2 * Handles the M-Systems DiskOnChip G3 chip
4 * Copyright (C) 2011 Robert Jarzmik
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
26 #include <linux/platform_device.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/bitmap.h>
34 #include <linux/bitrev.h>
35 #include <linux/bch.h>
37 #include <linux/debugfs.h>
38 #include <linux/seq_file.h>
40 #define CREATE_TRACE_POINTS
44 * This driver handles the DiskOnChip G3 flash memory.
46 * As no specification is available from M-Systems/Sandisk, this drivers lacks
47 * several functions available on the chip, as :
50 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
51 * the driver assumes a 16bits data bus.
53 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
54 * - a 1 byte Hamming code stored in the OOB for each page
55 * - a 7 bytes BCH code stored in the OOB for each page
57 * - BCH is in GF(2^14)
58 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
60 * - BCH can correct up to 4 bits (t = 4)
61 * - BCH syndroms are calculated in hardware, and checked in hardware as well
65 static unsigned int reliable_mode
;
66 module_param(reliable_mode
, uint
, 0);
67 MODULE_PARM_DESC(reliable_mode
, "Set the docg3 mode (0=normal MLC, 1=fast, "
68 "2=reliable) : MLC normal operations are in normal mode");
70 static int docg3_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
71 struct mtd_oob_region
*oobregion
)
76 /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
77 oobregion
->offset
= 7;
78 oobregion
->length
= 8;
83 static int docg3_ooblayout_free(struct mtd_info
*mtd
, int section
,
84 struct mtd_oob_region
*oobregion
)
89 /* free bytes: byte 0 until byte 6, byte 15 */
91 oobregion
->offset
= 0;
92 oobregion
->length
= 7;
94 oobregion
->offset
= 15;
95 oobregion
->length
= 1;
101 static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops
= {
102 .ecc
= docg3_ooblayout_ecc
,
103 .free
= docg3_ooblayout_free
,
106 static inline u8
doc_readb(struct docg3
*docg3
, u16 reg
)
108 u8 val
= readb(docg3
->cascade
->base
+ reg
);
110 trace_docg3_io(0, 8, reg
, (int)val
);
114 static inline u16
doc_readw(struct docg3
*docg3
, u16 reg
)
116 u16 val
= readw(docg3
->cascade
->base
+ reg
);
118 trace_docg3_io(0, 16, reg
, (int)val
);
122 static inline void doc_writeb(struct docg3
*docg3
, u8 val
, u16 reg
)
124 writeb(val
, docg3
->cascade
->base
+ reg
);
125 trace_docg3_io(1, 8, reg
, val
);
128 static inline void doc_writew(struct docg3
*docg3
, u16 val
, u16 reg
)
130 writew(val
, docg3
->cascade
->base
+ reg
);
131 trace_docg3_io(1, 16, reg
, val
);
134 static inline void doc_flash_command(struct docg3
*docg3
, u8 cmd
)
136 doc_writeb(docg3
, cmd
, DOC_FLASHCOMMAND
);
139 static inline void doc_flash_sequence(struct docg3
*docg3
, u8 seq
)
141 doc_writeb(docg3
, seq
, DOC_FLASHSEQUENCE
);
144 static inline void doc_flash_address(struct docg3
*docg3
, u8 addr
)
146 doc_writeb(docg3
, addr
, DOC_FLASHADDRESS
);
149 static char const * const part_probes
[] = { "cmdlinepart", "saftlpart", NULL
};
151 static int doc_register_readb(struct docg3
*docg3
, int reg
)
155 doc_writew(docg3
, reg
, DOC_READADDRESS
);
156 val
= doc_readb(docg3
, reg
);
157 doc_vdbg("Read register %04x : %02x\n", reg
, val
);
161 static int doc_register_readw(struct docg3
*docg3
, int reg
)
165 doc_writew(docg3
, reg
, DOC_READADDRESS
);
166 val
= doc_readw(docg3
, reg
);
167 doc_vdbg("Read register %04x : %04x\n", reg
, val
);
172 * doc_delay - delay docg3 operations
174 * @nbNOPs: the number of NOPs to issue
176 * As no specification is available, the right timings between chip commands are
177 * unknown. The only available piece of information are the observed nops on a
178 * working docg3 chip.
179 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
180 * friendlier msleep() functions or blocking mdelay().
182 static void doc_delay(struct docg3
*docg3
, int nbNOPs
)
186 doc_vdbg("NOP x %d\n", nbNOPs
);
187 for (i
= 0; i
< nbNOPs
; i
++)
188 doc_writeb(docg3
, 0, DOC_NOP
);
191 static int is_prot_seq_error(struct docg3
*docg3
)
195 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
196 return ctrl
& (DOC_CTRL_PROTECTION_ERROR
| DOC_CTRL_SEQUENCE_ERROR
);
199 static int doc_is_ready(struct docg3
*docg3
)
203 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
204 return ctrl
& DOC_CTRL_FLASHREADY
;
207 static int doc_wait_ready(struct docg3
*docg3
)
209 int maxWaitCycles
= 100;
214 } while (!doc_is_ready(docg3
) && maxWaitCycles
--);
216 if (maxWaitCycles
> 0)
222 static int doc_reset_seq(struct docg3
*docg3
)
226 doc_writeb(docg3
, 0x10, DOC_FLASHCONTROL
);
227 doc_flash_sequence(docg3
, DOC_SEQ_RESET
);
228 doc_flash_command(docg3
, DOC_CMD_RESET
);
230 ret
= doc_wait_ready(docg3
);
232 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret
? "false" : "true");
237 * doc_read_data_area - Read data from data area
239 * @buf: the buffer to fill in (might be NULL is dummy reads)
240 * @len: the length to read
241 * @first: first time read, DOC_READADDRESS should be set
243 * Reads bytes from flash data. Handles the single byte / even bytes reads.
245 static void doc_read_data_area(struct docg3
*docg3
, void *buf
, int len
,
252 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf
, len
);
257 doc_writew(docg3
, DOC_IOSPACE_DATA
, DOC_READADDRESS
);
259 for (i
= 0; i
< len4
; i
+= 2) {
260 data16
= doc_readw(docg3
, DOC_IOSPACE_DATA
);
268 doc_writew(docg3
, DOC_IOSPACE_DATA
| DOC_READADDR_ONE_BYTE
,
272 for (i
= 0; i
< cdr
; i
++) {
273 data8
= doc_readb(docg3
, DOC_IOSPACE_DATA
);
283 * doc_write_data_area - Write data into data area
285 * @buf: the buffer to get input bytes from
286 * @len: the length to write
288 * Writes bytes into flash data. Handles the single byte / even bytes writes.
290 static void doc_write_data_area(struct docg3
*docg3
, const void *buf
, int len
)
296 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf
, len
);
300 doc_writew(docg3
, DOC_IOSPACE_DATA
, DOC_READADDRESS
);
302 for (i
= 0; i
< len4
; i
+= 2) {
303 doc_writew(docg3
, *src16
, DOC_IOSPACE_DATA
);
308 for (i
= 0; i
< cdr
; i
++) {
309 doc_writew(docg3
, DOC_IOSPACE_DATA
| DOC_READADDR_ONE_BYTE
,
311 doc_writeb(docg3
, *src8
, DOC_IOSPACE_DATA
);
317 * doc_set_data_mode - Sets the flash to normal or reliable data mode
320 * The reliable data mode is a bit slower than the fast mode, but less errors
321 * occur. Entering the reliable mode cannot be done without entering the fast
324 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
325 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
326 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
327 * result, which is a logical and between bytes from page 0 and page 1 (which is
328 * consistent with the fact that writing to a page is _clearing_ bits of that
331 static void doc_set_reliable_mode(struct docg3
*docg3
)
333 static char *strmode
[] = { "normal", "fast", "reliable", "invalid" };
335 doc_dbg("doc_set_reliable_mode(%s)\n", strmode
[docg3
->reliable
]);
336 switch (docg3
->reliable
) {
340 doc_flash_sequence(docg3
, DOC_SEQ_SET_FASTMODE
);
341 doc_flash_command(docg3
, DOC_CMD_FAST_MODE
);
344 doc_flash_sequence(docg3
, DOC_SEQ_SET_RELIABLEMODE
);
345 doc_flash_command(docg3
, DOC_CMD_FAST_MODE
);
346 doc_flash_command(docg3
, DOC_CMD_RELIABLE_MODE
);
349 doc_err("doc_set_reliable_mode(): invalid mode\n");
356 * doc_set_asic_mode - Set the ASIC mode
360 * The ASIC can work in 3 modes :
361 * - RESET: all registers are zeroed
362 * - NORMAL: receives and handles commands
363 * - POWERDOWN: minimal poweruse, flash parts shut off
365 static void doc_set_asic_mode(struct docg3
*docg3
, u8 mode
)
369 for (i
= 0; i
< 12; i
++)
370 doc_readb(docg3
, DOC_IOSPACE_IPL
);
372 mode
|= DOC_ASICMODE_MDWREN
;
373 doc_dbg("doc_set_asic_mode(%02x)\n", mode
);
374 doc_writeb(docg3
, mode
, DOC_ASICMODE
);
375 doc_writeb(docg3
, ~mode
, DOC_ASICMODECONFIRM
);
380 * doc_set_device_id - Sets the devices id for cascaded G3 chips
382 * @id: the chip to select (amongst 0, 1, 2, 3)
384 * There can be 4 cascaded G3 chips. This function selects the one which will
385 * should be the active one.
