mmc: host: sh_mobile_sdhi: don't populate unneeded functions
[linux/fpc-iii.git] / drivers / acpi / power.c
blobfcd4ce6f78d5d387080343d96738c3b7275d0324
1 /*
2 * drivers/acpi/power.c - ACPI Power Resources management.
4 * Copyright (C) 2001 - 2015 Intel Corp.
5 * Author: Andy Grover <andrew.grover@intel.com>
6 * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 * ACPI power-managed devices may be controlled in two ways:
26 * 1. via "Device Specific (D-State) Control"
27 * 2. via "Power Resource Control".
28 * The code below deals with ACPI Power Resources control.
30 * An ACPI "power resource object" represents a software controllable power
31 * plane, clock plane, or other resource depended on by a device.
33 * A device may rely on multiple power resources, and a power resource
34 * may be shared by multiple devices.
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/init.h>
40 #include <linux/types.h>
41 #include <linux/slab.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/sysfs.h>
44 #include <linux/acpi.h>
45 #include "sleep.h"
46 #include "internal.h"
48 #define _COMPONENT ACPI_POWER_COMPONENT
49 ACPI_MODULE_NAME("power");
50 #define ACPI_POWER_CLASS "power_resource"
51 #define ACPI_POWER_DEVICE_NAME "Power Resource"
52 #define ACPI_POWER_FILE_INFO "info"
53 #define ACPI_POWER_FILE_STATUS "state"
54 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
55 #define ACPI_POWER_RESOURCE_STATE_ON 0x01
56 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
58 struct acpi_power_resource {
59 struct acpi_device device;
60 struct list_head list_node;
61 char *name;
62 u32 system_level;
63 u32 order;
64 unsigned int ref_count;
65 bool wakeup_enabled;
66 struct mutex resource_lock;
69 struct acpi_power_resource_entry {
70 struct list_head node;
71 struct acpi_power_resource *resource;
74 static LIST_HEAD(acpi_power_resource_list);
75 static DEFINE_MUTEX(power_resource_list_lock);
77 /* --------------------------------------------------------------------------
78 Power Resource Management
79 -------------------------------------------------------------------------- */
81 static inline
82 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
84 return container_of(device, struct acpi_power_resource, device);
87 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
89 struct acpi_device *device;
91 if (acpi_bus_get_device(handle, &device))
92 return NULL;
94 return to_power_resource(device);
97 static int acpi_power_resources_list_add(acpi_handle handle,
98 struct list_head *list)
100 struct acpi_power_resource *resource = acpi_power_get_context(handle);
101 struct acpi_power_resource_entry *entry;
103 if (!resource || !list)
104 return -EINVAL;
106 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
107 if (!entry)
108 return -ENOMEM;
110 entry->resource = resource;
111 if (!list_empty(list)) {
112 struct acpi_power_resource_entry *e;
114 list_for_each_entry(e, list, node)
115 if (e->resource->order > resource->order) {
116 list_add_tail(&entry->node, &e->node);
117 return 0;
120 list_add_tail(&entry->node, list);
121 return 0;
124 void acpi_power_resources_list_free(struct list_head *list)
126 struct acpi_power_resource_entry *entry, *e;
128 list_for_each_entry_safe(entry, e, list, node) {
129 list_del(&entry->node);
130 kfree(entry);
134 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
135 struct list_head *list)
137 unsigned int i;
138 int err = 0;
140 for (i = start; i < package->package.count; i++) {
141 union acpi_object *element = &package->package.elements[i];
142 acpi_handle rhandle;
144 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
145 err = -ENODATA;
146 break;
148 rhandle = element->reference.handle;
149 if (!rhandle) {
150 err = -ENODEV;
151 break;
153 err = acpi_add_power_resource(rhandle);
154 if (err)
155 break;
157 err = acpi_power_resources_list_add(rhandle, list);
158 if (err)
159 break;
161 if (err)
162 acpi_power_resources_list_free(list);
164 return err;
167 static int acpi_power_get_state(acpi_handle handle, int *state)
169 acpi_status status = AE_OK;
170 unsigned long long sta = 0;
171 char node_name[5];
172 struct acpi_buffer buffer = { sizeof(node_name), node_name };
175 if (!handle || !state)
176 return -EINVAL;
