irqchip/omap-intc: Remove duplicate setup for IRQ chip type handler
[linux/fpc-iii.git] / mm / compaction.c
blobde3e1e71cd9f265d9df971e98ed931fbdc8611a8
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
25 count_vm_event(item);
28 static inline void count_compact_events(enum vm_event_item item, long delta)
30 count_vm_events(item, delta);
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
42 static unsigned long release_freepages(struct list_head *freelist)
44 struct page *page, *next;
45 unsigned long high_pfn = 0;
47 list_for_each_entry_safe(page, next, freelist, lru) {
48 unsigned long pfn = page_to_pfn(page);
49 list_del(&page->lru);
50 __free_page(page);
51 if (pfn > high_pfn)
52 high_pfn = pfn;
55 return high_pfn;
58 static void map_pages(struct list_head *list)
60 struct page *page;
62 list_for_each_entry(page, list, lru) {
63 arch_alloc_page(page, 0);
64 kernel_map_pages(page, 1, 1);
65 kasan_alloc_pages(page, 0);
69 static inline bool migrate_async_suitable(int migratetype)
71 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
75 * Check that the whole (or subset of) a pageblock given by the interval of
76 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
77 * with the migration of free compaction scanner. The scanners then need to
78 * use only pfn_valid_within() check for arches that allow holes within
79 * pageblocks.
81 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
83 * It's possible on some configurations to have a setup like node0 node1 node0
84 * i.e. it's possible that all pages within a zones range of pages do not
85 * belong to a single zone. We assume that a border between node0 and node1
86 * can occur within a single pageblock, but not a node0 node1 node0
87 * interleaving within a single pageblock. It is therefore sufficient to check
88 * the first and last page of a pageblock and avoid checking each individual
89 * page in a pageblock.
91 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
92 unsigned long end_pfn, struct zone *zone)
94 struct page *start_page;
95 struct page *end_page;
97 /* end_pfn is one past the range we are checking */
98 end_pfn--;
100 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
101 return NULL;
103 start_page = pfn_to_page(start_pfn);
105 if (page_zone(start_page) != zone)
106 return NULL;
108 end_page = pfn_to_page(end_pfn);
110 /* This gives a shorter code than deriving page_zone(end_page) */
111 if (page_zone_id(start_page) != page_zone_id(end_page))
112 return NULL;
114 return start_page;
117 #ifdef CONFIG_COMPACTION
119 /* Do not skip compaction more than 64 times */
120 #define COMPACT_MAX_DEFER_SHIFT 6
123 * Compaction is deferred when compaction fails to result in a page
124 * allocation success. 1 << compact_defer_limit compactions are skipped up
125 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
127 void defer_compaction(struct zone *zone, int order)
129 zone->compact_considered = 0;
130 zone->compact_defer_shift++;
132 if (order < zone->compact_order_failed)
133 zone->compact_order_failed = order;
135 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
136 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
138 trace_mm_compaction_defer_compaction(zone, order);
141 /* Returns true if compaction should be skipped this time */
142 bool compaction_deferred(struct zone *zone, int order)
144 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
146 if (order < zone->compact_order_failed)
147 return false;
149 /* Avoid possible overflow */
150 if (++zone->compact_considered > defer_limit)
151 zone->compact_considered = defer_limit;
153 if (zone->compact_considered >= defer_limit)
154 return false;
156 trace_mm_compaction_deferred(zone, order);
158 return true;
162 * Update defer tracking counters after successful compaction of given order,
163 * which means an allocation either succeeded (alloc_success == true) or is
164 * expected to succeed.
166 void compaction_defer_reset(struct zone *zone, int order,
167 bool alloc_success)
169 if (alloc_success) {
170 zone->compact_considered = 0;
171 zone->compact_defer_shift = 0;
173 if (order >= zone->compact_order_failed)
174 zone->compact_order_failed = order + 1;
176 trace_mm_compaction_defer_reset(zone, order);
179 /* Returns true if restarting compaction after many failures */
180 bool compaction_restarting(struct zone *zone, int order)
182 if (order < zone->compact_order_failed)
183 return false;
185 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
186 zone->compact_considered >= 1UL << zone->compact_defer_shift;
189 /* Returns true if the pageblock should be scanned for pages to isolate. */
190 static inline bool isolation_suitable(struct compact_control *cc,
191 struct page *page)
193 if (cc->ignore_skip_hint)
194 return true;
196 return !get_pageblock_skip(page);
199 static void reset_cached_positions(struct zone *zone)
201 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
202 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
203 zone->compact_cached_free_pfn = zone_end_pfn(zone);
207 * This function is called to clear all cached information on pageblocks that
208 * should be skipped for page isolation when the migrate and free page scanner
209 * meet.
211 static void __reset_isolation_suitable(struct zone *zone)
213 unsigned long start_pfn = zone->zone_start_pfn;
214 unsigned long end_pfn = zone_end_pfn(zone);
215 unsigned long pfn;
217 zone->compact_blockskip_flush = false;
219 /* Walk the zone and mark every pageblock as suitable for isolation */
220 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
221 struct page *page;
223 cond_resched();
225 if (!pfn_valid(pfn))
226 continue;
228 page = pfn_to_page(pfn);
229 if (zone != page_zone(page))
230 continue;
232 clear_pageblock_skip(page);
235 reset_cached_positions(zone);
238 void reset_isolation_suitable(pg_data_t *pgdat)
240 int zoneid;
242 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
243 struct zone *zone = &pgdat->node_zones[zoneid];
244 if (!populated_zone(zone))
245 continue;
247 /* Only flush if a full compaction finished recently */
248 if (zone->compact_blockskip_flush)
249 __reset_isolation_suitable(zone);
254 * If no pages were isolated then mark this pageblock to be skipped in the
255 * future. The information is later cleared by __reset_isolation_suitable().
