1 /*******************************************************************************
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************/
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
31 #include "i40e_prototype.h"
33 static inline __le64
build_ctob(u32 td_cmd
, u32 td_offset
, unsigned int size
,
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA
|
37 ((u64
)td_cmd
<< I40E_TXD_QW1_CMD_SHIFT
) |
38 ((u64
)td_offset
<< I40E_TXD_QW1_OFFSET_SHIFT
) |
39 ((u64
)size
<< I40E_TXD_QW1_TX_BUF_SZ_SHIFT
) |
40 ((u64
)td_tag
<< I40E_TXD_QW1_L2TAG1_SHIFT
));
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring
*ring
,
51 struct i40e_tx_buffer
*tx_buffer
)
54 if (tx_buffer
->tx_flags
& I40E_TX_FLAGS_FD_SB
)
55 kfree(tx_buffer
->raw_buf
);
57 dev_kfree_skb_any(tx_buffer
->skb
);
59 if (dma_unmap_len(tx_buffer
, len
))
60 dma_unmap_single(ring
->dev
,
61 dma_unmap_addr(tx_buffer
, dma
),
62 dma_unmap_len(tx_buffer
, len
),
64 } else if (dma_unmap_len(tx_buffer
, len
)) {
65 dma_unmap_page(ring
->dev
,
66 dma_unmap_addr(tx_buffer
, dma
),
67 dma_unmap_len(tx_buffer
, len
),
70 tx_buffer
->next_to_watch
= NULL
;
71 tx_buffer
->skb
= NULL
;
72 dma_unmap_len_set(tx_buffer
, len
, 0);
73 /* tx_buffer must be completely set up in the transmit path */
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
80 void i40evf_clean_tx_ring(struct i40e_ring
*tx_ring
)
82 unsigned long bi_size
;
85 /* ring already cleared, nothing to do */
89 /* Free all the Tx ring sk_buffs */
90 for (i
= 0; i
< tx_ring
->count
; i
++)
91 i40e_unmap_and_free_tx_resource(tx_ring
, &tx_ring
->tx_bi
[i
]);
93 bi_size
= sizeof(struct i40e_tx_buffer
) * tx_ring
->count
;
94 memset(tx_ring
->tx_bi
, 0, bi_size
);
96 /* Zero out the descriptor ring */
97 memset(tx_ring
->desc
, 0, tx_ring
->size
);
99 tx_ring
->next_to_use
= 0;
100 tx_ring
->next_to_clean
= 0;
102 if (!tx_ring
->netdev
)
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring
->netdev
,
107 tx_ring
->queue_index
));
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
114 * Free all transmit software resources
116 void i40evf_free_tx_resources(struct i40e_ring
*tx_ring
)
118 i40evf_clean_tx_ring(tx_ring
);
119 kfree(tx_ring
->tx_bi
);
120 tx_ring
->tx_bi
= NULL
;
123 dma_free_coherent(tx_ring
->dev
, tx_ring
->size
,
124 tx_ring
->desc
, tx_ring
->dma
);
125 tx_ring
->desc
= NULL
;
130 * i40e_get_head - Retrieve head from head writeback
131 * @tx_ring: tx ring to fetch head of
133 * Returns value of Tx ring head based on value stored
134 * in head write-back location
136 static inline u32
i40e_get_head(struct i40e_ring
*tx_ring
)
138 void *head
= (struct i40e_tx_desc
*)tx_ring
->desc
+ tx_ring
->count
;
140 return le32_to_cpu(*(volatile __le32
*)head
);
143 #define WB_STRIDE 0x3
146 * i40e_clean_tx_irq - Reclaim resources after transmit completes
147 * @tx_ring: tx ring to clean
148 * @budget: how many cleans we're allowed
150 * Returns true if there's any budget left (e.g. the clean is finished)
152 static bool i40e_clean_tx_irq(struct i40e_ring
*tx_ring
, int budget
)
154 u16 i
= tx_ring
->next_to_clean
;
155 struct i40e_tx_buffer
*tx_buf
;
156 struct i40e_tx_desc
*tx_head
;
157 struct i40e_tx_desc
*tx_desc
;
158 unsigned int total_packets
= 0;
159 unsigned int total_bytes
= 0;
161 tx_buf
= &tx_ring
->tx_bi
[i
];
162 tx_desc
= I40E_TX_DESC(tx_ring
, i
);
165 tx_head
= I40E_TX_DESC(tx_ring
, i40e_get_head(tx_ring
));
168 struct i40e_tx_desc
*eop_desc
= tx_buf
->next_to_watch
;
170 /* if next_to_watch is not set then there is no work pending */
174 /* prevent any other reads prior to eop_desc */
175 read_barrier_depends();
177 /* we have caught up to head, no work left to do */
178 if (tx_head
== tx_desc
)
181 /* clear next_to_watch to prevent false hangs */
182 tx_buf
->next_to_watch
= NULL
;
184 /* update the statistics for this packet */
185 total_bytes
+= tx_buf
->bytecount
;
186 total_packets
+= tx_buf
->gso_segs
;
189 dev_kfree_skb_any(tx_buf
->skb
);
191 /* unmap skb header data */
192 dma_unmap_single(tx_ring
->dev
,
193 dma_unmap_addr(tx_buf
, dma
),
194 dma_unmap_len(tx_buf
, len
),
197 /* clear tx_buffer data */
199 dma_unmap_len_set(tx_buf
, len
, 0);
201 /* unmap remaining buffers */
202 while (tx_desc
!= eop_desc
) {
209 tx_buf
= tx_ring
->tx_bi
;
210 tx_desc
= I40E_TX_DESC(tx_ring
, 0);
213 /* unmap any remaining paged data */
214 if (dma_unmap_len(tx_buf
, len
)) {
215 dma_unmap_page(tx_ring
->dev
,
216 dma_unmap_addr(tx_buf
, dma
),
217 dma_unmap_len(tx_buf
, len
),
219 dma_unmap_len_set(tx_buf
, len
, 0);
223 /* move us one more past the eop_desc for start of next pkt */
229 tx_buf
= tx_ring
->tx_bi
;
230 tx_desc
= I40E_TX_DESC(tx_ring
, 0);
235 /* update budget accounting */
237 } while (likely(budget
));
240 tx_ring
->next_to_clean
= i
;
241 u64_stats_update_begin(&tx_ring
->syncp
);
242 tx_ring
->stats
.bytes
+= total_bytes
;
243 tx_ring
->stats
.packets
+= total_packets
;
244 u64_stats_update_end(&tx_ring
->syncp
);
245 tx_ring
->q_vector
->tx
.total_bytes
+= total_bytes
;
246 tx_ring
->q_vector
->tx
.total_packets
+= total_packets
;
248 /* check to see if there are any non-cache aligned descriptors
249 * waiting to be written back, and kick the hardware to force
250 * them to be written back in case of napi polling
253 !((i
& WB_STRIDE
) == WB_STRIDE
) &&
254 !test_bit(__I40E_DOWN
, &tx_ring
->vsi
->state
) &&
255 (I40E_DESC_UNUSED(tx_ring
) != tx_ring
->count
))
256 tx_ring
->arm_wb
= true;
258 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring
->netdev
,
259 tx_ring
->queue_index
),
260 total_packets
, total_bytes
);
262 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
263 if (unlikely(total_packets
&& netif_carrier_ok(tx_ring
->netdev
) &&
264 (I40E_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
))) {
265 /* Make sure that anybody stopping the queue after this
266 * sees the new next_to_clean.
269 if (__netif_subqueue_stopped(tx_ring
->netdev
,
270 tx_ring
->queue_index
) &&
271 !test_bit(__I40E_DOWN
, &tx_ring
->vsi
->state
)) {
272 netif_wake_subqueue(tx_ring
->netdev
,
273 tx_ring
->queue_index
);
274 ++tx_ring
->tx_stats
.restart_queue
;
282 * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
283 * @vsi: the VSI we care about
284 * @q_vector: the vector on which to force writeback
287 static void i40evf_force_wb(struct i40e_vsi
*vsi
, struct i40e_q_vector
*q_vector
)
289 u16 flags
= q_vector
->tx
.ring
[0].flags
;
291 if (flags
& I40E_TXR_FLAGS_WB_ON_ITR
) {
294 if (q_vector
->arm_wb_state
)
297 val
= I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK
;
300 I40E_VFINT_DYN_CTLN1(q_vector
->v_idx
+
301 vsi
->base_vector
- 1),
303 q_vector
->arm_wb_state
= true;
305 u32 val
= I40E_VFINT_DYN_CTLN1_INTENA_MASK
|
306 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK
| /* set noitr */
307 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK
|
308 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
;
309 /* allow 00 to be written to the index */
312 I40E_VFINT_DYN_CTLN1(q_vector
->v_idx
+
313 vsi
->base_vector
- 1), val
);
318 * i40e_set_new_dynamic_itr - Find new ITR level
319 * @rc: structure containing ring performance data
321 * Returns true if ITR changed, false if not
323 * Stores a new ITR value based on packets and byte counts during
324 * the last interrupt. The advantage of per interrupt computation
325 * is faster updates and more accurate ITR for the current traffic
326 * pattern. Constants in this function were computed based on
327 * theoretical maximum wire speed and thresholds were set based on
328 * testing data as well as attempting to minimize response time
329 * while increasing bulk throughput.
