= (HV_M_STATUS_LINK_UP
|
2200 HV_M_STATUS_AUTONEG_COMPLETE
|
2201 HV_M_STATUS_SPEED_MASK
);
2203 if (status_reg
== (HV_M_STATUS_LINK_UP
|
2204 HV_M_STATUS_AUTONEG_COMPLETE
|
2205 HV_M_STATUS_SPEED_1000
))
2209 /* Link stall fix for link up */
2210 ret_val
= e1e_wphy_locked(hw
, PHY_REG(770, 19), 0x0100);
2215 /* Link stall fix for link down */
2216 ret_val
= e1e_wphy_locked(hw
, PHY_REG(770, 19), 0x4100);
2221 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
2224 hw
->phy
.ops
.release(hw
);
2230 * e1000_configure_k1_ich8lan - Configure K1 power state
2231 * @hw: pointer to the HW structure
2232 * @enable: K1 state to configure
2234 * Configure the K1 power state based on the provided parameter.
2235 * Assumes semaphore already acquired.
2237 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2239 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
2247 ret_val
= e1000e_read_kmrn_reg_locked(hw
, E1000_KMRNCTRLSTA_K1_CONFIG
,
2253 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
2255 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
2257 ret_val
= e1000e_write_kmrn_reg_locked(hw
, E1000_KMRNCTRLSTA_K1_CONFIG
,
2262 usleep_range(20, 40);
2263 ctrl_ext
= er32(CTRL_EXT
);
2264 ctrl_reg
= er32(CTRL
);
2266 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
2267 reg
|= E1000_CTRL_FRCSPD
;
2270 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
2272 usleep_range(20, 40);
2273 ew32(CTRL
, ctrl_reg
);
2274 ew32(CTRL_EXT
, ctrl_ext
);
2276 usleep_range(20, 40);
2282 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2283 * @hw: pointer to the HW structure
2284 * @d0_state: boolean if entering d0 or d3 device state
2286 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2287 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2288 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2290 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
2296 if (hw
->mac
.type
< e1000_pchlan
)
2299 ret_val
= hw
->phy
.ops
.acquire(hw
);
2303 if (hw
->mac
.type
== e1000_pchlan
) {
2304 mac_reg
= er32(EXTCNF_CTRL
);
2305 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
2309 mac_reg
= er32(FEXTNVM
);
2310 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
2313 mac_reg
= er32(PHY_CTRL
);
2315 ret_val
= e1e_rphy_locked(hw
, HV_OEM_BITS
, &oem_reg
);
2319 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
2322 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
2323 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
2325 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
2326 oem_reg
|= HV_OEM_BITS_LPLU
;
2328 if (mac_reg
& (E1000_PHY_CTRL_GBE_DISABLE
|
2329 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
))
2330 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
2332 if (mac_reg
& (E1000_PHY_CTRL_D0A_LPLU
|
2333 E1000_PHY_CTRL_NOND0A_LPLU
))
2334 oem_reg
|= HV_OEM_BITS_LPLU
;
2337 /* Set Restart auto-neg to activate the bits */
2338 if ((d0_state
|| (hw
->mac
.type
!= e1000_pchlan
)) &&
2339 !hw
->phy
.ops
.check_reset_block(hw
))
2340 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
2342 ret_val
= e1e_wphy_locked(hw
, HV_OEM_BITS
, oem_reg
);
2345 hw
->phy
.ops
.release(hw
);
2351 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2352 * @hw: pointer to the HW structure
2354 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
2359 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
2363 data
|= HV_KMRN_MDIO_SLOW
;
2365 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
2371 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2372 * done after every PHY reset.
2374 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
2379 if (hw
->mac
.type
!= e1000_pchlan
)
2382 /* Set MDIO slow mode before any other MDIO access */
2383 if (hw
->phy
.type
== e1000_phy_82577
) {
2384 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
2389 if (((hw
->phy
.type
== e1000_phy_82577
) &&
2390 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
2391 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
2392 /* Disable generation of early preamble */
2393 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
2397 /* Preamble tuning for SSC */
2398 ret_val
= e1e_wphy(hw
, HV_KMRN_FIFO_CTRLSTA
, 0xA204);
2403 if (hw
->phy
.type
== e1000_phy_82578
) {
2404 /* Return registers to default by doing a soft reset then
2405 * writing 0x3140 to the control register.
2407 if (hw
->phy
.revision
< 2) {
2408 e1000e_phy_sw_reset(hw
);
2409 ret_val
= e1e_wphy(hw
, MII_BMCR
, 0x3140);
2414 ret_val
= hw
->phy
.ops
.acquire(hw
);
2419 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
2420 hw
->phy
.ops
.release(hw
);
2424 /* Configure the K1 Si workaround during phy reset assuming there is
2425 * link so that it disables K1 if link is in 1Gbps.
2427 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
2431 /* Workaround for link disconnects on a busy hub in half duplex */
2432 ret_val
= hw
->phy
.ops
.acquire(hw
);
2435 ret_val
= e1e_rphy_locked(hw
, BM_PORT_GEN_CFG
, &phy_data
);
2438 ret_val
= e1e_wphy_locked(hw
, BM_PORT_GEN_CFG
, phy_data
& 0x00FF);
2442 /* set MSE higher to enable link to stay up when noise is high */
2443 ret_val
= e1000_write_emi_reg_locked(hw
, I82577_MSE_THRESHOLD
, 0x0034);
2445 hw
->phy
.ops
.release(hw
);
2451 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2452 * @hw: pointer to the HW structure
2454 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw
*hw
)
2460 ret_val
= hw
->phy
.ops
.acquire(hw
);
2463 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2467 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2468 for (i
= 0; i
< (hw
->mac
.rar_entry_count
); i
++) {
2469 mac_reg
= er32(RAL(i
));
2470 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_L(i
),
2471 (u16
)(mac_reg
& 0xFFFF));
2472 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_M(i
),
2473 (u16
)((mac_reg
>> 16) & 0xFFFF));
2475 mac_reg
= er32(RAH(i
));
2476 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_H(i
),
2477 (u16
)(mac_reg
& 0xFFFF));
2478 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_CTRL(i
),
2479 (u16
)((mac_reg
& E1000_RAH_AV
)
2483 e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2486 hw
->phy
.ops
.release(hw
);
2490 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2492 * @hw: pointer to the HW structure
2493 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2495 s32
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw
*hw
, bool enable
)
2502 if (hw
->mac
.type
< e1000_pch2lan
)
2505 /* disable Rx path while enabling/disabling workaround */
2506 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
2507 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| (1 << 14));
2512 /* Write Rx addresses (rar_entry_count for RAL/H, and
2513 * SHRAL/H) and initial CRC values to the MAC
2515 for (i
= 0; i
< hw
->mac
.rar_entry_count
; i
++) {
2516 u8 mac_addr
[ETH_ALEN
] = { 0 };
2517 u32 addr_high
, addr_low
;
2519 addr_high
= er32(RAH(i
));
2520 if (!(addr_high
& E1000_RAH_AV
))
2522 addr_low
= er32(RAL(i
));
2523 mac_addr
[0] = (addr_low
& 0xFF);
2524 mac_addr
[1] = ((addr_low
>> 8) & 0xFF);
2525 mac_addr
[2] = ((addr_low
>> 16) & 0xFF);
2526 mac_addr
[3] = ((addr_low
>> 24) & 0xFF);
2527 mac_addr
[4] = (addr_high
& 0xFF);
2528 mac_addr
[5] = ((addr_high
>> 8) & 0xFF);
2530 ew32(PCH_RAICC(i
), ~ether_crc_le(ETH_ALEN
, mac_addr
));
2533 /* Write Rx addresses to the PHY */
2534 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
2536 /* Enable jumbo frame workaround in the MAC */
2537 mac_reg
= er32(FFLT_DBG
);
2538 mac_reg
&= ~(1 << 14);
2539 mac_reg
|= (7 << 15);
2540 ew32(FFLT_DBG
, mac_reg
);
2542 mac_reg
= er32(RCTL
);
2543 mac_reg
|= E1000_RCTL_SECRC
;
2544 ew32(RCTL
, mac_reg
);
2546 ret_val
= e1000e_read_kmrn_reg(hw
,
2547 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2551 ret_val
= e1000e_write_kmrn_reg(hw
,
2552 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2556 ret_val
= e1000e_read_kmrn_reg(hw
,
2557 E1000_KMRNCTRLSTA_HD_CTRL
,
2561 data
&= ~(0xF << 8);
2563 ret_val
= e1000e_write_kmrn_reg(hw
,
2564 E1000_KMRNCTRLSTA_HD_CTRL
,
2569 /* Enable jumbo frame workaround in the PHY */
2570 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
2571 data
&= ~(0x7F << 5);
2572 data
|= (0x37 << 5);
2573 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
2576 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
2578 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
2581 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
2582 data
&= ~(0x3FF << 2);
2583 data
|= (E1000_TX_PTR_GAP
<< 2);
2584 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
2587 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0xF100);
2590 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
2591 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
| (1 << 10));
2595 /* Write MAC register values back to h/w defaults */
2596 mac_reg
= er32(FFLT_DBG
);
2597 mac_reg
&= ~(0xF << 14);
2598 ew32(FFLT_DBG
, mac_reg
);
2600 mac_reg
= er32(RCTL
);
2601 mac_reg
&= ~E1000_RCTL_SECRC
;
2602 ew32(RCTL
, mac_reg
);
2604 ret_val
= e1000e_read_kmrn_reg(hw
,
2605 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2609 ret_val
= e1000e_write_kmrn_reg(hw
,
2610 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2614 ret_val
= e1000e_read_kmrn_reg(hw
,
2615 E1000_KMRNCTRLSTA_HD_CTRL
,
2619 data
&= ~(0xF << 8);
2621 ret_val
= e1000e_write_kmrn_reg(hw
,
2622 E1000_KMRNCTRLSTA_HD_CTRL
,
2627 /* Write PHY register values back to h/w defaults */
2628 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
2629 data
&= ~(0x7F << 5);
2630 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
2633 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
2635 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
2638 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
2639 data
&= ~(0x3FF << 2);
2641 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
2644 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0x7E00);
2647 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
2648 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
& ~(1 << 10));
2653 /* re-enable Rx path after enabling/disabling workaround */
2654 return e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
& ~(1 << 14));
2658 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2659 * done after every PHY reset.
