2 * Author: Daniel Thompson <daniel.thompson@linaro.org>
4 * Inspired by clk-asm9260.c .
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/clk-provider.h>
20 #include <linux/err.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
25 #include <linux/of_address.h>
27 #define STM32F4_RCC_PLLCFGR 0x04
28 #define STM32F4_RCC_CFGR 0x08
29 #define STM32F4_RCC_AHB1ENR 0x30
30 #define STM32F4_RCC_AHB2ENR 0x34
31 #define STM32F4_RCC_AHB3ENR 0x38
32 #define STM32F4_RCC_APB1ENR 0x40
33 #define STM32F4_RCC_APB2ENR 0x44
35 struct stm32f4_gate_data
{
39 const char *parent_name
;
43 static const struct stm32f4_gate_data stm32f4_gates
[] __initconst
= {
44 { STM32F4_RCC_AHB1ENR
, 0, "gpioa", "ahb_div" },
45 { STM32F4_RCC_AHB1ENR
, 1, "gpiob", "ahb_div" },
46 { STM32F4_RCC_AHB1ENR
, 2, "gpioc", "ahb_div" },
47 { STM32F4_RCC_AHB1ENR
, 3, "gpiod", "ahb_div" },
48 { STM32F4_RCC_AHB1ENR
, 4, "gpioe", "ahb_div" },
49 { STM32F4_RCC_AHB1ENR
, 5, "gpiof", "ahb_div" },
50 { STM32F4_RCC_AHB1ENR
, 6, "gpiog", "ahb_div" },
51 { STM32F4_RCC_AHB1ENR
, 7, "gpioh", "ahb_div" },
52 { STM32F4_RCC_AHB1ENR
, 8, "gpioi", "ahb_div" },
53 { STM32F4_RCC_AHB1ENR
, 9, "gpioj", "ahb_div" },
54 { STM32F4_RCC_AHB1ENR
, 10, "gpiok", "ahb_div" },
55 { STM32F4_RCC_AHB1ENR
, 12, "crc", "ahb_div" },
56 { STM32F4_RCC_AHB1ENR
, 18, "bkpsra", "ahb_div" },
57 { STM32F4_RCC_AHB1ENR
, 20, "ccmdatam", "ahb_div" },
58 { STM32F4_RCC_AHB1ENR
, 21, "dma1", "ahb_div" },
59 { STM32F4_RCC_AHB1ENR
, 22, "dma2", "ahb_div" },
60 { STM32F4_RCC_AHB1ENR
, 23, "dma2d", "ahb_div" },
61 { STM32F4_RCC_AHB1ENR
, 25, "ethmac", "ahb_div" },
62 { STM32F4_RCC_AHB1ENR
, 26, "ethmactx", "ahb_div" },
63 { STM32F4_RCC_AHB1ENR
, 27, "ethmacrx", "ahb_div" },
64 { STM32F4_RCC_AHB1ENR
, 28, "ethmacptp", "ahb_div" },
65 { STM32F4_RCC_AHB1ENR
, 29, "otghs", "ahb_div" },
66 { STM32F4_RCC_AHB1ENR
, 30, "otghsulpi", "ahb_div" },
68 { STM32F4_RCC_AHB2ENR
, 0, "dcmi", "ahb_div" },
69 { STM32F4_RCC_AHB2ENR
, 4, "cryp", "ahb_div" },
70 { STM32F4_RCC_AHB2ENR
, 5, "hash", "ahb_div" },
71 { STM32F4_RCC_AHB2ENR
, 6, "rng", "pll48" },
72 { STM32F4_RCC_AHB2ENR
, 7, "otgfs", "pll48" },
74 { STM32F4_RCC_AHB3ENR
, 0, "fmc", "ahb_div",
77 { STM32F4_RCC_APB1ENR
, 0, "tim2", "apb1_mul" },
78 { STM32F4_RCC_APB1ENR
, 1, "tim3", "apb1_mul" },
79 { STM32F4_RCC_APB1ENR
, 2, "tim4", "apb1_mul" },
80 { STM32F4_RCC_APB1ENR
, 3, "tim5", "apb1_mul" },
81 { STM32F4_RCC_APB1ENR
, 4, "tim6", "apb1_mul" },
82 { STM32F4_RCC_APB1ENR
, 5, "tim7", "apb1_mul" },
83 { STM32F4_RCC_APB1ENR
, 6, "tim12", "apb1_mul" },