331 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container
*rc
)
333 enum i40e_latency_range new_latency_range
= rc
->latency_range
;
334 struct i40e_q_vector
*qv
= rc
->ring
->q_vector
;
335 u32 new_itr
= rc
->itr
;
339 if (rc
->total_packets
== 0 || !rc
->itr
)
342 /* simple throttlerate management
343 * 0-10MB/s lowest (50000 ints/s)
344 * 10-20MB/s low (20000 ints/s)
345 * 20-1249MB/s bulk (18000 ints/s)
346 * > 40000 Rx packets per second (8000 ints/s)
348 * The math works out because the divisor is in 10^(-6) which
349 * turns the bytes/us input value into MB/s values, but
350 * make sure to use usecs, as the register values written
351 * are in 2 usec increments in the ITR registers, and make sure
352 * to use the smoothed values that the countdown timer gives us.
354 usecs
= (rc
->itr
<< 1) * ITR_COUNTDOWN_START
;
355 bytes_per_int
= rc
->total_bytes
/ usecs
;
357 switch (new_latency_range
) {
358 case I40E_LOWEST_LATENCY
:
359 if (bytes_per_int
> 10)
360 new_latency_range
= I40E_LOW_LATENCY
;
362 case I40E_LOW_LATENCY
:
363 if (bytes_per_int
> 20)
364 new_latency_range
= I40E_BULK_LATENCY
;
365 else if (bytes_per_int
<= 10)
366 new_latency_range
= I40E_LOWEST_LATENCY
;
368 case I40E_BULK_LATENCY
:
369 case I40E_ULTRA_LATENCY
:
371 if (bytes_per_int
<= 20)
372 new_latency_range
= I40E_LOW_LATENCY
;
376 /* this is to adjust RX more aggressively when streaming small
377 * packets. The value of 40000 was picked as it is just beyond
378 * what the hardware can receive per second if in low latency
381 #define RX_ULTRA_PACKET_RATE 40000
383 if ((((rc
->total_packets
* 1000000) / usecs
) > RX_ULTRA_PACKET_RATE
) &&
385 new_latency_range
= I40E_ULTRA_LATENCY
;
387 rc
->latency_range
= new_latency_range
;
389 switch (new_latency_range
) {
390 case I40E_LOWEST_LATENCY
:
391 new_itr
= I40E_ITR_50K
;
393 case I40E_LOW_LATENCY
:
394 new_itr
= I40E_ITR_20K
;
396 case I40E_BULK_LATENCY
:
397 new_itr
= I40E_ITR_18K
;
399 case I40E_ULTRA_LATENCY
:
400 new_itr
= I40E_ITR_8K
;
407 rc
->total_packets
= 0;
409 if (new_itr
!= rc
->itr
) {
418 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
419 * @tx_ring: the tx ring to set up
421 * Return 0 on success, negative on error
423 int i40evf_setup_tx_descriptors(struct i40e_ring
*tx_ring
)
425 struct device
*dev
= tx_ring
->dev
;
431 /* warn if we are about to overwrite the pointer */
432 WARN_ON(tx_ring
->tx_bi
);
433 bi_size
= sizeof(struct i40e_tx_buffer
) * tx_ring
->count
;
434 tx_ring
->tx_bi
= kzalloc(bi_size
, GFP_KERNEL
);
438 /* round up to nearest 4K */
439 tx_ring
->size
= tx_ring
->count
* sizeof(struct i40e_tx_desc
);
440 /* add u32 for head writeback, align after this takes care of
441 * guaranteeing this is at least one cache line in size
443 tx_ring
->size
+= sizeof(u32
);
444 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
445 tx_ring
->desc
= dma_alloc_coherent(dev
, tx_ring
->size
,
446 &tx_ring
->dma
, GFP_KERNEL
);
447 if (!tx_ring
->desc
) {
448 dev_info(dev
, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
453 tx_ring
->next_to_use
= 0;
454 tx_ring
->next_to_clean
= 0;
458 kfree(tx_ring
->tx_bi
);
459 tx_ring
->tx_bi
= NULL
;
464 * i40evf_clean_rx_ring - Free Rx buffers
465 * @rx_ring: ring to be cleaned
467 void i40evf_clean_rx_ring(struct i40e_ring
*rx_ring
)
469 struct device
*dev
= rx_ring
->dev
;
470 struct i40e_rx_buffer
*rx_bi
;
471 unsigned long bi_size
;
474 /* ring already cleared, nothing to do */
478 if (ring_is_ps_enabled(rx_ring
)) {
479 int bufsz
= ALIGN(rx_ring
->rx_hdr_len
, 256) * rx_ring
->count
;
481 rx_bi
= &rx_ring
->rx_bi
[0];
482 if (rx_bi
->hdr_buf
) {
483 dma_free_coherent(dev
,
487 for (i
= 0; i
< rx_ring
->count
; i
++) {
488 rx_bi
= &rx_ring
->rx_bi
[i
];
490 rx_bi
->hdr_buf
= NULL
;
494 /* Free all the Rx ring sk_buffs */
495 for (i
= 0; i
< rx_ring
->count
; i
++) {
496 rx_bi
= &rx_ring
->rx_bi
[i
];
498 dma_unmap_single(dev
,
505 dev_kfree_skb(rx_bi
->skb
);
509 if (rx_bi
->page_dma
) {
516 __free_page(rx_bi
->page
);
518 rx_bi
->page_offset
= 0;
522 bi_size
= sizeof(struct i40e_rx_buffer
) * rx_ring
->count
;
523 memset(rx_ring
->rx_bi
, 0, bi_size
);
525 /* Zero out the descriptor ring */
526 memset(rx_ring
->desc
, 0, rx_ring
->size
);
528 rx_ring
->next_to_clean
= 0;
529 rx_ring
->next_to_use
= 0;
533 * i40evf_free_rx_resources - Free Rx resources
534 * @rx_ring: ring to clean the resources from
536 * Free all receive software resources
538 void i40evf_free_rx_resources(struct i40e_ring
*rx_ring
)
540 i40evf_clean_rx_ring(rx_ring
);
541 kfree(rx_ring
->rx_bi
);
542 rx_ring
->rx_bi
= NULL
;
545 dma_free_coherent(rx_ring
->dev
, rx_ring
->size
,
546 rx_ring
->desc
, rx_ring
->dma
);
547 rx_ring
->desc
= NULL
;
552 * i40evf_alloc_rx_headers - allocate rx header buffers
553 * @rx_ring: ring to alloc buffers
555 * Allocate rx header buffers for the entire ring. As these are static,
556 * this is only called when setting up a new ring.