387 static void doc_set_device_id(struct docg3
*docg3
, int id
)
391 doc_dbg("doc_set_device_id(%d)\n", id
);
392 doc_writeb(docg3
, id
, DOC_DEVICESELECT
);
393 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
395 ctrl
&= ~DOC_CTRL_VIOLATION
;
397 doc_writeb(docg3
, ctrl
, DOC_FLASHCONTROL
);
401 * doc_set_extra_page_mode - Change flash page layout
404 * Normally, the flash page is split into the data (512 bytes) and the out of
405 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
406 * leveling counters are stored. To access this last area of 4 bytes, a special
407 * mode must be input to the flash ASIC.
409 * Returns 0 if no error occurred, -EIO else.
411 static int doc_set_extra_page_mode(struct docg3
*docg3
)
415 doc_dbg("doc_set_extra_page_mode()\n");
416 doc_flash_sequence(docg3
, DOC_SEQ_PAGE_SIZE_532
);
417 doc_flash_command(docg3
, DOC_CMD_PAGE_SIZE_532
);
420 fctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
421 if (fctrl
& (DOC_CTRL_PROTECTION_ERROR
| DOC_CTRL_SEQUENCE_ERROR
))
428 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
430 * @sector: the sector
432 static void doc_setup_addr_sector(struct docg3
*docg3
, int sector
)
435 doc_flash_address(docg3
, sector
& 0xff);
436 doc_flash_address(docg3
, (sector
>> 8) & 0xff);
437 doc_flash_address(docg3
, (sector
>> 16) & 0xff);
442 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
444 * @sector: the sector
445 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
447 static void doc_setup_writeaddr_sector(struct docg3
*docg3
, int sector
, int ofs
)
451 doc_flash_address(docg3
, ofs
& 0xff);
452 doc_flash_address(docg3
, sector
& 0xff);
453 doc_flash_address(docg3
, (sector
>> 8) & 0xff);
454 doc_flash_address(docg3
, (sector
>> 16) & 0xff);
459 * doc_seek - Set both flash planes to the specified block, page for reading
461 * @block0: the first plane block index
462 * @block1: the second plane block index
463 * @page: the page index within the block
464 * @wear: if true, read will occur on the 4 extra bytes of the wear area
465 * @ofs: offset in page to read
467 * Programs the flash even and odd planes to the specific block and page.
468 * Alternatively, programs the flash to the wear area of the specified page.
470 static int doc_read_seek(struct docg3
*docg3
, int block0
, int block1
, int page
,
475 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
476 block0
, block1
, page
, ofs
, wear
);
478 if (!wear
&& (ofs
< 2 * DOC_LAYOUT_PAGE_SIZE
)) {
479 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE1
);
480 doc_flash_command(docg3
, DOC_CMD_READ_PLANE1
);
483 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE2
);
484 doc_flash_command(docg3
, DOC_CMD_READ_PLANE2
);
488 doc_set_reliable_mode(docg3
);
490 ret
= doc_set_extra_page_mode(docg3
);
494 doc_flash_sequence(docg3
, DOC_SEQ_READ
);
495 sector
= (block0
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
496 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
497 doc_setup_addr_sector(docg3
, sector
);
499 sector
= (block1
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
500 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
501 doc_setup_addr_sector(docg3
, sector
);
509 * doc_write_seek - Set both flash planes to the specified block, page for writing
511 * @block0: the first plane block index
512 * @block1: the second plane block index
513 * @page: the page index within the block
514 * @ofs: offset in page to write
516 * Programs the flash even and odd planes to the specific block and page.
517 * Alternatively, programs the flash to the wear area of the specified page.
519 static int doc_write_seek(struct docg3
*docg3
, int block0
, int block1
, int page
,
524 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
525 block0
, block1
, page
, ofs
);
527 doc_set_reliable_mode(docg3
);
529 if (ofs
< 2 * DOC_LAYOUT_PAGE_SIZE
) {
530 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE1
);
531 doc_flash_command(docg3
, DOC_CMD_READ_PLANE1
);
534 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE2
);
535 doc_flash_command(docg3
, DOC_CMD_READ_PLANE2
);
539 doc_flash_sequence(docg3
, DOC_SEQ_PAGE_SETUP
);
540 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE1
);
542 sector
= (block0
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
543 doc_setup_writeaddr_sector(docg3
, sector
, ofs
);
545 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE3
);
547 ret
= doc_wait_ready(docg3
);
551 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE1
);
552 sector
= (block1
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
553 doc_setup_writeaddr_sector(docg3
, sector
, ofs
);
562 * doc_read_page_ecc_init - Initialize hardware ECC engine
564 * @len: the number of bytes covered by the ECC (BCH covered)
566 * The function does initialize the hardware ECC engine to compute the Hamming
567 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
569 * Return 0 if succeeded, -EIO on error
571 static int doc_read_page_ecc_init(struct docg3
*docg3
, int len
)
573 doc_writew(docg3
, DOC_ECCCONF0_READ_MODE
574 | DOC_ECCCONF0_BCH_ENABLE
| DOC_ECCCONF0_HAMMING_ENABLE
575 | (len
& DOC_ECCCONF0_DATA_BYTES_MASK
),
578 doc_register_readb(docg3
, DOC_FLASHCONTROL
);
579 return doc_wait_ready(docg3
);
583 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
585 * @len: the number of bytes covered by the ECC (BCH covered)
587 * The function does initialize the hardware ECC engine to compute the Hamming
588 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
590 * Return 0 if succeeded, -EIO on error
592 static int doc_write_page_ecc_init(struct docg3
*docg3
, int len
)
594 doc_writew(docg3
, DOC_ECCCONF0_WRITE_MODE
595 | DOC_ECCCONF0_BCH_ENABLE
| DOC_ECCCONF0_HAMMING_ENABLE
596 | (len
& DOC_ECCCONF0_DATA_BYTES_MASK
),
599 doc_register_readb(docg3
, DOC_FLASHCONTROL
);
600 return doc_wait_ready(docg3
);
604 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
607 * Disables the hardware ECC generator and checker, for unchecked reads (as when
608 * reading OOB only or write status byte).
610 static void doc_ecc_disable(struct docg3
*docg3
)
612 doc_writew(docg3
, DOC_ECCCONF0_READ_MODE
, DOC_ECCCONF0
);
617 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
619 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
621 * This function programs the ECC hardware to compute the hamming code on the
622 * last provided N bytes to the hardware generator.
624 static void doc_hamming_ecc_init(struct docg3
*docg3
, int nb_bytes
)
628 ecc_conf1
= doc_register_readb(docg3
, DOC_ECCCONF1
);
629 ecc_conf1
&= ~DOC_ECCCONF1_HAMMING_BITS_MASK
;
630 ecc_conf1
|= (nb_bytes
& DOC_ECCCONF1_HAMMING_BITS_MASK
);
631 doc_writeb(docg3
, ecc_conf1
, DOC_ECCCONF1
);
635 * doc_ecc_bch_fix_data - Fix if need be read data from flash
637 * @buf: the buffer of read data (512 + 7 + 1 bytes)
638 * @hwecc: the hardware calculated ECC.
639 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
640 * area data, and calc_ecc the ECC calculated by the hardware generator.
