mmc: host: sh_mobile_sdhi: don't populate unneeded functions
[linux/fpc-iii.git] / drivers / mtd / bcm47xxpart.c
blob377947580203d295553029097607964ec850551c
1 /*
2 * BCM47XX MTD partitioning
4 * Copyright © 2012 Rafał Miłecki <zajec5@gmail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/partitions.h>
18 #include <uapi/linux/magic.h>
21 * NAND flash on Netgear R6250 was verified to contain 15 partitions.
22 * This will result in allocating too big array for some old devices, but the
23 * memory will be freed soon anyway (see mtd_device_parse_register).
25 #define BCM47XXPART_MAX_PARTS 20
28 * Amount of bytes we read when analyzing each block of flash memory.
29 * Set it big enough to allow detecting partition and reading important data.
31 #define BCM47XXPART_BYTES_TO_READ 0x4e8
33 /* Magics */
34 #define BOARD_DATA_MAGIC 0x5246504D /* MPFR */
35 #define BOARD_DATA_MAGIC2 0xBD0D0BBD
36 #define CFE_MAGIC 0x43464531 /* 1EFC */
37 #define FACTORY_MAGIC 0x59544346 /* FCTY */
38 #define NVRAM_HEADER 0x48534C46 /* FLSH */
39 #define POT_MAGIC1 0x54544f50 /* POTT */
40 #define POT_MAGIC2 0x504f /* OP */
41 #define ML_MAGIC1 0x39685a42
42 #define ML_MAGIC2 0x26594131
43 #define TRX_MAGIC 0x30524448
44 #define SHSQ_MAGIC 0x71736873 /* shsq (weird ZTE H218N endianness) */
45 #define UBI_EC_MAGIC 0x23494255 /* UBI# */
47 struct trx_header {
48 uint32_t magic;
49 uint32_t length;
50 uint32_t crc32;
51 uint16_t flags;
52 uint16_t version;
53 uint32_t offset[3];
54 } __packed;
56 static void bcm47xxpart_add_part(struct mtd_partition *part, const char *name,
57 u64 offset, uint32_t mask_flags)
59 part->name = name;
60 part->offset = offset;
61 part->mask_flags = mask_flags;
64 static const char *bcm47xxpart_trx_data_part_name(struct mtd_info *master,
65 size_t offset)
67 uint32_t buf;
68 size_t bytes_read;
69 int err;
71 err = mtd_read(master, offset, sizeof(buf), &bytes_read,
72 (uint8_t *)&buf);
73 if (err && !mtd_is_bitflip(err)) {
74 pr_err("mtd_read error while parsing (offset: 0x%X): %d\n",
75 offset, err);
76 goto out_default;
79 if (buf == UBI_EC_MAGIC)
80 return "ubi";
82 out_default:
83 return "rootfs";
86 static int bcm47xxpart_parse(struct mtd_info *master,
87 const struct mtd_partition **pparts,
88 struct mtd_part_parser_data *data)
90 struct mtd_partition *parts;
91 uint8_t i, curr_part = 0;
92 uint32_t *buf;
93 size_t bytes_read;
94 uint32_t offset;
95 uint32_t blocksize = master->erasesize;
96 struct trx_header *trx;
97 int trx_part = -1;
98 int last_trx_part = -1;
99 int possible_nvram_sizes[] = { 0x8000, 0xF000, 0x10000, };
100 int err;
103 * Some really old flashes (like AT45DB*) had smaller erasesize-s, but
104 * partitions were aligned to at least 0x1000 anyway.
106 if (blocksize < 0x1000)
107 blocksize = 0x1000;
109 /* Alloc */
110 parts = kzalloc(sizeof(struct mtd_partition) * BCM47XXPART_MAX_PARTS,
111 GFP_KERNEL);
112 if (!parts)
113 return -ENOMEM;
115 buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL);
116 if (!buf) {
117 kfree(parts);
118 return -ENOMEM;
121 /* Parse block by block looking for magics */
122 for (offset = 0; offset <= master->size - blocksize;
123 offset += blocksize) {
124 /* Nothing more in higher memory on BCM47XX (MIPS) */
125 if (IS_ENABLED(CONFIG_BCM47XX) && offset >= 0x2000000)
126 break;
128 if (curr_part >= BCM47XXPART_MAX_PARTS) {
129 pr_warn("Reached maximum number of partitions, scanning stopped!\n");
130 break;
133 /* Read beginning of the block */
134 err = mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ,
135 &bytes_read, (uint8_t *)buf);
136 if (err && !mtd_is_bitflip(err)) {
137 pr_err("mtd_read error while parsing (offset: 0x%X): %d\n",
138 offset, err);
139 continue;
142 /* Magic or small NVRAM at 0x400 */
143 if ((buf[0x4e0 / 4] == CFE_MAGIC && buf[0x4e4 / 4] == CFE_MAGIC) ||
144 (buf[0x400 / 4] == NVRAM_HEADER)) {
145 bcm47xxpart_add_part(&parts[curr_part++], "boot",
146 offset, MTD_WRITEABLE);
147 continue;
151 * board_data starts with board_id which differs across boards,
152 * but we can use 'MPFR' (hopefully) magic at 0x100
154 if (buf[0x100 / 4] == BOARD_DATA_MAGIC) {
155 bcm47xxpart_add_part(&parts[curr_part++], "board_data",
156 offset, MTD_WRITEABLE);