257 static void update_pageblock_skip(struct compact_control *cc,
258 struct page *page, unsigned long nr_isolated,
259 bool migrate_scanner)
261 struct zone *zone = cc->zone;
262 unsigned long pfn;
264 if (cc->ignore_skip_hint)
265 return;
267 if (!page)
268 return;
270 if (nr_isolated)
271 return;
273 set_pageblock_skip(page);
275 pfn = page_to_pfn(page);
277 /* Update where async and sync compaction should restart */
278 if (migrate_scanner) {
279 if (pfn > zone->compact_cached_migrate_pfn[0])
280 zone->compact_cached_migrate_pfn[0] = pfn;
281 if (cc->mode != MIGRATE_ASYNC &&
282 pfn > zone->compact_cached_migrate_pfn[1])
283 zone->compact_cached_migrate_pfn[1] = pfn;
284 } else {
285 if (pfn < zone->compact_cached_free_pfn)
286 zone->compact_cached_free_pfn = pfn;
289 #else
290 static inline bool isolation_suitable(struct compact_control *cc,
291 struct page *page)
293 return true;
296 static void update_pageblock_skip(struct compact_control *cc,
297 struct page *page, unsigned long nr_isolated,
298 bool migrate_scanner)
301 #endif /* CONFIG_COMPACTION */
304 * Compaction requires the taking of some coarse locks that are potentially
305 * very heavily contended. For async compaction, back out if the lock cannot
306 * be taken immediately. For sync compaction, spin on the lock if needed.
308 * Returns true if the lock is held
309 * Returns false if the lock is not held and compaction should abort
311 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
312 struct compact_control *cc)
314 if (cc->mode == MIGRATE_ASYNC) {
315 if (!spin_trylock_irqsave(lock, *flags)) {
316 cc->contended = COMPACT_CONTENDED_LOCK;
317 return false;
319 } else {
320 spin_lock_irqsave(lock, *flags);
323 return true;
327 * Compaction requires the taking of some coarse locks that are potentially
328 * very heavily contended. The lock should be periodically unlocked to avoid
329 * having disabled IRQs for a long time, even when there is nobody waiting on
330 * the lock. It might also be that allowing the IRQs will result in
331 * need_resched() becoming true. If scheduling is needed, async compaction
332 * aborts. Sync compaction schedules.
333 * Either compaction type will also abort if a fatal signal is pending.
334 * In either case if the lock was locked, it is dropped and not regained.
336 * Returns true if compaction should abort due to fatal signal pending, or
337 * async compaction due to need_resched()
338 * Returns false when compaction can continue (sync compaction might have
339 * scheduled)
341 static bool compact_unlock_should_abort(spinlock_t *lock,
342 unsigned long flags, bool *locked, struct compact_control *cc)
344 if (*locked) {
345 spin_unlock_irqrestore(lock, flags);
346 *locked = false;
349 if (fatal_signal_pending(current)) {
350 cc->contended = COMPACT_CONTENDED_SCHED;
351 return true;
354 if (need_resched()) {
355 if (cc->mode == MIGRATE_ASYNC) {
356 cc->contended = COMPACT_CONTENDED_SCHED;
357 return true;
359 cond_resched();
362 return false;
366 * Aside from avoiding lock contention, compaction also periodically checks
367 * need_resched() and either schedules in sync compaction or aborts async
368 * compaction. This is similar to what compact_unlock_should_abort() does, but
369 * is used where no lock is concerned.
371 * Returns false when no scheduling was needed, or sync compaction scheduled.
372 * Returns true when async compaction should abort.
374 static inline bool compact_should_abort(struct compact_control *cc)
376 /* async compaction aborts if contended */
377 if (need_resched()) {
378 if (cc->mode == MIGRATE_ASYNC) {
379 cc->contended = COMPACT_CONTENDED_SCHED;
380 return true;
383 cond_resched();
386 return false;
390 * Isolate free pages onto a private freelist. If @strict is true, will abort
391 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
392 * (even though it may still end up isolating some pages).
394 static unsigned long isolate_freepages_block(struct compact_control *cc,
395 unsigned long *start_pfn,
396 unsigned long end_pfn,
397 struct list_head *freelist,
398 bool strict)
400 int nr_scanned = 0, total_isolated = 0;
401 struct page *cursor, *valid_page = NULL;
402 unsigned long flags = 0;
403 bool locked = false;
404 unsigned long blockpfn = *start_pfn;
406 cursor = pfn_to_page(blockpfn);
408 /* Isolate free pages. */
409 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
410 int isolated, i;
411 struct page *page = cursor;
414 * Periodically drop the lock (if held) regardless of its
415 * contention, to give chance to IRQs. Abort if fatal signal
416 * pending or async compaction detects need_resched()
418 if (!(blockpfn % SWAP_CLUSTER_MAX)
419 && compact_unlock_should_abort(&cc->zone->lock, flags,
420 &locked, cc))
421 break;
423 nr_scanned++;
424 if (!pfn_valid_within(blockpfn))
425 goto isolate_fail;
427 if (!valid_page)
428 valid_page = page;
431 * For compound pages such as THP and hugetlbfs, we can save
432 * potentially a lot of iterations if we skip them at once.
433 * The check is racy, but we can consider only valid values
434 * and the only danger is skipping too much.
436 if (PageCompound(page)) {
437 unsigned int comp_order = compound_order(page);
439 if (likely(comp_order < MAX_ORDER)) {
440 blockpfn += (1UL << comp_order) - 1;
441 cursor += (1UL << comp_order) - 1;
444 goto isolate_fail;
447 if (!PageBuddy(page))
448 goto isolate_fail;
451 * If we already hold the lock, we can skip some rechecking.
452 * Note that if we hold the lock now, checked_pageblock was
453 * already set in some previous iteration (or strict is true),
454 * so it is correct to skip the suitable migration target
455 * recheck as well.
457 if (!locked) {
459 * The zone lock must be held to isolate freepages.
460 * Unfortunately this is a very coarse lock and can be
461 * heavily contended if there are parallel allocations
462 * or parallel compactions. For async compaction do not
463 * spin on the lock and we acquire the lock as late as
464 * possible.