2661 static s32
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
2665 if (hw
->mac
.type
!= e1000_pch2lan
)
2668 /* Set MDIO slow mode before any other MDIO access */
2669 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
2673 ret_val
= hw
->phy
.ops
.acquire(hw
);
2676 /* set MSE higher to enable link to stay up when noise is high */
2677 ret_val
= e1000_write_emi_reg_locked(hw
, I82579_MSE_THRESHOLD
, 0x0034);
2680 /* drop link after 5 times MSE threshold was reached */
2681 ret_val
= e1000_write_emi_reg_locked(hw
, I82579_MSE_LINK_DOWN
, 0x0005);
2683 hw
->phy
.ops
.release(hw
);
2689 * e1000_k1_gig_workaround_lv - K1 Si workaround
2690 * @hw: pointer to the HW structure
2692 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2693 * Disable K1 in 1000Mbps and 100Mbps
2695 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
)
2700 if (hw
->mac
.type
!= e1000_pch2lan
)
2703 /* Set K1 beacon duration based on 10Mbs speed */
2704 ret_val
= e1e_rphy(hw
, HV_M_STATUS
, &status_reg
);
2708 if ((status_reg
& (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
))
2709 == (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
)) {
2711 (HV_M_STATUS_SPEED_1000
| HV_M_STATUS_SPEED_100
)) {
2714 /* LV 1G/100 Packet drop issue wa */
2715 ret_val
= e1e_rphy(hw
, HV_PM_CTRL
, &pm_phy_reg
);
2718 pm_phy_reg
&= ~HV_PM_CTRL_K1_ENABLE
;
2719 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, pm_phy_reg
);
2725 mac_reg
= er32(FEXTNVM4
);
2726 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
2727 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_16USEC
;
2728 ew32(FEXTNVM4
, mac_reg
);
2736 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2737 * @hw: pointer to the HW structure
2738 * @gate: boolean set to true to gate, false to ungate
2740 * Gate/ungate the automatic PHY configuration via hardware; perform
2741 * the configuration via software instead.
2743 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
)
2747 if (hw
->mac
.type
< e1000_pch2lan
)
2750 extcnf_ctrl
= er32(EXTCNF_CTRL
);
2753 extcnf_ctrl
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
2755 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
2757 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
2761 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2762 * @hw: pointer to the HW structure
2764 * Check the appropriate indication the MAC has finished configuring the
2765 * PHY after a software reset.
2767 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
2769 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
2771 /* Wait for basic configuration completes before proceeding */
2773 data
= er32(STATUS
);
2774 data
&= E1000_STATUS_LAN_INIT_DONE
;
2775 usleep_range(100, 200);
2776 } while ((!data
) && --loop
);
2778 /* If basic configuration is incomplete before the above loop
2779 * count reaches 0, loading the configuration from NVM will
2780 * leave the PHY in a bad state possibly resulting in no link.
2783 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2785 /* Clear the Init Done bit for the next init event */
2786 data
= er32(STATUS
);
2787 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
2792 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2793 * @hw: pointer to the HW structure
2795 static s32
e1000_post_phy_reset_ich8lan(struct e1000_hw
*hw
)
2800 if (hw
->phy
.ops
.check_reset_block(hw
))
2803 /* Allow time for h/w to get to quiescent state after reset */
2804 usleep_range(10000, 20000);
2806 /* Perform any necessary post-reset workarounds */
2807 switch (hw
->mac
.type
) {
2809 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
2814 ret_val
= e1000_lv_phy_workarounds_ich8lan(hw
);
2822 /* Clear the host wakeup bit after lcd reset */
2823 if (hw
->mac
.type
>= e1000_pchlan
) {
2824 e1e_rphy(hw
, BM_PORT_GEN_CFG
, ®
);
2825 reg
&= ~BM_WUC_HOST_WU_BIT
;
2826 e1e_wphy(hw
, BM_PORT_GEN_CFG
, reg
);
2829 /* Configure the LCD with the extended configuration region in NVM */
2830 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
2834 /* Configure the LCD with the OEM bits in NVM */
2835 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
2837 if (hw
->mac
.type
== e1000_pch2lan
) {
2838 /* Ungate automatic PHY configuration on non-managed 82579 */
2839 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
2840 usleep_range(10000, 20000);
2841 e1000_gate_hw_phy_config_ich8lan(hw
, false);
2844 /* Set EEE LPI Update Timer to 200usec */
2845 ret_val
= hw
->phy
.ops
.acquire(hw
);
2848 ret_val
= e1000_write_emi_reg_locked(hw
,
2849 I82579_LPI_UPDATE_TIMER
,
2851 hw
->phy
.ops
.release(hw
);
2858 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2859 * @hw: pointer to the HW structure
2862 * This is a function pointer entry point called by drivers
2863 * or other shared routines.
2865 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
2869 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2870 if ((hw
->mac
.type
== e1000_pch2lan
) &&
2871 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
2872 e1000_gate_hw_phy_config_ich8lan(hw
, true);
2874 ret_val
= e1000e_phy_hw_reset_generic(hw
);
2878 return e1000_post_phy_reset_ich8lan(hw
);
2882 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2883 * @hw: pointer to the HW structure
2884 * @active: true to enable LPLU, false to disable
2886 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2887 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2888 * the phy speed. This function will manually set the LPLU bit and restart
2889 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2890 * since it configures the same bit.
2892 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
2897 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
2902 oem_reg
|= HV_OEM_BITS_LPLU
;
2904 oem_reg
&= ~HV_OEM_BITS_LPLU
;
2906 if (!hw
->phy
.ops
.check_reset_block(hw
))
2907 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
2909 return e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
2913 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2914 * @hw: pointer to the HW structure
2915 * @active: true to enable LPLU, false to disable
2917 * Sets the LPLU D0 state according to the active flag. When
2918 * activating LPLU this function also disables smart speed
2919 * and vice versa. LPLU will not be activated unless the
2920 * device autonegotiation advertisement meets standards of
2921 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2922 * This is a function pointer entry point only called by
2923 * PHY setup routines.
2925 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
2927 struct e1000_phy_info
*phy
= &hw
->phy
;
2932 if (phy
->type
== e1000_phy_ife
)
2935 phy_ctrl
= er32(PHY_CTRL
);
2938 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
2939 ew32(PHY_CTRL
, phy_ctrl
);
2941 if (phy
->type
!= e1000_phy_igp_3
)
2944 /* Call gig speed drop workaround on LPLU before accessing
2947 if (hw
->mac
.type
== e1000_ich8lan
)
2948 e1000e_gig_downshift_workaround_ich8lan(hw
);
2950 /* When LPLU is enabled, we should disable SmartSpeed */
2951 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
2954 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
2955 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
2959 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
2960 ew32(PHY_CTRL
, phy_ctrl
);
2962 if (phy
->type
!= e1000_phy_igp_3
)
2965 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2966 * during Dx states where the power conservation is most
2967 * important. During driver activity we should enable
2968 * SmartSpeed, so performance is maintained.
2970 if (phy
->smart_speed
== e1000_smart_speed_on
) {
2971 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2976 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
2977 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2981 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
2982 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2987 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
2988 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2999 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3000 * @hw: pointer to the HW structure
3001 * @active: true to enable LPLU, false to disable
3003 * Sets the LPLU D3 state according to the active flag. When
3004 * activating LPLU this function also disables smart speed
3005 * and vice versa. LPLU will not be activated unless the
3006 * device autonegotiation advertisement meets standards of
3007 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3008 * This is a function pointer entry point only called by
3009 * PHY setup routines.
3011 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
3013 struct e1000_phy_info
*phy
= &hw
->phy
;
3018 phy_ctrl
= er32(PHY_CTRL
);
3021 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
3022 ew32(PHY_CTRL
, phy_ctrl
);
3024 if (phy
->type
!= e1000_phy_igp_3
)
3027 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3028 * during Dx states where the power conservation is most
3029 * important. During driver activity we should enable
3030 * SmartSpeed, so performance is maintained.
3032 if (phy
->smart_speed
== e1000_smart_speed_on
) {
3033 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3038 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
3039 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3043 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
3044 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3049 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
3050 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3055 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
3056 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
3057 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
3058 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
3059 ew32(PHY_CTRL
, phy_ctrl
);
3061 if (phy
->type
!= e1000_phy_igp_3
)
3064 /* Call gig speed drop workaround on LPLU before accessing
3067 if (hw
->mac
.type
== e1000_ich8lan
)
3068 e1000e_gig_downshift_workaround_ich8lan(hw
);
3070 /* When LPLU is enabled, we should disable SmartSpeed */
3071 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
3075 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
3076 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
3083 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3084 * @hw: pointer to the HW structure
3085 * @bank: pointer to the variable that returns the active bank
3087 * Reads signature byte from the NVM using the flash access registers.
3088 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3090 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
3093 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3094 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
3095 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
3099 switch (hw
->mac
.type
) {
3100 /* In SPT, read from the CTRL_EXT reg instead of
3101 * accessing the sector valid bits from the nvm
3104 *bank
= er32(CTRL_EXT
)
3105 & E1000_CTRL_EXT_NVMVS
;
3106 if ((*bank
== 0) || (*bank
== 1)) {
3107 e_dbg("ERROR: No valid NVM bank present\n");
3108 return -E1000_ERR_NVM
;
3117 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
3118 E1000_EECD_SEC1VAL_VALID_MASK
) {
3119 if (eecd
& E1000_EECD_SEC1VAL
)
3126 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3129 /* set bank to 0 in case flash read fails */
3133 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
3137 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
3138 E1000_ICH_NVM_SIG_VALUE
) {
3144 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
3149 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
3150 E1000_ICH_NVM_SIG_VALUE
) {
3155 e_dbg("ERROR: No valid NVM bank present\n");
3156 return -E1000_ERR_NVM
;
3161 * e1000_read_nvm_spt - NVM access for SPT
3162 * @hw: pointer to the HW structure
3163 * @offset: The offset (in bytes) of the word(s) to read.
3164 * @words: Size of data to read in words.
3165 * @data: pointer to the word(s) to read at offset.
3167 * Reads a word(s) from the NVM
3169 static s32
e1000_read_nvm_spt(struct e1000_hw
*hw
, u16 offset
, u16 words
,
3172 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3173 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3181 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
3183 e_dbg("nvm parameter(s) out of bounds\n");
3184 ret_val
= -E1000_ERR_NVM
;
3188 nvm
->ops
.acquire(hw
);
3190 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3192 e_dbg("Could not detect valid bank, assuming bank 0\n");
3196 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
3197 act_offset
+= offset
;
3201 for (i
= 0; i
< words
; i
+= 2) {
3202 if (words
- i
== 1) {
3203 if (dev_spec
->shadow_ram
[offset
+ i
].modified
) {
3205 dev_spec
->shadow_ram
[offset
+ i
].value
;
3207 offset_to_read
= act_offset
+ i
-
3208 ((act_offset
+ i
) % 2);
3210 e1000_read_flash_dword_ich8lan(hw
,
3215 if ((act_offset
+ i
) % 2 == 0)
3216 data
[i
] = (u16
)(dword
& 0xFFFF);
3218 data
[i
] = (u16
)((dword
>> 16) & 0xFFFF);
3221 offset_to_read
= act_offset
+ i
;
3222 if (!(dev_spec
->shadow_ram
[offset
+ i
].modified
) ||
3223 !(dev_spec
->shadow_ram
[offset
+ i
+ 1].modified
)) {
3225 e1000_read_flash_dword_ich8lan(hw
,
3231 if (dev_spec
->shadow_ram
[offset
+ i
].modified
)
3233 dev_spec
->shadow_ram
[offset
+ i
].value
;
3235 data
[i
] = (u16
)(dword
& 0xFFFF);
3236 if (dev_spec
->shadow_ram
[offset
+ i
].modified
)
3238 dev_spec
->shadow_ram
[offset
+ i
+ 1].value
;
3240 data
[i
+ 1] = (u16
)(dword
>> 16 & 0xFFFF);
3244 nvm
->ops
.release(hw
);
3248 e_dbg("NVM read error: %d\n", ret_val
);
3254 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3255 * @hw: pointer to the HW structure
3256 * @offset: The offset (in bytes) of the word(s) to read.