157 continue;
160 /* Found on Huawei E970 */
161 if (buf[0x000 / 4] == FACTORY_MAGIC) {
162 bcm47xxpart_add_part(&parts[curr_part++], "factory",
163 offset, MTD_WRITEABLE);
164 continue;
167 /* POT(TOP) */
168 if (buf[0x000 / 4] == POT_MAGIC1 &&
169 (buf[0x004 / 4] & 0xFFFF) == POT_MAGIC2) {
170 bcm47xxpart_add_part(&parts[curr_part++], "POT", offset,
171 MTD_WRITEABLE);
172 continue;
175 /* ML */
176 if (buf[0x010 / 4] == ML_MAGIC1 &&
177 buf[0x014 / 4] == ML_MAGIC2) {
178 bcm47xxpart_add_part(&parts[curr_part++], "ML", offset,
179 MTD_WRITEABLE);
180 continue;
183 /* TRX */
184 if (buf[0x000 / 4] == TRX_MAGIC) {
185 if (BCM47XXPART_MAX_PARTS - curr_part < 4) {
186 pr_warn("Not enough partitions left to register trx, scanning stopped!\n");
187 break;
190 trx = (struct trx_header *)buf;
192 trx_part = curr_part;
193 bcm47xxpart_add_part(&parts[curr_part++], "firmware",
194 offset, 0);
196 i = 0;
197 /* We have LZMA loader if offset[2] points to sth */
198 if (trx->offset[2]) {
199 bcm47xxpart_add_part(&parts[curr_part++],
200 "loader",
201 offset + trx->offset[i],
203 i++;
206 if (trx->offset[i]) {
207 bcm47xxpart_add_part(&parts[curr_part++],
208 "linux",
209 offset + trx->offset[i],
211 i++;
215 * Pure rootfs size is known and can be calculated as:
216 * trx->length - trx->offset[i]. We don't fill it as
217 * we want to have jffs2 (overlay) in the same mtd.
219 if (trx->offset[i]) {
220 const char *name;
222 name = bcm47xxpart_trx_data_part_name(master, offset + trx->offset[i]);
223 bcm47xxpart_add_part(&parts[curr_part++],
224 name,
225 offset + trx->offset[i],
227 i++;
230 last_trx_part = curr_part - 1;
233 * We have whole TRX scanned, skip to the next part. Use
234 * roundown (not roundup), as the loop will increase
235 * offset in next step.
237 offset = rounddown(offset + trx->length, blocksize);
238 continue;
241 /* Squashfs on devices not using TRX */
242 if (le32_to_cpu(buf[0x000 / 4]) == SQUASHFS_MAGIC ||
243 buf[0x000 / 4] == SHSQ_MAGIC) {
244 bcm47xxpart_add_part(&parts[curr_part++], "rootfs",
245 offset, 0);
246 continue;
250 * New (ARM?) devices may have NVRAM in some middle block. Last
251 * block will be checked later, so skip it.
253 if (offset != master->size - blocksize &&
254 buf[0x000 / 4] == NVRAM_HEADER) {
255 bcm47xxpart_add_part(&parts[curr_part++], "nvram",
256 offset, 0);
257 continue;
260 /* Read middle of the block */
261 err = mtd_read(master, offset + 0x8000, 0x4, &bytes_read,
262 (uint8_t *)buf);
263 if (err && !mtd_is_bitflip(err)) {
264 pr_err("mtd_read error while parsing (offset: 0x%X): %d\n",
265 offset, err);
266 continue;
269 /* Some devices (ex. WNDR3700v3) don't have a standard 'MPFR' */
270 if (buf[0x000 / 4] == BOARD_DATA_MAGIC2) {
271 bcm47xxpart_add_part(&parts[curr_part++], "board_data",
272 offset, MTD_WRITEABLE);
273 continue;
277 /* Look for NVRAM at the end of the last block. */
278 for (i = 0; i < ARRAY_SIZE(possible_nvram_sizes); i++) {
279 if (curr_part >= BCM47XXPART_MAX_PARTS) {
280 pr_warn("Reached maximum number of partitions, scanning stopped!\n");
281 break;
284 offset = master->size - possible_nvram_sizes[i];
285 err = mtd_read(master, offset, 0x4, &bytes_read,
286 (uint8_t *)buf);
287 if (err && !mtd_is_bitflip(err)) {
288 pr_err("mtd_read error while reading (offset 0x%X): %d\n",
289 offset, err);
290 continue;
293 /* Standard NVRAM */
294 if (buf[0] == NVRAM_HEADER) {
295 bcm47xxpart_add_part(&parts[curr_part++], "nvram",
296 master->size - blocksize, 0);
297 break;
301 kfree(buf);
304 * Assume that partitions end at the beginning of the one they are
305 * followed by.
307 for (i = 0; i < curr_part; i++) {
308 u64 next_part_offset = (i < curr_part - 1) ?
309 parts[i + 1].offset : master->size;
311 parts[i].size = next_part_offset - parts[i].offset;
312 if (i == last_trx_part && trx_part >= 0)
313 parts[trx_part].size = next_part_offset -
314 parts[trx_part].offset;
317 *pparts = parts;
318 return curr_part;
321 static struct mtd_part_parser bcm47xxpart_mtd_parser = {
322 .parse_fn = bcm47xxpart_parse,
323 .name = "bcm47xxpart",
325 module_mtd_part_parser(bcm47xxpart_mtd_parser);
327 MODULE_LICENSE("GPL");
328 MODULE_DESCRIPTION("MTD partitioning for BCM47XX flash memories");