466 locked = compact_trylock_irqsave(&cc->zone->lock,
467 &flags, cc);
468 if (!locked)
469 break;
471 /* Recheck this is a buddy page under lock */
472 if (!PageBuddy(page))
473 goto isolate_fail;
476 /* Found a free page, break it into order-0 pages */
477 isolated = split_free_page(page);
478 total_isolated += isolated;
479 for (i = 0; i < isolated; i++) {
480 list_add(&page->lru, freelist);
481 page++;
484 /* If a page was split, advance to the end of it */
485 if (isolated) {
486 cc->nr_freepages += isolated;
487 if (!strict &&
488 cc->nr_migratepages <= cc->nr_freepages) {
489 blockpfn += isolated;
490 break;
493 blockpfn += isolated - 1;
494 cursor += isolated - 1;
495 continue;
498 isolate_fail:
499 if (strict)
500 break;
501 else
502 continue;
507 * There is a tiny chance that we have read bogus compound_order(),
508 * so be careful to not go outside of the pageblock.
510 if (unlikely(blockpfn > end_pfn))
511 blockpfn = end_pfn;
513 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
514 nr_scanned, total_isolated);
516 /* Record how far we have got within the block */
517 *start_pfn = blockpfn;
520 * If strict isolation is requested by CMA then check that all the
521 * pages requested were isolated. If there were any failures, 0 is
522 * returned and CMA will fail.
524 if (strict && blockpfn < end_pfn)
525 total_isolated = 0;
527 if (locked)
528 spin_unlock_irqrestore(&cc->zone->lock, flags);
530 /* Update the pageblock-skip if the whole pageblock was scanned */
531 if (blockpfn == end_pfn)
532 update_pageblock_skip(cc, valid_page, total_isolated, false);
534 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
535 if (total_isolated)
536 count_compact_events(COMPACTISOLATED, total_isolated);
537 return total_isolated;
541 * isolate_freepages_range() - isolate free pages.
542 * @start_pfn: The first PFN to start isolating.
543 * @end_pfn: The one-past-last PFN.
545 * Non-free pages, invalid PFNs, or zone boundaries within the
546 * [start_pfn, end_pfn) range are considered errors, cause function to
547 * undo its actions and return zero.
549 * Otherwise, function returns one-past-the-last PFN of isolated page
550 * (which may be greater then end_pfn if end fell in a middle of
551 * a free page).
553 unsigned long
554 isolate_freepages_range(struct compact_control *cc,
555 unsigned long start_pfn, unsigned long end_pfn)
557 unsigned long isolated, pfn, block_end_pfn;
558 LIST_HEAD(freelist);
560 pfn = start_pfn;
561 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
563 for (; pfn < end_pfn; pfn += isolated,
564 block_end_pfn += pageblock_nr_pages) {
565 /* Protect pfn from changing by isolate_freepages_block */
566 unsigned long isolate_start_pfn = pfn;
568 block_end_pfn = min(block_end_pfn, end_pfn);
571 * pfn could pass the block_end_pfn if isolated freepage
572 * is more than pageblock order. In this case, we adjust
573 * scanning range to right one.
575 if (pfn >= block_end_pfn) {
576 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
577 block_end_pfn = min(block_end_pfn, end_pfn);
580 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
581 break;
583 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
584 block_end_pfn, &freelist, true);
587 * In strict mode, isolate_freepages_block() returns 0 if
588 * there are any holes in the block (ie. invalid PFNs or
589 * non-free pages).
591 if (!isolated)
592 break;
595 * If we managed to isolate pages, it is always (1 << n) *
596 * pageblock_nr_pages for some non-negative n. (Max order
597 * page may span two pageblocks).
601 /* split_free_page does not map the pages */
602 map_pages(&freelist);
604 if (pfn < end_pfn) {
605 /* Loop terminated early, cleanup. */
606 release_freepages(&freelist);
607 return 0;
610 /* We don't use freelists for anything. */
611 return pfn;
614 /* Update the number of anon and file isolated pages in the zone */
615 static void acct_isolated(struct zone *zone, struct compact_control *cc)
617 struct page *page;
618 unsigned int count[2] = { 0, };
620 if (list_empty(&cc->migratepages))
621 return;
623 list_for_each_entry(page, &cc->migratepages, lru)
624 count[!!page_is_file_cache(page)]++;
626 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
627 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
630 /* Similar to reclaim, but different enough that they don't share logic */
631 static bool too_many_isolated(struct zone *zone)
633 unsigned long active, inactive, isolated;
635 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
636 zone_page_state(zone, NR_INACTIVE_ANON);
637 active = zone_page_state(zone, NR_ACTIVE_FILE) +
638 zone_page_state(zone, NR_ACTIVE_ANON);
639 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
640 zone_page_state(zone, NR_ISOLATED_ANON);
642 return isolated > (inactive + active) / 2;
646 * isolate_migratepages_block() - isolate all migrate-able pages within
647 * a single pageblock
648 * @cc: Compaction control structure.
649 * @low_pfn: The first PFN to isolate
650 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
651 * @isolate_mode: Isolation mode to be used.
653 * Isolate all pages that can be migrated from the range specified by
654 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
655 * Returns zero if there is a fatal signal pending, otherwise PFN of the
656 * first page that was not scanned (which may be both less, equal to or more
657 * than end_pfn).
659 * The pages are isolated on cc->migratepages list (not required to be empty),
660 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
661 * is neither read nor updated.
663 static unsigned long
664 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
665 unsigned long end_pfn, isolate_mode_t isolate_mode)
667 struct zone *zone = cc->zone;
668 unsigned long nr_scanned = 0, nr_isolated = 0;
669 struct list_head *migratelist = &cc->migratepages;
670 struct lruvec *lruvec;
671 unsigned long flags = 0;
672 bool locked = false;
673 struct page *page = NULL, *valid_page = NULL;
674 unsigned long start_pfn = low_pfn;
677 * Ensure that there are not too many pages isolated from the LRU
678 * list by either parallel reclaimers or compaction. If there are,
679 * delay for some time until fewer pages are isolated
681 while (unlikely(too_many_isolated(zone))) {
682 /* async migration should just abort */
683 if (cc->mode == MIGRATE_ASYNC)
684 return 0;
686 congestion_wait(BLK_RW_ASYNC, HZ/10);
688 if (fatal_signal_pending(current))
689 return 0;
692 if (compact_should_abort(cc))
693 return 0;
695 /* Time to isolate some pages for migration */
696 for (; low_pfn < end_pfn; low_pfn++) {
697 bool is_lru;
700 * Periodically drop the lock (if held) regardless of its
701 * contention, to give chance to IRQs. Abort async compaction
702 * if contended.