3257 * @words: Size of data to read in words
3258 * @data: Pointer to the word(s) to read at offset.
3260 * Reads a word(s) from the NVM using the flash access registers.
3262 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
3265 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3266 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3272 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
3274 e_dbg("nvm parameter(s) out of bounds\n");
3275 ret_val
= -E1000_ERR_NVM
;
3279 nvm
->ops
.acquire(hw
);
3281 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3283 e_dbg("Could not detect valid bank, assuming bank 0\n");
3287 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
3288 act_offset
+= offset
;
3291 for (i
= 0; i
< words
; i
++) {
3292 if (dev_spec
->shadow_ram
[offset
+ i
].modified
) {
3293 data
[i
] = dev_spec
->shadow_ram
[offset
+ i
].value
;
3295 ret_val
= e1000_read_flash_word_ich8lan(hw
,
3304 nvm
->ops
.release(hw
);
3308 e_dbg("NVM read error: %d\n", ret_val
);
3314 * e1000_flash_cycle_init_ich8lan - Initialize flash
3315 * @hw: pointer to the HW structure
3317 * This function does initial flash setup so that a new read/write/erase cycle
3320 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
3322 union ich8_hws_flash_status hsfsts
;
3323 s32 ret_val
= -E1000_ERR_NVM
;
3325 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3327 /* Check if the flash descriptor is valid */
3328 if (!hsfsts
.hsf_status
.fldesvalid
) {
3329 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3330 return -E1000_ERR_NVM
;
3333 /* Clear FCERR and DAEL in hw status by writing 1 */
3334 hsfsts
.hsf_status
.flcerr
= 1;
3335 hsfsts
.hsf_status
.dael
= 1;
3336 if (hw
->mac
.type
== e1000_pch_spt
)
3337 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
& 0xFFFF);
3339 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
3341 /* Either we should have a hardware SPI cycle in progress
3342 * bit to check against, in order to start a new cycle or
3343 * FDONE bit should be changed in the hardware so that it
3344 * is 1 after hardware reset, which can then be used as an
3345 * indication whether a cycle is in progress or has been
3349 if (!hsfsts
.hsf_status
.flcinprog
) {
3350 /* There is no cycle running at present,
3351 * so we can start a cycle.
3352 * Begin by setting Flash Cycle Done.
3354 hsfsts
.hsf_status
.flcdone
= 1;
3355 if (hw
->mac
.type
== e1000_pch_spt
)
3356 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
& 0xFFFF);
3358 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
3363 /* Otherwise poll for sometime so the current
3364 * cycle has a chance to end before giving up.
3366 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
3367 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3368 if (!hsfsts
.hsf_status
.flcinprog
) {
3375 /* Successful in waiting for previous cycle to timeout,
3376 * now set the Flash Cycle Done.
3378 hsfsts
.hsf_status
.flcdone
= 1;
3379 if (hw
->mac
.type
== e1000_pch_spt
)
3380 ew32flash(ICH_FLASH_HSFSTS
,
3381 hsfsts
.regval
& 0xFFFF);
3383 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
3385 e_dbg("Flash controller busy, cannot get access\n");
3393 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3394 * @hw: pointer to the HW structure
3395 * @timeout: maximum time to wait for completion
3397 * This function starts a flash cycle and waits for its completion.
3399 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
3401 union ich8_hws_flash_ctrl hsflctl
;
3402 union ich8_hws_flash_status hsfsts
;
3405 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3406 if (hw
->mac
.type
== e1000_pch_spt
)
3407 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
) >> 16;
3409 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
3410 hsflctl
.hsf_ctrl
.flcgo
= 1;
3412 if (hw
->mac
.type
== e1000_pch_spt
)
3413 ew32flash(ICH_FLASH_HSFSTS
, hsflctl
.regval
<< 16);
3415 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
3417 /* wait till FDONE bit is set to 1 */
3419 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3420 if (hsfsts
.hsf_status
.flcdone
)
3423 } while (i
++ < timeout
);
3425 if (hsfsts
.hsf_status
.flcdone
&& !hsfsts
.hsf_status
.flcerr
)
3428 return -E1000_ERR_NVM
;
3432 * e1000_read_flash_dword_ich8lan - Read dword from flash
3433 * @hw: pointer to the HW structure
3434 * @offset: offset to data location
3435 * @data: pointer to the location for storing the data
3437 * Reads the flash dword at offset into data. Offset is converted
3438 * to bytes before read.
3440 static s32
e1000_read_flash_dword_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3443 /* Must convert word offset into bytes. */
3445 return e1000_read_flash_data32_ich8lan(hw
, offset
, data
);
3449 * e1000_read_flash_word_ich8lan - Read word from flash
3450 * @hw: pointer to the HW structure
3451 * @offset: offset to data location
3452 * @data: pointer to the location for storing the data
3454 * Reads the flash word at offset into data. Offset is converted
3455 * to bytes before read.
3457 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3460 /* Must convert offset into bytes. */
3463 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
3467 * e1000_read_flash_byte_ich8lan - Read byte from flash
3468 * @hw: pointer to the HW structure
3469 * @offset: The offset of the byte to read.
3470 * @data: Pointer to a byte to store the value read.
3472 * Reads a single byte from the NVM using the flash access registers.
3474 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3480 /* In SPT, only 32 bits access is supported,
3481 * so this function should not be called.
3483 if (hw
->mac
.type
== e1000_pch_spt
)
3484 return -E1000_ERR_NVM
;
3486 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
3497 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3498 * @hw: pointer to the HW structure
3499 * @offset: The offset (in bytes) of the byte or word to read.
3500 * @size: Size of data to read, 1=byte 2=word
3501 * @data: Pointer to the word to store the value read.
3503 * Reads a byte or word from the NVM using the flash access registers.
3505 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3508 union ich8_hws_flash_status hsfsts
;
3509 union ich8_hws_flash_ctrl hsflctl
;
3510 u32 flash_linear_addr
;
3512 s32 ret_val
= -E1000_ERR_NVM
;
3515 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
3516 return -E1000_ERR_NVM
;
3518 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
3519 hw
->nvm
.flash_base_addr
);
3524 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
3528 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
3529 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3530 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
3531 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
3532 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
3534 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
3537 e1000_flash_cycle_ich8lan(hw
,
3538 ICH_FLASH_READ_COMMAND_TIMEOUT
);
3540 /* Check if FCERR is set to 1, if set to 1, clear it
3541 * and try the whole sequence a few more times, else
3542 * read in (shift in) the Flash Data0, the order is
3543 * least significant byte first msb to lsb
3546 flash_data
= er32flash(ICH_FLASH_FDATA0
);
3548 *data
= (u8
)(flash_data
& 0x000000FF);
3550 *data
= (u16
)(flash_data
& 0x0000FFFF);
3553 /* If we've gotten here, then things are probably
3554 * completely hosed, but if the error condition is
3555 * detected, it won't hurt to give it another try...
3556 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3558 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3559 if (hsfsts
.hsf_status
.flcerr
) {
3560 /* Repeat for some time before giving up. */
3562 } else if (!hsfsts
.hsf_status
.flcdone
) {
3563 e_dbg("Timeout error - flash cycle did not complete.\n");
3567 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
3573 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3574 * @hw: pointer to the HW structure
3575 * @offset: The offset (in bytes) of the dword to read.
3576 * @data: Pointer to the dword to store the value read.
3578 * Reads a byte or word from the NVM using the flash access registers.
3581 static s32
e1000_read_flash_data32_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3584 union ich8_hws_flash_status hsfsts
;
3585 union ich8_hws_flash_ctrl hsflctl
;
3586 u32 flash_linear_addr
;
3587 s32 ret_val
= -E1000_ERR_NVM
;
3590 if (offset
> ICH_FLASH_LINEAR_ADDR_MASK
||
3591 hw
->mac
.type
!= e1000_pch_spt
)
3592 return -E1000_ERR_NVM
;
3593 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
3594 hw
->nvm
.flash_base_addr
);
3599 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
3602 /* In SPT, This register is in Lan memory space, not flash.
3603 * Therefore, only 32 bit access is supported
3605 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
) >> 16;
3607 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3608 hsflctl
.hsf_ctrl
.fldbcount
= sizeof(u32
) - 1;
3609 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
3610 /* In SPT, This register is in Lan memory space, not flash.
3611 * Therefore, only 32 bit access is supported
3613 ew32flash(ICH_FLASH_HSFSTS
, (u32
)hsflctl
.regval
<< 16);
3614 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
3617 e1000_flash_cycle_ich8lan(hw
,
3618 ICH_FLASH_READ_COMMAND_TIMEOUT
);
3620 /* Check if FCERR is set to 1, if set to 1, clear it
3621 * and try the whole sequence a few more times, else
3622 * read in (shift in) the Flash Data0, the order is
3623 * least significant byte first msb to lsb
3626 *data
= er32flash(ICH_FLASH_FDATA0
);
3629 /* If we've gotten here, then things are probably
3630 * completely hosed, but if the error condition is
3631 * detected, it won't hurt to give it another try...
3632 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3634 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3635 if (hsfsts
.hsf_status
.flcerr
) {
3636 /* Repeat for some time before giving up. */
3638 } else if (!hsfsts
.hsf_status
.flcdone
) {
3639 e_dbg("Timeout error - flash cycle did not complete.\n");
3643 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
3649 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3650 * @hw: pointer to the HW structure
3651 * @offset: The offset (in bytes) of the word(s) to write.
3652 * @words: Size of data to write in words
3653 * @data: Pointer to the word(s) to write at offset.
3655 * Writes a byte or word to the NVM using the flash access registers.
3657 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
3660 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3661 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3664 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
3666 e_dbg("nvm parameter(s) out of bounds\n");
3667 return -E1000_ERR_NVM
;
3670 nvm
->ops
.acquire(hw
);
3672 for (i
= 0; i
< words
; i
++) {
3673 dev_spec
->shadow_ram
[offset
+ i
].modified
= true;
3674 dev_spec
->shadow_ram
[offset
+ i
].value
= data
[i
];
3677 nvm
->ops
.release(hw
);
3683 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3684 * @hw: pointer to the HW structure
3686 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3687 * which writes the checksum to the shadow ram. The changes in the shadow
3688 * ram are then committed to the EEPROM by processing each bank at a time
3689 * checking for the modified bit and writing only the pending changes.