84 { STM32F4_RCC_APB1ENR
, 7, "tim13", "apb1_mul" },
85 { STM32F4_RCC_APB1ENR
, 8, "tim14", "apb1_mul" },
86 { STM32F4_RCC_APB1ENR
, 11, "wwdg", "apb1_div" },
87 { STM32F4_RCC_APB1ENR
, 14, "spi2", "apb1_div" },
88 { STM32F4_RCC_APB1ENR
, 15, "spi3", "apb1_div" },
89 { STM32F4_RCC_APB1ENR
, 17, "uart2", "apb1_div" },
90 { STM32F4_RCC_APB1ENR
, 18, "uart3", "apb1_div" },
91 { STM32F4_RCC_APB1ENR
, 19, "uart4", "apb1_div" },
92 { STM32F4_RCC_APB1ENR
, 20, "uart5", "apb1_div" },
93 { STM32F4_RCC_APB1ENR
, 21, "i2c1", "apb1_div" },
94 { STM32F4_RCC_APB1ENR
, 22, "i2c2", "apb1_div" },
95 { STM32F4_RCC_APB1ENR
, 23, "i2c3", "apb1_div" },
96 { STM32F4_RCC_APB1ENR
, 25, "can1", "apb1_div" },
97 { STM32F4_RCC_APB1ENR
, 26, "can2", "apb1_div" },
98 { STM32F4_RCC_APB1ENR
, 28, "pwr", "apb1_div" },
99 { STM32F4_RCC_APB1ENR
, 29, "dac", "apb1_div" },
100 { STM32F4_RCC_APB1ENR
, 30, "uart7", "apb1_div" },
101 { STM32F4_RCC_APB1ENR
, 31, "uart8", "apb1_div" },
103 { STM32F4_RCC_APB2ENR
, 0, "tim1", "apb2_mul" },
104 { STM32F4_RCC_APB2ENR
, 1, "tim8", "apb2_mul" },
105 { STM32F4_RCC_APB2ENR
, 4, "usart1", "apb2_div" },
106 { STM32F4_RCC_APB2ENR
, 5, "usart6", "apb2_div" },
107 { STM32F4_RCC_APB2ENR
, 8, "adc1", "apb2_div" },
108 { STM32F4_RCC_APB2ENR
, 9, "adc2", "apb2_div" },
109 { STM32F4_RCC_APB2ENR
, 10, "adc3", "apb2_div" },
110 { STM32F4_RCC_APB2ENR
, 11, "sdio", "pll48" },
111 { STM32F4_RCC_APB2ENR
, 12, "spi1", "apb2_div" },
112 { STM32F4_RCC_APB2ENR
, 13, "spi4", "apb2_div" },
113 { STM32F4_RCC_APB2ENR
, 14, "syscfg", "apb2_div" },
114 { STM32F4_RCC_APB2ENR
, 16, "tim9", "apb2_mul" },
115 { STM32F4_RCC_APB2ENR
, 17, "tim10", "apb2_mul" },
116 { STM32F4_RCC_APB2ENR
, 18, "tim11", "apb2_mul" },
117 { STM32F4_RCC_APB2ENR
, 20, "spi5", "apb2_div" },
118 { STM32F4_RCC_APB2ENR
, 21, "spi6", "apb2_div" },
119 { STM32F4_RCC_APB2ENR
, 22, "sai1", "apb2_div" },
120 { STM32F4_RCC_APB2ENR
, 26, "ltdc", "apb2_div" },
124 * MAX_CLKS is the maximum value in the enumeration below plus the combined
125 * hweight of stm32f42xx_gate_map (plus one).
129 enum { SYSTICK
, FCLK
};
132 * This bitmask tells us which bit offsets (0..192) on STM32F4[23]xxx
133 * have gate bits associated with them. Its combined hweight is 71.
135 static const u64 stm32f42xx_gate_map
[] = { 0x000000f17ef417ffull
,
136 0x0000000000000001ull
,
137 0x04777f33f6fec9ffull
};
139 static struct clk_hw
*clks
[MAX_CLKS
];
140 static DEFINE_SPINLOCK(stm32f4_clk_lock
);
141 static void __iomem
*base
;
144 * "Multiplier" device for APBx clocks.
