irqchip/omap-intc: Remove duplicate setup for IRQ chip type handler
[linux/fpc-iii.git] / fs / proc / page.c
blob93484034a03d04c38cc5ff7779fb95e7611fbd09
1 #include <linux/bootmem.h>
2 #include <linux/compiler.h>
3 #include <linux/fs.h>
4 #include <linux/init.h>
5 #include <linux/ksm.h>
6 #include <linux/mm.h>
7 #include <linux/mmzone.h>
8 #include <linux/huge_mm.h>
9 #include <linux/proc_fs.h>
10 #include <linux/seq_file.h>
11 #include <linux/hugetlb.h>
12 #include <linux/memcontrol.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/kernel-page-flags.h>
16 #include <asm/uaccess.h>
17 #include "internal.h"
19 #define KPMSIZE sizeof(u64)
20 #define KPMMASK (KPMSIZE - 1)
21 #define KPMBITS (KPMSIZE * BITS_PER_BYTE)
23 /* /proc/kpagecount - an array exposing page counts
25 * Each entry is a u64 representing the corresponding
26 * physical page count.
28 static ssize_t kpagecount_read(struct file *file, char __user *buf,
29 size_t count, loff_t *ppos)
31 u64 __user *out = (u64 __user *)buf;
32 struct page *ppage;
33 unsigned long src = *ppos;
34 unsigned long pfn;
35 ssize_t ret = 0;
36 u64 pcount;
38 pfn = src / KPMSIZE;
39 count = min_t(size_t, count, (max_pfn * KPMSIZE) - src);
40 if (src & KPMMASK || count & KPMMASK)
41 return -EINVAL;
43 while (count > 0) {
44 if (pfn_valid(pfn))
45 ppage = pfn_to_page(pfn);
46 else
47 ppage = NULL;
48 if (!ppage || PageSlab(ppage))
49 pcount = 0;
50 else
51 pcount = page_mapcount(ppage);
53 if (put_user(pcount, out)) {
54 ret = -EFAULT;
55 break;
58 pfn++;
59 out++;
60 count -= KPMSIZE;
62 cond_resched();
65 *ppos += (char __user *)out - buf;
66 if (!ret)
67 ret = (char __user *)out - buf;
68 return ret;
71 static const struct file_operations proc_kpagecount_operations = {
72 .llseek = mem_lseek,
73 .read = kpagecount_read,
76 /* /proc/kpageflags - an array exposing page flags
78 * Each entry is a u64 representing the corresponding
79 * physical page flags.
82 static inline u64 kpf_copy_bit(u64 kflags, int ubit, int kbit)
84 return ((kflags >> kbit) & 1) << ubit;
87 u64 stable_page_flags(struct page *page)
89 u64 k;
90 u64 u;
93 * pseudo flag: KPF_NOPAGE
94 * it differentiates a memory hole from a page with no flags
96 if (!page)
97 return 1 << KPF_NOPAGE;
99 k = page->flags;
100 u = 0;
103 * pseudo flags for the well known (anonymous) memory mapped pages
105 * Note that page->_mapcount is overloaded in SLOB/SLUB/SLQB, so the
106 * simple test in page_mapped() is not enough.
108 if (!PageSlab(page) && page_mapped(page))
109 u |= 1 << KPF_MMAP;
110 if (PageAnon(page))
111 u |= 1 << KPF_ANON;
112 if (PageKsm(page))
113 u |= 1 << KPF_KSM;
116 * compound pages: export both head/tail info
117 * they together define a compound page's start/end pos and order
119 if (PageHead(page))
120 u |= 1 << KPF_COMPOUND_HEAD;
121 if (PageTail(page))
122 u |= 1 << KPF_COMPOUND_TAIL;
123 if (PageHuge(page))
124 u |= 1 << KPF_HUGE;
126 * PageTransCompound can be true for non-huge compound pages (slab
127 * pages or pages allocated by drivers with __GFP_COMP) because it
128 * just checks PG_head/PG_tail, so we need to check PageLRU/PageAnon
129 * to make sure a given page is a thp, not a non-huge compound page.
131 else if (PageTransCompound(page)) {
132 struct page *head = compound_head(page);
134 if (PageLRU(head) || PageAnon(head))
135 u |= 1 << KPF_THP;
136 else if (is_huge_zero_page(head)) {
137 u |= 1 << KPF_ZERO_PAGE;
138 u |= 1 << KPF_THP;
140 } else if (is_zero_pfn(page_to_pfn(page)))
141 u |= 1 << KPF_ZERO_PAGE;
145 * Caveats on high order pages: page->_count will only be set
146 * -1 on the head page; SLUB/SLQB do the same for PG_slab;
147 * SLOB won't set PG_slab at all on compound pages.