642 * Checks if the received data matches the ECC, and if an error is detected,
643 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
644 * understands the (data, ecc, syndroms) in an inverted order in comparison to
645 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
646 * bit6 and bit 1, ...) for all ECC data.
648 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
649 * algorithm is used to decode this. However the hw operates on page
650 * data in a bit order that is the reverse of that of the bch alg,
651 * requiring that the bits be reversed on the result. Thanks to Ivan
652 * Djelic for his analysis.
654 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
655 * errors were detected and cannot be fixed.
657 static int doc_ecc_bch_fix_data(struct docg3
*docg3
, void *buf
, u8
*hwecc
)
659 u8 ecc
[DOC_ECC_BCH_SIZE
];
660 int errorpos
[DOC_ECC_BCH_T
], i
, numerrs
;
662 for (i
= 0; i
< DOC_ECC_BCH_SIZE
; i
++)
663 ecc
[i
] = bitrev8(hwecc
[i
]);
664 numerrs
= decode_bch(docg3
->cascade
->bch
, NULL
,
665 DOC_ECC_BCH_COVERED_BYTES
,
666 NULL
, ecc
, NULL
, errorpos
);
667 BUG_ON(numerrs
== -EINVAL
);
671 for (i
= 0; i
< numerrs
; i
++)
672 errorpos
[i
] = (errorpos
[i
] & ~7) | (7 - (errorpos
[i
] & 7));
673 for (i
= 0; i
< numerrs
; i
++)
674 if (errorpos
[i
] < DOC_ECC_BCH_COVERED_BYTES
*8)
675 /* error is located in data, correct it */
676 change_bit(errorpos
[i
], buf
);
678 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs
);
684 * doc_read_page_prepare - Prepares reading data from a flash page
686 * @block0: the first plane block index on flash memory
687 * @block1: the second plane block index on flash memory
688 * @page: the page index in the block
689 * @offset: the offset in the page (must be a multiple of 4)
691 * Prepares the page to be read in the flash memory :
692 * - tell ASIC to map the flash pages
693 * - tell ASIC to be in read mode
695 * After a call to this method, a call to doc_read_page_finish is mandatory,
696 * to end the read cycle of the flash.
698 * Read data from a flash page. The length to be read must be between 0 and
699 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
700 * the extra bytes reading is not implemented).
702 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
704 * - one read of 512 bytes at offset 0
705 * - one read of 512 bytes at offset 512 + 16
707 * Returns 0 if successful, -EIO if a read error occurred.
709 static int doc_read_page_prepare(struct docg3
*docg3
, int block0
, int block1
,
710 int page
, int offset
)
712 int wear_area
= 0, ret
= 0;
714 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
715 block0
, block1
, page
, offset
);
716 if (offset
>= DOC_LAYOUT_WEAR_OFFSET
)
718 if (!wear_area
&& offset
> (DOC_LAYOUT_PAGE_OOB_SIZE
* 2))
721 doc_set_device_id(docg3
, docg3
->device_id
);
722 ret
= doc_reset_seq(docg3
);
726 /* Program the flash address block and page */
727 ret
= doc_read_seek(docg3
, block0
, block1
, page
, wear_area
, offset
);
731 doc_flash_command(docg3
, DOC_CMD_READ_ALL_PLANES
);
733 doc_wait_ready(docg3
);
735 doc_flash_command(docg3
, DOC_CMD_SET_ADDR_READ
);
737 if (offset
>= DOC_LAYOUT_PAGE_SIZE
* 2)
738 offset
-= 2 * DOC_LAYOUT_PAGE_SIZE
;
739 doc_flash_address(docg3
, offset
>> 2);
741 doc_wait_ready(docg3
);
743 doc_flash_command(docg3
, DOC_CMD_READ_FLASH
);
747 doc_writeb(docg3
, 0, DOC_DATAEND
);
753 * doc_read_page_getbytes - Reads bytes from a prepared page
755 * @len: the number of bytes to be read (must be a multiple of 4)
756 * @buf: the buffer to be filled in (or NULL is forget bytes)
757 * @first: 1 if first time read, DOC_READADDRESS should be set
758 * @last_odd: 1 if last read ended up on an odd byte
760 * Reads bytes from a prepared page. There is a trickery here : if the last read
761 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
762 * planes, the first byte must be read apart. If a word (16bit) read was used,
763 * the read would return the byte of plane 2 as low *and* high endian, which
764 * will mess the read.
767 static int doc_read_page_getbytes(struct docg3
*docg3
, int len
, u_char
*buf
,
768 int first
, int last_odd
)
770 if (last_odd
&& len
> 0) {
771 doc_read_data_area(docg3
, buf
, 1, first
);
772 doc_read_data_area(docg3
, buf
? buf
+ 1 : buf
, len
- 1, 0);
774 doc_read_data_area(docg3
, buf
, len
, first
);
781 * doc_write_page_putbytes - Writes bytes into a prepared page
783 * @len: the number of bytes to be written
784 * @buf: the buffer of input bytes
787 static void doc_write_page_putbytes(struct docg3
*docg3
, int len
,
790 doc_write_data_area(docg3
, buf
, len
);
795 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
797 * @hwecc: the array of 7 integers where the hardware ecc will be stored
799 static void doc_get_bch_hw_ecc(struct docg3
*docg3
, u8
*hwecc
)
803 for (i
= 0; i
< DOC_ECC_BCH_SIZE
; i
++)
804 hwecc
[i
] = doc_register_readb(docg3
, DOC_BCH_HW_ECC(i
));
808 * doc_page_finish - Ends reading/writing of a flash page
811 static void doc_page_finish(struct docg3
*docg3
)
813 doc_writeb(docg3
, 0, DOC_DATAEND
);
818 * doc_read_page_finish - Ends reading of a flash page
821 * As a side effect, resets the chip selector to 0. This ensures that after each
822 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
823 * reboot will boot on floor 0, where the IPL is.
825 static void doc_read_page_finish(struct docg3
*docg3
)
827 doc_page_finish(docg3
);
828 doc_set_device_id(docg3
, 0);
832 * calc_block_sector - Calculate blocks, pages and ofs.
834 * @from: offset in flash
835 * @block0: first plane block index calculated
836 * @block1: second plane block index calculated
837 * @page: page calculated
838 * @ofs: offset in page
839 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
842 * The calculation is based on the reliable/normal mode. In normal mode, the 64
843 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
844 * clones, only 32 pages per block are available.
846 static void calc_block_sector(loff_t from
, int *block0
, int *block1
, int *page
,
847 int *ofs
, int reliable
)
849 uint sector
, pages_biblock
;
851 pages_biblock
= DOC_LAYOUT_PAGES_PER_BLOCK
* DOC_LAYOUT_NBPLANES
;
852 if (reliable
== 1 || reliable
== 2)
855 sector
= from
/ DOC_LAYOUT_PAGE_SIZE
;
856 *block0
= sector
/ pages_biblock
* DOC_LAYOUT_NBPLANES
;
857 *block1
= *block0
+ 1;
858 *page
= sector
% pages_biblock
;
859 *page
/= DOC_LAYOUT_NBPLANES
;
860 if (reliable
== 1 || reliable
== 2)
863 *ofs
= DOC_LAYOUT_PAGE_OOB_SIZE
;
869 * doc_read_oob - Read out of band bytes from flash
871 * @from: the offset from first block and first page, in bytes, aligned on page
873 * @ops: the mtd oob structure
875 * Reads flash memory OOB area of pages.
