1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static void transport_handle_queue_full(struct se_cmd
*cmd
,
68 struct se_device
*dev
);
69 static int transport_put_cmd(struct se_cmd
*cmd
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
227 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
229 struct se_session
*se_sess
;
231 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
233 pr_err("Unable to allocate struct se_session from"
235 return ERR_PTR(-ENOMEM
);
237 INIT_LIST_HEAD(&se_sess
->sess_list
);
238 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
241 spin_lock_init(&se_sess
->sess_cmd_lock
);
242 se_sess
->sup_prot_ops
= sup_prot_ops
;
246 EXPORT_SYMBOL(transport_init_session
);
248 int transport_alloc_session_tags(struct se_session
*se_sess
,
249 unsigned int tag_num
, unsigned int tag_size
)
253 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
254 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
255 if (!se_sess
->sess_cmd_map
) {
256 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
257 if (!se_sess
->sess_cmd_map
) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
263 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num
);
267 kvfree(se_sess
->sess_cmd_map
);
268 se_sess
->sess_cmd_map
= NULL
;
274 EXPORT_SYMBOL(transport_alloc_session_tags
);
276 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
277 unsigned int tag_size
,
278 enum target_prot_op sup_prot_ops
)
280 struct se_session
*se_sess
;
283 if (tag_num
!= 0 && !tag_size
) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num
);
286 return ERR_PTR(-EINVAL
);
288 if (!tag_num
&& tag_size
) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size
);
291 return ERR_PTR(-EINVAL
);
294 se_sess
= transport_init_session(sup_prot_ops
);
298 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
300 transport_free_session(se_sess
);
301 return ERR_PTR(-ENOMEM
);
306 EXPORT_SYMBOL(transport_init_session_tags
);
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 void __transport_register_session(
312 struct se_portal_group
*se_tpg
,
313 struct se_node_acl
*se_nacl
,
314 struct se_session
*se_sess
,
315 void *fabric_sess_ptr
)
317 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
318 unsigned char buf
[PR_REG_ISID_LEN
];
320 se_sess
->se_tpg
= se_tpg
;
321 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
339 if (se_nacl
->saved_prot_type
)
340 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
341 else if (tfo
->tpg_check_prot_fabric_only
)
342 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
343 tfo
->tpg_check_prot_fabric_only(se_tpg
);
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
348 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
349 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
350 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
351 &buf
[0], PR_REG_ISID_LEN
);
352 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
355 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
360 se_nacl
->nacl_sess
= se_sess
;
362 list_add_tail(&se_sess
->sess_acl_list
,
363 &se_nacl
->acl_sess_list
);
364 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
366 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
371 EXPORT_SYMBOL(__transport_register_session
);
373 void transport_register_session(
374 struct se_portal_group
*se_tpg
,
375 struct se_node_acl
*se_nacl
,
376 struct se_session
*se_sess
,
377 void *fabric_sess_ptr
)
381 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
382 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
383 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
385 EXPORT_SYMBOL(transport_register_session
);
388 target_alloc_session(struct se_portal_group
*tpg
,
389 unsigned int tag_num
, unsigned int tag_size
,
390 enum target_prot_op prot_op
,
391 const char *initiatorname
, void *private,
392 int (*callback
)(struct se_portal_group
*,
393 struct se_session
*, void *))
395 struct se_session
*sess
;
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
402 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
404 sess
= transport_init_session(prot_op
);
409 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
410 (unsigned char *)initiatorname
);
411 if (!sess
->se_node_acl
) {
412 transport_free_session(sess
);
413 return ERR_PTR(-EACCES
);
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
419 if (callback
!= NULL
) {
420 int rc
= callback(tpg
, sess
, private);
422 transport_free_session(sess
);
427 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
430 EXPORT_SYMBOL(target_alloc_session
);
432 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
434 struct se_session
*se_sess
;
437 spin_lock_bh(&se_tpg
->session_lock
);
438 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
439 if (!se_sess
->se_node_acl
)
441 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
443 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
446 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
447 se_sess
->se_node_acl
->initiatorname
);
448 len
+= 1; /* Include NULL terminator */
450 spin_unlock_bh(&se_tpg
->session_lock
);
454 EXPORT_SYMBOL(target_show_dynamic_sessions
);
456 static void target_complete_nacl(struct kref
*kref
)
458 struct se_node_acl
*nacl
= container_of(kref
,
459 struct se_node_acl
, acl_kref
);
461 complete(&nacl
->acl_free_comp
);
464 void target_put_nacl(struct se_node_acl
*nacl
)
466 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
468 EXPORT_SYMBOL(target_put_nacl
);
470 void transport_deregister_session_configfs(struct se_session
*se_sess
)
472 struct se_node_acl
*se_nacl
;
475 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
477 se_nacl
= se_sess
->se_node_acl
;
479 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
480 if (!list_empty(&se_sess
->sess_acl_list
))
481 list_del_init(&se_sess
->sess_acl_list
);
483 * If the session list is empty, then clear the pointer.
484 * Otherwise, set the struct se_session pointer from the tail
485 * element of the per struct se_node_acl active session list.
487 if (list_empty(&se_nacl
->acl_sess_list
))
488 se_nacl
->nacl_sess
= NULL
;
490 se_nacl
->nacl_sess
= container_of(
491 se_nacl
->acl_sess_list
.prev
,
492 struct se_session
, sess_acl_list
);
494 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
497 EXPORT_SYMBOL(transport_deregister_session_configfs
);
499 void transport_free_session(struct se_session
*se_sess
)
501 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
503 * Drop the se_node_acl->nacl_kref obtained from within
504 * core_tpg_get_initiator_node_acl().