558 void i40evf_alloc_rx_headers(struct i40e_ring
*rx_ring
)
560 struct device
*dev
= rx_ring
->dev
;
561 struct i40e_rx_buffer
*rx_bi
;
567 if (rx_ring
->rx_bi
[0].hdr_buf
)
569 /* Make sure the buffers don't cross cache line boundaries. */
570 buf_size
= ALIGN(rx_ring
->rx_hdr_len
, 256);
571 buffer
= dma_alloc_coherent(dev
, buf_size
* rx_ring
->count
,
575 for (i
= 0; i
< rx_ring
->count
; i
++) {
576 rx_bi
= &rx_ring
->rx_bi
[i
];
577 rx_bi
->dma
= dma
+ (i
* buf_size
);
578 rx_bi
->hdr_buf
= buffer
+ (i
* buf_size
);
583 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
584 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
586 * Returns 0 on success, negative on failure
588 int i40evf_setup_rx_descriptors(struct i40e_ring
*rx_ring
)
590 struct device
*dev
= rx_ring
->dev
;
593 /* warn if we are about to overwrite the pointer */
594 WARN_ON(rx_ring
->rx_bi
);
595 bi_size
= sizeof(struct i40e_rx_buffer
) * rx_ring
->count
;
596 rx_ring
->rx_bi
= kzalloc(bi_size
, GFP_KERNEL
);
600 u64_stats_init(&rx_ring
->syncp
);
602 /* Round up to nearest 4K */
603 rx_ring
->size
= ring_is_16byte_desc_enabled(rx_ring
)
604 ? rx_ring
->count
* sizeof(union i40e_16byte_rx_desc
)
605 : rx_ring
->count
* sizeof(union i40e_32byte_rx_desc
);
606 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
607 rx_ring
->desc
= dma_alloc_coherent(dev
, rx_ring
->size
,
608 &rx_ring
->dma
, GFP_KERNEL
);
610 if (!rx_ring
->desc
) {
611 dev_info(dev
, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
616 rx_ring
->next_to_clean
= 0;
617 rx_ring
->next_to_use
= 0;
621 kfree(rx_ring
->rx_bi
);
622 rx_ring
->rx_bi
= NULL
;
627 * i40e_release_rx_desc - Store the new tail and head values
628 * @rx_ring: ring to bump
629 * @val: new head index
631 static inline void i40e_release_rx_desc(struct i40e_ring
*rx_ring
, u32 val
)
633 rx_ring
->next_to_use
= val
;
634 /* Force memory writes to complete before letting h/w
635 * know there are new descriptors to fetch. (Only
636 * applicable for weak-ordered memory model archs,
640 writel(val
, rx_ring
->tail
);
644 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
645 * @rx_ring: ring to place buffers on
646 * @cleaned_count: number of buffers to replace
648 void i40evf_alloc_rx_buffers_ps(struct i40e_ring
*rx_ring
, u16 cleaned_count
)
650 u16 i
= rx_ring
->next_to_use
;
651 union i40e_rx_desc
*rx_desc
;
652 struct i40e_rx_buffer
*bi
;
654 /* do nothing if no valid netdev defined */
655 if (!rx_ring
->netdev
|| !cleaned_count
)
658 while (cleaned_count
--) {
659 rx_desc
= I40E_RX_DESC(rx_ring
, i
);
660 bi
= &rx_ring
->rx_bi
[i
];
662 if (bi
->skb
) /* desc is in use */
665 bi
->page
= alloc_page(GFP_ATOMIC
);
667 rx_ring
->rx_stats
.alloc_page_failed
++;
673 /* use a half page if we're re-using */
674 bi
->page_offset
^= PAGE_SIZE
/ 2;
675 bi
->page_dma
= dma_map_page(rx_ring
->dev
,
680 if (dma_mapping_error(rx_ring
->dev
,
682 rx_ring
->rx_stats
.alloc_page_failed
++;
688 dma_sync_single_range_for_device(rx_ring
->dev
,
693 /* Refresh the desc even if buffer_addrs didn't change
694 * because each write-back erases this info.
696 rx_desc
->read
.pkt_addr
= cpu_to_le64(bi
->page_dma
);
697 rx_desc
->read
.hdr_addr
= cpu_to_le64(bi
->dma
);
699 if (i
== rx_ring
->count
)
704 if (rx_ring
->next_to_use
!= i
)
705 i40e_release_rx_desc(rx_ring
, i
);
709 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
710 * @rx_ring: ring to place buffers on
711 * @cleaned_count: number of buffers to replace
713 void i40evf_alloc_rx_buffers_1buf(struct i40e_ring
*rx_ring
, u16 cleaned_count
)
715 u16 i
= rx_ring
->next_to_use
;
716 union i40e_rx_desc
*rx_desc
;
717 struct i40e_rx_buffer
*bi
;
720 /* do nothing if no valid netdev defined */
721 if (!rx_ring
->netdev
|| !cleaned_count
)
724 while (cleaned_count
--) {
725 rx_desc
= I40E_RX_DESC(rx_ring
, i
);
726 bi
= &rx_ring
->rx_bi
[i
];
730 skb
= netdev_alloc_skb_ip_align(rx_ring
->netdev
,
731 rx_ring
->rx_buf_len
);
733 rx_ring
->rx_stats
.alloc_buff_failed
++;
736 /* initialize queue mapping */
737 skb_record_rx_queue(skb
, rx_ring
->queue_index
);
742 bi
->dma
= dma_map_single(rx_ring
->dev
,
746 if (dma_mapping_error(rx_ring
->dev
, bi
->dma
)) {
747 rx_ring
->rx_stats
.alloc_buff_failed
++;
753 rx_desc
->read
.pkt_addr
= cpu_to_le64(bi
->dma
);
754 rx_desc
->read
.hdr_addr
= 0;
756 if (i
== rx_ring
->count
)
761 if (rx_ring
->next_to_use
!= i
)
762 i40e_release_rx_desc(rx_ring
, i
);
766 * i40e_receive_skb - Send a completed packet up the stack
767 * @rx_ring: rx ring in play
768 * @skb: packet to send up
769 * @vlan_tag: vlan tag for packet
771 static void i40e_receive_skb(struct i40e_ring
*rx_ring
,
772 struct sk_buff
*skb
, u16 vlan_tag
)
774 struct i40e_q_vector
*q_vector
= rx_ring
->q_vector
;
776 if (vlan_tag
& VLAN_VID_MASK
)
777 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vlan_tag
);
779 napi_gro_receive(&q_vector
->napi
, skb
);
783 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
784 * @vsi: the VSI we care about
785 * @skb: skb currently being received and modified
786 * @rx_status: status value of last descriptor in packet
787 * @rx_error: error value of last descriptor in packet
788 * @rx_ptype: ptype value of last descriptor in packet
790 static inline void i40e_rx_checksum(struct i40e_vsi
*vsi
,
796 struct i40e_rx_ptype_decoded decoded
= decode_rx_desc_ptype(rx_ptype
);
797 bool ipv4
= false, ipv6
= false;
798 bool ipv4_tunnel
, ipv6_tunnel
;
803 ipv4_tunnel
= (rx_ptype
>= I40E_RX_PTYPE_GRENAT4_MAC_PAY3
) &&
804 (rx_ptype
<= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4
);
805 ipv6_tunnel
= (rx_ptype
>= I40E_RX_PTYPE_GRENAT6_MAC_PAY3
) &&
806 (rx_ptype
<= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4
);
808 skb
->ip_summed
= CHECKSUM_NONE
;
810 /* Rx csum enabled and ip headers found? */
811 if (!(vsi
->netdev
->features
& NETIF_F_RXCSUM
))
814 /* did the hardware decode the packet and checksum? */
815 if (!(rx_status
& BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT
)))
818 /* both known and outer_ip must be set for the below code to work */
819 if (!(decoded
.known
&& decoded
.outer_ip
))
822 if (decoded
.outer_ip
== I40E_RX_PTYPE_OUTER_IP
&&
823 decoded
.outer_ip_ver
== I40E_RX_PTYPE_OUTER_IPV4
)
825 else if (decoded
.outer_ip
== I40E_RX_PTYPE_OUTER_IP
&&
826 decoded
.outer_ip_ver
== I40E_RX_PTYPE_OUTER_IPV6
)
830 (rx_error
& (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT
) |
831 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT
))))
834 /* likely incorrect csum if alternate IP extension headers found */
836 rx_status
& BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT
))
837 /* don't increment checksum err here, non-fatal err */
840 /* there was some L4 error, count error and punt packet to the stack */
841 if (rx_error
& BIT(I40E_RX_DESC_ERROR_L4E_SHIFT
))
844 /* handle packets that were not able to be checksummed due
845 * to arrival speed, in this case the stack can compute
848 if (rx_error
& BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT
))
851 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
852 * it in the driver, hardware does not do it for us.