877 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
879 static int doc_read_oob(struct mtd_info
*mtd
, loff_t from
,
880 struct mtd_oob_ops
*ops
)
882 struct docg3
*docg3
= mtd
->priv
;
883 int block0
, block1
, page
, ret
, skip
, ofs
= 0;
884 u8
*oobbuf
= ops
->oobbuf
;
885 u8
*buf
= ops
->datbuf
;
886 size_t len
, ooblen
, nbdata
, nboob
;
887 u8 hwecc
[DOC_ECC_BCH_SIZE
], eccconf1
;
888 int max_bitflips
= 0;
895 ooblen
= ops
->ooblen
;
899 if (oobbuf
&& ops
->mode
== MTD_OPS_PLACE_OOB
)
900 oobbuf
+= ops
->ooboffs
;
902 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
903 from
, ops
->mode
, buf
, len
, oobbuf
, ooblen
);
904 if (ooblen
% DOC_LAYOUT_OOB_SIZE
)
907 if (from
+ len
> mtd
->size
)
913 skip
= from
% DOC_LAYOUT_PAGE_SIZE
;
914 mutex_lock(&docg3
->cascade
->lock
);
915 while (ret
>= 0 && (len
> 0 || ooblen
> 0)) {
916 calc_block_sector(from
- skip
, &block0
, &block1
, &page
, &ofs
,
918 nbdata
= min_t(size_t, len
, DOC_LAYOUT_PAGE_SIZE
- skip
);
919 nboob
= min_t(size_t, ooblen
, (size_t)DOC_LAYOUT_OOB_SIZE
);
920 ret
= doc_read_page_prepare(docg3
, block0
, block1
, page
, ofs
);
923 ret
= doc_read_page_ecc_init(docg3
, DOC_ECC_BCH_TOTAL_BYTES
);
926 ret
= doc_read_page_getbytes(docg3
, skip
, NULL
, 1, 0);
929 ret
= doc_read_page_getbytes(docg3
, nbdata
, buf
, 0, skip
% 2);
932 doc_read_page_getbytes(docg3
,
933 DOC_LAYOUT_PAGE_SIZE
- nbdata
- skip
,
934 NULL
, 0, (skip
+ nbdata
) % 2);
935 ret
= doc_read_page_getbytes(docg3
, nboob
, oobbuf
, 0, 0);
938 doc_read_page_getbytes(docg3
, DOC_LAYOUT_OOB_SIZE
- nboob
,
941 doc_get_bch_hw_ecc(docg3
, hwecc
);
942 eccconf1
= doc_register_readb(docg3
, DOC_ECCCONF1
);
944 if (nboob
>= DOC_LAYOUT_OOB_SIZE
) {
945 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf
);
946 doc_dbg("OOB - HAMMING: %02x\n", oobbuf
[7]);
947 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf
+ 8);
948 doc_dbg("OOB - UNUSED: %02x\n", oobbuf
[15]);
950 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1
);
951 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc
);
954 if (is_prot_seq_error(docg3
))
957 if ((block0
>= DOC_LAYOUT_BLOCK_FIRST_DATA
) &&
958 (eccconf1
& DOC_ECCCONF1_BCH_SYNDROM_ERR
) &&
959 (eccconf1
& DOC_ECCCONF1_PAGE_IS_WRITTEN
) &&
960 (ops
->mode
!= MTD_OPS_RAW
) &&
961 (nbdata
== DOC_LAYOUT_PAGE_SIZE
)) {
962 ret
= doc_ecc_bch_fix_data(docg3
, buf
, hwecc
);
964 mtd
->ecc_stats
.failed
++;
968 mtd
->ecc_stats
.corrected
+= ret
;
969 max_bitflips
= max(max_bitflips
, ret
);
974 doc_read_page_finish(docg3
);
975 ops
->retlen
+= nbdata
;
976 ops
->oobretlen
+= nboob
;
981 from
+= DOC_LAYOUT_PAGE_SIZE
;
986 mutex_unlock(&docg3
->cascade
->lock
);
989 doc_read_page_finish(docg3
);
994 * doc_read - Read bytes from flash
996 * @from: the offset from first block and first page, in bytes, aligned on page
998 * @len: the number of bytes to read (must be a multiple of 4)
999 * @retlen: the number of bytes actually read
1000 * @buf: the filled in buffer
1002 * Reads flash memory pages. This function does not read the OOB chunk, but only
1005 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
1007 static int doc_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1008 size_t *retlen
, u_char
*buf
)
1010 struct mtd_oob_ops ops
;
1013 memset(&ops
, 0, sizeof(ops
));
1016 ops
.mode
= MTD_OPS_AUTO_OOB
;
1018 ret
= doc_read_oob(mtd
, from
, &ops
);
1019 *retlen
= ops
.retlen
;
1023 static int doc_reload_bbt(struct docg3
*docg3
)
1025 int block
= DOC_LAYOUT_BLOCK_BBT
;
1026 int ret
= 0, nbpages
, page
;
1027 u_char
*buf
= docg3
->bbt
;
1029 nbpages
= DIV_ROUND_UP(docg3
->max_block
+ 1, 8 * DOC_LAYOUT_PAGE_SIZE
);
1030 for (page
= 0; !ret
&& (page
< nbpages
); page
++) {
1031 ret
= doc_read_page_prepare(docg3
, block
, block
+ 1,
1032 page
+ DOC_LAYOUT_PAGE_BBT
, 0);
1034 ret
= doc_read_page_ecc_init(docg3
,
1035 DOC_LAYOUT_PAGE_SIZE
);
1037 doc_read_page_getbytes(docg3
, DOC_LAYOUT_PAGE_SIZE
,
1039 buf
+= DOC_LAYOUT_PAGE_SIZE
;
1041 doc_read_page_finish(docg3
);
1046 * doc_block_isbad - Checks whether a block is good or not
1048 * @from: the offset to find the correct block
1050 * Returns 1 if block is bad, 0 if block is good
1052 static int doc_block_isbad(struct mtd_info
*mtd
, loff_t from
)
1054 struct docg3
*docg3
= mtd
->priv
;
1055 int block0
, block1
, page
, ofs
, is_good
;
1057 calc_block_sector(from
, &block0
, &block1
, &page
, &ofs
,
1059 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1060 from
, block0
, block1
, page
, ofs
);
1062 if (block0
< DOC_LAYOUT_BLOCK_FIRST_DATA
)
1064 if (block1
> docg3
->max_block
)
1067 is_good
= docg3
->bbt
[block0
>> 3] & (1 << (block0
& 0x7));
1073 * doc_get_erase_count - Get block erase count
1074 * @docg3: the device
1075 * @from: the offset in which the block is.
1077 * Get the number of times a block was erased. The number is the maximum of
1078 * erase times between first and second plane (which should be equal normally).
1080 * Returns The number of erases, or -EINVAL or -EIO on error.
1082 static int doc_get_erase_count(struct docg3
*docg3
, loff_t from
)
1084 u8 buf
[DOC_LAYOUT_WEAR_SIZE
];
1085 int ret
, plane1_erase_count
, plane2_erase_count
;
1086 int block0
, block1
, page
, ofs
;
1088 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from
, buf
);
1089 if (from
% DOC_LAYOUT_PAGE_SIZE
)
1091 calc_block_sector(from
, &block0
, &block1
, &page
, &ofs
, docg3
->reliable
);
1092 if (block1
> docg3
->max_block
)
1095 ret
= doc_reset_seq(docg3
);
1097 ret
= doc_read_page_prepare(docg3
, block0
, block1
, page
,
1098 ofs
+ DOC_LAYOUT_WEAR_OFFSET
, 0);
1100 ret
= doc_read_page_getbytes(docg3
, DOC_LAYOUT_WEAR_SIZE
,
1102 doc_read_page_finish(docg3
);
1104 if (ret
|| (buf
[0] != DOC_ERASE_MARK
) || (buf
[2] != DOC_ERASE_MARK
))
1106 plane1_erase_count
= (u8
)(~buf
[1]) | ((u8
)(~buf
[4]) << 8)
1107 | ((u8
)(~buf
[5]) << 16);
1108 plane2_erase_count
= (u8
)(~buf
[3]) | ((u8
)(~buf
[6]) << 8)
1109 | ((u8
)(~buf
[7]) << 16);
1111 return max(plane1_erase_count
, plane2_erase_count
);
1116 * doc_get_op_status - get erase/write operation status
1117 * @docg3: the device
1119 * Queries the status from the chip, and returns it
1121 * Returns the status (bits DOC_PLANES_STATUS_*)
1123 static int doc_get_op_status(struct docg3
*docg3
)
1127 doc_flash_sequence(docg3
, DOC_SEQ_PLANES_STATUS
);
1128 doc_flash_command(docg3
, DOC_CMD_PLANES_STATUS
);
1129 doc_delay(docg3
, 5);
1131 doc_ecc_disable(docg3
);
1132 doc_read_data_area(docg3
, &status
, 1, 1);
1137 * doc_write_erase_wait_status - wait for write or erase completion
1138 * @docg3: the device
1140 * Wait for the chip to be ready again after erase or write operation, and check
1141 * erase/write status.