178 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
179 if (ACPI_FAILURE(status))
180 return -ENODEV;
182 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
183 ACPI_POWER_RESOURCE_STATE_OFF;
185 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
187 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
188 node_name,
189 *state ? "on" : "off"));
191 return 0;
194 static int acpi_power_get_list_state(struct list_head *list, int *state)
196 struct acpi_power_resource_entry *entry;
197 int cur_state;
199 if (!list || !state)
200 return -EINVAL;
202 /* The state of the list is 'on' IFF all resources are 'on'. */
203 list_for_each_entry(entry, list, node) {
204 struct acpi_power_resource *resource = entry->resource;
205 acpi_handle handle = resource->device.handle;
206 int result;
208 mutex_lock(&resource->resource_lock);
209 result = acpi_power_get_state(handle, &cur_state);
210 mutex_unlock(&resource->resource_lock);
211 if (result)
212 return result;
214 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
215 break;
218 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
219 cur_state ? "on" : "off"));
221 *state = cur_state;
222 return 0;
225 static int __acpi_power_on(struct acpi_power_resource *resource)
227 acpi_status status = AE_OK;
229 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
230 if (ACPI_FAILURE(status))
231 return -ENODEV;
233 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
234 resource->name));
236 return 0;
239 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
241 int result = 0;
243 if (resource->ref_count++) {
244 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
245 "Power resource [%s] already on\n",
246 resource->name));
247 } else {
248 result = __acpi_power_on(resource);
249 if (result)
250 resource->ref_count--;
252 return result;
255 static int acpi_power_on(struct acpi_power_resource *resource)
257 int result;
259 mutex_lock(&resource->resource_lock);
260 result = acpi_power_on_unlocked(resource);
261 mutex_unlock(&resource->resource_lock);
262 return result;
265 static int __acpi_power_off(struct acpi_power_resource *resource)
267 acpi_status status;
269 status = acpi_evaluate_object(resource->device.handle, "_OFF",
270 NULL, NULL);
271 if (ACPI_FAILURE(status))
272 return -ENODEV;
274 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
275 resource->name));
276 return 0;
279 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
281 int result = 0;
283 if (!resource->ref_count) {
284 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
285 "Power resource [%s] already off\n",
286 resource->name));
287 return 0;
290 if (--resource->ref_count) {
291 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
292 "Power resource [%s] still in use\n",
293 resource->name));
294 } else {
295 result = __acpi_power_off(resource);
296 if (result)
297 resource->ref_count++;
299 return result;
302 static int acpi_power_off(struct acpi_power_resource *resource)
304 int result;
306 mutex_lock(&resource->resource_lock);
307 result = acpi_power_off_unlocked(resource);
308 mutex_unlock(&resource->resource_lock);
309 return result;
312 static int acpi_power_off_list(struct list_head *list)
314 struct acpi_power_resource_entry *entry;
315 int result = 0;
317 list_for_each_entry_reverse(entry, list, node) {
318 result = acpi_power_off(entry->resource);
319 if (result)
320 goto err;
322 return 0;
324 err:
325 list_for_each_entry_continue(entry, list, node)
326 acpi_power_on(entry->resource);
328 return result;
331 static int acpi_power_on_list(struct list_head *list)
333 struct acpi_power_resource_entry *entry;
334 int result = 0;
336 list_for_each_entry(entry, list, node) {
337 result = acpi_power_on(entry->resource);
338 if (result)
339 goto err;
341 return 0;
343 err:
344 list_for_each_entry_continue_reverse(entry, list, node)
345 acpi_power_off(entry->resource);
347 return result;
350 static struct attribute *attrs[] = {
351 NULL,
354 static struct attribute_group attr_groups[] = {
355 [ACPI_STATE_D0] = {
356 .name = "power_resources_D0",
357 .attrs = attrs,
359 [ACPI_STATE_D1] = {
360 .name = "power_resources_D1",
361 .attrs = attrs,
363 [ACPI_STATE_D2] = {
364 .name = "power_resources_D2",
365 .attrs = attrs,
367 [ACPI_STATE_D3_HOT] = {
