irqchip/omap-intc: Remove duplicate setup for IRQ chip type handler
[linux/fpc-iii.git] / net / core / flow_dissector.c
blobd79699c9d1b9eb9f250254e360b2d5a7b4ff6e34
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
22 static bool dissector_uses_key(const struct flow_dissector *flow_dissector,
23 enum flow_dissector_key_id key_id)
25 return flow_dissector->used_keys & (1 << key_id);
28 static void dissector_set_key(struct flow_dissector *flow_dissector,
29 enum flow_dissector_key_id key_id)
31 flow_dissector->used_keys |= (1 << key_id);
34 static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
35 enum flow_dissector_key_id key_id,
36 void *target_container)
38 return ((char *) target_container) + flow_dissector->offset[key_id];
41 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
42 const struct flow_dissector_key *key,
43 unsigned int key_count)
45 unsigned int i;
47 memset(flow_dissector, 0, sizeof(*flow_dissector));
49 for (i = 0; i < key_count; i++, key++) {
50 /* User should make sure that every key target offset is withing
51 * boundaries of unsigned short.
53 BUG_ON(key->offset > USHRT_MAX);
54 BUG_ON(dissector_uses_key(flow_dissector,
55 key->key_id));
57 dissector_set_key(flow_dissector, key->key_id);
58 flow_dissector->offset[key->key_id] = key->offset;
61 /* Ensure that the dissector always includes control and basic key.
62 * That way we are able to avoid handling lack of these in fast path.
64 BUG_ON(!dissector_uses_key(flow_dissector,
65 FLOW_DISSECTOR_KEY_CONTROL));
66 BUG_ON(!dissector_uses_key(flow_dissector,
67 FLOW_DISSECTOR_KEY_BASIC));
69 EXPORT_SYMBOL(skb_flow_dissector_init);
71 /**
72 * __skb_flow_get_ports - extract the upper layer ports and return them
73 * @skb: sk_buff to extract the ports from
74 * @thoff: transport header offset
75 * @ip_proto: protocol for which to get port offset
76 * @data: raw buffer pointer to the packet, if NULL use skb->data
77 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
79 * The function will try to retrieve the ports at offset thoff + poff where poff
80 * is the protocol port offset returned from proto_ports_offset
82 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
83 void *data, int hlen)
85 int poff = proto_ports_offset(ip_proto);
87 if (!data) {
88 data = skb->data;
89 hlen = skb_headlen(skb);
92 if (poff >= 0) {
93 __be32 *ports, _ports;
95 ports = __skb_header_pointer(skb, thoff + poff,
96 sizeof(_ports), data, hlen, &_ports);
97 if (ports)
98 return *ports;
101 return 0;
103 EXPORT_SYMBOL(__skb_flow_get_ports);
106 * __skb_flow_dissect - extract the flow_keys struct and return it
107 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
108 * @flow_dissector: list of keys to dissect
109 * @target_container: target structure to put dissected values into
110 * @data: raw buffer pointer to the packet, if NULL use skb->data
111 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
112 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
113 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
115 * The function will try to retrieve individual keys into target specified
116 * by flow_dissector from either the skbuff or a raw buffer specified by the
117 * rest parameters.
119 * Caller must take care of zeroing target container memory.
121 bool __skb_flow_dissect(const struct sk_buff *skb,
122 struct flow_dissector *flow_dissector,
123 void *target_container,
124 void *data, __be16 proto, int nhoff, int hlen,
125 unsigned int flags)
127 struct flow_dissector_key_control *key_control;
128 struct flow_dissector_key_basic *key_basic;
129 struct flow_dissector_key_addrs *key_addrs;
130 struct flow_dissector_key_ports *key_ports;
131 struct flow_dissector_key_tags *key_tags;
132 struct flow_dissector_key_keyid *key_keyid;
133 u8 ip_proto = 0;
134 bool ret = false;
136 if (!data) {
137 data = skb->data;
138 proto = skb->protocol;
139 nhoff = skb_network_offset(skb);
140 hlen = skb_headlen(skb);
143 /* It is ensured by skb_flow_dissector_init() that control key will
144 * be always present.