704 if (!(low_pfn % SWAP_CLUSTER_MAX)
705 && compact_unlock_should_abort(&zone->lru_lock, flags,
706 &locked, cc))
707 break;
709 if (!pfn_valid_within(low_pfn))
710 continue;
711 nr_scanned++;
713 page = pfn_to_page(low_pfn);
715 if (!valid_page)
716 valid_page = page;
719 * Skip if free. We read page order here without zone lock
720 * which is generally unsafe, but the race window is small and
721 * the worst thing that can happen is that we skip some
722 * potential isolation targets.
724 if (PageBuddy(page)) {
725 unsigned long freepage_order = page_order_unsafe(page);
728 * Without lock, we cannot be sure that what we got is
729 * a valid page order. Consider only values in the
730 * valid order range to prevent low_pfn overflow.
732 if (freepage_order > 0 && freepage_order < MAX_ORDER)
733 low_pfn += (1UL << freepage_order) - 1;
734 continue;
738 * Check may be lockless but that's ok as we recheck later.
739 * It's possible to migrate LRU pages and balloon pages
740 * Skip any other type of page
742 is_lru = PageLRU(page);
743 if (!is_lru) {
744 if (unlikely(balloon_page_movable(page))) {
745 if (balloon_page_isolate(page)) {
746 /* Successfully isolated */
747 goto isolate_success;
753 * Regardless of being on LRU, compound pages such as THP and
754 * hugetlbfs are not to be compacted. We can potentially save
755 * a lot of iterations if we skip them at once. The check is
756 * racy, but we can consider only valid values and the only
757 * danger is skipping too much.
759 if (PageCompound(page)) {
760 unsigned int comp_order = compound_order(page);
762 if (likely(comp_order < MAX_ORDER))
763 low_pfn += (1UL << comp_order) - 1;
765 continue;
768 if (!is_lru)
769 continue;
772 * Migration will fail if an anonymous page is pinned in memory,
773 * so avoid taking lru_lock and isolating it unnecessarily in an
774 * admittedly racy check.
776 if (!page_mapping(page) &&
777 page_count(page) > page_mapcount(page))
778 continue;
780 /* If we already hold the lock, we can skip some rechecking */
781 if (!locked) {
782 locked = compact_trylock_irqsave(&zone->lru_lock,
783 &flags, cc);
784 if (!locked)
785 break;
787 /* Recheck PageLRU and PageCompound under lock */
788 if (!PageLRU(page))
789 continue;
792 * Page become compound since the non-locked check,
793 * and it's on LRU. It can only be a THP so the order
794 * is safe to read and it's 0 for tail pages.
796 if (unlikely(PageCompound(page))) {
797 low_pfn += (1UL << compound_order(page)) - 1;
798 continue;
802 lruvec = mem_cgroup_page_lruvec(page, zone);
804 /* Try isolate the page */
805 if (__isolate_lru_page(page, isolate_mode) != 0)
806 continue;
808 VM_BUG_ON_PAGE(PageCompound(page), page);
810 /* Successfully isolated */
811 del_page_from_lru_list(page, lruvec, page_lru(page));
813 isolate_success:
814 list_add(&page->lru, migratelist);
815 cc->nr_migratepages++;
816 nr_isolated++;
818 /* Avoid isolating too much */
819 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
820 ++low_pfn;
821 break;
826 * The PageBuddy() check could have potentially brought us outside
827 * the range to be scanned.
829 if (unlikely(low_pfn > end_pfn))
830 low_pfn = end_pfn;
832 if (locked)
833 spin_unlock_irqrestore(&zone->lru_lock, flags);
836 * Update the pageblock-skip information and cached scanner pfn,
837 * if the whole pageblock was scanned without isolating any page.
839 if (low_pfn == end_pfn)
840 update_pageblock_skip(cc, valid_page, nr_isolated, true);
842 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
843 nr_scanned, nr_isolated);
845 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
846 if (nr_isolated)
847 count_compact_events(COMPACTISOLATED, nr_isolated);
849 return low_pfn;
853 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
854 * @cc: Compaction control structure.
855 * @start_pfn: The first PFN to start isolating.
856 * @end_pfn: The one-past-last PFN.
858 * Returns zero if isolation fails fatally due to e.g. pending signal.
859 * Otherwise, function returns one-past-the-last PFN of isolated page
860 * (which may be greater than end_pfn if end fell in a middle of a THP page).
862 unsigned long
863 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
864 unsigned long end_pfn)
866 unsigned long pfn, block_end_pfn;
868 /* Scan block by block. First and last block may be incomplete */
869 pfn = start_pfn;
870 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
872 for (; pfn < end_pfn; pfn = block_end_pfn,
873 block_end_pfn += pageblock_nr_pages) {
875 block_end_pfn = min(block_end_pfn, end_pfn);
877 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
878 continue;
880 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
881 ISOLATE_UNEVICTABLE);
884 * In case of fatal failure, release everything that might
885 * have been isolated in the previous iteration, and signal
886 * the failure back to caller.
888 if (!pfn) {
889 putback_movable_pages(&cc->migratepages);
890 cc->nr_migratepages = 0;
891 break;
894 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
895 break;
897 acct_isolated(cc->zone, cc);
899 return pfn;
902 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
903 #ifdef CONFIG_COMPACTION
905 /* Returns true if the page is within a block suitable for migration to */
906 static bool suitable_migration_target(struct page *page)
908 /* If the page is a large free page, then disallow migration */
909 if (PageBuddy(page)) {
911 * We are checking page_order without zone->lock taken. But
912 * the only small danger is that we skip a potentially suitable
913 * pageblock, so it's not worth to check order for valid range.