368 .name = "power_resources_D3hot",
369 .attrs = attrs,
373 static struct attribute_group wakeup_attr_group = {
374 .name = "power_resources_wakeup",
375 .attrs = attrs,
378 static void acpi_power_hide_list(struct acpi_device *adev,
379 struct list_head *resources,
380 struct attribute_group *attr_group)
382 struct acpi_power_resource_entry *entry;
384 if (list_empty(resources))
385 return;
387 list_for_each_entry_reverse(entry, resources, node) {
388 struct acpi_device *res_dev = &entry->resource->device;
390 sysfs_remove_link_from_group(&adev->dev.kobj,
391 attr_group->name,
392 dev_name(&res_dev->dev));
394 sysfs_remove_group(&adev->dev.kobj, attr_group);
397 static void acpi_power_expose_list(struct acpi_device *adev,
398 struct list_head *resources,
399 struct attribute_group *attr_group)
401 struct acpi_power_resource_entry *entry;
402 int ret;
404 if (list_empty(resources))
405 return;
407 ret = sysfs_create_group(&adev->dev.kobj, attr_group);
408 if (ret)
409 return;
411 list_for_each_entry(entry, resources, node) {
412 struct acpi_device *res_dev = &entry->resource->device;
414 ret = sysfs_add_link_to_group(&adev->dev.kobj,
415 attr_group->name,
416 &res_dev->dev.kobj,
417 dev_name(&res_dev->dev));
418 if (ret) {
419 acpi_power_hide_list(adev, resources, attr_group);
420 break;
425 static void acpi_power_expose_hide(struct acpi_device *adev,
426 struct list_head *resources,
427 struct attribute_group *attr_group,
428 bool expose)
430 if (expose)
431 acpi_power_expose_list(adev, resources, attr_group);
432 else
433 acpi_power_hide_list(adev, resources, attr_group);
436 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
438 int state;
440 if (adev->wakeup.flags.valid)
441 acpi_power_expose_hide(adev, &adev->wakeup.resources,
442 &wakeup_attr_group, add);
444 if (!adev->power.flags.power_resources)
445 return;
447 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
448 acpi_power_expose_hide(adev,
449 &adev->power.states[state].resources,
450 &attr_groups[state], add);
453 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
455 struct acpi_power_resource_entry *entry;
456 int system_level = 5;
458 list_for_each_entry(entry, list, node) {
459 struct acpi_power_resource *resource = entry->resource;
460 acpi_handle handle = resource->device.handle;
461 int result;
462 int state;
464 mutex_lock(&resource->resource_lock);
466 result = acpi_power_get_state(handle, &state);
467 if (result) {
468 mutex_unlock(&resource->resource_lock);
469 return result;
471 if (state == ACPI_POWER_RESOURCE_STATE_ON) {
472 resource->ref_count++;
473 resource->wakeup_enabled = true;
475 if (system_level > resource->system_level)
476 system_level = resource->system_level;
478 mutex_unlock(&resource->resource_lock);
480 *system_level_p = system_level;
481 return 0;
484 /* --------------------------------------------------------------------------
485 Device Power Management
486 -------------------------------------------------------------------------- */
489 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
490 * ACPI 3.0) _PSW (Power State Wake)
491 * @dev: Device to handle.
492 * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
493 * @sleep_state: Target sleep state of the system.
494 * @dev_state: Target power state of the device.
496 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
497 * State Wake) for the device, if present. On failure reset the device's
498 * wakeup.flags.valid flag.
500 * RETURN VALUE:
501 * 0 if either _DSW or _PSW has been successfully executed
502 * 0 if neither _DSW nor _PSW has been found
503 * -ENODEV if the execution of either _DSW or _PSW has failed
505 int acpi_device_sleep_wake(struct acpi_device *dev,
506 int enable, int sleep_state, int dev_state)
508 union acpi_object in_arg[3];
509 struct acpi_object_list arg_list = { 3, in_arg };
510 acpi_status status = AE_OK;
513 * Try to execute _DSW first.
515 * Three agruments are needed for the _DSW object:
516 * Argument 0: enable/disable the wake capabilities
517 * Argument 1: target system state
518 * Argument 2: target device state
519 * When _DSW object is called to disable the wake capabilities, maybe
520 * the first argument is filled. The values of the other two agruments
521 * are meaningless.