1143 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1146 static int doc_write_erase_wait_status(struct docg3
*docg3
)
1148 int i
, status
, ret
= 0;
1150 for (i
= 0; !doc_is_ready(docg3
) && i
< 5; i
++)
1152 if (!doc_is_ready(docg3
)) {
1153 doc_dbg("Timeout reached and the chip is still not ready\n");
1158 status
= doc_get_op_status(docg3
);
1159 if (status
& DOC_PLANES_STATUS_FAIL
) {
1160 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1166 doc_page_finish(docg3
);
1171 * doc_erase_block - Erase a couple of blocks
1172 * @docg3: the device
1173 * @block0: the first block to erase (leftmost plane)
1174 * @block1: the second block to erase (rightmost plane)
1176 * Erase both blocks, and return operation status
1178 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1179 * ready for too long
1181 static int doc_erase_block(struct docg3
*docg3
, int block0
, int block1
)
1185 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0
, block1
);
1186 ret
= doc_reset_seq(docg3
);
1190 doc_set_reliable_mode(docg3
);
1191 doc_flash_sequence(docg3
, DOC_SEQ_ERASE
);
1193 sector
= block0
<< DOC_ADDR_BLOCK_SHIFT
;
1194 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
1195 doc_setup_addr_sector(docg3
, sector
);
1196 sector
= block1
<< DOC_ADDR_BLOCK_SHIFT
;
1197 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
1198 doc_setup_addr_sector(docg3
, sector
);
1199 doc_delay(docg3
, 1);
1201 doc_flash_command(docg3
, DOC_CMD_ERASECYCLE2
);
1202 doc_delay(docg3
, 2);
1204 if (is_prot_seq_error(docg3
)) {
1205 doc_err("Erase blocks %d,%d error\n", block0
, block1
);
1209 return doc_write_erase_wait_status(docg3
);
1213 * doc_erase - Erase a portion of the chip
1215 * @info: the erase info
1217 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1218 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1220 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1223 static int doc_erase(struct mtd_info
*mtd
, struct erase_info
*info
)
1225 struct docg3
*docg3
= mtd
->priv
;
1227 int block0
, block1
, page
, ret
, ofs
= 0;
1229 doc_dbg("doc_erase(from=%lld, len=%lld\n", info
->addr
, info
->len
);
1231 info
->state
= MTD_ERASE_PENDING
;
1232 calc_block_sector(info
->addr
+ info
->len
, &block0
, &block1
, &page
,
1233 &ofs
, docg3
->reliable
);
1235 if (info
->addr
+ info
->len
> mtd
->size
|| page
|| ofs
)
1239 calc_block_sector(info
->addr
, &block0
, &block1
, &page
, &ofs
,
1241 mutex_lock(&docg3
->cascade
->lock
);
1242 doc_set_device_id(docg3
, docg3
->device_id
);
1243 doc_set_reliable_mode(docg3
);
1244 for (len
= info
->len
; !ret
&& len
> 0; len
-= mtd
->erasesize
) {
1245 info
->state
= MTD_ERASING
;
1246 ret
= doc_erase_block(docg3
, block0
, block1
);
1250 mutex_unlock(&docg3
->cascade
->lock
);
1255 info
->state
= MTD_ERASE_DONE
;
1259 info
->state
= MTD_ERASE_FAILED
;
1264 * doc_write_page - Write a single page to the chip
1265 * @docg3: the device
1266 * @to: the offset from first block and first page, in bytes, aligned on page
1268 * @buf: buffer to get bytes from
1269 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1271 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1272 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1273 * remaining ones are filled with hardware Hamming and BCH
1274 * computations. Its value is not meaningfull is oob == NULL.
1276 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1277 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1278 * BCH generator if autoecc is not null.
1280 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1282 static int doc_write_page(struct docg3
*docg3
, loff_t to
, const u_char
*buf
,
1283 const u_char
*oob
, int autoecc
)
1285 int block0
, block1
, page
, ret
, ofs
= 0;
1286 u8 hwecc
[DOC_ECC_BCH_SIZE
], hamming
;
1288 doc_dbg("doc_write_page(to=%lld)\n", to
);
1289 calc_block_sector(to
, &block0
, &block1
, &page
, &ofs
, docg3
->reliable
);
1291 doc_set_device_id(docg3
, docg3
->device_id
);
1292 ret
= doc_reset_seq(docg3
);
1296 /* Program the flash address block and page */
1297 ret
= doc_write_seek(docg3
, block0
, block1
, page
, ofs
);
1301 doc_write_page_ecc_init(docg3
, DOC_ECC_BCH_TOTAL_BYTES
);
1302 doc_delay(docg3
, 2);
1303 doc_write_page_putbytes(docg3
, DOC_LAYOUT_PAGE_SIZE
, buf
);
1305 if (oob
&& autoecc
) {
1306 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_PAGEINFO_SZ
, oob
);
1307 doc_delay(docg3
, 2);
1308 oob
+= DOC_LAYOUT_OOB_UNUSED_OFS
;
1310 hamming
= doc_register_readb(docg3
, DOC_HAMMINGPARITY
);
1311 doc_delay(docg3
, 2);
1312 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_HAMMING_SZ
,
1314 doc_delay(docg3
, 2);
1316 doc_get_bch_hw_ecc(docg3
, hwecc
);
1317 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_BCH_SZ
, hwecc
);
1318 doc_delay(docg3
, 2);
1320 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_UNUSED_SZ
, oob
);
1322 if (oob
&& !autoecc
)
1323 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_SIZE
, oob
);
1325 doc_delay(docg3
, 2);
1326 doc_page_finish(docg3
);
1327 doc_delay(docg3
, 2);
1328 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE2
);
1329 doc_delay(docg3
, 2);
1332 * The wait status will perform another doc_page_finish() call, but that
1333 * seems to please the docg3, so leave it.
1335 ret
= doc_write_erase_wait_status(docg3
);
1338 doc_read_page_finish(docg3
);
1343 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1344 * @ops: the oob operations
1346 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1348 static int doc_guess_autoecc(struct mtd_oob_ops
*ops
)
1352 switch (ops
->mode
) {
1353 case MTD_OPS_PLACE_OOB
:
1354 case MTD_OPS_AUTO_OOB
:
1367 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1368 * @dst: the target 16 bytes OOB buffer
1369 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1372 static void doc_fill_autooob(u8
*dst
, u8
*oobsrc
)
1374 memcpy(dst
, oobsrc
, DOC_LAYOUT_OOB_PAGEINFO_SZ
);
1375 dst
[DOC_LAYOUT_OOB_UNUSED_OFS
] = oobsrc
[DOC_LAYOUT_OOB_PAGEINFO_SZ
];
1379 * doc_backup_oob - Backup OOB into docg3 structure
1380 * @docg3: the device
1381 * @to: the page offset in the chip
1382 * @ops: the OOB size and buffer
1384 * As the docg3 should write a page with its OOB in one pass, and some userland
1385 * applications do write_oob() to setup the OOB and then write(), store the OOB
1386 * into a temporary storage. This is very dangerous, as 2 concurrent
1387 * applications could store an OOB, and then write their pages (which will
1388 * result into one having its OOB corrupted).
1390 * The only reliable way would be for userland to call doc_write_oob() with both
1391 * the page data _and_ the OOB area.
1393 * Returns 0 if success, -EINVAL if ops content invalid
1395 static int doc_backup_oob(struct docg3
*docg3
, loff_t to
,
1396 struct mtd_oob_ops
*ops
)
1398 int ooblen
= ops
->ooblen
, autoecc
;
1400 if (ooblen
!= DOC_LAYOUT_OOB_SIZE
)
1402 autoecc
= doc_guess_autoecc(ops
);
1406 docg3
->oob_write_ofs
= to
;
1407 docg3
->oob_autoecc
= autoecc
;
1408 if (ops
->mode
== MTD_OPS_AUTO_OOB
) {
1409 doc_fill_autooob(docg3
->oob_write_buf
, ops
->oobbuf
);
1412 memcpy(docg3
->oob_write_buf
, ops
->oobbuf
, DOC_LAYOUT_OOB_SIZE
);
1413 ops
->oobretlen
= DOC_LAYOUT_OOB_SIZE
;
1419 * doc_write_oob - Write out of band bytes to flash
1421 * @ofs: the offset from first block and first page, in bytes, aligned on page
1423 * @ops: the mtd oob structure
1425 * Either write OOB data into a temporary buffer, for the subsequent write
1426 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1427 * as well, issue the page write.