3690 * After a successful commit, the shadow ram is cleared and is ready for
3693 static s32
e1000_update_nvm_checksum_spt(struct e1000_hw
*hw
)
3695 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3696 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3697 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
3701 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
3705 if (nvm
->type
!= e1000_nvm_flash_sw
)
3708 nvm
->ops
.acquire(hw
);
3710 /* We're writing to the opposite bank so if we're on bank 1,
3711 * write to bank 0 etc. We also need to erase the segment that
3712 * is going to be written
3714 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3716 e_dbg("Could not detect valid bank, assuming bank 0\n");
3721 new_bank_offset
= nvm
->flash_bank_size
;
3722 old_bank_offset
= 0;
3723 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
3727 old_bank_offset
= nvm
->flash_bank_size
;
3728 new_bank_offset
= 0;
3729 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
3733 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
+= 2) {
3734 /* Determine whether to write the value stored
3735 * in the other NVM bank or a modified value stored
3738 ret_val
= e1000_read_flash_dword_ich8lan(hw
,
3739 i
+ old_bank_offset
,
3742 if (dev_spec
->shadow_ram
[i
].modified
) {
3743 dword
&= 0xffff0000;
3744 dword
|= (dev_spec
->shadow_ram
[i
].value
& 0xffff);
3746 if (dev_spec
->shadow_ram
[i
+ 1].modified
) {
3747 dword
&= 0x0000ffff;
3748 dword
|= ((dev_spec
->shadow_ram
[i
+ 1].value
& 0xffff)
3754 /* If the word is 0x13, then make sure the signature bits
3755 * (15:14) are 11b until the commit has completed.
3756 * This will allow us to write 10b which indicates the
3757 * signature is valid. We want to do this after the write
3758 * has completed so that we don't mark the segment valid
3759 * while the write is still in progress
3761 if (i
== E1000_ICH_NVM_SIG_WORD
- 1)
3762 dword
|= E1000_ICH_NVM_SIG_MASK
<< 16;
3764 /* Convert offset to bytes. */
3765 act_offset
= (i
+ new_bank_offset
) << 1;
3767 usleep_range(100, 200);
3769 /* Write the data to the new bank. Offset in words */
3770 act_offset
= i
+ new_bank_offset
;
3771 ret_val
= e1000_retry_write_flash_dword_ich8lan(hw
, act_offset
,
3777 /* Don't bother writing the segment valid bits if sector
3778 * programming failed.
3781 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3782 e_dbg("Flash commit failed.\n");
3786 /* Finally validate the new segment by setting bit 15:14
3787 * to 10b in word 0x13 , this can be done without an
3788 * erase as well since these bits are 11 to start with
3789 * and we need to change bit 14 to 0b
3791 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
3793 /*offset in words but we read dword */
3795 ret_val
= e1000_read_flash_dword_ich8lan(hw
, act_offset
, &dword
);
3800 dword
&= 0xBFFFFFFF;
3801 ret_val
= e1000_retry_write_flash_dword_ich8lan(hw
, act_offset
, dword
);
3806 /* And invalidate the previously valid segment by setting
3807 * its signature word (0x13) high_byte to 0b. This can be
3808 * done without an erase because flash erase sets all bits
3809 * to 1's. We can write 1's to 0's without an erase
3811 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
3813 /* offset in words but we read dword */
3814 act_offset
= old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
- 1;
3815 ret_val
= e1000_read_flash_dword_ich8lan(hw
, act_offset
, &dword
);
3820 dword
&= 0x00FFFFFF;
3821 ret_val
= e1000_retry_write_flash_dword_ich8lan(hw
, act_offset
, dword
);
3826 /* Great! Everything worked, we can now clear the cached entries. */
3827 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
3828 dev_spec
->shadow_ram
[i
].modified
= false;
3829 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
3833 nvm
->ops
.release(hw
);
3835 /* Reload the EEPROM, or else modifications will not appear
3836 * until after the next adapter reset.
3839 nvm
->ops
.reload(hw
);
3840 usleep_range(10000, 20000);
3845 e_dbg("NVM update error: %d\n", ret_val
);
3851 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3852 * @hw: pointer to the HW structure
3854 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3855 * which writes the checksum to the shadow ram. The changes in the shadow
3856 * ram are then committed to the EEPROM by processing each bank at a time
3857 * checking for the modified bit and writing only the pending changes.
3858 * After a successful commit, the shadow ram is cleared and is ready for
3861 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
3863 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3864 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3865 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
3869 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
3873 if (nvm
->type
!= e1000_nvm_flash_sw
)
3876 nvm
->ops
.acquire(hw
);
3878 /* We're writing to the opposite bank so if we're on bank 1,
3879 * write to bank 0 etc. We also need to erase the segment that
3880 * is going to be written
3882 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3884 e_dbg("Could not detect valid bank, assuming bank 0\n");
3889 new_bank_offset
= nvm
->flash_bank_size
;
3890 old_bank_offset
= 0;
3891 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
3895 old_bank_offset
= nvm
->flash_bank_size
;
3896 new_bank_offset
= 0;
3897 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
3901 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
3902 if (dev_spec
->shadow_ram
[i
].modified
) {
3903 data
= dev_spec
->shadow_ram
[i
].value
;
3905 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
3912 /* If the word is 0x13, then make sure the signature bits
3913 * (15:14) are 11b until the commit has completed.
3914 * This will allow us to write 10b which indicates the
3915 * signature is valid. We want to do this after the write
3916 * has completed so that we don't mark the segment valid
3917 * while the write is still in progress
3919 if (i
== E1000_ICH_NVM_SIG_WORD
)
3920 data
|= E1000_ICH_NVM_SIG_MASK
;
3922 /* Convert offset to bytes. */
3923 act_offset
= (i
+ new_bank_offset
) << 1;
3925 usleep_range(100, 200);
3926 /* Write the bytes to the new bank. */
3927 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
3933 usleep_range(100, 200);
3934 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
3941 /* Don't bother writing the segment valid bits if sector
3942 * programming failed.
3945 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3946 e_dbg("Flash commit failed.\n");
3950 /* Finally validate the new segment by setting bit 15:14
3951 * to 10b in word 0x13 , this can be done without an
3952 * erase as well since these bits are 11 to start with
3953 * and we need to change bit 14 to 0b
3955 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
3956 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
3961 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
3967 /* And invalidate the previously valid segment by setting
3968 * its signature word (0x13) high_byte to 0b. This can be
3969 * done without an erase because flash erase sets all bits
3970 * to 1's. We can write 1's to 0's without an erase
3972 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
3973 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
3977 /* Great! Everything worked, we can now clear the cached entries. */
3978 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
3979 dev_spec
->shadow_ram
[i
].modified
= false;
3980 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
3984 nvm
->ops
.release(hw
);
3986 /* Reload the EEPROM, or else modifications will not appear
3987 * until after the next adapter reset.
3990 nvm
->ops
.reload(hw
);
3991 usleep_range(10000, 20000);
3996 e_dbg("NVM update error: %d\n", ret_val
);
4002 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4003 * @hw: pointer to the HW structure
4005 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4006 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4007 * calculated, in which case we need to calculate the checksum and set bit 6.
4009 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
4014 u16 valid_csum_mask
;
4016 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4017 * the checksum needs to be fixed. This bit is an indication that
4018 * the NVM was prepared by OEM software and did not calculate
4019 * the checksum...a likely scenario.
4021 switch (hw
->mac
.type
) {
4025 valid_csum_mask
= NVM_COMPAT_VALID_CSUM
;
4028 word
= NVM_FUTURE_INIT_WORD1
;
4029 valid_csum_mask
= NVM_FUTURE_INIT_WORD1_VALID_CSUM
;
4033 ret_val
= e1000_read_nvm(hw
, word
, 1, &data
);
4037 if (!(data
& valid_csum_mask
)) {
4038 data
|= valid_csum_mask
;
4039 ret_val
= e1000_write_nvm(hw
, word
, 1, &data
);
4042 ret_val
= e1000e_update_nvm_checksum(hw
);
4047 return e1000e_validate_nvm_checksum_generic(hw
);
4051 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4052 * @hw: pointer to the HW structure
4054 * To prevent malicious write/erase of the NVM, set it to be read-only
4055 * so that the hardware ignores all write/erase cycles of the NVM via
4056 * the flash control registers. The shadow-ram copy of the NVM will
4057 * still be updated, however any updates to this copy will not stick
4058 * across driver reloads.
4060 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
4062 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
4063 union ich8_flash_protected_range pr0
;
4064 union ich8_hws_flash_status hsfsts
;
4067 nvm
->ops
.acquire(hw
);
4069 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
4071 /* Write-protect GbE Sector of NVM */
4072 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
4073 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
4074 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
4075 pr0
.range
.wpe
= true;
4076 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
4078 /* Lock down a subset of GbE Flash Control Registers, e.g.
4079 * PR0 to prevent the write-protection from being lifted.
4080 * Once FLOCKDN is set, the registers protected by it cannot
4081 * be written until FLOCKDN is cleared by a hardware reset.
4083 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4084 hsfsts
.hsf_status
.flockdn
= true;
4085 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
4087 nvm
->ops
.release(hw
);
4091 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4092 * @hw: pointer to the HW structure
4093 * @offset: The offset (in bytes) of the byte/word to read.
4094 * @size: Size of data to read, 1=byte 2=word
4095 * @data: The byte(s) to write to the NVM.
4097 * Writes one/two bytes to the NVM using the flash access registers.
4099 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
4102 union ich8_hws_flash_status hsfsts
;
4103 union ich8_hws_flash_ctrl hsflctl
;
4104 u32 flash_linear_addr
;
4109 if (hw
->mac
.type
== e1000_pch_spt
) {
4110 if (size
!= 4 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
4111 return -E1000_ERR_NVM
;
4113 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
4114 return -E1000_ERR_NVM
;
4117 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
4118 hw
->nvm
.flash_base_addr
);
4123 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
4126 /* In SPT, This register is in Lan memory space, not
4127 * flash. Therefore, only 32 bit access is supported
4129 if (hw
->mac
.type
== e1000_pch_spt
)
4130 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
) >> 16;
4132 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
4134 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4135 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
4136 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
4137 /* In SPT, This register is in Lan memory space,
4138 * not flash. Therefore, only 32 bit access is
4141 if (hw
->mac
.type
== e1000_pch_spt
)
4142 ew32flash(ICH_FLASH_HSFSTS
, hsflctl
.regval
<< 16);
4144 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
4146 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
4149 flash_data
= (u32
)data
& 0x00FF;
4151 flash_data
= (u32
)data
;
4153 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
4155 /* check if FCERR is set to 1 , if set to 1, clear it
4156 * and try the whole sequence a few more times else done
4159 e1000_flash_cycle_ich8lan(hw
,
4160 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
4164 /* If we're here, then things are most likely
4165 * completely hosed, but if the error condition
4166 * is detected, it won't hurt to give it another
4167 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4169 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4170 if (hsfsts
.hsf_status
.flcerr
)
4171 /* Repeat for some time before giving up. */
4173 if (!hsfsts
.hsf_status
.flcdone
) {
4174 e_dbg("Timeout error - flash cycle did not complete.\n");
4177 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
4183 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4184 * @hw: pointer to the HW structure
4185 * @offset: The offset (in bytes) of the dwords to read.
4186 * @data: The 4 bytes to write to the NVM.
4188 * Writes one/two/four bytes to the NVM using the flash access registers.