507 se_sess
->se_node_acl
= NULL
;
508 target_put_nacl(se_nacl
);
510 if (se_sess
->sess_cmd_map
) {
511 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
512 kvfree(se_sess
->sess_cmd_map
);
514 kmem_cache_free(se_sess_cache
, se_sess
);
516 EXPORT_SYMBOL(transport_free_session
);
518 void transport_deregister_session(struct se_session
*se_sess
)
520 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
521 const struct target_core_fabric_ops
*se_tfo
;
522 struct se_node_acl
*se_nacl
;
524 bool drop_nacl
= false;
527 transport_free_session(se_sess
);
530 se_tfo
= se_tpg
->se_tpg_tfo
;
532 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
533 list_del(&se_sess
->sess_list
);
534 se_sess
->se_tpg
= NULL
;
535 se_sess
->fabric_sess_ptr
= NULL
;
536 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
539 * Determine if we need to do extra work for this initiator node's
540 * struct se_node_acl if it had been previously dynamically generated.
542 se_nacl
= se_sess
->se_node_acl
;
544 mutex_lock(&se_tpg
->acl_node_mutex
);
545 if (se_nacl
&& se_nacl
->dynamic_node_acl
) {
546 if (!se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
547 list_del(&se_nacl
->acl_list
);
551 mutex_unlock(&se_tpg
->acl_node_mutex
);
554 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
555 core_free_device_list_for_node(se_nacl
, se_tpg
);
556 se_sess
->se_node_acl
= NULL
;
559 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
560 se_tpg
->se_tpg_tfo
->get_fabric_name());
562 * If last kref is dropping now for an explicit NodeACL, awake sleeping
563 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
564 * removal context from within transport_free_session() code.
567 transport_free_session(se_sess
);
569 EXPORT_SYMBOL(transport_deregister_session
);
571 static void target_remove_from_state_list(struct se_cmd
*cmd
)
573 struct se_device
*dev
= cmd
->se_dev
;
579 if (cmd
->transport_state
& CMD_T_BUSY
)
582 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
583 if (cmd
->state_active
) {
584 list_del(&cmd
->state_list
);
585 cmd
->state_active
= false;
587 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
590 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
595 if (remove_from_lists
) {
596 target_remove_from_state_list(cmd
);
599 * Clear struct se_cmd->se_lun before the handoff to FE.
604 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
606 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
609 * Determine if frontend context caller is requesting the stopping of
610 * this command for frontend exceptions.
612 if (cmd
->transport_state
& CMD_T_STOP
) {
613 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
614 __func__
, __LINE__
, cmd
->tag
);
616 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
618 complete_all(&cmd
->t_transport_stop_comp
);
622 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
623 if (remove_from_lists
) {
625 * Some fabric modules like tcm_loop can release
626 * their internally allocated I/O reference now and
629 * Fabric modules are expected to return '1' here if the
630 * se_cmd being passed is released at this point,
631 * or zero if not being released.
633 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
634 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
635 return cmd
->se_tfo
->check_stop_free(cmd
);
639 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
643 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
645 return transport_cmd_check_stop(cmd
, true, false);
648 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
650 struct se_lun
*lun
= cmd
->se_lun
;
655 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
656 percpu_ref_put(&lun
->lun_ref
);
659 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
661 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
663 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
664 transport_lun_remove_cmd(cmd
);
666 * Allow the fabric driver to unmap any resources before
667 * releasing the descriptor via TFO->release_cmd()
670 cmd
->se_tfo
->aborted_task(cmd
);
672 if (transport_cmd_check_stop_to_fabric(cmd
))
674 if (remove
&& ack_kref
)
675 transport_put_cmd(cmd
);
678 static void target_complete_failure_work(struct work_struct
*work
)
680 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
682 transport_generic_request_failure(cmd
,
683 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
687 * Used when asking transport to copy Sense Data from the underlying
688 * Linux/SCSI struct scsi_cmnd
690 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
692 struct se_device
*dev
= cmd
->se_dev
;
694 WARN_ON(!cmd
->se_lun
);
699 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
702 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
704 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
705 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
706 return cmd
->sense_buffer
;
709 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
711 struct se_device
*dev
= cmd
->se_dev
;
712 int success
= scsi_status
== GOOD
;
715 cmd
->scsi_status
= scsi_status
;
718 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
719 cmd
->transport_state
&= ~CMD_T_BUSY
;
721 if (dev
&& dev
->transport
->transport_complete
) {
722 dev
->transport
->transport_complete(cmd
,
724 transport_get_sense_buffer(cmd
));
725 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
730 * Check for case where an explicit ABORT_TASK has been received
731 * and transport_wait_for_tasks() will be waiting for completion..