1428 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1429 * still be filled in if asked for).
1431 * Returns 0 is successful, EINVAL if length is not 14 bytes
1433 static int doc_write_oob(struct mtd_info
*mtd
, loff_t ofs
,
1434 struct mtd_oob_ops
*ops
)
1436 struct docg3
*docg3
= mtd
->priv
;
1437 int ret
, autoecc
, oobdelta
;
1438 u8
*oobbuf
= ops
->oobbuf
;
1439 u8
*buf
= ops
->datbuf
;
1441 u8 oob
[DOC_LAYOUT_OOB_SIZE
];
1448 ooblen
= ops
->ooblen
;
1452 if (oobbuf
&& ops
->mode
== MTD_OPS_PLACE_OOB
)
1453 oobbuf
+= ops
->ooboffs
;
1455 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1456 ofs
, ops
->mode
, buf
, len
, oobbuf
, ooblen
);
1457 switch (ops
->mode
) {
1458 case MTD_OPS_PLACE_OOB
:
1460 oobdelta
= mtd
->oobsize
;
1462 case MTD_OPS_AUTO_OOB
:
1463 oobdelta
= mtd
->oobavail
;
1468 if ((len
% DOC_LAYOUT_PAGE_SIZE
) || (ooblen
% oobdelta
) ||
1469 (ofs
% DOC_LAYOUT_PAGE_SIZE
))
1471 if (len
&& ooblen
&&
1472 (len
/ DOC_LAYOUT_PAGE_SIZE
) != (ooblen
/ oobdelta
))
1474 if (ofs
+ len
> mtd
->size
)
1480 if (len
== 0 && ooblen
== 0)
1482 if (len
== 0 && ooblen
> 0)
1483 return doc_backup_oob(docg3
, ofs
, ops
);
1485 autoecc
= doc_guess_autoecc(ops
);
1489 mutex_lock(&docg3
->cascade
->lock
);
1490 while (!ret
&& len
> 0) {
1491 memset(oob
, 0, sizeof(oob
));
1492 if (ofs
== docg3
->oob_write_ofs
)
1493 memcpy(oob
, docg3
->oob_write_buf
, DOC_LAYOUT_OOB_SIZE
);
1494 else if (ooblen
> 0 && ops
->mode
== MTD_OPS_AUTO_OOB
)
1495 doc_fill_autooob(oob
, oobbuf
);
1496 else if (ooblen
> 0)
1497 memcpy(oob
, oobbuf
, DOC_LAYOUT_OOB_SIZE
);
1498 ret
= doc_write_page(docg3
, ofs
, buf
, oob
, autoecc
);
1500 ofs
+= DOC_LAYOUT_PAGE_SIZE
;
1501 len
-= DOC_LAYOUT_PAGE_SIZE
;
1502 buf
+= DOC_LAYOUT_PAGE_SIZE
;
1506 ops
->oobretlen
+= oobdelta
;
1508 ops
->retlen
+= DOC_LAYOUT_PAGE_SIZE
;
1511 doc_set_device_id(docg3
, 0);
1512 mutex_unlock(&docg3
->cascade
->lock
);
1517 * doc_write - Write a buffer to the chip
1519 * @to: the offset from first block and first page, in bytes, aligned on page
1521 * @len: the number of bytes to write (must be a full page size, ie. 512)
1522 * @retlen: the number of bytes actually written (0 or 512)
1523 * @buf: the buffer to get bytes from
1525 * Writes data to the chip.
1527 * Returns 0 if write successful, -EIO if write error
1529 static int doc_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1530 size_t *retlen
, const u_char
*buf
)
1532 struct docg3
*docg3
= mtd
->priv
;
1534 struct mtd_oob_ops ops
;
1536 doc_dbg("doc_write(to=%lld, len=%zu)\n", to
, len
);
1537 ops
.datbuf
= (char *)buf
;
1539 ops
.mode
= MTD_OPS_PLACE_OOB
;
1544 ret
= doc_write_oob(mtd
, to
, &ops
);
1545 *retlen
= ops
.retlen
;
1549 static struct docg3
*sysfs_dev2docg3(struct device
*dev
,
1550 struct device_attribute
*attr
)
1553 struct platform_device
*pdev
= to_platform_device(dev
);
1554 struct mtd_info
**docg3_floors
= platform_get_drvdata(pdev
);
1556 floor
= attr
->attr
.name
[1] - '0';
1557 if (floor
< 0 || floor
>= DOC_MAX_NBFLOORS
)
1560 return docg3_floors
[floor
]->priv
;
1563 static ssize_t
dps0_is_key_locked(struct device
*dev
,
1564 struct device_attribute
*attr
, char *buf
)
1566 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1569 mutex_lock(&docg3
->cascade
->lock
);
1570 doc_set_device_id(docg3
, docg3
->device_id
);
1571 dps0
= doc_register_readb(docg3
, DOC_DPS0_STATUS
);
1572 doc_set_device_id(docg3
, 0);
1573 mutex_unlock(&docg3
->cascade
->lock
);
1575 return sprintf(buf
, "%d\n", !(dps0
& DOC_DPS_KEY_OK
));
1578 static ssize_t
dps1_is_key_locked(struct device
*dev
,
1579 struct device_attribute
*attr
, char *buf
)
1581 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1584 mutex_lock(&docg3
->cascade
->lock
);
1585 doc_set_device_id(docg3
, docg3
->device_id
);
1586 dps1
= doc_register_readb(docg3
, DOC_DPS1_STATUS
);
1587 doc_set_device_id(docg3
, 0);
1588 mutex_unlock(&docg3
->cascade
->lock
);
1590 return sprintf(buf
, "%d\n", !(dps1
& DOC_DPS_KEY_OK
));
1593 static ssize_t
dps0_insert_key(struct device
*dev
,
1594 struct device_attribute
*attr
,
1595 const char *buf
, size_t count
)
1597 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1600 if (count
!= DOC_LAYOUT_DPS_KEY_LENGTH
)
1603 mutex_lock(&docg3
->cascade
->lock
);
1604 doc_set_device_id(docg3
, docg3
->device_id
);
1605 for (i
= 0; i
< DOC_LAYOUT_DPS_KEY_LENGTH
; i
++)
1606 doc_writeb(docg3
, buf
[i
], DOC_DPS0_KEY
);
1607 doc_set_device_id(docg3
, 0);
1608 mutex_unlock(&docg3
->cascade
->lock
);
1612 static ssize_t
dps1_insert_key(struct device
*dev
,
1613 struct device_attribute
*attr
,
1614 const char *buf
, size_t count
)
1616 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1619 if (count
!= DOC_LAYOUT_DPS_KEY_LENGTH
)
1622 mutex_lock(&docg3
->cascade
->lock
);
1623 doc_set_device_id(docg3
, docg3
->device_id
);
1624 for (i
= 0; i
< DOC_LAYOUT_DPS_KEY_LENGTH
; i
++)
1625 doc_writeb(docg3
, buf
[i
], DOC_DPS1_KEY
);
1626 doc_set_device_id(docg3
, 0);
1627 mutex_unlock(&docg3
->cascade
->lock
);
1631 #define FLOOR_SYSFS(id) { \
1632 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1633 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1634 __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1635 __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1638 static struct device_attribute doc_sys_attrs
[DOC_MAX_NBFLOORS
][4] = {
1639 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1642 static int doc_register_sysfs(struct platform_device
*pdev
,
1643 struct docg3_cascade
*cascade
)
1645 struct device
*dev
= &pdev
->dev
;
1651 floor
< DOC_MAX_NBFLOORS
&& cascade
->floors
[floor
];
1653 for (i
= 0; i
< 4; i
++) {
1654 ret
= device_create_file(dev
, &doc_sys_attrs
[floor
][i
]);
1665 device_remove_file(dev
, &doc_sys_attrs
[floor
][i
]);
1667 } while (--floor
>= 0);
1672 static void doc_unregister_sysfs(struct platform_device
*pdev
,
1673 struct docg3_cascade
*cascade
)
1675 struct device
*dev
= &pdev
->dev
;
1678 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
&& cascade
->floors
[floor
];
1680 for (i
= 0; i
< 4; i
++)
1681 device_remove_file(dev
, &doc_sys_attrs
[floor
][i
]);
1685 * Debug sysfs entries
1687 static int dbg_flashctrl_show(struct seq_file