915 if (page_order_unsafe(page) >= pageblock_order)
916 return false;
919 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
920 if (migrate_async_suitable(get_pageblock_migratetype(page)))
921 return true;
923 /* Otherwise skip the block */
924 return false;
928 * Test whether the free scanner has reached the same or lower pageblock than
929 * the migration scanner, and compaction should thus terminate.
931 static inline bool compact_scanners_met(struct compact_control *cc)
933 return (cc->free_pfn >> pageblock_order)
934 <= (cc->migrate_pfn >> pageblock_order);
938 * Based on information in the current compact_control, find blocks
939 * suitable for isolating free pages from and then isolate them.
941 static void isolate_freepages(struct compact_control *cc)
943 struct zone *zone = cc->zone;
944 struct page *page;
945 unsigned long block_start_pfn; /* start of current pageblock */
946 unsigned long isolate_start_pfn; /* exact pfn we start at */
947 unsigned long block_end_pfn; /* end of current pageblock */
948 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
949 struct list_head *freelist = &cc->freepages;
952 * Initialise the free scanner. The starting point is where we last
953 * successfully isolated from, zone-cached value, or the end of the
954 * zone when isolating for the first time. For looping we also need
955 * this pfn aligned down to the pageblock boundary, because we do
956 * block_start_pfn -= pageblock_nr_pages in the for loop.
957 * For ending point, take care when isolating in last pageblock of a
958 * a zone which ends in the middle of a pageblock.
959 * The low boundary is the end of the pageblock the migration scanner
960 * is using.
962 isolate_start_pfn = cc->free_pfn;
963 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
964 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
965 zone_end_pfn(zone));
966 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
969 * Isolate free pages until enough are available to migrate the
970 * pages on cc->migratepages. We stop searching if the migrate
971 * and free page scanners meet or enough free pages are isolated.
973 for (; block_start_pfn >= low_pfn;
974 block_end_pfn = block_start_pfn,
975 block_start_pfn -= pageblock_nr_pages,
976 isolate_start_pfn = block_start_pfn) {
979 * This can iterate a massively long zone without finding any
980 * suitable migration targets, so periodically check if we need
981 * to schedule, or even abort async compaction.
983 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
984 && compact_should_abort(cc))
985 break;
987 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
988 zone);
989 if (!page)
990 continue;
992 /* Check the block is suitable for migration */
993 if (!suitable_migration_target(page))
994 continue;
996 /* If isolation recently failed, do not retry */
997 if (!isolation_suitable(cc, page))
998 continue;
1000 /* Found a block suitable for isolating free pages from. */
1001 isolate_freepages_block(cc, &isolate_start_pfn,
1002 block_end_pfn, freelist, false);
1005 * If we isolated enough freepages, or aborted due to async
1006 * compaction being contended, terminate the loop.
1007 * Remember where the free scanner should restart next time,
1008 * which is where isolate_freepages_block() left off.
1009 * But if it scanned the whole pageblock, isolate_start_pfn
1010 * now points at block_end_pfn, which is the start of the next
1011 * pageblock.
1012 * In that case we will however want to restart at the start
1013 * of the previous pageblock.
1015 if ((cc->nr_freepages >= cc->nr_migratepages)
1016 || cc->contended) {
1017 if (isolate_start_pfn >= block_end_pfn)
1018 isolate_start_pfn =
1019 block_start_pfn - pageblock_nr_pages;
1020 break;
1021 } else {
1023 * isolate_freepages_block() should not terminate
1024 * prematurely unless contended, or isolated enough
1026 VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1030 /* split_free_page does not map the pages */
1031 map_pages(freelist);
1034 * Record where the free scanner will restart next time. Either we
1035 * broke from the loop and set isolate_start_pfn based on the last
1036 * call to isolate_freepages_block(), or we met the migration scanner
1037 * and the loop terminated due to isolate_start_pfn < low_pfn
1039 cc->free_pfn = isolate_start_pfn;
1043 * This is a migrate-callback that "allocates" freepages by taking pages
1044 * from the isolated freelists in the block we are migrating to.
1046 static struct page *compaction_alloc(struct page *migratepage,
1047 unsigned long data,
1048 int **result)
1050 struct compact_control *cc = (struct compact_control *)data;
1051 struct page *freepage;
1054 * Isolate free pages if necessary, and if we are not aborting due to
1055 * contention.
1057 if (list_empty(&cc->freepages)) {
1058 if (!cc->contended)
1059 isolate_freepages(cc);
1061 if (list_empty(&cc->freepages))
1062 return NULL;
1065 freepage = list_entry(cc->freepages.next, struct page, lru);
1066 list_del(&freepage->lru);
1067 cc->nr_freepages--;
1069 return freepage;
1073 * This is a migrate-callback that "frees" freepages back to the isolated
1074 * freelist. All pages on the freelist are from the same zone, so there is no
1075 * special handling needed for NUMA.
1077 static void compaction_free(struct page *page, unsigned long data)
1079 struct compact_control *cc = (struct compact_control *)data;
1081 list_add(&page->lru, &cc->freepages);
1082 cc->nr_freepages++;
1085 /* possible outcome of isolate_migratepages */
1086 typedef enum {
1087 ISOLATE_ABORT, /* Abort compaction now */
1088 ISOLATE_NONE, /* No pages isolated, continue scanning */
1089 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1090 } isolate_migrate_t;
1093 * Allow userspace to control policy on scanning the unevictable LRU for
1094 * compactable pages.
1096 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1099 * Isolate all pages that can be migrated from the first suitable block,
1100 * starting at the block pointed to by the migrate scanner pfn within
1101 * compact_control.