146 key_control = skb_flow_dissector_target(flow_dissector,
147 FLOW_DISSECTOR_KEY_CONTROL,
148 target_container);
150 /* It is ensured by skb_flow_dissector_init() that basic key will
151 * be always present.
153 key_basic = skb_flow_dissector_target(flow_dissector,
154 FLOW_DISSECTOR_KEY_BASIC,
155 target_container);
157 if (dissector_uses_key(flow_dissector,
158 FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
159 struct ethhdr *eth = eth_hdr(skb);
160 struct flow_dissector_key_eth_addrs *key_eth_addrs;
162 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
163 FLOW_DISSECTOR_KEY_ETH_ADDRS,
164 target_container);
165 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
168 again:
169 switch (proto) {
170 case htons(ETH_P_IP): {
171 const struct iphdr *iph;
172 struct iphdr _iph;
174 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
175 if (!iph || iph->ihl < 5)
176 goto out_bad;
177 nhoff += iph->ihl * 4;
179 ip_proto = iph->protocol;
181 if (!dissector_uses_key(flow_dissector,
182 FLOW_DISSECTOR_KEY_IPV4_ADDRS))
183 break;
185 key_addrs = skb_flow_dissector_target(flow_dissector,
186 FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container);
187 memcpy(&key_addrs->v4addrs, &iph->saddr,
188 sizeof(key_addrs->v4addrs));
189 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
191 if (ip_is_fragment(iph)) {
192 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
194 if (iph->frag_off & htons(IP_OFFSET)) {
195 goto out_good;
196 } else {
197 key_control->flags |= FLOW_DIS_FIRST_FRAG;
198 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
199 goto out_good;
203 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
204 goto out_good;
206 break;
208 case htons(ETH_P_IPV6): {
209 const struct ipv6hdr *iph;
210 struct ipv6hdr _iph;
211 __be32 flow_label;
213 ipv6:
214 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
215 if (!iph)
216 goto out_bad;
218 ip_proto = iph->nexthdr;
219 nhoff += sizeof(struct ipv6hdr);
221 if (dissector_uses_key(flow_dissector,
222 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
223 struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
225 key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
226 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
227 target_container);
229 memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
230 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
233 flow_label = ip6_flowlabel(iph);
234 if (flow_label) {
235 if (dissector_uses_key(flow_dissector,
236 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
237 key_tags = skb_flow_dissector_target(flow_dissector,
238 FLOW_DISSECTOR_KEY_FLOW_LABEL,
239 target_container);
240 key_tags->flow_label = ntohl(flow_label);
242 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
243 goto out_good;
246 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
247 goto out_good;
249 break;
251 case htons(ETH_P_8021AD):
252 case htons(ETH_P_8021Q): {
253 const struct vlan_hdr *vlan;
254 struct vlan_hdr _vlan;
256 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
257 if (!vlan)
258 goto out_bad;
260 if (dissector_uses_key(flow_dissector,
261 FLOW_DISSECTOR_KEY_VLANID)) {
262 key_tags = skb_flow_dissector_target(flow_dissector,
263 FLOW_DISSECTOR_KEY_VLANID,
264 target_container);
266 key_tags->vlan_id = skb_vlan_tag_get_id(skb);
269 proto = vlan->h_vlan_encapsulated_proto;
270 nhoff += sizeof(*vlan);
271 goto again;
273 case htons(ETH_P_PPP_SES): {
274 struct {
275 struct pppoe_hdr hdr;
276 __be16 proto;
277 } *hdr, _hdr;
278 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
279 if (!hdr)
280 goto out_bad;
281 proto = hdr->proto;
282 nhoff += PPPOE_SES_HLEN;
283 switch (proto) {
284 case htons(PPP_IP):
285 goto ip;
286 case htons(PPP_IPV6):
287 goto ipv6;
288 default:
289 goto out_bad;
292 case htons(ETH_P_TIPC): {
293 struct {
294 __be32 pre[3];
295 __be32 srcnode;