853 * Since L3L4P bit was set we assume a valid IHL value (>=5)
854 * so the total length of IPv4 header is IHL*4 bytes
855 * The UDP_0 bit *may* bet set if the *inner* header is UDP
858 skb
->transport_header
= skb
->mac_header
+
859 sizeof(struct ethhdr
) +
860 (ip_hdr(skb
)->ihl
* 4);
862 /* Add 4 bytes for VLAN tagged packets */
863 skb
->transport_header
+= (skb
->protocol
== htons(ETH_P_8021Q
) ||
864 skb
->protocol
== htons(ETH_P_8021AD
))
867 if ((ip_hdr(skb
)->protocol
== IPPROTO_UDP
) &&
868 (udp_hdr(skb
)->check
!= 0)) {
869 rx_udp_csum
= udp_csum(skb
);
871 csum
= csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
873 skb_transport_offset(skb
)),
874 IPPROTO_UDP
, rx_udp_csum
);
876 if (udp_hdr(skb
)->check
!= csum
)
879 } /* else its GRE and so no outer UDP header */
882 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
883 skb
->csum_level
= ipv4_tunnel
|| ipv6_tunnel
;
888 vsi
->back
->hw_csum_rx_error
++;
892 * i40e_rx_hash - returns the hash value from the Rx descriptor
893 * @ring: descriptor ring
894 * @rx_desc: specific descriptor
896 static inline u32
i40e_rx_hash(struct i40e_ring
*ring
,
897 union i40e_rx_desc
*rx_desc
)
899 const __le64 rss_mask
=
900 cpu_to_le64((u64
)I40E_RX_DESC_FLTSTAT_RSS_HASH
<<
901 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT
);
903 if ((ring
->netdev
->features
& NETIF_F_RXHASH
) &&
904 (rx_desc
->wb
.qword1
.status_error_len
& rss_mask
) == rss_mask
)
905 return le32_to_cpu(rx_desc
->wb
.qword0
.hi_dword
.rss
);
911 * i40e_ptype_to_hash - get a hash type
912 * @ptype: the ptype value from the descriptor
914 * Returns a hash type to be used by skb_set_hash
916 static inline enum pkt_hash_types
i40e_ptype_to_hash(u8 ptype
)
918 struct i40e_rx_ptype_decoded decoded
= decode_rx_desc_ptype(ptype
);
921 return PKT_HASH_TYPE_NONE
;
923 if (decoded
.outer_ip
== I40E_RX_PTYPE_OUTER_IP
&&
924 decoded
.payload_layer
== I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4
)
925 return PKT_HASH_TYPE_L4
;
926 else if (decoded
.outer_ip
== I40E_RX_PTYPE_OUTER_IP
&&
927 decoded
.payload_layer
== I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3
)
928 return PKT_HASH_TYPE_L3
;
930 return PKT_HASH_TYPE_L2
;
934 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
935 * @rx_ring: rx ring to clean
936 * @budget: how many cleans we're allowed
938 * Returns true if there's any budget left (e.g. the clean is finished)
940 static int i40e_clean_rx_irq_ps(struct i40e_ring
*rx_ring
, int budget
)
942 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
943 u16 rx_packet_len
, rx_header_len
, rx_sph
, rx_hbo
;
944 u16 cleaned_count
= I40E_DESC_UNUSED(rx_ring
);
945 const int current_node
= numa_mem_id();
946 struct i40e_vsi
*vsi
= rx_ring
->vsi
;
947 u16 i
= rx_ring
->next_to_clean
;
948 union i40e_rx_desc
*rx_desc
;
949 u32 rx_error
, rx_status
;
954 struct i40e_rx_buffer
*rx_bi
;
957 /* return some buffers to hardware, one at a time is too slow */
958 if (cleaned_count
>= I40E_RX_BUFFER_WRITE
) {
959 i40evf_alloc_rx_buffers_ps(rx_ring
, cleaned_count
);
963 i
= rx_ring
->next_to_clean
;
964 rx_desc
= I40E_RX_DESC(rx_ring
, i
);
965 qword
= le64_to_cpu(rx_desc
->wb
.qword1
.status_error_len
);
966 rx_status
= (qword
& I40E_RXD_QW1_STATUS_MASK
) >>
967 I40E_RXD_QW1_STATUS_SHIFT
;
969 if (!(rx_status
& BIT(I40E_RX_DESC_STATUS_DD_SHIFT
)))
972 /* This memory barrier is needed to keep us from reading
973 * any other fields out of the rx_desc until we know the
977 rx_bi
= &rx_ring
->rx_bi
[i
];
980 skb
= netdev_alloc_skb_ip_align(rx_ring
->netdev
,
981 rx_ring
->rx_hdr_len
);
983 rx_ring
->rx_stats
.alloc_buff_failed
++;
987 /* initialize queue mapping */
988 skb_record_rx_queue(skb
, rx_ring
->queue_index
);
989 /* we are reusing so sync this buffer for CPU use */
990 dma_sync_single_range_for_cpu(rx_ring
->dev
,
996 rx_packet_len
= (qword
& I40E_RXD_QW1_LENGTH_PBUF_MASK
) >>
997 I40E_RXD_QW1_LENGTH_PBUF_SHIFT
;
998 rx_header_len
= (qword
& I40E_RXD_QW1_LENGTH_HBUF_MASK
) >>
999 I40E_RXD_QW1_LENGTH_HBUF_SHIFT
;
1000 rx_sph
= (qword
& I40E_RXD_QW1_LENGTH_SPH_MASK
) >>
1001 I40E_RXD_QW1_LENGTH_SPH_SHIFT
;
1003 rx_error
= (qword
& I40E_RXD_QW1_ERROR_MASK
) >>
1004 I40E_RXD_QW1_ERROR_SHIFT
;
1005 rx_hbo
= rx_error
& BIT(I40E_RX_DESC_ERROR_HBO_SHIFT
);
1006 rx_error
&= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT
);
1008 rx_ptype
= (qword
& I40E_RXD_QW1_PTYPE_MASK
) >>
1009 I40E_RXD_QW1_PTYPE_SHIFT
;
1010 prefetch(rx_bi
->page
);
1013 if (rx_hbo
|| rx_sph
) {
1017 len
= I40E_RX_HDR_SIZE
;
1019 len
= rx_header_len
;
1020 memcpy(__skb_put(skb
, len
), rx_bi
->hdr_buf
, len
);
1021 } else if (skb
->len
== 0) {
1024 len
= (rx_packet_len
> skb_headlen(skb
) ?
1025 skb_headlen(skb
) : rx_packet_len
);
1026 memcpy(__skb_put(skb
, len
),
1027 rx_bi
->page
+ rx_bi
->page_offset
,
1029 rx_bi
->page_offset
+= len
;
1030 rx_packet_len
-= len
;
1033 /* Get the rest of the data if this was a header split */
1034 if (rx_packet_len
) {
1035 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
1040 skb
->len
+= rx_packet_len
;
1041 skb
->data_len
+= rx_packet_len
;
1042 skb
->truesize
+= rx_packet_len
;
1044 if ((page_count(rx_bi
->page
) == 1) &&
1045 (page_to_nid(rx_bi
->page
) == current_node
))
1046 get_page(rx_bi
->page
);
1050 dma_unmap_page(rx_ring
->dev
,
1054 rx_bi
->page_dma
= 0;
1056 I40E_RX_INCREMENT(rx_ring
, i
);
1059 !(rx_status
& BIT(I40E_RX_DESC_STATUS_EOF_SHIFT
)))) {
1060 struct i40e_rx_buffer
*next_buffer
;
1062 next_buffer
= &rx_ring
->rx_bi
[i
];
1063 next_buffer
->skb
= skb
;
1064 rx_ring
->rx_stats
.non_eop_descs
++;
1068 /* ERR_MASK will only have valid bits if EOP set */
1069 if (unlikely(rx_error
& BIT(I40E_RX_DESC_ERROR_RXE_SHIFT
))) {
1070 dev_kfree_skb_any(skb
);
1074 skb_set_hash(skb
, i40e_rx_hash(rx_ring
, rx_desc
),
1075 i40e_ptype_to_hash(rx_ptype
));
1076 /* probably a little skewed due to removing CRC */
1077 total_rx_bytes
+= skb
->len
;
1080 skb
->protocol
= eth_type_trans(skb
, rx_ring
->netdev
);
1082 i40e_rx_checksum(vsi
, skb
, rx_status
, rx_error
, rx_ptype
);
1084 vlan_tag
= rx_status
& BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT
)
1085 ? le16_to_cpu(rx_desc
->wb
.qword0
.lo_dword
.l2tag1
)
1088 if (!i40e_fcoe_handle_offload(rx_ring
, rx_desc
, skb
)) {
1089 dev_kfree_skb_any(skb
);
1093 skb_mark_napi_id(skb
, &rx_ring
->q_vector
->napi
);
1094 i40e_receive_skb(rx_ring
, skb
, vlan_tag
);
1096 rx_desc
->wb
.qword1
.status_error_len
= 0;
1098 } while (likely(total_rx_packets
< budget
));
1100 u64_stats_update_begin(&rx_ring
->syncp
);
1101 rx_ring
->stats
.packets
+= total_rx_packets
;
1102 rx_ring
->stats
.bytes
+= total_rx_bytes
;
1103 u64_stats_update_end(&rx_ring
->syncp
);
1104 rx_ring
->q_vector
->rx
.total_packets
+= total_rx_packets
;
1105 rx_ring