1103 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1104 struct compact_control *cc)
1106 unsigned long low_pfn, end_pfn;
1107 unsigned long isolate_start_pfn;
1108 struct page *page;
1109 const isolate_mode_t isolate_mode =
1110 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1111 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1114 * Start at where we last stopped, or beginning of the zone as
1115 * initialized by compact_zone()
1117 low_pfn = cc->migrate_pfn;
1119 /* Only scan within a pageblock boundary */
1120 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1123 * Iterate over whole pageblocks until we find the first suitable.
1124 * Do not cross the free scanner.
1126 for (; end_pfn <= cc->free_pfn;
1127 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1130 * This can potentially iterate a massively long zone with
1131 * many pageblocks unsuitable, so periodically check if we
1132 * need to schedule, or even abort async compaction.
1134 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1135 && compact_should_abort(cc))
1136 break;
1138 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1139 if (!page)
1140 continue;
1142 /* If isolation recently failed, do not retry */
1143 if (!isolation_suitable(cc, page))
1144 continue;
1147 * For async compaction, also only scan in MOVABLE blocks.
1148 * Async compaction is optimistic to see if the minimum amount
1149 * of work satisfies the allocation.
1151 if (cc->mode == MIGRATE_ASYNC &&
1152 !migrate_async_suitable(get_pageblock_migratetype(page)))
1153 continue;
1155 /* Perform the isolation */
1156 isolate_start_pfn = low_pfn;
1157 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1158 isolate_mode);
1160 if (!low_pfn || cc->contended) {
1161 acct_isolated(zone, cc);
1162 return ISOLATE_ABORT;
1166 * Record where we could have freed pages by migration and not
1167 * yet flushed them to buddy allocator.
1168 * - this is the lowest page that could have been isolated and
1169 * then freed by migration.
1171 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1172 cc->last_migrated_pfn = isolate_start_pfn;
1175 * Either we isolated something and proceed with migration. Or
1176 * we failed and compact_zone should decide if we should
1177 * continue or not.
1179 break;
1182 acct_isolated(zone, cc);
1183 /* Record where migration scanner will be restarted. */
1184 cc->migrate_pfn = low_pfn;
1186 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1190 * order == -1 is expected when compacting via
1191 * /proc/sys/vm/compact_memory
1193 static inline bool is_via_compact_memory(int order)
1195 return order == -1;
1198 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1199 const int migratetype)
1201 unsigned int order;
1202 unsigned long watermark;
1204 if (cc->contended || fatal_signal_pending(current))
1205 return COMPACT_CONTENDED;
1207 /* Compaction run completes if the migrate and free scanner meet */
1208 if (compact_scanners_met(cc)) {
1209 /* Let the next compaction start anew. */
1210 reset_cached_positions(zone);
1213 * Mark that the PG_migrate_skip information should be cleared
1214 * by kswapd when it goes to sleep. kswapd does not set the
1215 * flag itself as the decision to be clear should be directly
1216 * based on an allocation request.
1218 if (!current_is_kswapd())
1219 zone->compact_blockskip_flush = true;
1221 return COMPACT_COMPLETE;
1224 if (is_via_compact_memory(cc->order))
1225 return COMPACT_CONTINUE;
1227 /* Compaction run is not finished if the watermark is not met */
1228 watermark = low_wmark_pages(zone);
1230 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1231 cc->alloc_flags))
1232 return COMPACT_CONTINUE;
1234 /* Direct compactor: Is a suitable page free? */
1235 for (order = cc->order; order < MAX_ORDER; order++) {
1236 struct free_area *area = &zone->free_area[order];
1237 bool can_steal;
1239 /* Job done if page is free of the right migratetype */
1240 if (!list_empty(&area->free_list[migratetype]))
1241 return COMPACT_PARTIAL;
1243 #ifdef CONFIG_CMA
1244 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1245 if (migratetype == MIGRATE_MOVABLE &&
1246 !list_empty(&area->free_list[MIGRATE_CMA]))
1247 return COMPACT_PARTIAL;
1248 #endif
1250 * Job done if allocation would steal freepages from
1251 * other migratetype buddy lists.
1253 if (find_suitable_fallback(area, order, migratetype,
1254 true, &can_steal) != -1)
1255 return COMPACT_PARTIAL;
1258 return COMPACT_NO_SUITABLE_PAGE;
1261 static int compact_finished(struct zone *zone, struct compact_control *cc,
1262 const int migratetype)
1264 int ret;
1266 ret = __compact_finished(zone, cc, migratetype);
1267 trace_mm_compaction_finished(zone, cc->order, ret);
1268 if (ret == COMPACT_NO_SUITABLE_PAGE)
1269 ret = COMPACT_CONTINUE;
1271 return ret;
1275 * compaction_suitable: Is this suitable to run compaction on this zone now?
1276 * Returns
1277 * COMPACT_SKIPPED - If there are too few free pages for compaction
1278 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1279 * COMPACT_CONTINUE - If compaction should run now
1281 static unsigned long __compaction_suitable(struct zone *zone, int order,
1282 int alloc_flags, int classzone_idx)
1284 int fragindex;
1285 unsigned long watermark;
1287 if (is_via_compact_memory(order))
1288 return COMPACT_CONTINUE;
1290 watermark = low_wmark_pages(zone);
1292 * If watermarks for high-order allocation are already met, there
1293 * should be no need for compaction at all.
1295 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1296 alloc_flags))
1297 return COMPACT_PARTIAL;
1300 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1301 * This is because during migration, copies of pages need to be
1302 * allocated and for a short time, the footprint is higher
1304 watermark += (2UL << order);
1305 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1306 return COMPACT_SKIPPED;
1309 * fragmentation index determines if allocation failures are due to
1310 * low memory or external fragmentation
1312 * index of -1000 would imply allocations might succeed depending on
1313 * watermarks, but we already failed the high-order watermark check
1314 * index towards 0 implies failure is due to lack of memory
1315 * index towards 1000 implies failure is due to fragmentation
1317 * Only compact if a failure would be due to fragmentation.