4190 static s32
e1000_write_flash_data32_ich8lan(struct e1000_hw
*hw
, u32 offset
,
4193 union ich8_hws_flash_status hsfsts
;
4194 union ich8_hws_flash_ctrl hsflctl
;
4195 u32 flash_linear_addr
;
4199 if (hw
->mac
.type
== e1000_pch_spt
) {
4200 if (offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
4201 return -E1000_ERR_NVM
;
4203 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
4204 hw
->nvm
.flash_base_addr
);
4208 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
4212 /* In SPT, This register is in Lan memory space, not
4213 * flash. Therefore, only 32 bit access is supported
4215 if (hw
->mac
.type
== e1000_pch_spt
)
4216 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
)
4219 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
4221 hsflctl
.hsf_ctrl
.fldbcount
= sizeof(u32
) - 1;
4222 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
4224 /* In SPT, This register is in Lan memory space,
4225 * not flash. Therefore, only 32 bit access is
4228 if (hw
->mac
.type
== e1000_pch_spt
)
4229 ew32flash(ICH_FLASH_HSFSTS
, hsflctl
.regval
<< 16);
4231 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
4233 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
4235 ew32flash(ICH_FLASH_FDATA0
, data
);
4237 /* check if FCERR is set to 1 , if set to 1, clear it
4238 * and try the whole sequence a few more times else done
4241 e1000_flash_cycle_ich8lan(hw
,
4242 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
4247 /* If we're here, then things are most likely
4248 * completely hosed, but if the error condition
4249 * is detected, it won't hurt to give it another
4250 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4252 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4254 if (hsfsts
.hsf_status
.flcerr
)
4255 /* Repeat for some time before giving up. */
4257 if (!hsfsts
.hsf_status
.flcdone
) {
4258 e_dbg("Timeout error - flash cycle did not complete.\n");
4261 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
4267 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4268 * @hw: pointer to the HW structure
4269 * @offset: The index of the byte to read.
4270 * @data: The byte to write to the NVM.
4272 * Writes a single byte to the NVM using the flash access registers.
4274 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
4277 u16 word
= (u16
)data
;
4279 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
4283 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4284 * @hw: pointer to the HW structure
4285 * @offset: The offset of the word to write.
4286 * @dword: The dword to write to the NVM.
4288 * Writes a single dword to the NVM using the flash access registers.
4289 * Goes through a retry algorithm before giving up.
4291 static s32
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw
*hw
,
4292 u32 offset
, u32 dword
)
4295 u16 program_retries
;
4297 /* Must convert word offset into bytes. */
4299 ret_val
= e1000_write_flash_data32_ich8lan(hw
, offset
, dword
);
4303 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
4304 e_dbg("Retrying Byte %8.8X at offset %u\n", dword
, offset
);
4305 usleep_range(100, 200);
4306 ret_val
= e1000_write_flash_data32_ich8lan(hw
, offset
, dword
);
4310 if (program_retries
== 100)
4311 return -E1000_ERR_NVM
;
4317 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4318 * @hw: pointer to the HW structure
4319 * @offset: The offset of the byte to write.
4320 * @byte: The byte to write to the NVM.
4322 * Writes a single byte to the NVM using the flash access registers.
4323 * Goes through a retry algorithm before giving up.
4325 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
4326 u32 offset
, u8 byte
)
4329 u16 program_retries
;
4331 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
4335 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
4336 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
4337 usleep_range(100, 200);
4338 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
4342 if (program_retries
== 100)
4343 return -E1000_ERR_NVM
;
4349 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4350 * @hw: pointer to the HW structure
4351 * @bank: 0 for first bank, 1 for second bank, etc.
4353 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4354 * bank N is 4096 * N + flash_reg_addr.
4356 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
4358 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
4359 union ich8_hws_flash_status hsfsts
;
4360 union ich8_hws_flash_ctrl hsflctl
;
4361 u32 flash_linear_addr
;
4362 /* bank size is in 16bit words - adjust to bytes */
4363 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
4366 s32 j
, iteration
, sector_size
;
4368 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4370 /* Determine HW Sector size: Read BERASE bits of hw flash status
4372 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4373 * consecutive sectors. The start index for the nth Hw sector
4374 * can be calculated as = bank * 4096 + n * 256
4375 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4376 * The start index for the nth Hw sector can be calculated
4378 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4379 * (ich9 only, otherwise error condition)
4380 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4382 switch (hsfsts
.hsf_status
.berasesz
) {
4384 /* Hw sector size 256 */
4385 sector_size
= ICH_FLASH_SEG_SIZE_256
;
4386 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
4389 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
4393 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
4397 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
4401 return -E1000_ERR_NVM
;
4404 /* Start with the base address, then add the sector offset. */
4405 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
4406 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
4408 for (j
= 0; j
< iteration
; j
++) {
4410 u32 timeout
= ICH_FLASH_ERASE_COMMAND_TIMEOUT
;
4413 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
4417 /* Write a value 11 (block Erase) in Flash
4418 * Cycle field in hw flash control
4420 if (hw
->mac
.type
== e1000_pch_spt
)
4422 er32flash(ICH_FLASH_HSFSTS
) >> 16;
4424 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
4426 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
4427 if (hw
->mac
.type
== e1000_pch_spt
)
4428 ew32flash(ICH_FLASH_HSFSTS
,
4429 hsflctl
.regval
<< 16);
4431 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
4433 /* Write the last 24 bits of an index within the
4434 * block into Flash Linear address field in Flash
4437 flash_linear_addr
+= (j
* sector_size
);
4438 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
4440 ret_val
= e1000_flash_cycle_ich8lan(hw
, timeout
);
4444 /* Check if FCERR is set to 1. If 1,
4445 * clear it and try the whole sequence
4446 * a few more times else Done
4448 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4449 if (hsfsts
.hsf_status
.flcerr
)
4450 /* repeat for some time before giving up */
4452 else if (!hsfsts
.hsf_status
.flcdone
)
4454 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
4461 * e1000_valid_led_default_ich8lan - Set the default LED settings
4462 * @hw: pointer to the HW structure
4463 * @data: Pointer to the LED settings
4465 * Reads the LED default settings from the NVM to data. If the NVM LED
4466 * settings is all 0's or F's, set the LED default to a valid LED default
4469 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
4473 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
4475 e_dbg("NVM Read Error\n");
4479 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
4480 *data
= ID_LED_DEFAULT_ICH8LAN
;
4486 * e1000_id_led_init_pchlan - store LED configurations
4487 * @hw: pointer to the HW structure
4489 * PCH does not control LEDs via the LEDCTL register, rather it uses
4490 * the PHY LED configuration register.
4492 * PCH also does not have an "always on" or "always off" mode which
4493 * complicates the ID feature. Instead of using the "on" mode to indicate
4494 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4495 * use "link_up" mode. The LEDs will still ID on request if there is no
4496 * link based on logic in e1000_led_[on|off]_pchlan().
4498 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
4500 struct e1000_mac_info
*mac
= &hw
->mac
;
4502 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
4503 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
4504 u16 data
, i
, temp
, shift
;
4506 /* Get default ID LED modes */
4507 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
4511 mac
->ledctl_default
= er32(LEDCTL
);
4512 mac
->ledctl_mode1
= mac
->ledctl_default
;
4513 mac
->ledctl_mode2
= mac
->ledctl_default
;
4515 for (i
= 0; i
< 4; i
++) {
4516 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
4519 case ID_LED_ON1_DEF2
:
4520 case ID_LED_ON1_ON2
:
4521 case ID_LED_ON1_OFF2
:
4522 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4523 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
4525 case ID_LED_OFF1_DEF2
:
4526 case ID_LED_OFF1_ON2
:
4527 case ID_LED_OFF1_OFF2
:
4528 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4529 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
4536 case ID_LED_DEF1_ON2
:
4537 case ID_LED_ON1_ON2
:
4538 case ID_LED_OFF1_ON2
:
4539 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4540 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
4542 case ID_LED_DEF1_OFF2
:
4543 case ID_LED_ON1_OFF2
:
4544 case ID_LED_OFF1_OFF2
:
4545 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4546 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
4558 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4559 * @hw: pointer to the HW structure
4561 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4562 * register, so the the bus width is hard coded.
4564 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
4566 struct e1000_bus_info
*bus
= &hw
->bus
;
4569 ret_val
= e1000e_get_bus_info_pcie(hw
);
4571 /* ICH devices are "PCI Express"-ish. They have
4572 * a configuration space, but do not contain
4573 * PCI Express Capability registers, so bus width
4574 * must be hardcoded.
4576 if (bus
->width
== e1000_bus_width_unknown
)
4577 bus
->width
= e1000_bus_width_pcie_x1
;
4583 * e1000_reset_hw_ich8lan - Reset the hardware
4584 * @hw: pointer to the HW structure
4586 * Does a full reset of the hardware which includes a reset of the PHY and
4589 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
4591 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
4596 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4597 * on the last TLP read/write transaction when MAC is reset.
4599 ret_val
= e1000e_disable_pcie_master(hw
);
4601 e_dbg("PCI-E Master disable polling has failed.\n");
4603 e_dbg("Masking off all interrupts\n");
4604 ew32(IMC
, 0xffffffff);
4606 /* Disable the Transmit and Receive units. Then delay to allow
4607 * any pending transactions to complete before we hit the MAC
4608 * with the global reset.
4611 ew32(TCTL
, E1000_TCTL_PSP
);
4614 usleep_range(10000, 20000);
4616 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4617 if (hw
->mac
.type
== e1000_ich8lan
) {
4618 /* Set Tx and Rx buffer allocation to 8k apiece. */
4619 ew32(PBA
, E1000_PBA_8K
);
4620 /* Set Packet Buffer Size to 16k. */
4621 ew32(PBS
, E1000_PBS_16K
);
4624 if (hw
->mac
.type
== e1000_pchlan
) {
4625 /* Save the NVM K1 bit setting */
4626 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, &kum_cfg
);
4630 if (kum_cfg
& E1000_NVM_K1_ENABLE
)
4631 dev_spec
->nvm_k1_enabled
= true;
4633 dev_spec
->nvm_k1_enabled
= false;
4638 if (!hw
->phy
.ops
.check_reset_block(hw
)) {
4639 /* Full-chip reset requires MAC and PHY reset at the same
4640 * time to make sure the interface between MAC and the
4641 * external PHY is reset.
4643 ctrl
|= E1000_CTRL_PHY_RST
;
4645 /* Gate automatic PHY configuration by hardware on
4648 if ((hw
->mac
.type
== e1000_pch2lan
) &&
4649 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
4650 e1000_gate_hw_phy_config_ich8lan(hw
, true);
4652 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
4653 e_dbg("Issuing a global reset to ich8lan\n");
4654 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
4655 /* cannot issue a flush here because it hangs the hardware */
4658 /* Set Phy Config Counter to 50msec */
4659 if (hw
->mac
.type
== e1000_pch2lan
) {
4660 reg
= er32(FEXTNVM3
);
4661 reg
&= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK
;
4662 reg
|= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC
;
4663 ew32(FEXTNVM3
, reg
);
4667 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
4669 if (ctrl
& E1000_CTRL_PHY_RST
) {
4670 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
4674 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
4679 /* For PCH, this write will make sure that any noise
4680 * will be detected as a CRC error and be dropped rather than show up
4681 * as a bad packet to the DMA engine.