->q_vector
->rx
.total_bytes
+= total_rx_bytes
;
1107 return total_rx_packets
;
1111 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1112 * @rx_ring: rx ring to clean
1113 * @budget: how many cleans we're allowed
1115 * Returns number of packets cleaned
1117 static int i40e_clean_rx_irq_1buf(struct i40e_ring
*rx_ring
, int budget
)
1119 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1120 u16 cleaned_count
= I40E_DESC_UNUSED(rx_ring
);
1121 struct i40e_vsi
*vsi
= rx_ring
->vsi
;
1122 union i40e_rx_desc
*rx_desc
;
1123 u32 rx_error
, rx_status
;
1130 struct i40e_rx_buffer
*rx_bi
;
1131 struct sk_buff
*skb
;
1133 /* return some buffers to hardware, one at a time is too slow */
1134 if (cleaned_count
>= I40E_RX_BUFFER_WRITE
) {
1135 i40evf_alloc_rx_buffers_1buf(rx_ring
, cleaned_count
);
1139 i
= rx_ring
->next_to_clean
;
1140 rx_desc
= I40E_RX_DESC(rx_ring
, i
);
1141 qword
= le64_to_cpu(rx_desc
->wb
.qword1
.status_error_len
);
1142 rx_status
= (qword
& I40E_RXD_QW1_STATUS_MASK
) >>
1143 I40E_RXD_QW1_STATUS_SHIFT
;
1145 if (!(rx_status
& BIT(I40E_RX_DESC_STATUS_DD_SHIFT
)))
1148 /* This memory barrier is needed to keep us from reading
1149 * any other fields out of the rx_desc until we know the
1154 rx_bi
= &rx_ring
->rx_bi
[i
];
1156 prefetch(skb
->data
);
1158 rx_packet_len
= (qword
& I40E_RXD_QW1_LENGTH_PBUF_MASK
) >>
1159 I40E_RXD_QW1_LENGTH_PBUF_SHIFT
;
1161 rx_error
= (qword
& I40E_RXD_QW1_ERROR_MASK
) >>
1162 I40E_RXD_QW1_ERROR_SHIFT
;
1163 rx_error
&= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT
);
1165 rx_ptype
= (qword
& I40E_RXD_QW1_PTYPE_MASK
) >>
1166 I40E_RXD_QW1_PTYPE_SHIFT
;
1170 /* Get the header and possibly the whole packet
1171 * If this is an skb from previous receive dma will be 0
1173 skb_put(skb
, rx_packet_len
);
1174 dma_unmap_single(rx_ring
->dev
, rx_bi
->dma
, rx_ring
->rx_buf_len
,
1178 I40E_RX_INCREMENT(rx_ring
, i
);
1181 !(rx_status
& BIT(I40E_RX_DESC_STATUS_EOF_SHIFT
)))) {
1182 rx_ring
->rx_stats
.non_eop_descs
++;
1186 /* ERR_MASK will only have valid bits if EOP set */
1187 if (unlikely(rx_error
& BIT(I40E_RX_DESC_ERROR_RXE_SHIFT
))) {
1188 dev_kfree_skb_any(skb
);
1192 skb_set_hash(skb
, i40e_rx_hash(rx_ring
, rx_desc
),
1193 i40e_ptype_to_hash(rx_ptype
));
1194 /* probably a little skewed due to removing CRC */
1195 total_rx_bytes
+= skb
->len
;
1198 skb
->protocol
= eth_type_trans(skb
, rx_ring
->netdev
);
1200 i40e_rx_checksum(vsi
, skb
, rx_status
, rx_error
, rx_ptype
);
1202 vlan_tag
= rx_status
& BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT
)
1203 ? le16_to_cpu(rx_desc
->wb
.qword0
.lo_dword
.l2tag1
)
1205 i40e_receive_skb(rx_ring
, skb
, vlan_tag
);
1207 rx_desc
->wb
.qword1
.status_error_len
= 0;
1208 } while (likely(total_rx_packets
< budget
));
1210 u64_stats_update_begin(&rx_ring
->syncp
);
1211 rx_ring
->stats
.packets
+= total_rx_packets
;
1212 rx_ring
->stats
.bytes
+= total_rx_bytes
;
1213 u64_stats_update_end(&rx_ring
->syncp
);
1214 rx_ring
->q_vector
->rx
.total_packets
+= total_rx_packets
;
1215 rx_ring
->q_vector
->rx
.total_bytes
+= total_rx_bytes
;
1217 return total_rx_packets
;
1220 static u32
i40e_buildreg_itr(const int type
, const u16 itr
)
1224 val
= I40E_VFINT_DYN_CTLN1_INTENA_MASK
|
1225 I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK
|
1226 (type
<< I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT
) |
1227 (itr
<< I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT
);
1232 /* a small macro to shorten up some long lines */
1233 #define INTREG I40E_VFINT_DYN_CTLN1
1236 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1237 * @vsi: the VSI we care about
1238 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1241 static inline void i40e_update_enable_itr(struct i40e_vsi
*vsi
,
1242 struct i40e_q_vector
*q_vector
)
1244 struct i40e_hw
*hw
= &vsi
->back
->hw
;
1245 bool rx
= false, tx
= false;
1249 vector
= (q_vector
->v_idx
+ vsi
->base_vector
);
1251 /* avoid dynamic calculation if in countdown mode OR if
1252 * all dynamic is disabled
1254 rxval
= txval
= i40e_buildreg_itr(I40E_ITR_NONE
, 0);
1256 if (q_vector
->itr_countdown
> 0 ||
1257 (!ITR_IS_DYNAMIC(vsi
->rx_itr_setting
) &&
1258 !ITR_IS_DYNAMIC(vsi
->tx_itr_setting
))) {
1262 if (ITR_IS_DYNAMIC(vsi
->rx_itr_setting
)) {
1263 rx
= i40e_set_new_dynamic_itr(&q_vector
->rx
);
1264 rxval
= i40e_buildreg_itr(I40E_RX_ITR
, q_vector
->rx
.itr
);
1266 if (ITR_IS_DYNAMIC(vsi
->tx_itr_setting
)) {
1267 tx
= i40e_set_new_dynamic_itr(&q_vector
->tx
);
1268 txval
= i40e_buildreg_itr(I40E_TX_ITR
, q_vector
->tx
.itr
);
1271 /* get the higher of the two ITR adjustments and
1272 * use the same value for both ITR registers
1273 * when in adaptive mode (Rx and/or Tx)
1275 u16 itr
= max(q_vector
->tx
.itr
, q_vector
->rx
.itr
);
1277 q_vector
->tx
.itr
= q_vector
->rx
.itr
= itr
;
1278 txval
= i40e_buildreg_itr(I40E_TX_ITR
, itr
);
1280 rxval
= i40e_buildreg_itr(I40E_RX_ITR
, itr
);
1284 /* only need to enable the interrupt once, but need
1285 * to possibly update both ITR values
1288 /* set the INTENA_MSK_MASK so that this first write
1289 * won't actually enable the interrupt, instead just
1290 * updating the ITR (it's bit 31 PF and VF)
1293 /* don't check _DOWN because interrupt isn't being enabled */
1294 wr32(hw
, INTREG(vector
- 1), rxval
);
1298 if (!test_bit(__I40E_DOWN
, &vsi
->state
))
1299 wr32(hw
, INTREG(vector
- 1), txval
);
1301 if (q_vector
->itr_countdown
)
1302 q_vector
->itr_countdown
--;
1304 q_vector
->itr_countdown
= ITR_COUNTDOWN_START
;
1309 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1310 * @napi: napi struct with our devices info in it
1311 * @budget: amount of work driver is allowed to do this pass, in packets
1313 * This function will clean all queues associated with a q_vector.
1315 * Returns the amount of work done
1317 int i40evf_napi_poll(struct napi_struct
*napi
, int budget
)
1319 struct i40e_q_vector
*q_vector
=
1320 container_of(napi
, struct i40e_q_vector
, napi
);
1321 struct i40e_vsi
*vsi
= q_vector
->vsi
;
1322 struct i40e_ring
*ring
;
1323 bool clean_complete
= true;
1324 bool arm_wb
= false;
1325 int budget_per_ring
;
1328 if (test_bit(__I40E_DOWN
, &vsi
->state
)) {
1329 napi_complete(napi
);
1333 /* Since the actual Tx work is minimal, we can give the Tx a larger
1334 * budget and be more aggressive about cleaning up the Tx descriptors.
1336 i40e_for_each_ring(ring
, q_vector
->tx
) {
1337 clean_complete
&= i40e_clean_tx_irq(ring
, vsi
->work_limit
);
1338 arm_wb
|= ring
->arm_wb
;
1339 ring
->arm_wb
= false;
1342 /* Handle case where we are called by netpoll with a budget of 0 */
1346 /* We attempt to distribute budget to each Rx queue fairly, but don't
1347 * allow the budget to go below 1 because that would exit polling early.