146 * The APBx dividers are power-of-two dividers and, if *not* running in 1:1
147 * mode, they also tap out the one of the low order state bits to run the
148 * timers. ST datasheets represent this feature as a (conditional) clock
156 #define to_clk_apb_mul(_hw) container_of(_hw, struct clk_apb_mul, hw)
158 static unsigned long clk_apb_mul_recalc_rate(struct clk_hw
*hw
,
159 unsigned long parent_rate
)
161 struct clk_apb_mul
*am
= to_clk_apb_mul(hw
);
163 if (readl(base
+ STM32F4_RCC_CFGR
) & BIT(am
->bit_idx
))
164 return parent_rate
* 2;
169 static long clk_apb_mul_round_rate(struct clk_hw
*hw
, unsigned long rate
,
170 unsigned long *prate
)
172 struct clk_apb_mul
*am
= to_clk_apb_mul(hw
);
173 unsigned long mult
= 1;
175 if (readl(base
+ STM32F4_RCC_CFGR
) & BIT(am
->bit_idx
))
178 if (clk_hw_get_flags(hw
) & CLK_SET_RATE_PARENT
) {
179 unsigned long best_parent
= rate
/ mult
;
181 *prate
= clk_hw_round_rate(clk_hw_get_parent(hw
), best_parent
);
184 return *prate
* mult
;
187 static int clk_apb_mul_set_rate(struct clk_hw
*hw
, unsigned long rate
,
188 unsigned long parent_rate
)
191 * We must report success but we can do so unconditionally because
192 * clk_apb_mul_round_rate returns values that ensure this call is a
199 static const struct clk_ops clk_apb_mul_factor_ops
= {
200 .round_rate
= clk_apb_mul_round_rate
,
201 .set_rate
= clk_apb_mul_set_rate
,
202 .recalc_rate
= clk_apb_mul_recalc_rate
,
205 static struct clk
*clk_register_apb_mul(struct device
*dev
, const char *name
,
206 const char *parent_name
,
207 unsigned long flags
, u8 bit_idx
)
209 struct clk_apb_mul
*am
;
210 struct clk_init_data init
;
213 am
= kzalloc(sizeof(*am
), GFP_KERNEL
);
215 return ERR_PTR(-ENOMEM
);
217 am
->bit_idx
= bit_idx
;
221 init
.ops
= &clk_apb_mul_factor_ops
;
223 init
.parent_names
= &parent_name
;
224 init
.num_parents
= 1;
226 clk
= clk_register(dev
, &am
->hw
);
235 * Decode current PLL state and (statically) model the state we inherit from
238 static void stm32f4_rcc_register_pll(const char *hse_clk
, const char *hsi_clk
)
240 unsigned long pllcfgr
= readl(base
+ STM32F4_RCC_PLLCFGR
);
242 unsigned long pllm
= pllcfgr
& 0x3f;
243 unsigned long plln
= (pllcfgr
>> 6) & 0x1ff;
244 unsigned long pllp
= BIT(((pllcfgr
>> 16) & 3) + 1);
245 const char *pllsrc
= pllcfgr
& BIT(22) ? hse_clk
: hsi_clk
;
246 unsigned long pllq
= (pllcfgr
>> 24) & 0xf;
248 clk_register_fixed_factor(NULL
, "vco", pllsrc
, 0, plln
, pllm
);
249 clk_register_fixed_factor(NULL
, "pll", "vco", 0, 1, pllp
);
250 clk_register_fixed_factor(NULL
, "pll48", "vco", 0, 1, pllq
);
254 * Converts the primary and secondary indices (as they appear in DT) to an
255 * offset into our struct clock array.