149 if (PageBuddy(page))
150 u |= 1 << KPF_BUDDY;
152 if (PageBalloon(page))
153 u |= 1 << KPF_BALLOON;
155 if (page_is_idle(page))
156 u |= 1 << KPF_IDLE;
158 u |= kpf_copy_bit(k, KPF_LOCKED, PG_locked);
160 u |= kpf_copy_bit(k, KPF_SLAB, PG_slab);
162 u |= kpf_copy_bit(k, KPF_ERROR, PG_error);
163 u |= kpf_copy_bit(k, KPF_DIRTY, PG_dirty);
164 u |= kpf_copy_bit(k, KPF_UPTODATE, PG_uptodate);
165 u |= kpf_copy_bit(k, KPF_WRITEBACK, PG_writeback);
167 u |= kpf_copy_bit(k, KPF_LRU, PG_lru);
168 u |= kpf_copy_bit(k, KPF_REFERENCED, PG_referenced);
169 u |= kpf_copy_bit(k, KPF_ACTIVE, PG_active);
170 u |= kpf_copy_bit(k, KPF_RECLAIM, PG_reclaim);
172 u |= kpf_copy_bit(k, KPF_SWAPCACHE, PG_swapcache);
173 u |= kpf_copy_bit(k, KPF_SWAPBACKED, PG_swapbacked);
175 u |= kpf_copy_bit(k, KPF_UNEVICTABLE, PG_unevictable);
176 u |= kpf_copy_bit(k, KPF_MLOCKED, PG_mlocked);
178 #ifdef CONFIG_MEMORY_FAILURE
179 u |= kpf_copy_bit(k, KPF_HWPOISON, PG_hwpoison);
180 #endif
182 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
183 u |= kpf_copy_bit(k, KPF_UNCACHED, PG_uncached);
184 #endif
186 u |= kpf_copy_bit(k, KPF_RESERVED, PG_reserved);
187 u |= kpf_copy_bit(k, KPF_MAPPEDTODISK, PG_mappedtodisk);
188 u |= kpf_copy_bit(k, KPF_PRIVATE, PG_private);
189 u |= kpf_copy_bit(k, KPF_PRIVATE_2, PG_private_2);
190 u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE, PG_owner_priv_1);
191 u |= kpf_copy_bit(k, KPF_ARCH, PG_arch_1);
193 return u;
196 static ssize_t kpageflags_read(struct file *file, char __user *buf,
197 size_t count, loff_t *ppos)
199 u64 __user *out = (u64 __user *)buf;
200 struct page *ppage;
201 unsigned long src = *ppos;
202 unsigned long pfn;
203 ssize_t ret = 0;
205 pfn = src / KPMSIZE;
206 count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
207 if (src & KPMMASK || count & KPMMASK)
208 return -EINVAL;
210 while (count > 0) {
211 if (pfn_valid(pfn))
212 ppage = pfn_to_page(pfn);
213 else
214 ppage = NULL;
216 if (put_user(stable_page_flags(ppage), out)) {
217 ret = -EFAULT;
218 break;
221 pfn++;
222 out++;
223 count -= KPMSIZE;
225 cond_resched();
228 *ppos += (char __user *)out - buf;
229 if (!ret)
230 ret = (char __user *)out - buf;
231 return ret;
234 static const struct file_operations proc_kpageflags_operations = {
235 .llseek = mem_lseek,
236 .read = kpageflags_read,
239 #ifdef CONFIG_MEMCG
240 static ssize_t kpagecgroup_read(struct file *file, char __user *buf,
241 size_t count, loff_t *ppos)
243 u64 __user *out = (u64 __user *)buf;
244 struct page *ppage;
245 unsigned long src = *ppos;
246 unsigned long pfn;
247 ssize_t ret = 0;
248 u64 ino;
250 pfn = src / KPMSIZE;
251 count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
252 if (src & KPMMASK || count & KPMMASK)
253 return -EINVAL;
255 while (count > 0) {
256 if (pfn_valid(pfn))
257 ppage = pfn_to_page(pfn);
258 else
259 ppage = NULL;
261 if (ppage)
262 ino = page_cgroup_ino(ppage);
263 else
264 ino = 0;
266 if (put_user(ino, out)) {
267 ret = -EFAULT;
268 break;
271 pfn++;
272 out++;
273 count -= KPMSIZE;
275 cond_resched();
278 *ppos += (char __user *)out - buf;
279 if (!ret)
280 ret = (char __user *)out - buf;
281 return ret;
284 static const struct file_operations proc_kpagecgroup_operations = {
285 .llseek = mem_lseek,
286 .read = kpagecgroup_read,
288 #endif /* CONFIG_MEMCG */
290 static int __init proc_page_init(void)
292 proc_create("kpagecount", S_IRUSR, NULL, &proc_kpagecount_operations);
293 proc_create("kpageflags", S_IRUSR, NULL, &proc_kpageflags_operations);
294 #ifdef CONFIG_MEMCG
295 proc_create("kpagecgroup", S_IRUSR, NULL, &proc_kpagecgroup_operations);
296 #endif
297 return 0;
299 fs_initcall(proc_page_init);