4683 if (hw
->mac
.type
== e1000_pchlan
)
4684 ew32(CRC_OFFSET
, 0x65656565);
4686 ew32(IMC
, 0xffffffff);
4689 reg
= er32(KABGTXD
);
4690 reg
|= E1000_KABGTXD_BGSQLBIAS
;
4697 * e1000_init_hw_ich8lan - Initialize the hardware
4698 * @hw: pointer to the HW structure
4700 * Prepares the hardware for transmit and receive by doing the following:
4701 * - initialize hardware bits
4702 * - initialize LED identification
4703 * - setup receive address registers
4704 * - setup flow control
4705 * - setup transmit descriptors
4706 * - clear statistics
4708 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
4710 struct e1000_mac_info
*mac
= &hw
->mac
;
4711 u32 ctrl_ext
, txdctl
, snoop
;
4715 e1000_initialize_hw_bits_ich8lan(hw
);
4717 /* Initialize identification LED */
4718 ret_val
= mac
->ops
.id_led_init(hw
);
4719 /* An error is not fatal and we should not stop init due to this */
4721 e_dbg("Error initializing identification LED\n");
4723 /* Setup the receive address. */
4724 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
4726 /* Zero out the Multicast HASH table */
4727 e_dbg("Zeroing the MTA\n");
4728 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
4729 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
4731 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4732 * the ME. Disable wakeup by clearing the host wakeup bit.
4733 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4735 if (hw
->phy
.type
== e1000_phy_82578
) {
4736 e1e_rphy(hw
, BM_PORT_GEN_CFG
, &i
);
4737 i
&= ~BM_WUC_HOST_WU_BIT
;
4738 e1e_wphy(hw
, BM_PORT_GEN_CFG
, i
);
4739 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
4744 /* Setup link and flow control */
4745 ret_val
= mac
->ops
.setup_link(hw
);
4747 /* Set the transmit descriptor write-back policy for both queues */
4748 txdctl
= er32(TXDCTL(0));
4749 txdctl
= ((txdctl
& ~E1000_TXDCTL_WTHRESH
) |
4750 E1000_TXDCTL_FULL_TX_DESC_WB
);
4751 txdctl
= ((txdctl
& ~E1000_TXDCTL_PTHRESH
) |
4752 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
);
4753 ew32(TXDCTL(0), txdctl
);
4754 txdctl
= er32(TXDCTL(1));
4755 txdctl
= ((txdctl
& ~E1000_TXDCTL_WTHRESH
) |
4756 E1000_TXDCTL_FULL_TX_DESC_WB
);
4757 txdctl
= ((txdctl
& ~E1000_TXDCTL_PTHRESH
) |
4758 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
);
4759 ew32(TXDCTL(1), txdctl
);
4761 /* ICH8 has opposite polarity of no_snoop bits.
4762 * By default, we should use snoop behavior.
4764 if (mac
->type
== e1000_ich8lan
)
4765 snoop
= PCIE_ICH8_SNOOP_ALL
;
4767 snoop
= (u32
)~(PCIE_NO_SNOOP_ALL
);
4768 e1000e_set_pcie_no_snoop(hw
, snoop
);
4770 ctrl_ext
= er32(CTRL_EXT
);
4771 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
4772 ew32(CTRL_EXT
, ctrl_ext
);
4774 /* Clear all of the statistics registers (clear on read). It is
4775 * important that we do this after we have tried to establish link
4776 * because the symbol error count will increment wildly if there
4779 e1000_clear_hw_cntrs_ich8lan(hw
);
4785 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4786 * @hw: pointer to the HW structure
4788 * Sets/Clears required hardware bits necessary for correctly setting up the
4789 * hardware for transmit and receive.
4791 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
4795 /* Extended Device Control */
4796 reg
= er32(CTRL_EXT
);
4798 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4799 if (hw
->mac
.type
>= e1000_pchlan
)
4800 reg
|= E1000_CTRL_EXT_PHYPDEN
;
4801 ew32(CTRL_EXT
, reg
);
4803 /* Transmit Descriptor Control 0 */
4804 reg
= er32(TXDCTL(0));
4806 ew32(TXDCTL(0), reg
);
4808 /* Transmit Descriptor Control 1 */
4809 reg
= er32(TXDCTL(1));
4811 ew32(TXDCTL(1), reg
);
4813 /* Transmit Arbitration Control 0 */
4814 reg
= er32(TARC(0));
4815 if (hw
->mac
.type
== e1000_ich8lan
)
4816 reg
|= (1 << 28) | (1 << 29);
4817 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4820 /* Transmit Arbitration Control 1 */
4821 reg
= er32(TARC(1));
4822 if (er32(TCTL
) & E1000_TCTL_MULR
)
4826 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
4830 if (hw
->mac
.type
== e1000_ich8lan
) {
4836 /* work-around descriptor data corruption issue during nfs v2 udp
4837 * traffic, just disable the nfs filtering capability
4840 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
4842 /* Disable IPv6 extension header parsing because some malformed
4843 * IPv6 headers can hang the Rx.
4845 if (hw
->mac
.type
== e1000_ich8lan
)
4846 reg
|= (E1000_RFCTL_IPV6_EX_DIS
| E1000_RFCTL_NEW_IPV6_EXT_DIS
);
4849 /* Enable ECC on Lynxpoint */
4850 if ((hw
->mac
.type
== e1000_pch_lpt
) ||
4851 (hw
->mac
.type
== e1000_pch_spt
)) {
4852 reg
= er32(PBECCSTS
);
4853 reg
|= E1000_PBECCSTS_ECC_ENABLE
;
4854 ew32(PBECCSTS
, reg
);
4857 reg
|= E1000_CTRL_MEHE
;
4863 * e1000_setup_link_ich8lan - Setup flow control and link settings
4864 * @hw: pointer to the HW structure
4866 * Determines which flow control settings to use, then configures flow
4867 * control. Calls the appropriate media-specific link configuration
4868 * function. Assuming the adapter has a valid link partner, a valid link
4869 * should be established. Assumes the hardware has previously been reset
4870 * and the transmitter and receiver are not enabled.
4872 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
4876 if (hw
->phy
.ops
.check_reset_block(hw
))
4879 /* ICH parts do not have a word in the NVM to determine
4880 * the default flow control setting, so we explicitly
4883 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
4884 /* Workaround h/w hang when Tx flow control enabled */
4885 if (hw
->mac
.type
== e1000_pchlan
)
4886 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
4888 hw
->fc
.requested_mode
= e1000_fc_full
;
4891 /* Save off the requested flow control mode for use later. Depending
4892 * on the link partner's capabilities, we may or may not use this mode.
4894 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
4896 e_dbg("After fix-ups FlowControl is now = %x\n", hw
->fc
.current_mode
);
4898 /* Continue to configure the copper link. */
4899 ret_val
= hw
->mac
.ops
.setup_physical_interface(hw
);
4903 ew32(FCTTV
, hw
->fc
.pause_time
);
4904 if ((hw
->phy
.type
== e1000_phy_82578
) ||
4905 (hw
->phy
.type
== e1000_phy_82579
) ||
4906 (hw
->phy
.type
== e1000_phy_i217
) ||
4907 (hw
->phy
.type
== e1000_phy_82577
)) {
4908 ew32(FCRTV_PCH
, hw
->fc
.refresh_time
);
4910 ret_val
= e1e_wphy(hw
, PHY_REG(BM_PORT_CTRL_PAGE
, 27),
4916 return e1000e_set_fc_watermarks(hw
);
4920 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4921 * @hw: pointer to the HW structure
4923 * Configures the kumeran interface to the PHY to wait the appropriate time
4924 * when polling the PHY, then call the generic setup_copper_link to finish
4925 * configuring the copper link.
4927 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
4934 ctrl
|= E1000_CTRL_SLU
;
4935 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
4938 /* Set the mac to wait the maximum time between each iteration
4939 * and increase the max iterations when polling the phy;
4940 * this fixes erroneous timeouts at 10Mbps.
4942 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
4945 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
4950 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
4955 switch (hw
->phy
.type
) {
4956 case e1000_phy_igp_3
:
4957 ret_val
= e1000e_copper_link_setup_igp(hw
);
4962 case e1000_phy_82578
:
4963 ret_val
= e1000e_copper_link_setup_m88(hw
);
4967 case e1000_phy_82577
:
4968 case e1000_phy_82579
:
4969 ret_val
= e1000_copper_link_setup_82577(hw
);
4974 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
4978 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
4980 switch (hw
->phy
.mdix
) {
4982 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
4985 reg_data
|= IFE_PMC_FORCE_MDIX
;
4989 reg_data
|= IFE_PMC_AUTO_MDIX
;
4992 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
5000 return e1000e_setup_copper_link(hw
);
5004 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5005 * @hw: pointer to the HW structure
5007 * Calls the PHY specific link setup function and then calls the
5008 * generic setup_copper_link to finish configuring the link for
5009 * Lynxpoint PCH devices
5011 static s32
e1000_setup_copper_link_pch_lpt(struct e1000_hw
*hw
)
5017 ctrl
|= E1000_CTRL_SLU
;
5018 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
5021 ret_val
= e1000_copper_link_setup_82577(hw
);
5025 return e1000e_setup_copper_link(hw
);
5029 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5030 * @hw: pointer to the HW structure
5031 * @speed: pointer to store current link speed
5032 * @duplex: pointer to store the current link duplex
5034 * Calls the generic get_speed_and_duplex to retrieve the current link
5035 * information and then calls the Kumeran lock loss workaround for links at
5038 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
5043 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
5047 if ((hw
->mac
.type
== e1000_ich8lan
) &&
5048 (hw
->phy
.type
== e1000_phy_igp_3
) && (*speed
== SPEED_1000
)) {
5049 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
5056 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5057 * @hw: pointer to the HW structure
5059 * Work-around for 82566 Kumeran PCS lock loss:
5060 * On link status change (i.e. PCI reset, speed change) and link is up and
5062 * 0) if workaround is optionally disabled do nothing
5063 * 1) wait 1ms for Kumeran link to come up
5064 * 2) check Kumeran Diagnostic register PCS lock loss bit
5065 * 3) if not set the link is locked (all is good), otherwise...
5067 * 5) repeat up to 10 times
5068 * Note: this is only called for IGP3 copper when speed is 1gb.
5070 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
5072 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
5078 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
5081 /* Make sure link is up before proceeding. If not just return.