*s
, void *p
)
1689 struct docg3
*docg3
= (struct docg3
*)s
->private;
1693 mutex_lock(&docg3
->cascade
->lock
);
1694 fctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
1695 mutex_unlock(&docg3
->cascade
->lock
);
1697 seq_printf(s
, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1699 fctrl
& DOC_CTRL_VIOLATION
? "protocol violation" : "-",
1700 fctrl
& DOC_CTRL_CE
? "active" : "inactive",
1701 fctrl
& DOC_CTRL_PROTECTION_ERROR
? "protection error" : "-",
1702 fctrl
& DOC_CTRL_SEQUENCE_ERROR
? "sequence error" : "-",
1703 fctrl
& DOC_CTRL_FLASHREADY
? "ready" : "not ready");
1707 DEBUGFS_RO_ATTR(flashcontrol
, dbg_flashctrl_show
);
1709 static int dbg_asicmode_show(struct seq_file
*s
, void *p
)
1711 struct docg3
*docg3
= (struct docg3
*)s
->private;
1715 mutex_lock(&docg3
->cascade
->lock
);
1716 pctrl
= doc_register_readb(docg3
, DOC_ASICMODE
);
1717 mode
= pctrl
& 0x03;
1718 mutex_unlock(&docg3
->cascade
->lock
);
1721 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1723 pctrl
& DOC_ASICMODE_RAM_WE
? 1 : 0,
1724 pctrl
& DOC_ASICMODE_RSTIN_RESET
? 1 : 0,
1725 pctrl
& DOC_ASICMODE_BDETCT_RESET
? 1 : 0,
1726 pctrl
& DOC_ASICMODE_MDWREN
? 1 : 0,
1727 pctrl
& DOC_ASICMODE_POWERDOWN
? 1 : 0,
1728 mode
>> 1, mode
& 0x1);
1731 case DOC_ASICMODE_RESET
:
1732 seq_puts(s
, "reset");
1734 case DOC_ASICMODE_NORMAL
:
1735 seq_puts(s
, "normal");
1737 case DOC_ASICMODE_POWERDOWN
:
1738 seq_puts(s
, "powerdown");
1744 DEBUGFS_RO_ATTR(asic_mode
, dbg_asicmode_show
);
1746 static int dbg_device_id_show(struct seq_file
*s
, void *p
)
1748 struct docg3
*docg3
= (struct docg3
*)s
->private;
1751 mutex_lock(&docg3
->cascade
->lock
);
1752 id
= doc_register_readb(docg3
, DOC_DEVICESELECT
);
1753 mutex_unlock(&docg3
->cascade
->lock
);
1755 seq_printf(s
, "DeviceId = %d\n", id
);
1758 DEBUGFS_RO_ATTR(device_id
, dbg_device_id_show
);
1760 static int dbg_protection_show(struct seq_file
*s
, void *p
)
1762 struct docg3
*docg3
= (struct docg3
*)s
->private;
1763 int protect
, dps0
, dps0_low
, dps0_high
, dps1
, dps1_low
, dps1_high
;
1765 mutex_lock(&docg3
->cascade
->lock
);
1766 protect
= doc_register_readb(docg3
, DOC_PROTECTION
);
1767 dps0
= doc_register_readb(docg3
, DOC_DPS0_STATUS
);
1768 dps0_low
= doc_register_readw(docg3
, DOC_DPS0_ADDRLOW
);
1769 dps0_high
= doc_register_readw(docg3
, DOC_DPS0_ADDRHIGH
);
1770 dps1
= doc_register_readb(docg3
, DOC_DPS1_STATUS
);
1771 dps1_low
= doc_register_readw(docg3
, DOC_DPS1_ADDRLOW
);
1772 dps1_high
= doc_register_readw(docg3
, DOC_DPS1_ADDRHIGH
);
1773 mutex_unlock(&docg3
->cascade
->lock
);
1775 seq_printf(s
, "Protection = 0x%02x (", protect
);
1776 if (protect
& DOC_PROTECT_FOUNDRY_OTP_LOCK
)
1777 seq_puts(s
, "FOUNDRY_OTP_LOCK,");
1778 if (protect
& DOC_PROTECT_CUSTOMER_OTP_LOCK
)
1779 seq_puts(s
, "CUSTOMER_OTP_LOCK,");
1780 if (protect
& DOC_PROTECT_LOCK_INPUT
)
1781 seq_puts(s
, "LOCK_INPUT,");
1782 if (protect
& DOC_PROTECT_STICKY_LOCK
)
1783 seq_puts(s
, "STICKY_LOCK,");
1784 if (protect
& DOC_PROTECT_PROTECTION_ENABLED
)
1785 seq_puts(s
, "PROTECTION ON,");
1786 if (protect
& DOC_PROTECT_IPL_DOWNLOAD_LOCK
)
1787 seq_puts(s
, "IPL_DOWNLOAD_LOCK,");
1788 if (protect
& DOC_PROTECT_PROTECTION_ERROR
)
1789 seq_puts(s
, "PROTECT_ERR,");
1791 seq_puts(s
, "NO_PROTECT_ERR");
1794 seq_printf(s
, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1795 dps0
, dps0_low
, dps0_high
,
1796 !!(dps0
& DOC_DPS_OTP_PROTECTED
),
1797 !!(dps0
& DOC_DPS_READ_PROTECTED
),
1798 !!(dps0
& DOC_DPS_WRITE_PROTECTED
),
1799 !!(dps0
& DOC_DPS_HW_LOCK_ENABLED
),
1800 !!(dps0
& DOC_DPS_KEY_OK
));
1801 seq_printf(s
, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1802 dps1
, dps1_low
, dps1_high
,
1803 !!(dps1
& DOC_DPS_OTP_PROTECTED
),
1804 !!(dps1
& DOC_DPS_READ_PROTECTED
),
1805 !!(dps1
& DOC_DPS_WRITE_PROTECTED
),
1806 !!(dps1
& DOC_DPS_HW_LOCK_ENABLED
),
1807 !!(dps1
& DOC_DPS_KEY_OK
));
1810 DEBUGFS_RO_ATTR(protection
, dbg_protection_show
);
1812 static int __init
doc_dbg_register(struct docg3
*docg3
)
1814 struct dentry
*root
, *entry
;
1816 root
= debugfs_create_dir("docg3", NULL
);
1820 entry
= debugfs_create_file("flashcontrol", S_IRUSR
, root
, docg3
,
1821 &flashcontrol_fops
);
1823 entry
= debugfs_create_file("asic_mode", S_IRUSR
, root
,
1824 docg3
, &asic_mode_fops
);
1826 entry
= debugfs_create_file("device_id", S_IRUSR
, root
,
1827 docg3
, &device_id_fops
);
1829 entry
= debugfs_create_file("protection", S_IRUSR
, root
,
1830 docg3
, &protection_fops
);
1832 docg3
->debugfs_root
= root
;
1835 debugfs_remove_recursive(root
);
1840 static void doc_dbg_unregister(struct docg3
*docg3
)
1842 debugfs_remove_recursive(docg3
->debugfs_root
);
1846 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1847 * @chip_id: The chip ID of the supported chip
1848 * @mtd: The structure to fill
1850 static int __init
doc_set_driver_info(int chip_id
, struct mtd_info
*mtd
)
1852 struct docg3
*docg3
= mtd
->priv
;
1855 cfg
= doc_register_readb(docg3
, DOC_CONFIGURATION
);
1856 docg3
->if_cfg
= (cfg
& DOC_CONF_IF_CFG
? 1 : 0);
1857 docg3
->reliable
= reliable_mode
;
1861 mtd
->name
= kasprintf(GFP_KERNEL
, "docg3.%d",
1865 docg3
->max_block
= 2047;
1868 mtd
->type
= MTD_NANDFLASH
;
1869 mtd
->flags
= MTD_CAP_NANDFLASH
;
1870 mtd
->size
= (docg3
->max_block
+ 1) * DOC_LAYOUT_BLOCK_SIZE
;
1871 if (docg3
->reliable
== 2)
1873 mtd
->erasesize
= DOC_LAYOUT_BLOCK_SIZE
* DOC_LAYOUT_NBPLANES
;
1874 if (docg3
->reliable
== 2)
1875 mtd
->erasesize
/= 2;
1876 mtd
->writebufsize
= mtd
->writesize
= DOC_LAYOUT_PAGE_SIZE
;
1877 mtd
->oobsize
= DOC_LAYOUT_OOB_SIZE
;
1878 mtd
->_erase
= doc_erase
;
1879 mtd
->_read
= doc_read
;
1880 mtd
->_write
= doc_write
;
1881 mtd
->_read_oob
= doc_read_oob
;
1882 mtd
->_write_oob
= doc_write_oob
;
1883 mtd
->_block_isbad
= doc_block_isbad
;
1884 mtd_set_ooblayout(mtd
, &nand_ooblayout_docg3_ops
);
1886 mtd
->ecc_strength
= DOC_ECC_BCH_T
;
1892 * doc_probe_device - Check if a device is available
1893 * @base: the io space where the device is probed
1894 * @floor: the floor of the probed device
1896 * @cascade: the cascade of chips this devices will belong to
1898 * Checks whether a device at the specified IO range, and floor is available.