1349 budget_per_ring
= max(budget
/q_vector
->num_ringpairs
, 1);
1351 i40e_for_each_ring(ring
, q_vector
->rx
) {
1354 if (ring_is_ps_enabled(ring
))
1355 cleaned
= i40e_clean_rx_irq_ps(ring
, budget_per_ring
);
1357 cleaned
= i40e_clean_rx_irq_1buf(ring
, budget_per_ring
);
1359 work_done
+= cleaned
;
1360 /* if we didn't clean as many as budgeted, we must be done */
1361 clean_complete
&= (budget_per_ring
!= cleaned
);
1364 /* If work not completed, return budget and polling will return */
1365 if (!clean_complete
) {
1368 i40evf_force_wb(vsi
, q_vector
);
1372 if (vsi
->back
->flags
& I40E_TXR_FLAGS_WB_ON_ITR
)
1373 q_vector
->arm_wb_state
= false;
1375 /* Work is done so exit the polling mode and re-enable the interrupt */
1376 napi_complete_done(napi
, work_done
);
1377 i40e_update_enable_itr(vsi
, q_vector
);
1382 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1384 * @tx_ring: ring to send buffer on
1385 * @flags: the tx flags to be set
1387 * Checks the skb and set up correspondingly several generic transmit flags
1388 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1390 * Returns error code indicate the frame should be dropped upon error and the
1391 * otherwise returns 0 to indicate the flags has been set properly.
1393 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff
*skb
,
1394 struct i40e_ring
*tx_ring
,
1397 __be16 protocol
= skb
->protocol
;
1400 if (protocol
== htons(ETH_P_8021Q
) &&
1401 !(tx_ring
->netdev
->features
& NETIF_F_HW_VLAN_CTAG_TX
)) {
1402 /* When HW VLAN acceleration is turned off by the user the
1403 * stack sets the protocol to 8021q so that the driver
1404 * can take any steps required to support the SW only
1405 * VLAN handling. In our case the driver doesn't need
1406 * to take any further steps so just set the protocol
1407 * to the encapsulated ethertype.
1409 skb
->protocol
= vlan_get_protocol(skb
);
1413 /* if we have a HW VLAN tag being added, default to the HW one */
1414 if (skb_vlan_tag_present(skb
)) {
1415 tx_flags
|= skb_vlan_tag_get(skb
) << I40E_TX_FLAGS_VLAN_SHIFT
;
1416 tx_flags
|= I40E_TX_FLAGS_HW_VLAN
;
1417 /* else if it is a SW VLAN, check the next protocol and store the tag */
1418 } else if (protocol
== htons(ETH_P_8021Q
)) {
1419 struct vlan_hdr
*vhdr
, _vhdr
;
1421 vhdr
= skb_header_pointer(skb
, ETH_HLEN
, sizeof(_vhdr
), &_vhdr
);
1425 protocol
= vhdr
->h_vlan_encapsulated_proto
;
1426 tx_flags
|= ntohs(vhdr
->h_vlan_TCI
) << I40E_TX_FLAGS_VLAN_SHIFT
;
1427 tx_flags
|= I40E_TX_FLAGS_SW_VLAN
;
1436 * i40e_tso - set up the tso context descriptor
1437 * @tx_ring: ptr to the ring to send
1438 * @skb: ptr to the skb we're sending
1439 * @hdr_len: ptr to the size of the packet header
1440 * @cd_tunneling: ptr to context descriptor bits
1442 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1444 static int i40e_tso(struct i40e_ring
*tx_ring
, struct sk_buff
*skb
,
1445 u8
*hdr_len
, u64
*cd_type_cmd_tso_mss
,
1448 u32 cd_cmd
, cd_tso_len
, cd_mss
;
1449 struct ipv6hdr
*ipv6h
;
1450 struct tcphdr
*tcph
;
1455 if (!skb_is_gso(skb
))
1458 err
= skb_cow_head(skb
, 0);
1462 iph
= skb
->encapsulation
? inner_ip_hdr(skb
) : ip_hdr(skb
);
1463 ipv6h
= skb
->encapsulation
? inner_ipv6_hdr(skb
) : ipv6_hdr(skb
);
1465 if (iph
->version
== 4) {
1466 tcph
= skb
->encapsulation
? inner_tcp_hdr(skb
) : tcp_hdr(skb
);
1469 tcph
->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
1471 } else if (ipv6h
->version
== 6) {
1472 tcph
= skb
->encapsulation
? inner_tcp_hdr(skb
) : tcp_hdr(skb
);
1473 ipv6h
->payload_len
= 0;
1474 tcph
->check
= ~csum_ipv6_magic(&ipv6h
->saddr
, &ipv6h
->daddr
,
1478 l4len
= skb
->encapsulation
? inner_tcp_hdrlen(skb
) : tcp_hdrlen(skb
);
1479 *hdr_len
= (skb
->encapsulation
1480 ? (skb_inner_transport_header(skb
) - skb
->data
)
1481 : skb_transport_offset(skb
)) + l4len
;
1483 /* find the field values */
1484 cd_cmd
= I40E_TX_CTX_DESC_TSO
;
1485 cd_tso_len
= skb
->len
- *hdr_len
;
1486 cd_mss
= skb_shinfo(skb
)->gso_size
;
1487 *cd_type_cmd_tso_mss
|= ((u64
)cd_cmd
<< I40E_TXD_CTX_QW1_CMD_SHIFT
) |
1489 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT
) |
1490 ((u64
)cd_mss
<< I40E_TXD_CTX_QW1_MSS_SHIFT
);
1495 * i40e_tx_enable_csum - Enable Tx checksum offloads
1497 * @tx_flags: pointer to Tx flags currently set
1498 * @td_cmd: Tx descriptor command bits to set
1499 * @td_offset: Tx descriptor header offsets to set
1500 * @cd_tunneling: ptr to context desc bits
1502 static void i40e_tx_enable_csum(struct sk_buff
*skb
, u32
*tx_flags
,
1503 u32
*td_cmd
, u32
*td_offset
,
1504 struct i40e_ring
*tx_ring
,
1507 struct ipv6hdr
*this_ipv6_hdr
;
1508 unsigned int this_tcp_hdrlen
;
1509 struct iphdr
*this_ip_hdr
;
1510 u32 network_hdr_len
;
1512 struct udphdr
*oudph
;
1516 if (skb
->encapsulation
) {
1517 switch (ip_hdr(skb
)->protocol
) {
1519 oudph
= udp_hdr(skb
);
1521 l4_tunnel
= I40E_TXD_CTX_UDP_TUNNELING
;
1522 *tx_flags
|= I40E_TX_FLAGS_VXLAN_TUNNEL
;
1527 network_hdr_len
= skb_inner_network_header_len(skb
);
1528 this_ip_hdr
= inner_ip_hdr(skb
);
1529 this_ipv6_hdr
= inner_ipv6_hdr(skb
);
1530 this_tcp_hdrlen
= inner_tcp_hdrlen(skb
);
1532 if (*tx_flags
& I40E_TX_FLAGS_IPV4
) {
1533 if (*tx_flags
& I40E_TX_FLAGS_TSO
) {
1534 *cd_tunneling
|= I40E_TX_CTX_EXT_IP_IPV4
;
1535 ip_hdr(skb
)->check
= 0;
1538 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM
;
1540 } else if (*tx_flags
& I40E_TX_FLAGS_IPV6
) {
1541 *cd_tunneling
|= I40E_TX_CTX_EXT_IP_IPV6
;
1542 if (*tx_flags
& I40E_TX_FLAGS_TSO
)
1543 ip_hdr(skb
)->check
= 0;
1546 /* Now set the ctx descriptor fields */
1547 *cd_tunneling
|= (skb_network_header_len(skb
) >> 2) <<
1548 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT
|
1550 ((skb_inner_network_offset(skb
) -
1551 skb_transport_offset(skb
)) >> 1) <<
1552 I40E_TXD_CTX_QW0_NATLEN_SHIFT
;
1553 if (this_ip_hdr
->version
== 6) {
1554 *tx_flags
&= ~I40E_TX_FLAGS_IPV4
;
1555 *tx_flags
|= I40E_TX_FLAGS_IPV6
;
1559 if ((tx_ring
->flags
& I40E_TXR_FLAGS_OUTER_UDP_CSUM
) &&
1560 (l4_tunnel
== I40E_TXD_CTX_UDP_TUNNELING
) &&
1561 (*cd_tunneling
& I40E_TXD_CTX_QW0_EXT_IP_MASK
)) {
1562 oudph
->check
= ~csum_tcpudp_magic(oiph
->saddr
,
1564 (skb
->len
- skb_transport_offset(skb
)),
1566 *cd_tunneling
|= I40E_TXD_CTX_QW0_L4T_CS_MASK
;
1569 network_hdr_len
= skb_network_header_len(skb
);
1570 this_ip_hdr
= ip_hdr(skb
);
1571 this_ipv6_hdr
= ipv6_hdr(skb
);
1572 this_tcp_hdrlen
= tcp_hdrlen(skb
);
1575 /* Enable IP checksum offloads */
1576 if (*tx_flags
& I40E_TX_FLAGS_IPV4
) {
1577 l4_hdr
= this_ip_hdr
->protocol
;
1578 /* the stack computes the IP header already, the only time we
1579 * need the hardware to recompute it is in the case of TSO.