296 } *hdr, _hdr;
297 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
298 if (!hdr)
299 goto out_bad;
301 if (dissector_uses_key(flow_dissector,
302 FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
303 key_addrs = skb_flow_dissector_target(flow_dissector,
304 FLOW_DISSECTOR_KEY_TIPC_ADDRS,
305 target_container);
306 key_addrs->tipcaddrs.srcnode = hdr->srcnode;
307 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
309 goto out_good;
312 case htons(ETH_P_MPLS_UC):
313 case htons(ETH_P_MPLS_MC): {
314 struct mpls_label *hdr, _hdr[2];
315 mpls:
316 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
317 hlen, &_hdr);
318 if (!hdr)
319 goto out_bad;
321 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
322 MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
323 if (dissector_uses_key(flow_dissector,
324 FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
325 key_keyid = skb_flow_dissector_target(flow_dissector,
326 FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
327 target_container);
328 key_keyid->keyid = hdr[1].entry &
329 htonl(MPLS_LS_LABEL_MASK);
332 goto out_good;
335 goto out_good;
338 case htons(ETH_P_FCOE):
339 key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
340 /* fall through */
341 default:
342 goto out_bad;
345 ip_proto_again:
346 switch (ip_proto) {
347 case IPPROTO_GRE: {
348 struct gre_hdr {
349 __be16 flags;
350 __be16 proto;
351 } *hdr, _hdr;
353 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
354 if (!hdr)
355 goto out_bad;
357 * Only look inside GRE if version zero and no
358 * routing
360 if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
361 break;
363 proto = hdr->proto;
364 nhoff += 4;
365 if (hdr->flags & GRE_CSUM)
366 nhoff += 4;
367 if (hdr->flags & GRE_KEY) {
368 const __be32 *keyid;
369 __be32 _keyid;
371 keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
372 data, hlen, &_keyid);
374 if (!keyid)
375 goto out_bad;
377 if (dissector_uses_key(flow_dissector,
378 FLOW_DISSECTOR_KEY_GRE_KEYID)) {
379 key_keyid = skb_flow_dissector_target(flow_dissector,
380 FLOW_DISSECTOR_KEY_GRE_KEYID,
381 target_container);
382 key_keyid->keyid = *keyid;
384 nhoff += 4;
386 if (hdr->flags & GRE_SEQ)
387 nhoff += 4;
388 if (proto == htons(ETH_P_TEB)) {
389 const struct ethhdr *eth;
390 struct ethhdr _eth;
392 eth = __skb_header_pointer(skb, nhoff,
393 sizeof(_eth),
394 data, hlen, &_eth);
395 if (!eth)
396 goto out_bad;
397 proto = eth->h_proto;
398 nhoff += sizeof(*eth);
401 key_control->flags |= FLOW_DIS_ENCAPSULATION;
402 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
403 goto out_good;
405 goto again;
407 case NEXTHDR_HOP:
408 case NEXTHDR_ROUTING:
409 case NEXTHDR_DEST: {
410 u8 _opthdr[2], *opthdr;
412 if (proto != htons(ETH_P_IPV6))
413 break;
415 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
416 data, hlen, &_opthdr);
417 if (!opthdr)
418 goto out_bad;
420 ip_proto = opthdr[0];
421 nhoff += (opthdr[1] + 1) << 3;
423 goto ip_proto_again;
425 case NEXTHDR_FRAGMENT: {
426 struct frag_hdr _fh, *fh;
428 if (proto != htons(ETH_P_IPV6))
429 break;
431 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
432 data, hlen, &_fh);
434 if (!fh)
435 goto out_bad;
437 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
439 nhoff += sizeof(_fh);
441 if (!(fh->frag_off & htons(IP6_OFFSET))) {
442 key_control->flags |= FLOW_DIS_FIRST_FRAG;
443 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
444 ip_proto = fh->nexthdr;
445 goto ip_proto_again;
448 goto out_good;
450 case IPPROTO_IPIP:
451 proto = htons(ETH_P_IP);
453 key_control->flags |= FLOW_DIS_ENCAPSULATION;
454 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
455 goto out_good;
457 goto ip;
458 case IPPROTO_IPV6:
459 proto = htons(ETH_P_IPV6);
461 key_control->flags |= FLOW_DIS_ENCAPSULATION;
462 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
463 goto out_good;