733 if (cmd
->transport_state
& CMD_T_ABORTED
||
734 cmd
->transport_state
& CMD_T_STOP
) {
735 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
736 complete_all(&cmd
->t_transport_stop_comp
);
738 } else if (!success
) {
739 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
741 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
744 cmd
->t_state
= TRANSPORT_COMPLETE
;
745 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
746 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
748 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
749 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
751 queue_work(target_completion_wq
, &cmd
->work
);
753 EXPORT_SYMBOL(target_complete_cmd
);
755 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
757 if (scsi_status
!= SAM_STAT_GOOD
) {
762 * Calculate new residual count based upon length of SCSI data
765 if (length
< cmd
->data_length
) {
766 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
767 cmd
->residual_count
+= cmd
->data_length
- length
;
769 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
770 cmd
->residual_count
= cmd
->data_length
- length
;
773 cmd
->data_length
= length
;
774 } else if (length
> cmd
->data_length
) {
775 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
776 cmd
->residual_count
= length
- cmd
->data_length
;
778 cmd
->se_cmd_flags
&= ~(SCF_OVERFLOW_BIT
| SCF_UNDERFLOW_BIT
);
779 cmd
->residual_count
= 0;
782 target_complete_cmd(cmd
, scsi_status
);
784 EXPORT_SYMBOL(target_complete_cmd_with_length
);
786 static void target_add_to_state_list(struct se_cmd
*cmd
)
788 struct se_device
*dev
= cmd
->se_dev
;
791 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
792 if (!cmd
->state_active
) {
793 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
794 cmd
->state_active
= true;
796 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
800 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
802 static void transport_write_pending_qf(struct se_cmd
*cmd
);
803 static void transport_complete_qf(struct se_cmd
*cmd
);
805 void target_qf_do_work(struct work_struct
*work
)
807 struct se_device
*dev
= container_of(work
, struct se_device
,
809 LIST_HEAD(qf_cmd_list
);
810 struct se_cmd
*cmd
, *cmd_tmp
;
812 spin_lock_irq(&dev
->qf_cmd_lock
);
813 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
814 spin_unlock_irq(&dev
->qf_cmd_lock
);
816 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
817 list_del(&cmd
->se_qf_node
);
818 atomic_dec_mb(&dev
->dev_qf_count
);
820 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
821 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
822 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
823 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
826 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
827 transport_write_pending_qf(cmd
);
828 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
829 transport_complete_qf(cmd
);
833 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
835 switch (cmd
->data_direction
) {
838 case DMA_FROM_DEVICE
:
842 case DMA_BIDIRECTIONAL
:
851 void transport_dump_dev_state(
852 struct se_device
*dev
,
856 *bl
+= sprintf(b
+ *bl
, "Status: ");
857 if (dev
->export_count
)
858 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
860 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
862 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
863 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
864 dev
->dev_attrib
.block_size
,
865 dev
->dev_attrib
.hw_max_sectors
);
866 *bl
+= sprintf(b
+ *bl
, " ");
869 void transport_dump_vpd_proto_id(
871 unsigned char *p_buf
,
874 unsigned char buf
[VPD_TMP_BUF_SIZE
];
877 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
878 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
880 switch (vpd
->protocol_identifier
) {
882 sprintf(buf
+len
, "Fibre Channel\n");
885 sprintf(buf
+len
, "Parallel SCSI\n");
888 sprintf(buf
+len
, "SSA\n");
891 sprintf(buf
+len
, "IEEE 1394\n");
894 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
898 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
901 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
904 sprintf(buf
+len
, "Automation/Drive Interface Transport"
908 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
911 sprintf(buf
+len
, "Unknown 0x%02x\n",
912 vpd
->protocol_identifier
);
917 strncpy(p_buf
, buf
, p_buf_len
);
923 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
926 * Check if the Protocol Identifier Valid (PIV) bit is set..
928 * from spc3r23.pdf section 7.5.1
930 if (page_83
[1] & 0x80) {
931 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
932 vpd
->protocol_identifier_set
= 1;
933 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
936 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
938 int transport_dump_vpd_assoc(
940 unsigned char *p_buf
,
943 unsigned char buf
[VPD_TMP_BUF_SIZE
];
947 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
948 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
950 switch (vpd
->association
) {
952 sprintf(buf
+len
, "addressed logical unit\n");
955 sprintf(buf
+len
, "target port\n");
958 sprintf(buf
+len
, "SCSI target device\n");
961 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
967 strncpy(p_buf
, buf
, p_buf_len
);
974 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
977 * The VPD identification association..
979 * from spc3r23.pdf Section 7.6.3.1 Table 297
981 vpd
->association
= (page_83
[1] & 0x30);
982 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
984 EXPORT_SYMBOL(transport_set_vpd_assoc
);
986 int transport_dump_vpd_ident_type(
988 unsigned char *p_buf
,
991 unsigned char buf
[VPD_TMP_BUF_SIZE
];
995 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
996 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
998 switch (vpd
->device_identifier_type
) {
1000 sprintf(buf
+len
, "Vendor specific\n");
1003 sprintf(buf
+len
, "T10 Vendor ID based\n");
1006 sprintf(buf
+len
, "EUI-64 based\n");
1009 sprintf(buf
+len
, "NAA\n");
1012 sprintf(buf
+len
, "Relative target port identifier\n");
1015 sprintf(buf
+len
, "SCSI name string\n");
1018 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1019 vpd
->device_identifier_type
);
1025 if (p_buf_len
< strlen(buf
)+1)
1027 strncpy(p_buf
, buf
, p_buf_len
);
1029 pr_debug("%s", buf
);
1035 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1038 * The VPD identifier type..
1040 * from spc3r23.pdf Section 7.6.3.1 Table 298
1042 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1043 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1045 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1047 int transport_dump_vpd_ident(
1048 struct t10_vpd
*vpd
,
1049 unsigned char *p_buf
,
1052 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1055 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1057 switch (vpd
->device_identifier_code_set
) {
1058 case 0x01: /* Binary */
1059 snprintf(buf
, sizeof(buf
),
1060 "T10 VPD Binary Device Identifier: %s\n",
1061 &vpd
->device_identifier
[0]);
1063 case 0x02: /* ASCII */
1064 snprintf(buf
, sizeof(buf
),
1065 "T10 VPD ASCII Device Identifier: %s\n",
1066 &vpd
->device_identifier
[0]);
1068 case 0x03: /* UTF-8 */
1069 snprintf(buf
, sizeof(buf
),
1070 "T10 VPD UTF-8 Device Identifier: %s\n",
1071 &vpd
->device_identifier
[0]);
1074 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1075 " 0x%02x", vpd
->device_identifier_code_set
);
1081 strncpy(p_buf
, buf
, p_buf_len
);
1083 pr_debug("%s", buf
);
1089 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1091 static const char hex_str
[] = "0123456789abcdef";
1092 int j
= 0, i
= 4; /* offset to start of the identifier */
1095 * The VPD Code Set (encoding)
1097 * from spc3r23.pdf Section 7.6.3.1 Table 296
1099 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1100 switch (vpd
->device_identifier_code_set
) {
1101 case 0x01: /* Binary */
1102 vpd
->device_identifier
[j
++] =
1103 hex_str
[vpd
->device_identifier_type
];
1104 while (i
< (4 + page_83
[3])) {
1105 vpd
->device_identifier
[j
++] =
1106 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1107 vpd
->device_identifier
[j
++] =
1108 hex_str
[page_83
[i
] & 0x0f];
1112 case 0x02: /* ASCII */
1113 case 0x03: /* UTF-8 */
1114 while (i
< (4 + page_83
[3]))
1115 vpd
->device_identifier
[j
++] = page_83
[i
++];
1121 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1123 EXPORT_SYMBOL(transport_set_vpd_ident
);
1125 static sense_reason_t
1126 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1131 if (!cmd
->se_tfo
->max_data_sg_nents
)
1132 return TCM_NO_SENSE
;
1134 * Check if fabric enforced maximum SGL entries per I/O descriptor
1135 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1136 * residual_count and reduce original cmd->data_length to maximum
1137 * length based on single PAGE_SIZE entry scatter-lists.