523 in_arg[0].type = ACPI_TYPE_INTEGER;
524 in_arg[0].integer.value = enable;
525 in_arg[1].type = ACPI_TYPE_INTEGER;
526 in_arg[1].integer.value = sleep_state;
527 in_arg[2].type = ACPI_TYPE_INTEGER;
528 in_arg[2].integer.value = dev_state;
529 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
530 if (ACPI_SUCCESS(status)) {
531 return 0;
532 } else if (status != AE_NOT_FOUND) {
533 printk(KERN_ERR PREFIX "_DSW execution failed\n");
534 dev->wakeup.flags.valid = 0;
535 return -ENODEV;
538 /* Execute _PSW */
539 status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
540 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
541 printk(KERN_ERR PREFIX "_PSW execution failed\n");
542 dev->wakeup.flags.valid = 0;
543 return -ENODEV;
546 return 0;
550 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
551 * 1. Power on the power resources required for the wakeup device
552 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
553 * State Wake) for the device, if present
555 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
557 struct acpi_power_resource_entry *entry;
558 int err = 0;
560 if (!dev || !dev->wakeup.flags.valid)
561 return -EINVAL;
563 mutex_lock(&acpi_device_lock);
565 if (dev->wakeup.prepare_count++)
566 goto out;
568 list_for_each_entry(entry, &dev->wakeup.resources, node) {
569 struct acpi_power_resource *resource = entry->resource;
571 mutex_lock(&resource->resource_lock);
573 if (!resource->wakeup_enabled) {
574 err = acpi_power_on_unlocked(resource);
575 if (!err)
576 resource->wakeup_enabled = true;
579 mutex_unlock(&resource->resource_lock);
581 if (err) {
582 dev_err(&dev->dev,
583 "Cannot turn wakeup power resources on\n");
584 dev->wakeup.flags.valid = 0;
585 goto out;
589 * Passing 3 as the third argument below means the device may be
590 * put into arbitrary power state afterward.
592 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
593 if (err)
594 dev->wakeup.prepare_count = 0;
596 out:
597 mutex_unlock(&acpi_device_lock);
598 return err;
602 * Shutdown a wakeup device, counterpart of above method
603 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
604 * State Wake) for the device, if present
605 * 2. Shutdown down the power resources
607 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
609 struct acpi_power_resource_entry *entry;
610 int err = 0;
612 if (!dev || !dev->wakeup.flags.valid)
613 return -EINVAL;
615 mutex_lock(&acpi_device_lock);
617 if (--dev->wakeup.prepare_count > 0)
618 goto out;
621 * Executing the code below even if prepare_count is already zero when
622 * the function is called may be useful, for example for initialisation.
624 if (dev->wakeup.prepare_count < 0)
625 dev->wakeup.prepare_count = 0;
627 err = acpi_device_sleep_wake(dev, 0, 0, 0);
628 if (err)
629 goto out;
631 list_for_each_entry(entry, &dev->wakeup.resources, node) {
632 struct acpi_power_resource *resource = entry->resource;
634 mutex_lock(&resource->resource_lock);
636 if (resource->wakeup_enabled) {
637 err = acpi_power_off_unlocked(resource);
638 if (!err)
639 resource->wakeup_enabled = false;
642 mutex_unlock(&resource->resource_lock);
644 if (err) {
645 dev_err(&dev->dev,
646 "Cannot turn wakeup power resources off\n");
647 dev->wakeup.flags.valid = 0;
648 break;
652 out:
653 mutex_unlock(&acpi_device_lock);
654 return err;
657 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
659 int result = 0;
660 int list_state = 0;
661 int i = 0;
663 if (!device || !state)
664 return -EINVAL;
667 * We know a device's inferred power state when all the resources
668 * required for a given D-state are 'on'.
670 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
671 struct list_head *list = &device->power.states[i].resources;
673 if (list_empty(list))
674 continue;
676 result = acpi_power_get_list_state(list, &list_state);
677 if (result)
678 return result;
680 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
681 *state = i;
682 return 0;
686 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
687 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
688 return 0;
691 int acpi_power_on_resources(struct acpi_device *device, int state)
693 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
694 return -EINVAL;
696 return acpi_power_on_list(&device->power.states[state].resources);
699 int acpi_power_transition(struct acpi_device *device, int state)
701 int result = 0;
703 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
704 return -EINVAL;
706 if (device->power.state == state || !device->flags.power_manageable)
707 return 0;
709 if ((device->power.state < ACPI_STATE_D0)
710 || (device->power.state > ACPI_STATE_D3_COLD))
711 return -ENODEV;
714 * First we reference all power resources required in the target list
715 * (e.g. so the device doesn't lose power while transitioning). Then,
716 * we dereference all power resources used in the current list.