465 goto ipv6;
466 case IPPROTO_MPLS:
467 proto = htons(ETH_P_MPLS_UC);
468 goto mpls;
469 default:
470 break;
473 if (dissector_uses_key(flow_dissector,
474 FLOW_DISSECTOR_KEY_PORTS)) {
475 key_ports = skb_flow_dissector_target(flow_dissector,
476 FLOW_DISSECTOR_KEY_PORTS,
477 target_container);
478 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
479 data, hlen);
482 out_good:
483 ret = true;
485 out_bad:
486 key_basic->n_proto = proto;
487 key_basic->ip_proto = ip_proto;
488 key_control->thoff = (u16)nhoff;
490 return ret;
492 EXPORT_SYMBOL(__skb_flow_dissect);
494 static u32 hashrnd __read_mostly;
495 static __always_inline void __flow_hash_secret_init(void)
497 net_get_random_once(&hashrnd, sizeof(hashrnd));
500 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
501 u32 keyval)
503 return jhash2(words, length, keyval);
506 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
508 const void *p = flow;
510 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
511 return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
514 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
516 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
517 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
518 BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
519 sizeof(*flow) - sizeof(flow->addrs));
521 switch (flow->control.addr_type) {
522 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
523 diff -= sizeof(flow->addrs.v4addrs);
524 break;
525 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
526 diff -= sizeof(flow->addrs.v6addrs);
527 break;
528 case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
529 diff -= sizeof(flow->addrs.tipcaddrs);
530 break;
532 return (sizeof(*flow) - diff) / sizeof(u32);
535 __be32 flow_get_u32_src(const struct flow_keys *flow)
537 switch (flow->control.addr_type) {
538 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
539 return flow->addrs.v4addrs.src;
540 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
541 return (__force __be32)ipv6_addr_hash(
542 &flow->addrs.v6addrs.src);
543 case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
544 return flow->addrs.tipcaddrs.srcnode;
545 default:
546 return 0;
549 EXPORT_SYMBOL(flow_get_u32_src);
551 __be32 flow_get_u32_dst(const struct flow_keys *flow)
553 switch (flow->control.addr_type) {
554 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
555 return flow->addrs.v4addrs.dst;
556 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
557 return (__force __be32)ipv6_addr_hash(
558 &flow->addrs.v6addrs.dst);
559 default:
560 return 0;
563 EXPORT_SYMBOL(flow_get_u32_dst);
565 static inline void __flow_hash_consistentify(struct flow_keys *keys)
567 int addr_diff, i;
569 switch (keys->control.addr_type) {
570 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
571 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
572 (__force u32)keys->addrs.v4addrs.src;
573 if ((addr_diff < 0) ||
574 (addr_diff == 0 &&
575 ((__force u16)keys->ports.dst <
576 (__force u16)keys->ports.src))) {
577 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
578 swap(keys->ports.src, keys->ports.dst);
580 break;
581 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
582 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
583 &keys->addrs.v6addrs.src,
584 sizeof(keys->addrs.v6addrs.dst));
585 if ((addr_diff < 0) ||
586 (addr_diff == 0 &&
587 ((__force u16)keys->ports.dst <
588 (__force u16)keys->ports.src))) {
589 for (i = 0; i < 4; i++)
590 swap(keys->addrs.v6addrs.src.s6_addr32[i],
591 keys->addrs.v6addrs.dst.s6_addr32[i]);
592 swap(keys->ports.src, keys->ports.dst);
594 break;
598 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
600 u32 hash;
602 __flow_hash_consistentify(keys);
604 hash = __flow_hash_words(flow_keys_hash_start(keys),
605 flow_keys_hash_length(keys), keyval);
606 if (!hash)
607 hash = 1;