5082 * Attempting this while link is negotiating fouled up link
5085 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
5089 for (i
= 0; i
< 10; i
++) {
5090 /* read once to clear */
5091 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
5094 /* and again to get new status */
5095 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
5099 /* check for PCS lock */
5100 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
5103 /* Issue PHY reset */
5104 e1000_phy_hw_reset(hw
);
5107 /* Disable GigE link negotiation */
5108 phy_ctrl
= er32(PHY_CTRL
);
5109 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
5110 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
5111 ew32(PHY_CTRL
, phy_ctrl
);
5113 /* Call gig speed drop workaround on Gig disable before accessing
5116 e1000e_gig_downshift_workaround_ich8lan(hw
);
5118 /* unable to acquire PCS lock */
5119 return -E1000_ERR_PHY
;
5123 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5124 * @hw: pointer to the HW structure
5125 * @state: boolean value used to set the current Kumeran workaround state
5127 * If ICH8, set the current Kumeran workaround state (enabled - true
5128 * /disabled - false).
5130 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
5133 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
5135 if (hw
->mac
.type
!= e1000_ich8lan
) {
5136 e_dbg("Workaround applies to ICH8 only.\n");
5140 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
5144 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5145 * @hw: pointer to the HW structure
5147 * Workaround for 82566 power-down on D3 entry:
5148 * 1) disable gigabit link
5149 * 2) write VR power-down enable
5151 * Continue if successful, else issue LCD reset and repeat
5153 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
5159 if (hw
->phy
.type
!= e1000_phy_igp_3
)
5162 /* Try the workaround twice (if needed) */
5165 reg
= er32(PHY_CTRL
);
5166 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
5167 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
5168 ew32(PHY_CTRL
, reg
);
5170 /* Call gig speed drop workaround on Gig disable before
5171 * accessing any PHY registers
5173 if (hw
->mac
.type
== e1000_ich8lan
)
5174 e1000e_gig_downshift_workaround_ich8lan(hw
);
5176 /* Write VR power-down enable */
5177 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
5178 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
5179 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
5181 /* Read it back and test */
5182 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
5183 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
5184 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
5187 /* Issue PHY reset and repeat at most one more time */
5189 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
5195 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5196 * @hw: pointer to the HW structure
5198 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5199 * LPLU, Gig disable, MDIC PHY reset):
5200 * 1) Set Kumeran Near-end loopback
5201 * 2) Clear Kumeran Near-end loopback
5202 * Should only be called for ICH8[m] devices with any 1G Phy.
5204 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
5209 if ((hw
->mac
.type
!= e1000_ich8lan
) || (hw
->phy
.type
== e1000_phy_ife
))
5212 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
5216 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
5217 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
5221 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
5222 e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
, reg_data
);
5226 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5227 * @hw: pointer to the HW structure
5229 * During S0 to Sx transition, it is possible the link remains at gig
5230 * instead of negotiating to a lower speed. Before going to Sx, set
5231 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5232 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5233 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5234 * needs to be written.
5235 * Parts that support (and are linked to a partner which support) EEE in
5236 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5237 * than 10Mbps w/o EEE.
5239 void e1000_suspend_workarounds_ich8lan(struct e1000_hw
*hw
)
5241 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
5245 phy_ctrl
= er32(PHY_CTRL
);
5246 phy_ctrl
|= E1000_PHY_CTRL_GBE_DISABLE
;
5248 if (hw
->phy
.type
== e1000_phy_i217
) {
5249 u16 phy_reg
, device_id
= hw
->adapter
->pdev
->device
;
5251 if ((device_id
== E1000_DEV_ID_PCH_LPTLP_I218_LM
) ||
5252 (device_id
== E1000_DEV_ID_PCH_LPTLP_I218_V
) ||
5253 (device_id
== E1000_DEV_ID_PCH_I218_LM3
) ||
5254 (device_id
== E1000_DEV_ID_PCH_I218_V3
) ||
5255 (hw
->mac
.type
== e1000_pch_spt
)) {
5256 u32 fextnvm6
= er32(FEXTNVM6
);
5258 ew32(FEXTNVM6
, fextnvm6
& ~E1000_FEXTNVM6_REQ_PLL_CLK
);
5261 ret_val
= hw
->phy
.ops
.acquire(hw
);
5265 if (!dev_spec
->eee_disable
) {
5269 e1000_read_emi_reg_locked(hw
,
5270 I217_EEE_ADVERTISEMENT
,
5275 /* Disable LPLU if both link partners support 100BaseT
5276 * EEE and 100Full is advertised on both ends of the
5277 * link, and enable Auto Enable LPI since there will
5278 * be no driver to enable LPI while in Sx.
5280 if ((eee_advert
& I82579_EEE_100_SUPPORTED
) &&
5281 (dev_spec
->eee_lp_ability
&
5282 I82579_EEE_100_SUPPORTED
) &&
5283 (hw
->phy
.autoneg_advertised
& ADVERTISE_100_FULL
)) {
5284 phy_ctrl
&= ~(E1000_PHY_CTRL_D0A_LPLU
|
5285 E1000_PHY_CTRL_NOND0A_LPLU
);
5287 /* Set Auto Enable LPI after link up */
5289 I217_LPI_GPIO_CTRL
, &phy_reg
);
5290 phy_reg
|= I217_LPI_GPIO_CTRL_AUTO_EN_LPI
;
5292 I217_LPI_GPIO_CTRL
, phy_reg
);
5296 /* For i217 Intel Rapid Start Technology support,
5297 * when the system is going into Sx and no manageability engine
5298 * is present, the driver must configure proxy to reset only on
5299 * power good. LPI (Low Power Idle) state must also reset only
5300 * on power good, as well as the MTA (Multicast table array).
5301 * The SMBus release must also be disabled on LCD reset.
5303 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
5304 /* Enable proxy to reset only on power good. */
5305 e1e_rphy_locked(hw
, I217_PROXY_CTRL
, &phy_reg
);
5306 phy_reg
|= I217_PROXY_CTRL_AUTO_DISABLE
;
5307 e1e_wphy_locked(hw
, I217_PROXY_CTRL
, phy_reg
);
5309 /* Set bit enable LPI (EEE) to reset only on
5312 e1e_rphy_locked(hw
, I217_SxCTRL
, &phy_reg
);
5313 phy_reg
|= I217_SxCTRL_ENABLE_LPI_RESET
;
5314 e1e_wphy_locked(hw
, I217_SxCTRL
, phy_reg
);
5316 /* Disable the SMB release on LCD reset. */
5317 e1e_rphy_locked(hw
, I217_MEMPWR
, &phy_reg
);
5318 phy_reg
&= ~I217_MEMPWR_DISABLE_SMB_RELEASE
;
5319 e1e_wphy_locked(hw
, I217_MEMPWR
, phy_reg
);
5322 /* Enable MTA to reset for Intel Rapid Start Technology
5325 e1e_rphy_locked(hw
, I217_CGFREG
, &phy_reg
);
5326 phy_reg
|= I217_CGFREG_ENABLE_MTA_RESET
;
5327 e1e_wphy_locked(hw
, I217_CGFREG
, phy_reg
);
5330 hw
->phy
.ops
.release(hw
);
5333 ew32(PHY_CTRL
, phy_ctrl
);
5335 if (hw
->mac
.type
== e1000_ich8lan
)
5336 e1000e_gig_downshift_workaround_ich8lan(hw
);
5338 if (hw
->mac
.type
>= e1000_pchlan
) {
5339 e1000_oem_bits_config_ich8lan(hw
, false);
5341 /* Reset PHY to activate OEM bits on 82577/8 */
5342 if (hw
->mac
.type
== e1000_pchlan
)
5343 e1000e_phy_hw_reset_generic(hw
);
5345 ret_val
= hw
->phy
.ops
.acquire(hw
);
5348 e1000_write_smbus_addr(hw
);
5349 hw
->phy
.ops
.release(hw
);
5354 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5355 * @hw: pointer to the HW structure
5357 * During Sx to S0 transitions on non-managed devices or managed devices
5358 * on which PHY resets are not blocked, if the PHY registers cannot be
5359 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5361 * On i217, setup Intel Rapid Start Technology.
5363 void e1000_resume_workarounds_pchlan(struct e1000_hw
*hw
)
5367 if (hw
->mac
.type
< e1000_pch2lan
)
5370 ret_val
= e1000_init_phy_workarounds_pchlan(hw
);
5372 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val
);
5376 /* For i217 Intel Rapid Start Technology support when the system
5377 * is transitioning from Sx and no manageability engine is present
5378 * configure SMBus to restore on reset, disable proxy, and enable
5379 * the reset on MTA (Multicast table array).
5381 if (hw
->phy
.type
== e1000_phy_i217
) {
5384 ret_val
= hw
->phy
.ops
.acquire(hw
);
5386 e_dbg("Failed to setup iRST\n");
5390 /* Clear Auto Enable LPI after link up */
5391 e1e_rphy_locked(hw
, I217_LPI_GPIO_CTRL
, &phy_reg
);
5392 phy_reg
&= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI
;
5393 e1e_wphy_locked(hw
, I217_LPI_GPIO_CTRL
, phy_reg
);
5395 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
5396 /* Restore clear on SMB if no manageability engine
5399 ret_val
= e1e_rphy_locked(hw
, I217_MEMPWR
, &phy_reg
);
5402 phy_reg
|= I217_MEMPWR_DISABLE_SMB_RELEASE
;
5403 e1e_wphy_locked(hw
, I217_MEMPWR
, phy_reg
);
5406 e1e_wphy_locked(hw
, I217_PROXY_CTRL
, 0);
5408 /* Enable reset on MTA */
5409 ret_val
= e1e_rphy_locked(hw
, I217_CGFREG
, &phy_reg
);
5412 phy_reg
&= ~I217_CGFREG_ENABLE_MTA_RESET
;
5413 e1e_wphy_locked(hw
, I217_CGFREG
, phy_reg
);
5416 e_dbg("Error %d in resume workarounds\n", ret_val
);
5417 hw
->phy
.ops
.release(hw
);
5422 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5423 * @hw: pointer to the HW structure
5425 * Return the LED back to the default configuration.
5427 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
5429 if (hw
->phy
.type
== e1000_phy_ife
)
5430 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
5432 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
5437 * e1000_led_on_ich8lan - Turn LEDs on
5438 * @hw: pointer to the HW structure
5442 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
5444 if (hw
->phy
.type
== e1000_phy_ife
)
5445 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
5446 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
5448 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
5453 * e1000_led_off_ich8lan - Turn LEDs off
5454 * @hw: pointer to the HW structure
5456 * Turn off the LEDs.
5458 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
5460 if (hw
->phy
.type
== e1000_phy_ife
)
5461 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
5462 (IFE_PSCL_PROBE_MODE
|
5463 IFE_PSCL_PROBE_LEDS_OFF
));
5465 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
5470 * e1000_setup_led_pchlan - Configures SW controllable LED
5471 * @hw: pointer to the HW structure
5473 * This prepares the SW controllable LED for use.
5475 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
5477 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_mode1
);
5481 * e1000_cleanup_led_pchlan - Restore the default LED operation
5482 * @hw: pointer to the HW structure
5484 * Return the LED back to the default configuration.
5486 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
5488 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_default
);
5492 * e1000_led_on_pchlan - Turn LEDs on
5493 * @hw: pointer to the HW structure
5497 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
5499 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
5502 /* If no link, then turn LED on by setting the invert bit
5503 * for each LED that's mode is "link_up" in ledctl_mode2.