257 static int stm32f4_rcc_lookup_clk_idx(u8 primary
, u8 secondary
)
259 u64 table
[ARRAY_SIZE(stm32f42xx_gate_map
)];
262 if (WARN_ON(secondary
> FCLK
))
267 memcpy(table
, stm32f42xx_gate_map
, sizeof(table
));
269 /* only bits set in table can be used as indices */
270 if (WARN_ON(secondary
>= BITS_PER_BYTE
* sizeof(table
) ||
271 0 == (table
[BIT_ULL_WORD(secondary
)] &
272 BIT_ULL_MASK(secondary
))))
275 /* mask out bits above our current index */
276 table
[BIT_ULL_WORD(secondary
)] &=
277 GENMASK_ULL(secondary
% BITS_PER_LONG_LONG
, 0);
279 return FCLK
+ hweight64(table
[0]) +
280 (BIT_ULL_WORD(secondary
) >= 1 ? hweight64(table
[1]) : 0) +
281 (BIT_ULL_WORD(secondary
) >= 2 ? hweight64(table
[2]) : 0);
284 static struct clk_hw
*
285 stm32f4_rcc_lookup_clk(struct of_phandle_args
*clkspec
, void *data
)
287 int i
= stm32f4_rcc_lookup_clk_idx(clkspec
->args
[0], clkspec
->args
[1]);
290 return ERR_PTR(-EINVAL
);
295 static const char *sys_parents
[] __initdata
= { "hsi", NULL
, "pll" };
297 static const struct clk_div_table ahb_div_table
[] = {
298 { 0x0, 1 }, { 0x1, 1 }, { 0x2, 1 }, { 0x3, 1 },
299 { 0x4, 1 }, { 0x5, 1 }, { 0x6, 1 }, { 0x7, 1 },
300 { 0x8, 2 }, { 0x9, 4 }, { 0xa, 8 }, { 0xb, 16 },
301 { 0xc, 64 }, { 0xd, 128 }, { 0xe, 256 }, { 0xf, 512 },
305 static const struct clk_div_table apb_div_table
[] = {
306 { 0, 1 }, { 0, 1 }, { 0, 1 }, { 0, 1 },
307 { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
311 static void __init
stm32f4_rcc_init(struct device_node
*np
)
316 base
= of_iomap(np
, 0);
318 pr_err("%s: unable to map resource", np
->name
);
322 hse_clk
= of_clk_get_parent_name(np
, 0);
324 clk_register_fixed_rate_with_accuracy(NULL
, "hsi", NULL
, 0,
326 stm32f4_rcc_register_pll(hse_clk
, "hsi");
328 sys_parents
[1] = hse_clk
;
329 clk_register_mux_table(
330 NULL
, "sys", sys_parents
, ARRAY_SIZE(sys_parents
), 0,
331 base
+ STM32F4_RCC_CFGR
, 0, 3, 0, NULL
, &stm32f4_clk_lock
);
333 clk_register_divider_table(NULL
, "ahb_div", "sys",
334 CLK_SET_RATE_PARENT
, base
+ STM32F4_RCC_CFGR
,
335 4, 4, 0, ahb_div_table
, &stm32f4_clk_lock
);
337 clk_register_divider_table(NULL
, "apb1_div", "ahb_div",
338 CLK_SET_RATE_PARENT
, base
+ STM32F4_RCC_CFGR
,
339 10, 3, 0, apb_div_table
, &stm32f4_clk_lock
);
340 clk_register_apb_mul(NULL
, "apb1_mul", "apb1_div",
341 CLK_SET_RATE_PARENT
, 12);
343 clk_register_divider_table(NULL
, "apb2_div", "ahb_div",
344 CLK_SET_RATE_PARENT
, base
+ STM32F4_RCC_CFGR
,
345 13, 3, 0, apb_div_table
, &stm32f4_clk_lock
);
346 clk_register_apb_mul(NULL
, "apb2_mul", "apb2_div",
347 CLK_SET_RATE_PARENT
, 15);
349 clks
[SYSTICK
] = clk_hw_register_fixed_factor(NULL
, "systick", "ahb_div",
351 clks
[FCLK
] = clk_hw_register_fixed_factor(NULL
, "fclk", "ahb_div",
354 for (n
= 0; n
< ARRAY_SIZE(stm32f4_gates
); n
++) {
355 const struct stm32f4_gate_data
*gd
= &stm32f4_gates
[n
];
356 unsigned int secondary
=
357 8 * (gd
->offset
- STM32F4_RCC_AHB1ENR
) + gd
->bit_idx
;
358 int idx
= stm32f4_rcc_lookup_clk_idx(0, secondary
);
363 clks
[idx
] = clk_hw_register_gate(
364 NULL
, gd
->name
, gd
->parent_name
, gd
->flags
,
365 base
+ gd
->offset
, gd
->bit_idx
, 0, &stm32f4_clk_lock
);
367 if (IS_ERR(clks
[idx
])) {
368 pr_err("%s: Unable to register leaf clock %s\n",
369 np
->full_name
, gd
->name
);
374 of_clk_add_hw_provider(np
, stm32f4_rcc_lookup_clk
, NULL
);
379 CLK_OF_DECLARE(stm32f4_rcc
, "st,stm32f42xx-rcc", stm32f4_rcc_init
);