1900 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1901 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1904 static struct mtd_info
* __init
1905 doc_probe_device(struct docg3_cascade
*cascade
, int floor
, struct device
*dev
)
1907 int ret
, bbt_nbpages
;
1908 u16 chip_id
, chip_id_inv
;
1909 struct docg3
*docg3
;
1910 struct mtd_info
*mtd
;
1913 docg3
= kzalloc(sizeof(struct docg3
), GFP_KERNEL
);
1916 mtd
= kzalloc(sizeof(struct mtd_info
), GFP_KERNEL
);
1920 mtd
->dev
.parent
= dev
;
1921 bbt_nbpages
= DIV_ROUND_UP(docg3
->max_block
+ 1,
1922 8 * DOC_LAYOUT_PAGE_SIZE
);
1923 docg3
->bbt
= kzalloc(bbt_nbpages
* DOC_LAYOUT_PAGE_SIZE
, GFP_KERNEL
);
1928 docg3
->device_id
= floor
;
1929 docg3
->cascade
= cascade
;
1930 doc_set_device_id(docg3
, docg3
->device_id
);
1932 doc_set_asic_mode(docg3
, DOC_ASICMODE_RESET
);
1933 doc_set_asic_mode(docg3
, DOC_ASICMODE_NORMAL
);
1935 chip_id
= doc_register_readw(docg3
, DOC_CHIPID
);
1936 chip_id_inv
= doc_register_readw(docg3
, DOC_CHIPID_INV
);
1939 if (chip_id
!= (u16
)(~chip_id_inv
)) {
1945 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1946 docg3
->cascade
->base
, floor
);
1949 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id
);
1953 ret
= doc_set_driver_info(chip_id
, mtd
);
1957 doc_hamming_ecc_init(docg3
, DOC_LAYOUT_OOB_PAGEINFO_SZ
);
1958 doc_reload_bbt(docg3
);
1968 return ERR_PTR(ret
);
1972 * doc_release_device - Release a docg3 floor
1975 static void doc_release_device(struct mtd_info
*mtd
)
1977 struct docg3
*docg3
= mtd
->priv
;
1979 mtd_device_unregister(mtd
);
1987 * docg3_resume - Awakens docg3 floor
1988 * @pdev: platfrom device
1990 * Returns 0 (always successful)
1992 static int docg3_resume(struct platform_device
*pdev
)
1995 struct docg3_cascade
*cascade
;
1996 struct mtd_info
**docg3_floors
, *mtd
;
1997 struct docg3
*docg3
;
1999 cascade
= platform_get_drvdata(pdev
);
2000 docg3_floors
= cascade
->floors
;
2001 mtd
= docg3_floors
[0];
2004 doc_dbg("docg3_resume()\n");
2005 for (i
= 0; i
< 12; i
++)
2006 doc_readb(docg3
, DOC_IOSPACE_IPL
);
2011 * docg3_suspend - Put in low power mode the docg3 floor
2012 * @pdev: platform device
2013 * @state: power state
2015 * Shuts off most of docg3 circuitery to lower power consumption.
2017 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
2019 static int docg3_suspend(struct platform_device
*pdev
, pm_message_t state
)
2022 struct docg3_cascade
*cascade
;
2023 struct mtd_info
**docg3_floors
, *mtd
;
2024 struct docg3
*docg3
;
2027 cascade
= platform_get_drvdata(pdev
);
2028 docg3_floors
= cascade
->floors
;
2029 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++) {
2030 mtd
= docg3_floors
[floor
];
2035 doc_writeb(docg3
, floor
, DOC_DEVICESELECT
);
2036 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
2037 ctrl
&= ~DOC_CTRL_VIOLATION
& ~DOC_CTRL_CE
;
2038 doc_writeb(docg3
, ctrl
, DOC_FLASHCONTROL
);
2040 for (i
= 0; i
< 10; i
++) {
2041 usleep_range(3000, 4000);
2042 pwr_down
= doc_register_readb(docg3
, DOC_POWERMODE
);
2043 if (pwr_down
& DOC_POWERDOWN_READY
)
2046 if (pwr_down
& DOC_POWERDOWN_READY
) {
2047 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2050 doc_err("docg3_suspend(): floor %d powerdown failed\n",
2056 mtd
= docg3_floors
[0];
2058 doc_set_asic_mode(docg3
, DOC_ASICMODE_POWERDOWN
);
2063 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2064 * @pdev: platform device
2066 * Probes for a G3 chip at the specified IO space in the platform data
2067 * ressources. The floor 0 must be available.
2069 * Returns 0 on success, -ENOMEM, -ENXIO on error
2071 static int __init
docg3_probe(struct platform_device
*pdev
)
2073 struct device
*dev
= &pdev
->dev
;
2074 struct mtd_info
*mtd
;
2075 struct resource
*ress
;
2078 struct docg3_cascade
*cascade
;
2081 ress
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2083 dev_err(dev
, "No I/O memory resource defined\n");
2086 base
= devm_ioremap(dev
, ress
->start
, DOC_IOSPACE_SIZE
);
2089 cascade
= devm_kzalloc(dev
, sizeof(*cascade
) * DOC_MAX_NBFLOORS
,
2093 cascade
->base
= base
;
2094 mutex_init(&cascade
->lock
);
2095 cascade
->bch
= init_bch(DOC_ECC_BCH_M
, DOC_ECC_BCH_T
,
2096 DOC_ECC_BCH_PRIMPOLY
);
2100 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++) {
2101 mtd
= doc_probe_device(cascade
, floor
, dev
);
2112 cascade
->floors
[floor
] = mtd
;
2113 ret
= mtd_device_parse_register(mtd
, part_probes
, NULL
, NULL
,
2119 ret
= doc_register_sysfs(pdev
, cascade
);
2123 platform_set_drvdata(pdev
, cascade
);
2124 doc_dbg_register(cascade
->floors
[0]->priv
);
2129 dev_info(dev
, "No supported DiskOnChip found\n");
2131 free_bch(cascade
->bch
);
2132 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++)
2133 if (cascade
->floors
[floor
])
2134 doc_release_device(cascade
->floors
[floor
]);
2139 * docg3_release - Release the driver
2140 * @pdev: the platform device
2144 static int docg3_release(struct platform_device
*pdev
)
2146 struct docg3_cascade
*cascade
= platform_get_drvdata(pdev
);
2147 struct docg3
*docg3
= cascade
->floors
[0]->priv
;
2150 doc_unregister_sysfs(pdev
, cascade
);
2151 doc_dbg_unregister(docg3
);
2152 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++)
2153 if (cascade
->floors
[floor
])
2154 doc_release_device(cascade
->floors
[floor
]);
2156 free_bch(docg3
->cascade
->bch
);
2161 static const struct of_device_id docg3_dt_ids
[] = {
2162 { .compatible
= "m-systems,diskonchip-g3" },
2165 MODULE_DEVICE_TABLE(of
, docg3_dt_ids
);
2168 static struct platform_driver g3_driver
= {
2171 .of_match_table
= of_match_ptr(docg3_dt_ids
),
2173 .suspend
= docg3_suspend
,
2174 .resume
= docg3_resume
,
2175 .remove
= docg3_release
,
2178 module_platform_driver_probe(g3_driver
, docg3_probe
);
2180 MODULE_LICENSE("GPL");
2181 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2182 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");