1581 if (*tx_flags
& I40E_TX_FLAGS_TSO
) {
1582 *td_cmd
|= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM
;
1583 this_ip_hdr
->check
= 0;
1585 *td_cmd
|= I40E_TX_DESC_CMD_IIPT_IPV4
;
1587 /* Now set the td_offset for IP header length */
1588 *td_offset
= (network_hdr_len
>> 2) <<
1589 I40E_TX_DESC_LENGTH_IPLEN_SHIFT
;
1590 } else if (*tx_flags
& I40E_TX_FLAGS_IPV6
) {
1591 l4_hdr
= this_ipv6_hdr
->nexthdr
;
1592 *td_cmd
|= I40E_TX_DESC_CMD_IIPT_IPV6
;
1593 /* Now set the td_offset for IP header length */
1594 *td_offset
= (network_hdr_len
>> 2) <<
1595 I40E_TX_DESC_LENGTH_IPLEN_SHIFT
;
1597 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1598 *td_offset
|= (skb_network_offset(skb
) >> 1) <<
1599 I40E_TX_DESC_LENGTH_MACLEN_SHIFT
;
1601 /* Enable L4 checksum offloads */
1604 /* enable checksum offloads */
1605 *td_cmd
|= I40E_TX_DESC_CMD_L4T_EOFT_TCP
;
1606 *td_offset
|= (this_tcp_hdrlen
>> 2) <<
1607 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT
;
1610 /* enable SCTP checksum offload */
1611 *td_cmd
|= I40E_TX_DESC_CMD_L4T_EOFT_SCTP
;
1612 *td_offset
|= (sizeof(struct sctphdr
) >> 2) <<
1613 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT
;
1616 /* enable UDP checksum offload */
1617 *td_cmd
|= I40E_TX_DESC_CMD_L4T_EOFT_UDP
;
1618 *td_offset
|= (sizeof(struct udphdr
) >> 2) <<
1619 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT
;
1627 * i40e_create_tx_ctx Build the Tx context descriptor
1628 * @tx_ring: ring to create the descriptor on
1629 * @cd_type_cmd_tso_mss: Quad Word 1
1630 * @cd_tunneling: Quad Word 0 - bits 0-31
1631 * @cd_l2tag2: Quad Word 0 - bits 32-63
1633 static void i40e_create_tx_ctx(struct i40e_ring
*tx_ring
,
1634 const u64 cd_type_cmd_tso_mss
,
1635 const u32 cd_tunneling
, const u32 cd_l2tag2
)
1637 struct i40e_tx_context_desc
*context_desc
;
1638 int i
= tx_ring
->next_to_use
;
1640 if ((cd_type_cmd_tso_mss
== I40E_TX_DESC_DTYPE_CONTEXT
) &&
1641 !cd_tunneling
&& !cd_l2tag2
)
1644 /* grab the next descriptor */
1645 context_desc
= I40E_TX_CTXTDESC(tx_ring
, i
);
1648 tx_ring
->next_to_use
= (i
< tx_ring
->count
) ? i
: 0;
1650 /* cpu_to_le32 and assign to struct fields */
1651 context_desc
->tunneling_params
= cpu_to_le32(cd_tunneling
);
1652 context_desc
->l2tag2
= cpu_to_le16(cd_l2tag2
);
1653 context_desc
->rsvd
= cpu_to_le16(0);
1654 context_desc
->type_cmd_tso_mss
= cpu_to_le64(cd_type_cmd_tso_mss
);
1658 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1660 * @tx_flags: collected send information
1662 * Note: Our HW can't scatter-gather more than 8 fragments to build
1663 * a packet on the wire and so we need to figure out the cases where we
1664 * need to linearize the skb.
1666 static bool i40e_chk_linearize(struct sk_buff
*skb
, u32 tx_flags
)
1668 struct skb_frag_struct
*frag
;
1669 bool linearize
= false;
1670 unsigned int size
= 0;
1674 num_frags
= skb_shinfo(skb
)->nr_frags
;
1675 gso_segs
= skb_shinfo(skb
)->gso_segs
;
1677 if (tx_flags
& (I40E_TX_FLAGS_TSO
| I40E_TX_FLAGS_FSO
)) {
1680 if (num_frags
< (I40E_MAX_BUFFER_TXD
))
1681 goto linearize_chk_done
;
1682 /* try the simple math, if we have too many frags per segment */
1683 if (DIV_ROUND_UP((num_frags
+ gso_segs
), gso_segs
) >
1684 I40E_MAX_BUFFER_TXD
) {
1686 goto linearize_chk_done
;
1688 frag
= &skb_shinfo(skb
)->frags
[0];
1689 /* we might still have more fragments per segment */
1691 size
+= skb_frag_size(frag
);
1693 if ((size
>= skb_shinfo(skb
)->gso_size
) &&
1694 (j
< I40E_MAX_BUFFER_TXD
)) {
1695 size
= (size
% skb_shinfo(skb
)->gso_size
);
1698 if (j
== I40E_MAX_BUFFER_TXD
) {
1703 } while (num_frags
);
1705 if (num_frags
>= I40E_MAX_BUFFER_TXD
)
1714 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1715 * @tx_ring: the ring to be checked
1716 * @size: the size buffer we want to assure is available
1718 * Returns -EBUSY if a stop is needed, else 0
1720 static inline int __i40evf_maybe_stop_tx(struct i40e_ring
*tx_ring
, int size
)
1722 netif_stop_subqueue(tx_ring
->netdev
, tx_ring
->queue_index
);
1723 /* Memory barrier before checking head and tail */
1726 /* Check again in a case another CPU has just made room available. */
1727 if (likely(I40E_DESC_UNUSED(tx_ring
) < size
))
1730 /* A reprieve! - use start_queue because it doesn't call schedule */
1731 netif_start_subqueue(tx_ring
->netdev
, tx_ring
->queue_index
);
1732 ++tx_ring
->tx_stats
.restart_queue
;
1737 * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
1738 * @tx_ring: the ring to be checked
1739 * @size: the size buffer we want to assure is available
1741 * Returns 0 if stop is not needed
1743 static inline int i40evf_maybe_stop_tx(struct i40e_ring
*tx_ring
, int size
)
1745 if (likely(I40E_DESC_UNUSED(tx_ring
) >= size
))
1747 return __i40evf_maybe_stop_tx(tx_ring
, size
);
1751 * i40evf_tx_map - Build the Tx descriptor
1752 * @tx_ring: ring to send buffer on
1754 * @first: first buffer info buffer to use
1755 * @tx_flags: collected send information
1756 * @hdr_len: size of the packet header
1757 * @td_cmd: the command field in the descriptor
1758 * @td_offset: offset for checksum or crc
1760 static inline void i40evf_tx_map(struct i40e_ring
*tx_ring
, struct sk_buff
*skb
,
1761 struct i40e_tx_buffer
*first
, u32 tx_flags
,
1762 const u8 hdr_len
, u32 td_cmd
, u32 td_offset
)
1764 unsigned int data_len
= skb
->data_len
;
1765 unsigned int size
= skb_headlen(skb
);
1766 struct skb_frag_struct
*frag
;
1767 struct i40e_tx_buffer
*tx_bi
;
1768 struct i40e_tx_desc
*tx_desc
;
1769 u16 i
= tx_ring
->next_to_use
;
1774 if (tx_flags
& I40E_TX_FLAGS_HW_VLAN
) {
1775 td_cmd
|= I40E_TX_DESC_CMD_IL2TAG1
;
1776 td_tag
= (tx_flags
& I40E_TX_FLAGS_VLAN_MASK
) >>
1777 I40E_TX_FLAGS_VLAN_SHIFT
;
1780 if (tx_flags
& (I40E_TX_FLAGS_TSO
| I40E_TX_FLAGS_FSO
))
1781 gso_segs
= skb_shinfo(skb
)->gso_segs
;
1785 /* multiply data chunks by size of headers */
1786 first
->bytecount
= skb
->len
- hdr_len
+ (gso_segs
* hdr_len
);
1787 first
->gso_segs
= gso_segs
;
1789 first
->tx_flags
= tx_flags
;
1791 dma
= dma_map_single(tx_ring
->dev