1139 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1140 if (cmd
->data_length
> mtl
) {
1142 * If an existing CDB overflow is present, calculate new residual
1143 * based on CDB size minus fabric maximum transfer length.
1145 * If an existing CDB underflow is present, calculate new residual
1146 * based on original cmd->data_length minus fabric maximum transfer
1149 * Otherwise, set the underflow residual based on cmd->data_length
1150 * minus fabric maximum transfer length.
1152 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1153 cmd
->residual_count
= (size
- mtl
);
1154 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1155 u32 orig_dl
= size
+ cmd
->residual_count
;
1156 cmd
->residual_count
= (orig_dl
- mtl
);
1158 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1159 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1161 cmd
->data_length
= mtl
;
1163 * Reset sbc_check_prot() calculated protection payload
1164 * length based upon the new smaller MTL.
1166 if (cmd
->prot_length
) {
1167 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1168 cmd
->prot_length
= dev
->prot_length
* sectors
;
1171 return TCM_NO_SENSE
;
1175 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1177 struct se_device
*dev
= cmd
->se_dev
;
1179 if (cmd
->unknown_data_length
) {
1180 cmd
->data_length
= size
;
1181 } else if (size
!= cmd
->data_length
) {
1182 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1183 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1184 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1185 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1187 if (cmd
->data_direction
== DMA_TO_DEVICE
&&
1188 cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1189 pr_err("Rejecting underflow/overflow WRITE data\n");
1190 return TCM_INVALID_CDB_FIELD
;
1193 * Reject READ_* or WRITE_* with overflow/underflow for
1194 * type SCF_SCSI_DATA_CDB.
1196 if (dev
->dev_attrib
.block_size
!= 512) {
1197 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1198 " CDB on non 512-byte sector setup subsystem"
1199 " plugin: %s\n", dev
->transport
->name
);
1200 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1201 return TCM_INVALID_CDB_FIELD
;
1204 * For the overflow case keep the existing fabric provided
1205 * ->data_length. Otherwise for the underflow case, reset
1206 * ->data_length to the smaller SCSI expected data transfer
1209 if (size
> cmd
->data_length
) {
1210 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1211 cmd
->residual_count
= (size
- cmd
->data_length
);
1213 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1214 cmd
->residual_count
= (cmd
->data_length
- size
);
1215 cmd
->data_length
= size
;
1219 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1224 * Used by fabric modules containing a local struct se_cmd within their
1225 * fabric dependent per I/O descriptor.
1227 * Preserves the value of @cmd->tag.
1229 void transport_init_se_cmd(
1231 const struct target_core_fabric_ops
*tfo
,
1232 struct se_session
*se_sess
,
1236 unsigned char *sense_buffer
)
1238 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1239 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1240 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1241 INIT_LIST_HEAD(&cmd
->state_list
);
1242 init_completion(&cmd
->t_transport_stop_comp
);
1243 init_completion(&cmd
->cmd_wait_comp
);
1244 spin_lock_init(&cmd
->t_state_lock
);
1245 kref_init(&cmd
->cmd_kref
);
1246 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1249 cmd
->se_sess
= se_sess
;
1250 cmd
->data_length
= data_length
;
1251 cmd
->data_direction
= data_direction
;
1252 cmd
->sam_task_attr
= task_attr
;
1253 cmd
->sense_buffer
= sense_buffer
;
1255 cmd
->state_active
= false;
1257 EXPORT_SYMBOL(transport_init_se_cmd
);
1259 static sense_reason_t
1260 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1262 struct se_device
*dev
= cmd
->se_dev
;
1265 * Check if SAM Task Attribute emulation is enabled for this
1266 * struct se_device storage object
1268 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1271 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1272 pr_debug("SAM Task Attribute ACA"
1273 " emulation is not supported\n");
1274 return TCM_INVALID_CDB_FIELD
;
1281 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1283 struct se_device
*dev
= cmd
->se_dev
;
1287 * Ensure that the received CDB is less than the max (252 + 8) bytes
1288 * for VARIABLE_LENGTH_CMD
1290 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1291 pr_err("Received SCSI CDB with command_size: %d that"
1292 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1293 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1294 return TCM_INVALID_CDB_FIELD
;
1297 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1298 * allocate the additional extended CDB buffer now.. Otherwise
1299 * setup the pointer from __t_task_cdb to t_task_cdb.
1301 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1302 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1304 if (!cmd
->t_task_cdb
) {
1305 pr_err("Unable to allocate cmd->t_task_cdb"
1306 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1307 scsi_command_size(cdb
),
1308 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1309 return TCM_OUT_OF_RESOURCES
;
1312 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1314 * Copy the original CDB into cmd->
1316 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1318 trace_target_sequencer_start(cmd
);
1320 ret
= dev
->transport
->parse_cdb(cmd
);
1321 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1322 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1323 cmd
->se_tfo
->get_fabric_name(),
1324 cmd
->se_sess
->se_node_acl
->initiatorname
,
1325 cmd
->t_task_cdb
[0]);
1329 ret
= transport_check_alloc_task_attr(cmd
);
1333 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1334 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1337 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1340 * Used by fabric module frontends to queue tasks directly.