1319 fragindex = fragmentation_index(zone, order);
1320 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1321 return COMPACT_NOT_SUITABLE_ZONE;
1323 return COMPACT_CONTINUE;
1326 unsigned long compaction_suitable(struct zone *zone, int order,
1327 int alloc_flags, int classzone_idx)
1329 unsigned long ret;
1331 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1332 trace_mm_compaction_suitable(zone, order, ret);
1333 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1334 ret = COMPACT_SKIPPED;
1336 return ret;
1339 static int compact_zone(struct zone *zone, struct compact_control *cc)
1341 int ret;
1342 unsigned long start_pfn = zone->zone_start_pfn;
1343 unsigned long end_pfn = zone_end_pfn(zone);
1344 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1345 const bool sync = cc->mode != MIGRATE_ASYNC;
1347 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1348 cc->classzone_idx);
1349 switch (ret) {
1350 case COMPACT_PARTIAL:
1351 case COMPACT_SKIPPED:
1352 /* Compaction is likely to fail */
1353 return ret;
1354 case COMPACT_CONTINUE:
1355 /* Fall through to compaction */
1360 * Clear pageblock skip if there were failures recently and compaction
1361 * is about to be retried after being deferred. kswapd does not do
1362 * this reset as it'll reset the cached information when going to sleep.
1364 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1365 __reset_isolation_suitable(zone);
1368 * Setup to move all movable pages to the end of the zone. Used cached
1369 * information on where the scanners should start but check that it
1370 * is initialised by ensuring the values are within zone boundaries.
1372 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1373 cc->free_pfn = zone->compact_cached_free_pfn;
1374 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1375 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1376 zone->compact_cached_free_pfn = cc->free_pfn;
1378 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1379 cc->migrate_pfn = start_pfn;
1380 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1381 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1383 cc->last_migrated_pfn = 0;
1385 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1386 cc->free_pfn, end_pfn, sync);
1388 migrate_prep_local();
1390 while ((ret = compact_finished(zone, cc, migratetype)) ==
1391 COMPACT_CONTINUE) {
1392 int err;
1394 switch (isolate_migratepages(zone, cc)) {
1395 case ISOLATE_ABORT:
1396 ret = COMPACT_CONTENDED;
1397 putback_movable_pages(&cc->migratepages);
1398 cc->nr_migratepages = 0;
1399 goto out;
1400 case ISOLATE_NONE:
1402 * We haven't isolated and migrated anything, but
1403 * there might still be unflushed migrations from
1404 * previous cc->order aligned block.
1406 goto check_drain;
1407 case ISOLATE_SUCCESS:
1411 err = migrate_pages(&cc->migratepages, compaction_alloc,
1412 compaction_free, (unsigned long)cc, cc->mode,
1413 MR_COMPACTION);
1415 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1416 &cc->migratepages);
1418 /* All pages were either migrated or will be released */
1419 cc->nr_migratepages = 0;
1420 if (err) {
1421 putback_movable_pages(&cc->migratepages);
1423 * migrate_pages() may return -ENOMEM when scanners meet
1424 * and we want compact_finished() to detect it
1426 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1427 ret = COMPACT_CONTENDED;
1428 goto out;
1432 check_drain:
1434 * Has the migration scanner moved away from the previous
1435 * cc->order aligned block where we migrated from? If yes,
1436 * flush the pages that were freed, so that they can merge and
1437 * compact_finished() can detect immediately if allocation
1438 * would succeed.
1440 if (cc->order > 0 && cc->last_migrated_pfn) {
1441 int cpu;
1442 unsigned long current_block_start =
1443 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1445 if (cc->last_migrated_pfn < current_block_start) {
1446 cpu = get_cpu();
1447 lru_add_drain_cpu(cpu);
1448 drain_local_pages(zone);
1449 put_cpu();
1450 /* No more flushing until we migrate again */
1451 cc->last_migrated_pfn = 0;
1457 out:
1459 * Release free pages and update where the free scanner should restart,
1460 * so we don't leave any returned pages behind in the next attempt.
1462 if (cc->nr_freepages > 0) {
1463 unsigned long free_pfn = release_freepages(&cc->freepages);
1465 cc->nr_freepages = 0;
1466 VM_BUG_ON(free_pfn == 0);
1467 /* The cached pfn is always the first in a pageblock */
1468 free_pfn &= ~(pageblock_nr_pages-1);
1470 * Only go back, not forward. The cached pfn might have been
1471 * already reset to zone end in compact_finished()
1473 if (free_pfn > zone->compact_cached_free_pfn)
1474 zone->compact_cached_free_pfn = free_pfn;
1477 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1478 cc->free_pfn, end_pfn, sync, ret);
1480 if (ret == COMPACT_CONTENDED)
1481 ret = COMPACT_PARTIAL;
1483 return ret;
1486 static unsigned long compact_zone_order(struct zone *zone, int order,
1487 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1488 int alloc_flags, int classzone_idx)
1490 unsigned long ret;
1491 struct compact_control cc = {
1492 .nr_freepages = 0,
1493 .nr_migratepages = 0,
1494 .order = order,
1495 .gfp_mask = gfp_mask,
1496 .zone = zone,
1497 .mode = mode,
1498 .alloc_flags = alloc_flags,
1499 .classzone_idx = classzone_idx,
1501 INIT_LIST_HEAD(&cc.freepages);
1502 INIT_LIST_HEAD(&cc.migratepages);
1504 ret = compact_zone(zone, &cc);
1506 VM_BUG_ON(!list_empty(&cc.freepages));
1507 VM_BUG_ON(!list_empty(&cc.migratepages));
1509 *contended = cc.contended;
1510 return ret;
1513 int sysctl_extfrag_threshold = 500;
1516 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1517 * @gfp_mask: The GFP mask of the current allocation
1518 * @order: The order of the current allocation
1519 * @alloc_flags: The allocation flags of the current allocation
1520 * @ac: The context of current allocation
1521 * @mode: The migration mode for async, sync light, or sync migration
1522 * @contended: Return value that determines if compaction was aborted due to
1523 * need_resched() or lock contention
1525 * This is the main entry point for direct page compaction.