718 if (state < ACPI_STATE_D3_COLD)
719 result = acpi_power_on_list(
720 &device->power.states[state].resources);
722 if (!result && device->power.state < ACPI_STATE_D3_COLD)
723 acpi_power_off_list(
724 &device->power.states[device->power.state].resources);
726 /* We shouldn't change the state unless the above operations succeed. */
727 device->power.state = result ? ACPI_STATE_UNKNOWN : state;
729 return result;
732 static void acpi_release_power_resource(struct device *dev)
734 struct acpi_device *device = to_acpi_device(dev);
735 struct acpi_power_resource *resource;
737 resource = container_of(device, struct acpi_power_resource, device);
739 mutex_lock(&power_resource_list_lock);
740 list_del(&resource->list_node);
741 mutex_unlock(&power_resource_list_lock);
743 acpi_free_pnp_ids(&device->pnp);
744 kfree(resource);
747 static ssize_t acpi_power_in_use_show(struct device *dev,
748 struct device_attribute *attr,
749 char *buf) {
750 struct acpi_power_resource *resource;
752 resource = to_power_resource(to_acpi_device(dev));
753 return sprintf(buf, "%u\n", !!resource->ref_count);
755 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
757 static void acpi_power_sysfs_remove(struct acpi_device *device)
759 device_remove_file(&device->dev, &dev_attr_resource_in_use);
762 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
764 mutex_lock(&power_resource_list_lock);
766 if (!list_empty(&acpi_power_resource_list)) {
767 struct acpi_power_resource *r;
769 list_for_each_entry(r, &acpi_power_resource_list, list_node)
770 if (r->order > resource->order) {
771 list_add_tail(&resource->list_node, &r->list_node);
772 goto out;
775 list_add_tail(&resource->list_node, &acpi_power_resource_list);
777 out:
778 mutex_unlock(&power_resource_list_lock);
781 int acpi_add_power_resource(acpi_handle handle)
783 struct acpi_power_resource *resource;
784 struct acpi_device *device = NULL;
785 union acpi_object acpi_object;
786 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
787 acpi_status status;
788 int state, result = -ENODEV;
790 acpi_bus_get_device(handle, &device);
791 if (device)
792 return 0;
794 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
795 if (!resource)
796 return -ENOMEM;
798 device = &resource->device;
799 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
800 ACPI_STA_DEFAULT);
801 mutex_init(&resource->resource_lock);
802 INIT_LIST_HEAD(&resource->list_node);
803 resource->name = device->pnp.bus_id;
804 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
805 strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
806 device->power.state = ACPI_STATE_UNKNOWN;
808 /* Evalute the object to get the system level and resource order. */
809 status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
810 if (ACPI_FAILURE(status))
811 goto err;
813 resource->system_level = acpi_object.power_resource.system_level;
814 resource->order = acpi_object.power_resource.resource_order;
816 result = acpi_power_get_state(handle, &state);
817 if (result)
818 goto err;
820 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
821 acpi_device_bid(device), state ? "on" : "off");
823 device->flags.match_driver = true;
824 result = acpi_device_add(device, acpi_release_power_resource);
825 if (result)
826 goto err;
828 if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
829 device->remove = acpi_power_sysfs_remove;
831 acpi_power_add_resource_to_list(resource);
832 acpi_device_add_finalize(device);
833 return 0;
835 err:
836 acpi_release_power_resource(&device->dev);
837 return result;
840 #ifdef CONFIG_ACPI_SLEEP
841 void acpi_resume_power_resources(void)
843 struct acpi_power_resource *resource;
845 mutex_lock(&power_resource_list_lock);
847 list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
848 int result, state;
850 mutex_lock(&resource->resource_lock);
852 result = acpi_power_get_state(resource->device.handle, &state);
853 if (result) {
854 mutex_unlock(&resource->resource_lock);
855 continue;
858 if (state == ACPI_POWER_RESOURCE_STATE_OFF
859 && resource->ref_count) {
860 dev_info(&resource->device.dev, "Turning ON\n");
861 __acpi_power_on(resource);
864 mutex_unlock(&resource->resource_lock);
866 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
867 int result, state;
869 mutex_lock(&resource->resource_lock);
871 result = acpi_power_get_state(resource->device.handle, &state);
872 if (result) {
873 mutex_unlock(&resource->resource_lock);
874 continue;
877 if (state == ACPI_POWER_RESOURCE_STATE_ON
878 && !resource->ref_count) {
879 dev_info(&resource->device.dev, "Turning OFF\n");
880 __acpi_power_off(resource);
883 mutex_unlock(&resource->resource_lock);
886 mutex_unlock(&power_resource_list_lock);
888 #endif