1341 * May only be used from process context.
1343 int transport_handle_cdb_direct(
1350 pr_err("cmd->se_lun is NULL\n");
1353 if (in_interrupt()) {
1355 pr_err("transport_generic_handle_cdb cannot be called"
1356 " from interrupt context\n");
1360 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1361 * outstanding descriptors are handled correctly during shutdown via
1362 * transport_wait_for_tasks()
1364 * Also, we don't take cmd->t_state_lock here as we only expect
1365 * this to be called for initial descriptor submission.
1367 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1368 cmd
->transport_state
|= CMD_T_ACTIVE
;
1371 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1372 * so follow TRANSPORT_NEW_CMD processing thread context usage
1373 * and call transport_generic_request_failure() if necessary..
1375 ret
= transport_generic_new_cmd(cmd
);
1377 transport_generic_request_failure(cmd
, ret
);
1380 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1383 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1384 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1386 if (!sgl
|| !sgl_count
)
1390 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1391 * scatterlists already have been set to follow what the fabric
1392 * passes for the original expected data transfer length.
1394 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1395 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1396 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1397 return TCM_INVALID_CDB_FIELD
;
1400 cmd
->t_data_sg
= sgl
;
1401 cmd
->t_data_nents
= sgl_count
;
1402 cmd
->t_bidi_data_sg
= sgl_bidi
;
1403 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1405 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1410 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1411 * se_cmd + use pre-allocated SGL memory.
1413 * @se_cmd: command descriptor to submit
1414 * @se_sess: associated se_sess for endpoint
1415 * @cdb: pointer to SCSI CDB
1416 * @sense: pointer to SCSI sense buffer
1417 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1418 * @data_length: fabric expected data transfer length
1419 * @task_addr: SAM task attribute
1420 * @data_dir: DMA data direction
1421 * @flags: flags for command submission from target_sc_flags_tables
1422 * @sgl: struct scatterlist memory for unidirectional mapping
1423 * @sgl_count: scatterlist count for unidirectional mapping
1424 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1425 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1426 * @sgl_prot: struct scatterlist memory protection information
1427 * @sgl_prot_count: scatterlist count for protection information
1429 * Task tags are supported if the caller has set @se_cmd->tag.
1431 * Returns non zero to signal active I/O shutdown failure. All other
1432 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1433 * but still return zero here.
1435 * This may only be called from process context, and also currently
1436 * assumes internal allocation of fabric payload buffer by target-core.
1438 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1439 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1440 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1441 struct scatterlist
*sgl
, u32 sgl_count
,
1442 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1443 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1445 struct se_portal_group
*se_tpg
;
1449 se_tpg
= se_sess
->se_tpg
;
1451 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1452 BUG_ON(in_interrupt());
1454 * Initialize se_cmd for target operation. From this point
1455 * exceptions are handled by sending exception status via
1456 * target_core_fabric_ops->queue_status() callback
1458 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1459 data_length
, data_dir
, task_attr
, sense
);
1461 if (flags
& TARGET_SCF_USE_CPUID
)
1462 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1464 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1466 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1467 se_cmd
->unknown_data_length
= 1;
1469 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1470 * se_sess->sess_cmd_list. A second kref_get here is necessary
1471 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1472 * kref_put() to happen during fabric packet acknowledgement.
1474 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1478 * Signal bidirectional data payloads to target-core
1480 if (flags
& TARGET_SCF_BIDI_OP
)
1481 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1483 * Locate se_lun pointer and attach it to struct se_cmd
1485 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1487 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1488 target_put_sess_cmd(se_cmd
);
1492 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1494 transport_generic_request_failure(se_cmd
, rc
);
1499 * Save pointers for SGLs containing protection information,
1502 if (sgl_prot_count
) {
1503 se_cmd
->t_prot_sg
= sgl_prot
;
1504 se_cmd
->t_prot_nents
= sgl_prot_count
;
1505 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1509 * When a non zero sgl_count has been passed perform SGL passthrough
1510 * mapping for pre-allocated fabric memory instead of having target
1511 * core perform an internal SGL allocation..
1513 if (sgl_count
!= 0) {
1517 * A work-around for tcm_loop as some userspace code via
1518 * scsi-generic do not memset their associated read buffers,
1519 * so go ahead and do that here for type non-data CDBs. Also
1520 * note that this is currently guaranteed to be a single SGL
1521 * for this case by target core in target_setup_cmd_from_cdb()
1522 * -> transport_generic_cmd_sequencer().
1524 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1525 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1526 unsigned char *buf
= NULL
;
1529 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1532 memset(buf
, 0, sgl
->length
);
1533 kunmap(sg_page(sgl
));
1537 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1538 sgl_bidi
, sgl_bidi_count
);
1540 transport_generic_request_failure(se_cmd
, rc
);
1546 * Check if we need to delay processing because of ALUA
1547 * Active/NonOptimized primary access state..
1549 core_alua_check_nonop_delay(se_cmd
);
1551 transport_handle_cdb_direct(se_cmd
);
1554 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1557 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1559 * @se_cmd: command descriptor to submit
1560 * @se_sess: associated se_sess for endpoint
1561 * @cdb: pointer to SCSI CDB
1562 * @sense: pointer to SCSI sense buffer
1563 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1564 * @data_length: fabric expected data transfer length
1565 * @task_addr: SAM task attribute
1566 * @data_dir: DMA data direction
1567 * @flags: flags for command submission from target_sc_flags_tables
1569 * Task tags are supported if the caller has set @se_cmd->tag.
1571 * Returns non zero to signal active I/O shutdown failure. All other
1572 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1573 * but still return zero here.