1527 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1528 int alloc_flags, const struct alloc_context *ac,
1529 enum migrate_mode mode, int *contended)
1531 int may_enter_fs = gfp_mask & __GFP_FS;
1532 int may_perform_io = gfp_mask & __GFP_IO;
1533 struct zoneref *z;
1534 struct zone *zone;
1535 int rc = COMPACT_DEFERRED;
1536 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1538 *contended = COMPACT_CONTENDED_NONE;
1540 /* Check if the GFP flags allow compaction */
1541 if (!order || !may_enter_fs || !may_perform_io)
1542 return COMPACT_SKIPPED;
1544 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1546 /* Compact each zone in the list */
1547 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1548 ac->nodemask) {
1549 int status;
1550 int zone_contended;
1552 if (compaction_deferred(zone, order))
1553 continue;
1555 status = compact_zone_order(zone, order, gfp_mask, mode,
1556 &zone_contended, alloc_flags,
1557 ac->classzone_idx);
1558 rc = max(status, rc);
1560 * It takes at least one zone that wasn't lock contended
1561 * to clear all_zones_contended.
1563 all_zones_contended &= zone_contended;
1565 /* If a normal allocation would succeed, stop compacting */
1566 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1567 ac->classzone_idx, alloc_flags)) {
1569 * We think the allocation will succeed in this zone,
1570 * but it is not certain, hence the false. The caller
1571 * will repeat this with true if allocation indeed
1572 * succeeds in this zone.
1574 compaction_defer_reset(zone, order, false);
1576 * It is possible that async compaction aborted due to
1577 * need_resched() and the watermarks were ok thanks to
1578 * somebody else freeing memory. The allocation can
1579 * however still fail so we better signal the
1580 * need_resched() contention anyway (this will not
1581 * prevent the allocation attempt).
1583 if (zone_contended == COMPACT_CONTENDED_SCHED)
1584 *contended = COMPACT_CONTENDED_SCHED;
1586 goto break_loop;
1589 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1591 * We think that allocation won't succeed in this zone
1592 * so we defer compaction there. If it ends up
1593 * succeeding after all, it will be reset.
1595 defer_compaction(zone, order);
1599 * We might have stopped compacting due to need_resched() in
1600 * async compaction, or due to a fatal signal detected. In that
1601 * case do not try further zones and signal need_resched()
1602 * contention.
1604 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1605 || fatal_signal_pending(current)) {
1606 *contended = COMPACT_CONTENDED_SCHED;
1607 goto break_loop;
1610 continue;
1611 break_loop:
1613 * We might not have tried all the zones, so be conservative
1614 * and assume they are not all lock contended.
1616 all_zones_contended = 0;
1617 break;
1621 * If at least one zone wasn't deferred or skipped, we report if all
1622 * zones that were tried were lock contended.
1624 if (rc > COMPACT_SKIPPED && all_zones_contended)
1625 *contended = COMPACT_CONTENDED_LOCK;
1627 return rc;
1631 /* Compact all zones within a node */
1632 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1634 int zoneid;
1635 struct zone *zone;
1637 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1639 zone = &pgdat->node_zones[zoneid];
1640 if (!populated_zone(zone))
1641 continue;
1643 cc->nr_freepages = 0;
1644 cc->nr_migratepages = 0;
1645 cc->zone = zone;
1646 INIT_LIST_HEAD(&cc->freepages);
1647 INIT_LIST_HEAD(&cc->migratepages);
1650 * When called via /proc/sys/vm/compact_memory
1651 * this makes sure we compact the whole zone regardless of
1652 * cached scanner positions.
1654 if (is_via_compact_memory(cc->order))
1655 __reset_isolation_suitable(zone);
1657 if (is_via_compact_memory(cc->order) ||
1658 !compaction_deferred(zone, cc->order))
1659 compact_zone(zone, cc);
1661 if (cc->order > 0) {
1662 if (zone_watermark_ok(zone, cc->order,
1663 low_wmark_pages(zone), 0, 0))
1664 compaction_defer_reset(zone, cc->order, false);
1667 VM_BUG_ON(!list_empty(&cc->freepages));
1668 VM_BUG_ON(!list_empty(&cc->migratepages));
1672 void compact_pgdat(pg_data_t *pgdat, int order)
1674 struct compact_control cc = {
1675 .order = order,
1676 .mode = MIGRATE_ASYNC,
1679 if (!order)
1680 return;
1682 __compact_pgdat(pgdat, &cc);
1685 static void compact_node(int nid)
1687 struct compact_control cc = {
1688 .order = -1,
1689 .mode = MIGRATE_SYNC,
1690 .ignore_skip_hint = true,
1693 __compact_pgdat(NODE_DATA(nid), &cc);
1696 /* Compact all nodes in the system */
1697 static void compact_nodes(void)
1699 int nid;
1701 /* Flush pending updates to the LRU lists */
1702 lru_add_drain_all();
1704 for_each_online_node(nid)
1705 compact_node(nid);
1708 /* The written value is actually unused, all memory is compacted */
1709 int sysctl_compact_memory;
1711 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1712 int sysctl_compaction_handler(struct ctl_table *table, int write,
1713 void __user *buffer, size_t *length, loff_t *ppos)
1715 if (write)
1716 compact_nodes();
1718 return 0;
1721 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1722 void __user *buffer, size_t *length, loff_t *ppos)
1724 proc_dointvec_minmax(table, write, buffer, length, ppos);
1726 return 0;
1729 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1730 static ssize_t sysfs_compact_node(struct device *dev,
1731 struct device_attribute *attr,
1732 const char *buf, size_t count)
1734 int nid = dev->id;
1736 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1737 /* Flush pending updates to the LRU lists */
1738 lru_add_drain_all();
1740 compact_node(nid);
1743 return count;
1745 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1747 int compaction_register_node(struct node *node)
1749 return device_create_file(&node->dev, &dev_attr_compact);
1752 void compaction_unregister_node(struct node *node)
1754 return device_remove_file(&node->dev, &dev_attr_compact);
1756 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1758 #endif /* CONFIG_COMPACTION */