, skb
->data
, size
, DMA_TO_DEVICE
);
1793 tx_desc
= I40E_TX_DESC(tx_ring
, i
);
1796 for (frag
= &skb_shinfo(skb
)->frags
[0];; frag
++) {
1797 if (dma_mapping_error(tx_ring
->dev
, dma
))
1800 /* record length, and DMA address */
1801 dma_unmap_len_set(tx_bi
, len
, size
);
1802 dma_unmap_addr_set(tx_bi
, dma
, dma
);
1804 tx_desc
->buffer_addr
= cpu_to_le64(dma
);
1806 while (unlikely(size
> I40E_MAX_DATA_PER_TXD
)) {
1807 tx_desc
->cmd_type_offset_bsz
=
1808 build_ctob(td_cmd
, td_offset
,
1809 I40E_MAX_DATA_PER_TXD
, td_tag
);
1813 if (i
== tx_ring
->count
) {
1814 tx_desc
= I40E_TX_DESC(tx_ring
, 0);
1818 dma
+= I40E_MAX_DATA_PER_TXD
;
1819 size
-= I40E_MAX_DATA_PER_TXD
;
1821 tx_desc
->buffer_addr
= cpu_to_le64(dma
);
1824 if (likely(!data_len
))
1827 tx_desc
->cmd_type_offset_bsz
= build_ctob(td_cmd
, td_offset
,
1832 if (i
== tx_ring
->count
) {
1833 tx_desc
= I40E_TX_DESC(tx_ring
, 0);
1837 size
= skb_frag_size(frag
);
1840 dma
= skb_frag_dma_map(tx_ring
->dev
, frag
, 0, size
,
1843 tx_bi
= &tx_ring
->tx_bi
[i
];
1846 /* Place RS bit on last descriptor of any packet that spans across the
1847 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1849 #define WB_STRIDE 0x3
1850 if (((i
& WB_STRIDE
) != WB_STRIDE
) &&
1851 (first
<= &tx_ring
->tx_bi
[i
]) &&
1852 (first
>= &tx_ring
->tx_bi
[i
& ~WB_STRIDE
])) {
1853 tx_desc
->cmd_type_offset_bsz
=
1854 build_ctob(td_cmd
, td_offset
, size
, td_tag
) |
1855 cpu_to_le64((u64
)I40E_TX_DESC_CMD_EOP
<<
1856 I40E_TXD_QW1_CMD_SHIFT
);
1858 tx_desc
->cmd_type_offset_bsz
=
1859 build_ctob(td_cmd
, td_offset
, size
, td_tag
) |
1860 cpu_to_le64((u64
)I40E_TXD_CMD
<<
1861 I40E_TXD_QW1_CMD_SHIFT
);
1864 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring
->netdev
,
1865 tx_ring
->queue_index
),
1868 /* Force memory writes to complete before letting h/w
1869 * know there are new descriptors to fetch. (Only
1870 * applicable for weak-ordered memory model archs,
1875 /* set next_to_watch value indicating a packet is present */
1876 first
->next_to_watch
= tx_desc
;
1879 if (i
== tx_ring
->count
)
1882 tx_ring
->next_to_use
= i
;
1884 i40evf_maybe_stop_tx(tx_ring
, DESC_NEEDED
);
1885 /* notify HW of packet */
1886 if (!skb
->xmit_more
||
1887 netif_xmit_stopped(netdev_get_tx_queue(tx_ring
->netdev
,
1888 tx_ring
->queue_index
)))
1889 writel(i
, tx_ring
->tail
);
1891 prefetchw(tx_desc
+ 1);
1896 dev_info(tx_ring
->dev
, "TX DMA map failed\n");
1898 /* clear dma mappings for failed tx_bi map */
1900 tx_bi
= &tx_ring
->tx_bi
[i
];
1901 i40e_unmap_and_free_tx_resource(tx_ring
, tx_bi
);
1909 tx_ring
->next_to_use
= i
;
1913 * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
1915 * @tx_ring: ring to send buffer on
1917 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1918 * there is not enough descriptors available in this ring since we need at least
1921 static inline int i40evf_xmit_descriptor_count(struct sk_buff
*skb
,
1922 struct i40e_ring
*tx_ring
)
1927 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1928 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1929 * + 4 desc gap to avoid the cache line where head is,
1930 * + 1 desc for context descriptor,
1931 * otherwise try next time
1933 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++)
1934 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
);
1936 count
+= TXD_USE_COUNT(skb_headlen(skb
));
1937 if (i40evf_maybe_stop_tx(tx_ring
, count
+ 4 + 1)) {
1938 tx_ring
->tx_stats
.tx_busy
++;
1945 * i40e_xmit_frame_ring - Sends buffer on Tx ring
1947 * @tx_ring: ring to send buffer on
1949 * Returns NETDEV_TX_OK if sent, else an error code
1951 static netdev_tx_t
i40e_xmit_frame_ring(struct sk_buff
*skb
,
1952 struct i40e_ring
*tx_ring
)
1954 u64 cd_type_cmd_tso_mss
= I40E_TX_DESC_DTYPE_CONTEXT
;
1955 u32 cd_tunneling
= 0, cd_l2tag2
= 0;
1956 struct i40e_tx_buffer
*first
;
1964 if (0 == i40evf_xmit_descriptor_count(skb
, tx_ring
))
1965 return NETDEV_TX_BUSY
;
1967 /* prepare the xmit flags */
1968 if (i40evf_tx_prepare_vlan_flags(skb
, tx_ring
, &tx_flags
))
1971 /* obtain protocol of skb */
1972 protocol
= vlan_get_protocol(skb
);
1974 /* record the location of the first descriptor for this packet */
1975 first
= &tx_ring
->tx_bi
[tx_ring
->next_to_use
];
1977 /* setup IPv4/IPv6 offloads */
1978 if (protocol
== htons(ETH_P_IP
))
1979 tx_flags
|= I40E_TX_FLAGS_IPV4
;
1980 else if (protocol
== htons(ETH_P_IPV6
))
1981 tx_flags
|= I40E_TX_FLAGS_IPV6
;
1983 tso
= i40e_tso(tx_ring
, skb
, &hdr_len
,
1984 &cd_type_cmd_tso_mss
, &cd_tunneling
);
1989 tx_flags
|= I40E_TX_FLAGS_TSO
;
1991 if (i40e_chk_linearize(skb
, tx_flags
)) {
1992 if (skb_linearize(skb
))
1994 tx_ring
->tx_stats
.tx_linearize
++;
1996 skb_tx_timestamp(skb
);
1998 /* always enable CRC insertion offload */
1999 td_cmd
|= I40E_TX_DESC_CMD_ICRC
;
2001 /* Always offload the checksum, since it's in the data descriptor */
2002 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2003 tx_flags
|= I40E_TX_FLAGS_CSUM
;
2005 i40e_tx_enable_csum(skb
, &tx_flags
, &td_cmd
, &td_offset
,
2006 tx_ring
, &cd_tunneling
);
2009 i40e_create_tx_ctx(tx_ring
, cd_type_cmd_tso_mss
,
2010 cd_tunneling
, cd_l2tag2
);
2012 i40evf_tx_map(tx_ring
, skb
, first
, tx_flags
, hdr_len
,
2015 return NETDEV_TX_OK
;
2018 dev_kfree_skb_any(skb
);
2019 return NETDEV_TX_OK
;
2023 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2025 * @netdev: network interface device structure
2027 * Returns NETDEV_TX_OK if sent, else an error code
2029 netdev_tx_t
i40evf_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
2031 struct i40evf_adapter
*adapter
= netdev_priv(netdev
);
2032 struct i40e_ring
*tx_ring
= adapter
->tx_rings
[skb
->queue_mapping
];
2034 /* hardware can't handle really short frames, hardware padding works
2037 if (unlikely(skb
->len
< I40E_MIN_TX_LEN
)) {
2038 if (skb_pad(skb
, I40E_MIN_TX_LEN
- skb
->len
))
2039 return NETDEV_TX_OK
;
2040 skb
->len
= I40E_MIN_TX_LEN
;
2041 skb_set_tail_pointer(skb
, I40E_MIN_TX_LEN
);
2044 return i40e_xmit_frame_ring(skb
, tx_ring
);