1575 * This may only be called from process context, and also currently
1576 * assumes internal allocation of fabric payload buffer by target-core.
1578 * It also assumes interal target core SGL memory allocation.
1580 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1581 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1582 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1584 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1585 unpacked_lun
, data_length
, task_attr
, data_dir
,
1586 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1588 EXPORT_SYMBOL(target_submit_cmd
);
1590 static void target_complete_tmr_failure(struct work_struct
*work
)
1592 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1594 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1595 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1597 transport_cmd_check_stop_to_fabric(se_cmd
);
1601 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1604 * @se_cmd: command descriptor to submit
1605 * @se_sess: associated se_sess for endpoint
1606 * @sense: pointer to SCSI sense buffer
1607 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1608 * @fabric_context: fabric context for TMR req
1609 * @tm_type: Type of TM request
1610 * @gfp: gfp type for caller
1611 * @tag: referenced task tag for TMR_ABORT_TASK
1612 * @flags: submit cmd flags
1614 * Callable from all contexts.
1617 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1618 unsigned char *sense
, u64 unpacked_lun
,
1619 void *fabric_tmr_ptr
, unsigned char tm_type
,
1620 gfp_t gfp
, u64 tag
, int flags
)
1622 struct se_portal_group
*se_tpg
;
1625 se_tpg
= se_sess
->se_tpg
;
1628 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1629 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1631 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1632 * allocation failure.
1634 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1638 if (tm_type
== TMR_ABORT_TASK
)
1639 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1641 /* See target_submit_cmd for commentary */
1642 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1644 core_tmr_release_req(se_cmd
->se_tmr_req
);
1648 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1651 * For callback during failure handling, push this work off
1652 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1654 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1655 schedule_work(&se_cmd
->work
);
1658 transport_generic_handle_tmr(se_cmd
);
1661 EXPORT_SYMBOL(target_submit_tmr
);
1664 * Handle SAM-esque emulation for generic transport request failures.
1666 void transport_generic_request_failure(struct se_cmd
*cmd
,
1667 sense_reason_t sense_reason
)
1669 int ret
= 0, post_ret
= 0;
1671 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1672 " CDB: 0x%02x\n", cmd
, cmd
->tag
, cmd
->t_task_cdb
[0]);
1673 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1674 cmd
->se_tfo
->get_cmd_state(cmd
),
1675 cmd
->t_state
, sense_reason
);
1676 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1677 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1678 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1679 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1682 * For SAM Task Attribute emulation for failed struct se_cmd
1684 transport_complete_task_attr(cmd
);
1686 * Handle special case for COMPARE_AND_WRITE failure, where the
1687 * callback is expected to drop the per device ->caw_sem.
1689 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1690 cmd
->transport_complete_callback
)
1691 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1693 switch (sense_reason
) {
1694 case TCM_NON_EXISTENT_LUN
:
1695 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1696 case TCM_INVALID_CDB_FIELD
:
1697 case TCM_INVALID_PARAMETER_LIST
:
1698 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1699 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1700 case TCM_UNKNOWN_MODE_PAGE
:
1701 case TCM_WRITE_PROTECTED
:
1702 case TCM_ADDRESS_OUT_OF_RANGE
:
1703 case TCM_CHECK_CONDITION_ABORT_CMD
:
1704 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1705 case TCM_CHECK_CONDITION_NOT_READY
:
1706 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1707 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1708 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1710 case TCM_OUT_OF_RESOURCES
:
1711 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1713 case TCM_RESERVATION_CONFLICT
:
1715 * No SENSE Data payload for this case, set SCSI Status
1716 * and queue the response to $FABRIC_MOD.
1718 * Uses linux/include/scsi/scsi.h SAM status codes defs
1720 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1722 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1723 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1726 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1729 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1730 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1731 cmd
->orig_fe_lun
, 0x2C,
1732 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1734 trace_target_cmd_complete(cmd
);
1735 ret
= cmd
->se_tfo
->queue_status(cmd
);
1736 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1740 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1741 cmd
->t_task_cdb
[0], sense_reason
);
1742 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1746 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1747 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1751 transport_lun_remove_cmd(cmd
);
1752 transport_cmd_check_stop_to_fabric(cmd
);
1756 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1757 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1759 EXPORT_SYMBOL(transport_generic_request_failure
);
1761 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1765 if (!cmd
->execute_cmd
) {
1766 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1771 * Check for an existing UNIT ATTENTION condition after
1772 * target_handle_task_attr() has done SAM task attr
1773 * checking, and possibly have already defered execution
1774 * out to target_restart_delayed_cmds() context.
1776 ret
= target_scsi3_ua_check(cmd
);
1780 ret
= target_alua_state_check(cmd
);
1784 ret
= target_check_reservation(cmd
);
1786 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1791 ret
= cmd
->execute_cmd(cmd
);
1795 spin_lock_irq(&cmd
->t_state_lock
);
1796 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1797 spin_unlock_irq(&cmd
->t_state_lock
);
1799 transport_generic_request_failure(cmd
, ret
);
1802 static int target_write_prot_action(struct se_cmd
*cmd
)
1806 * Perform WRITE_INSERT of PI using software emulation when backend
1807 * device has PI enabled, if the transport has not already generated
1808 * PI using hardware WRITE_INSERT offload.
1810 switch (cmd
->prot_op
) {
1811 case TARGET_PROT_DOUT_INSERT
:
1812 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1813 sbc_dif_generate(cmd
);
1815 case TARGET_PROT_DOUT_STRIP
:
1816 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1819 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1820 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1821 sectors
, 0, cmd
->t_prot_sg
, 0);
1822 if (unlikely(cmd
->pi_err
)) {
1823 spin_lock_irq(&cmd
->t_state_lock
);
1824 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1825 spin_unlock_irq(&cmd
->t_state_lock
);
1826 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1837 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1839 struct se_device
*dev
= cmd
->se_dev
;
1841 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1844 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
1847 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1848 * to allow the passed struct se_cmd list of tasks to the front of the list.