5505 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
5506 for (i
= 0; i
< 3; i
++) {
5507 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
5508 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
5509 E1000_LEDCTL_MODE_LINK_UP
)
5511 if (led
& E1000_PHY_LED0_IVRT
)
5512 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
5514 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
5518 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
5522 * e1000_led_off_pchlan - Turn LEDs off
5523 * @hw: pointer to the HW structure
5525 * Turn off the LEDs.
5527 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
5529 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
5532 /* If no link, then turn LED off by clearing the invert bit
5533 * for each LED that's mode is "link_up" in ledctl_mode1.
5535 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
5536 for (i
= 0; i
< 3; i
++) {
5537 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
5538 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
5539 E1000_LEDCTL_MODE_LINK_UP
)
5541 if (led
& E1000_PHY_LED0_IVRT
)
5542 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
5544 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
5548 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
5552 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5553 * @hw: pointer to the HW structure
5555 * Read appropriate register for the config done bit for completion status
5556 * and configure the PHY through s/w for EEPROM-less parts.
5558 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5559 * config done bit, so only an error is logged and continues. If we were
5560 * to return with error, EEPROM-less silicon would not be able to be reset
5563 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
5569 e1000e_get_cfg_done_generic(hw
);
5571 /* Wait for indication from h/w that it has completed basic config */
5572 if (hw
->mac
.type
>= e1000_ich10lan
) {
5573 e1000_lan_init_done_ich8lan(hw
);
5575 ret_val
= e1000e_get_auto_rd_done(hw
);
5577 /* When auto config read does not complete, do not
5578 * return with an error. This can happen in situations
5579 * where there is no eeprom and prevents getting link.
5581 e_dbg("Auto Read Done did not complete\n");
5586 /* Clear PHY Reset Asserted bit */
5587 status
= er32(STATUS
);
5588 if (status
& E1000_STATUS_PHYRA
)
5589 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
5591 e_dbg("PHY Reset Asserted not set - needs delay\n");
5593 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5594 if (hw
->mac
.type
<= e1000_ich9lan
) {
5595 if (!(er32(EECD
) & E1000_EECD_PRES
) &&
5596 (hw
->phy
.type
== e1000_phy_igp_3
)) {
5597 e1000e_phy_init_script_igp3(hw
);
5600 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
5601 /* Maybe we should do a basic PHY config */
5602 e_dbg("EEPROM not present\n");
5603 ret_val
= -E1000_ERR_CONFIG
;
5611 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5612 * @hw: pointer to the HW structure
5614 * In the case of a PHY power down to save power, or to turn off link during a
5615 * driver unload, or wake on lan is not enabled, remove the link.
5617 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
5619 /* If the management interface is not enabled, then power down */
5620 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
5621 hw
->phy
.ops
.check_reset_block(hw
)))
5622 e1000_power_down_phy_copper(hw
);
5626 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5627 * @hw: pointer to the HW structure
5629 * Clears hardware counters specific to the silicon family and calls
5630 * clear_hw_cntrs_generic to clear all general purpose counters.
5632 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
5637 e1000e_clear_hw_cntrs_base(hw
);
5653 /* Clear PHY statistics registers */
5654 if ((hw
->phy
.type
== e1000_phy_82578
) ||
5655 (hw
->phy
.type
== e1000_phy_82579
) ||
5656 (hw
->phy
.type
== e1000_phy_i217
) ||
5657 (hw
->phy
.type
== e1000_phy_82577
)) {
5658 ret_val
= hw
->phy
.ops
.acquire(hw
);
5661 ret_val
= hw
->phy
.ops
.set_page(hw
,
5662 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
5665 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
5666 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
5667 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
5668 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
5669 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
5670 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
5671 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
5672 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
5673 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
5674 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
5675 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
5676 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
5677 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
5678 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
5680 hw
->phy
.ops
.release(hw
);
5684 static const struct e1000_mac_operations ich8_mac_ops
= {
5685 /* check_mng_mode dependent on mac type */
5686 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
5687 /* cleanup_led dependent on mac type */
5688 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
5689 .get_bus_info
= e1000_get_bus_info_ich8lan
,
5690 .set_lan_id
= e1000_set_lan_id_single_port
,
5691 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
5692 /* led_on dependent on mac type */
5693 /* led_off dependent on mac type */
5694 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
5695 .reset_hw
= e1000_reset_hw_ich8lan
,
5696 .init_hw
= e1000_init_hw_ich8lan
,
5697 .setup_link
= e1000_setup_link_ich8lan
,
5698 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
5699 /* id_led_init dependent on mac type */
5700 .config_collision_dist
= e1000e_config_collision_dist_generic
,
5701 .rar_set
= e1000e_rar_set_generic
,
5702 .rar_get_count
= e1000e_rar_get_count_generic
,
5705 static const struct e1000_phy_operations ich8_phy_ops
= {
5706 .acquire
= e1000_acquire_swflag_ich8lan
,
5707 .check_reset_block
= e1000_check_reset_block_ich8lan
,
5709 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
5710 .get_cable_length
= e1000e_get_cable_length_igp_2
,
5711 .read_reg
= e1000e_read_phy_reg_igp
,
5712 .release
= e1000_release_swflag_ich8lan
,
5713 .reset
= e1000_phy_hw_reset_ich8lan
,
5714 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
5715 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
5716 .write_reg
= e1000e_write_phy_reg_igp
,
5719 static const struct e1000_nvm_operations ich8_nvm_ops
= {
5720 .acquire
= e1000_acquire_nvm_ich8lan
,
5721 .read
= e1000_read_nvm_ich8lan
,
5722 .release
= e1000_release_nvm_ich8lan
,
5723 .reload
= e1000e_reload_nvm_generic
,
5724 .update
= e1000_update_nvm_checksum_ich8lan
,
5725 .valid_led_default
= e1000_valid_led_default_ich8lan
,
5726 .validate
= e1000_validate_nvm_checksum_ich8lan
,
5727 .write
= e1000_write_nvm_ich8lan
,
5730 static const struct e1000_nvm_operations spt_nvm_ops
= {
5731 .acquire
= e1000_acquire_nvm_ich8lan
,
5732 .release
= e1000_release_nvm_ich8lan
,
5733 .read
= e1000_read_nvm_spt
,
5734 .update
= e1000_update_nvm_checksum_spt
,
5735 .reload
= e1000e_reload_nvm_generic
,
5736 .valid_led_default
= e1000_valid_led_default_ich8lan
,
5737 .validate
= e1000_validate_nvm_checksum_ich8lan
,
5738 .write
= e1000_write_nvm_ich8lan
,
5741 const struct e1000_info e1000_ich8_info
= {
5742 .mac
= e1000_ich8lan
,
5743 .flags
= FLAG_HAS_WOL
5745 | FLAG_HAS_CTRLEXT_ON_LOAD
5750 .max_hw_frame_size
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
,
5751 .get_variants
= e1000_get_variants_ich8lan
,
5752 .mac_ops
= &ich8_mac_ops
,
5753 .phy_ops
= &ich8_phy_ops
,
5754 .nvm_ops
= &ich8_nvm_ops
,
5757 const struct e1000_info e1000_ich9_info
= {
5758 .mac
= e1000_ich9lan
,
5759 .flags
= FLAG_HAS_JUMBO_FRAMES
5762 | FLAG_HAS_CTRLEXT_ON_LOAD
5767 .max_hw_frame_size
= DEFAULT_JUMBO
,
5768 .get_variants
= e1000_get_variants_ich8lan
,
5769 .mac_ops
= &ich8_mac_ops
,
5770 .phy_ops
= &ich8_phy_ops
,
5771 .nvm_ops
= &ich8_nvm_ops
,
5774 const struct e1000_info e1000_ich10_info
= {
5775 .mac
= e1000_ich10lan
,
5776 .flags
= FLAG_HAS_JUMBO_FRAMES
5779 | FLAG_HAS_CTRLEXT_ON_LOAD
5784 .max_hw_frame_size
= DEFAULT_JUMBO
,
5785 .get_variants
= e1000_get_variants_ich8lan
,
5786 .mac_ops
= &ich8_mac_ops
,
5787 .phy_ops
= &ich8_phy_ops
,
5788 .nvm_ops
= &ich8_nvm_ops
,
5791 const struct e1000_info e1000_pch_info
= {
5792 .mac
= e1000_pchlan
,
5793 .flags
= FLAG_IS_ICH
5795 | FLAG_HAS_CTRLEXT_ON_LOAD
5798 | FLAG_HAS_JUMBO_FRAMES
5799 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
5801 .flags2
= FLAG2_HAS_PHY_STATS
,
5803 .max_hw_frame_size
= 4096,
5804 .get_variants
= e1000_get_variants_ich8lan
,
5805 .mac_ops
= &ich8_mac_ops
,
5806 .phy_ops
= &ich8_phy_ops
,
5807 .nvm_ops
= &ich8_nvm_ops
,
5810 const struct e1000_info e1000_pch2_info
= {
5811 .mac
= e1000_pch2lan
,
5812 .flags
= FLAG_IS_ICH
5814 | FLAG_HAS_HW_TIMESTAMP
5815 | FLAG_HAS_CTRLEXT_ON_LOAD
5818 | FLAG_HAS_JUMBO_FRAMES
5820 .flags2
= FLAG2_HAS_PHY_STATS
5823 .max_hw_frame_size
= 9022,
5824 .get_variants
= e1000_get_variants_ich8lan
,
5825 .mac_ops
= &ich8_mac_ops
,
5826 .phy_ops
= &ich8_phy_ops
,
5827 .nvm_ops
= &ich8_nvm_ops
,
5830 const struct e1000_info e1000_pch_lpt_info
= {
5831 .mac
= e1000_pch_lpt
,
5832 .flags
= FLAG_IS_ICH
5834 | FLAG_HAS_HW_TIMESTAMP
5835 | FLAG_HAS_CTRLEXT_ON_LOAD
5838 | FLAG_HAS_JUMBO_FRAMES
5840 .flags2
= FLAG2_HAS_PHY_STATS
5843 .max_hw_frame_size
= 9022,
5844 .get_variants
= e1000_get_variants_ich8lan
,
5845 .mac_ops
= &ich8_mac_ops
,
5846 .phy_ops
= &ich8_phy_ops
,
5847 .nvm_ops
= &ich8_nvm_ops
,
5850 const struct e1000_info e1000_pch_spt_info
= {
5851 .mac
= e1000_pch_spt
,
5852 .flags
= FLAG_IS_ICH
5854 | FLAG_HAS_HW_TIMESTAMP
5855 | FLAG_HAS_CTRLEXT_ON_LOAD
5858 | FLAG_HAS_JUMBO_FRAMES
5860 .flags2
= FLAG2_HAS_PHY_STATS
5863 .max_hw_frame_size
= 9022,
5864 .get_variants
= e1000_get_variants_ich8lan
,
5865 .mac_ops
= &ich8_mac_ops
,
5866 .phy_ops
= &ich8_phy_ops
,
5867 .nvm_ops
= &spt_nvm_ops
,