609 return hash;
612 u32 flow_hash_from_keys(struct flow_keys *keys)
614 __flow_hash_secret_init();
615 return __flow_hash_from_keys(keys, hashrnd);
617 EXPORT_SYMBOL(flow_hash_from_keys);
619 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
620 struct flow_keys *keys, u32 keyval)
622 skb_flow_dissect_flow_keys(skb, keys,
623 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
625 return __flow_hash_from_keys(keys, keyval);
628 struct _flow_keys_digest_data {
629 __be16 n_proto;
630 u8 ip_proto;
631 u8 padding;
632 __be32 ports;
633 __be32 src;
634 __be32 dst;
637 void make_flow_keys_digest(struct flow_keys_digest *digest,
638 const struct flow_keys *flow)
640 struct _flow_keys_digest_data *data =
641 (struct _flow_keys_digest_data *)digest;
643 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
645 memset(digest, 0, sizeof(*digest));
647 data->n_proto = flow->basic.n_proto;
648 data->ip_proto = flow->basic.ip_proto;
649 data->ports = flow->ports.ports;
650 data->src = flow->addrs.v4addrs.src;
651 data->dst = flow->addrs.v4addrs.dst;
653 EXPORT_SYMBOL(make_flow_keys_digest);
656 * __skb_get_hash: calculate a flow hash
657 * @skb: sk_buff to calculate flow hash from
659 * This function calculates a flow hash based on src/dst addresses
660 * and src/dst port numbers. Sets hash in skb to non-zero hash value
661 * on success, zero indicates no valid hash. Also, sets l4_hash in skb
662 * if hash is a canonical 4-tuple hash over transport ports.
664 void __skb_get_hash(struct sk_buff *skb)
666 struct flow_keys keys;
668 __flow_hash_secret_init();
670 __skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, hashrnd),
671 flow_keys_have_l4(&keys));
673 EXPORT_SYMBOL(__skb_get_hash);
675 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
677 struct flow_keys keys;
679 return ___skb_get_hash(skb, &keys, perturb);
681 EXPORT_SYMBOL(skb_get_hash_perturb);
683 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
685 struct flow_keys keys;
687 memset(&keys, 0, sizeof(keys));
689 memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
690 sizeof(keys.addrs.v6addrs.src));
691 memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
692 sizeof(keys.addrs.v6addrs.dst));
693 keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
694 keys.ports.src = fl6->fl6_sport;
695 keys.ports.dst = fl6->fl6_dport;
696 keys.keyid.keyid = fl6->fl6_gre_key;
697 keys.tags.flow_label = (__force u32)fl6->flowlabel;
698 keys.basic.ip_proto = fl6->flowi6_proto;
700 __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
701 flow_keys_have_l4(&keys));
703 return skb->hash;
705 EXPORT_SYMBOL(__skb_get_hash_flowi6);
707 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
709 struct flow_keys keys;
711 memset(&keys, 0, sizeof(keys));
713 keys.addrs.v4addrs.src = fl4->saddr;
714 keys.addrs.v4addrs.dst = fl4->daddr;
715 keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
716 keys.ports.src = fl4->fl4_sport;
717 keys.ports.dst = fl4->fl4_dport;
718 keys.keyid.keyid = fl4->fl4_gre_key;
719 keys.basic.ip_proto = fl4->flowi4_proto;
721 __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
722 flow_keys_have_l4(&keys));
724 return skb->hash;
726 EXPORT_SYMBOL(__skb_get_hash_flowi4);
728 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
729 const struct flow_keys *keys, int hlen)
731 u32 poff = keys->control.thoff;
733 switch (keys->basic.ip_proto) {
734 case IPPROTO_TCP: {
735 /* access doff as u8 to avoid unaligned access */
736 const u8 *doff;
737 u8 _doff;
739 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
740 data, hlen, &_doff);
741 if (!doff)
742 return poff;
744 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
745 break;
747 case IPPROTO_UDP:
748 case IPPROTO_UDPLITE:
749 poff += sizeof(struct udphdr);
750 break;
751 /* For the rest, we do not really care about header
752 * extensions at this point for now.