1850 switch (cmd
->sam_task_attr
) {
1852 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1853 cmd
->t_task_cdb
[0]);
1855 case TCM_ORDERED_TAG
:
1856 atomic_inc_mb(&dev
->dev_ordered_sync
);
1858 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1859 cmd
->t_task_cdb
[0]);
1862 * Execute an ORDERED command if no other older commands
1863 * exist that need to be completed first.
1865 if (!atomic_read(&dev
->simple_cmds
))
1870 * For SIMPLE and UNTAGGED Task Attribute commands
1872 atomic_inc_mb(&dev
->simple_cmds
);
1876 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1879 spin_lock(&dev
->delayed_cmd_lock
);
1880 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1881 spin_unlock(&dev
->delayed_cmd_lock
);
1883 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1884 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1888 static int __transport_check_aborted_status(struct se_cmd
*, int);
1890 void target_execute_cmd(struct se_cmd
*cmd
)
1893 * Determine if frontend context caller is requesting the stopping of
1894 * this command for frontend exceptions.
1896 * If the received CDB has aleady been aborted stop processing it here.
1898 spin_lock_irq(&cmd
->t_state_lock
);
1899 if (__transport_check_aborted_status(cmd
, 1)) {
1900 spin_unlock_irq(&cmd
->t_state_lock
);
1903 if (cmd
->transport_state
& CMD_T_STOP
) {
1904 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1905 __func__
, __LINE__
, cmd
->tag
);
1907 spin_unlock_irq(&cmd
->t_state_lock
);
1908 complete_all(&cmd
->t_transport_stop_comp
);
1912 cmd
->t_state
= TRANSPORT_PROCESSING
;
1913 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1914 spin_unlock_irq(&cmd
->t_state_lock
);
1916 if (target_write_prot_action(cmd
))
1919 if (target_handle_task_attr(cmd
)) {
1920 spin_lock_irq(&cmd
->t_state_lock
);
1921 cmd
->transport_state
&= ~(CMD_T_BUSY
| CMD_T_SENT
);
1922 spin_unlock_irq(&cmd
->t_state_lock
);
1926 __target_execute_cmd(cmd
, true);
1928 EXPORT_SYMBOL(target_execute_cmd
);
1931 * Process all commands up to the last received ORDERED task attribute which
1932 * requires another blocking boundary
1934 static void target_restart_delayed_cmds(struct se_device
*dev
)
1939 spin_lock(&dev
->delayed_cmd_lock
);
1940 if (list_empty(&dev
->delayed_cmd_list
)) {
1941 spin_unlock(&dev
->delayed_cmd_lock
);
1945 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1946 struct se_cmd
, se_delayed_node
);
1947 list_del(&cmd
->se_delayed_node
);
1948 spin_unlock(&dev
->delayed_cmd_lock
);
1950 __target_execute_cmd(cmd
, true);
1952 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
1958 * Called from I/O completion to determine which dormant/delayed
1959 * and ordered cmds need to have their tasks added to the execution queue.
1961 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1963 struct se_device
*dev
= cmd
->se_dev
;
1965 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1968 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
1971 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
1972 atomic_dec_mb(&dev
->simple_cmds
);
1973 dev
->dev_cur_ordered_id
++;
1974 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1975 dev
->dev_cur_ordered_id
);
1976 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
1977 dev
->dev_cur_ordered_id
++;
1978 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1979 dev
->dev_cur_ordered_id
);
1980 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
1981 atomic_dec_mb(&dev
->dev_ordered_sync
);
1983 dev
->dev_cur_ordered_id
++;
1984 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1985 dev
->dev_cur_ordered_id
);
1988 target_restart_delayed_cmds(dev
);
1991 static void transport_complete_qf(struct se_cmd
*cmd
)
1995 transport_complete_task_attr(cmd
);
1997 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1998 trace_target_cmd_complete(cmd
);
1999 ret
= cmd
->se_tfo
->queue_status(cmd
);
2003 switch (cmd
->data_direction
) {
2004 case DMA_FROM_DEVICE
:
2005 if (cmd
->scsi_status
)
2008 trace_target_cmd_complete(cmd
);
2009 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2012 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2013 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2016 /* Fall through for DMA_TO_DEVICE */
2019 trace_target_cmd_complete(cmd
);
2020 ret
= cmd
->se_tfo
->queue_status(cmd
);
2028 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2031 transport_lun_remove_cmd(cmd
);
2032 transport_cmd_check_stop_to_fabric(cmd
);
2035 static void transport_handle_queue_full(
2037 struct se_device
*dev
)
2039 spin_lock_irq(&dev
->qf_cmd_lock
);
2040 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2041 atomic_inc_mb(&dev
->dev_qf_count
);
2042 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2044 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2047 static bool target_read_prot_action(struct se_cmd
*cmd
)
2049 switch (cmd
->prot_op
) {
2050 case TARGET_PROT_DIN_STRIP
:
2051 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2052 u32 sectors
= cmd
->data_length
>>
2053 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2055 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2056 sectors
, 0, cmd
->t_prot_sg
,
2062 case TARGET_PROT_DIN_INSERT
:
2063 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2066 sbc_dif_generate(cmd
);
2075 static void target_complete_ok_work(struct work_struct
*work
)
2077 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2081 * Check if we need to move delayed/dormant tasks from cmds on the
2082 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2085 transport_complete_task_attr(cmd
);
2088 * Check to schedule QUEUE_FULL work, or execute an existing
2089 * cmd->transport_qf_callback()
2091 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2092 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2095 * Check if we need to send a sense buffer from
2096 * the struct se_cmd in question.