754 case IPPROTO_ICMP:
755 poff += sizeof(struct icmphdr);
756 break;
757 case IPPROTO_ICMPV6:
758 poff += sizeof(struct icmp6hdr);
759 break;
760 case IPPROTO_IGMP:
761 poff += sizeof(struct igmphdr);
762 break;
763 case IPPROTO_DCCP:
764 poff += sizeof(struct dccp_hdr);
765 break;
766 case IPPROTO_SCTP:
767 poff += sizeof(struct sctphdr);
768 break;
771 return poff;
775 * skb_get_poff - get the offset to the payload
776 * @skb: sk_buff to get the payload offset from
778 * The function will get the offset to the payload as far as it could
779 * be dissected. The main user is currently BPF, so that we can dynamically
780 * truncate packets without needing to push actual payload to the user
781 * space and can analyze headers only, instead.
783 u32 skb_get_poff(const struct sk_buff *skb)
785 struct flow_keys keys;
787 if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
788 return 0;
790 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
793 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
795 memset(keys, 0, sizeof(*keys));
797 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
798 sizeof(keys->addrs.v6addrs.src));
799 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
800 sizeof(keys->addrs.v6addrs.dst));
801 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
802 keys->ports.src = fl6->fl6_sport;
803 keys->ports.dst = fl6->fl6_dport;
804 keys->keyid.keyid = fl6->fl6_gre_key;
805 keys->tags.flow_label = (__force u32)fl6->flowlabel;
806 keys->basic.ip_proto = fl6->flowi6_proto;
808 return flow_hash_from_keys(keys);
810 EXPORT_SYMBOL(__get_hash_from_flowi6);
812 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
814 memset(keys, 0, sizeof(*keys));
816 keys->addrs.v4addrs.src = fl4->saddr;
817 keys->addrs.v4addrs.dst = fl4->daddr;
818 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
819 keys->ports.src = fl4->fl4_sport;
820 keys->ports.dst = fl4->fl4_dport;
821 keys->keyid.keyid = fl4->fl4_gre_key;
822 keys->basic.ip_proto = fl4->flowi4_proto;
824 return flow_hash_from_keys(keys);
826 EXPORT_SYMBOL(__get_hash_from_flowi4);
828 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
830 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
831 .offset = offsetof(struct flow_keys, control),
834 .key_id = FLOW_DISSECTOR_KEY_BASIC,
835 .offset = offsetof(struct flow_keys, basic),
838 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
839 .offset = offsetof(struct flow_keys, addrs.v4addrs),
842 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
843 .offset = offsetof(struct flow_keys, addrs.v6addrs),
846 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
847 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
850 .key_id = FLOW_DISSECTOR_KEY_PORTS,
851 .offset = offsetof(struct flow_keys, ports),
854 .key_id = FLOW_DISSECTOR_KEY_VLANID,
855 .offset = offsetof(struct flow_keys, tags),
858 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
859 .offset = offsetof(struct flow_keys, tags),
862 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
863 .offset = offsetof(struct flow_keys, keyid),
867 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
869 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
870 .offset = offsetof(struct flow_keys, control),
873 .key_id = FLOW_DISSECTOR_KEY_BASIC,
874 .offset = offsetof(struct flow_keys, basic),
878 struct flow_dissector flow_keys_dissector __read_mostly;
879 EXPORT_SYMBOL(flow_keys_dissector);
881 struct flow_dissector flow_keys_buf_dissector __read_mostly;
883 static int __init init_default_flow_dissectors(void)
885 skb_flow_dissector_init(&flow_keys_dissector,
886 flow_keys_dissector_keys,
887 ARRAY_SIZE(flow_keys_dissector_keys));
888 skb_flow_dissector_init(&flow_keys_buf_dissector,
889 flow_keys_buf_dissector_keys,
890 ARRAY_SIZE(flow_keys_buf_dissector_keys));
891 return 0;
894 late_initcall_sync(init_default_flow_dissectors);