2098 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2099 WARN_ON(!cmd
->scsi_status
);
2100 ret
= transport_send_check_condition_and_sense(
2102 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2105 transport_lun_remove_cmd(cmd
);
2106 transport_cmd_check_stop_to_fabric(cmd
);
2110 * Check for a callback, used by amongst other things
2111 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2113 if (cmd
->transport_complete_callback
) {
2115 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2116 bool zero_dl
= !(cmd
->data_length
);
2119 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2120 if (!rc
&& !post_ret
) {
2126 ret
= transport_send_check_condition_and_sense(cmd
,
2128 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2131 transport_lun_remove_cmd(cmd
);
2132 transport_cmd_check_stop_to_fabric(cmd
);
2138 switch (cmd
->data_direction
) {
2139 case DMA_FROM_DEVICE
:
2140 if (cmd
->scsi_status
)
2143 atomic_long_add(cmd
->data_length
,
2144 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2146 * Perform READ_STRIP of PI using software emulation when
2147 * backend had PI enabled, if the transport will not be
2148 * performing hardware READ_STRIP offload.
2150 if (target_read_prot_action(cmd
)) {
2151 ret
= transport_send_check_condition_and_sense(cmd
,
2153 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2156 transport_lun_remove_cmd(cmd
);
2157 transport_cmd_check_stop_to_fabric(cmd
);
2161 trace_target_cmd_complete(cmd
);
2162 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2163 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2167 atomic_long_add(cmd
->data_length
,
2168 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2170 * Check if we need to send READ payload for BIDI-COMMAND
2172 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2173 atomic_long_add(cmd
->data_length
,
2174 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2175 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2176 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2180 /* Fall through for DMA_TO_DEVICE */
2183 trace_target_cmd_complete(cmd
);
2184 ret
= cmd
->se_tfo
->queue_status(cmd
);
2185 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2192 transport_lun_remove_cmd(cmd
);
2193 transport_cmd_check_stop_to_fabric(cmd
);
2197 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2198 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2199 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2200 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2203 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2205 struct scatterlist
*sg
;
2208 for_each_sg(sgl
, sg
, nents
, count
)
2209 __free_page(sg_page(sg
));
2213 EXPORT_SYMBOL(target_free_sgl
);
2215 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2218 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2219 * emulation, and free + reset pointers if necessary..
2221 if (!cmd
->t_data_sg_orig
)
2224 kfree(cmd
->t_data_sg
);
2225 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2226 cmd
->t_data_sg_orig
= NULL
;
2227 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2228 cmd
->t_data_nents_orig
= 0;
2231 static inline void transport_free_pages(struct se_cmd
*cmd
)
2233 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2234 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2235 cmd
->t_prot_sg
= NULL
;
2236 cmd
->t_prot_nents
= 0;
2239 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2241 * Release special case READ buffer payload required for
2242 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2244 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2245 target_free_sgl(cmd
->t_bidi_data_sg
,
2246 cmd
->t_bidi_data_nents
);
2247 cmd
->t_bidi_data_sg
= NULL
;
2248 cmd
->t_bidi_data_nents
= 0;
2250 transport_reset_sgl_orig(cmd
);
2253 transport_reset_sgl_orig(cmd
);
2255 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2256 cmd
->t_data_sg
= NULL
;
2257 cmd
->t_data_nents
= 0;
2259 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2260 cmd
->t_bidi_data_sg
= NULL
;
2261 cmd
->t_bidi_data_nents
= 0;
2265 * transport_put_cmd - release a reference to a command
2266 * @cmd: command to release
2268 * This routine releases our reference to the command and frees it if possible.
2270 static int transport_put_cmd(struct se_cmd
*cmd
)
2272 BUG_ON(!cmd
->se_tfo
);
2274 * If this cmd has been setup with target_get_sess_cmd(), drop
2275 * the kref and call ->release_cmd() in kref callback.
2277 return target_put_sess_cmd(cmd
);
2280 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2282 struct scatterlist
*sg
= cmd
->t_data_sg
;
2283 struct page
**pages
;
2287 * We need to take into account a possible offset here for fabrics like
2288 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2289 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2291 if (!cmd
->t_data_nents
)
2295 if (cmd
->t_data_nents
== 1)
2296 return kmap(sg_page(sg
)) + sg
->offset
;
2298 /* >1 page. use vmap */
2299 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2303 /* convert sg[] to pages[] */
2304 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2305 pages
[i
] = sg_page(sg
);
2308 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2310 if (!cmd
->t_data_vmap
)
2313 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2315 EXPORT_SYMBOL(transport_kmap_data_sg
);
2317 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2319 if (!cmd
->t_data_nents
) {
2321 } else if (cmd
->t_data_nents
== 1) {
2322 kunmap(sg_page(cmd
->t_data_sg
));
2326 vunmap(cmd
->t_data_vmap
);
2327 cmd
->t_data_vmap
= NULL
;
2329 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2332 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2333 bool zero_page
, bool chainable
)
2335 struct scatterlist
*sg
;
2337 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2338 unsigned int nalloc
, nent
;
2341 nalloc
= nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2344 sg
= kmalloc_array(nalloc
, sizeof(struct scatterlist
), GFP_KERNEL
);
2348 sg_init_table(sg
, nalloc
);
2351 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2352 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2356 sg_set_page(&sg
[i
], page
, page_len
, 0);
2367 __free_page(sg_page(&sg
[i
]));
2372 EXPORT_SYMBOL(target_alloc_sgl
);
2375 * Allocate any required resources to execute the command. For writes we
2376 * might not have the payload yet, so notify the fabric via a call to
2377 * ->write_pending instead. Otherwise place it on the execution queue.
2380 transport_generic_new_cmd(struct se_cmd
*cmd
)
2383 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2385 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2386 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2387 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2388 cmd
->prot_length
, true, false);
2390 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2394 * Determine is the TCM fabric module has already allocated physical
2395 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2398 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2401 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2402 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2405 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2406 bidi_length
= cmd
->t_task_nolb
*
2407 cmd
->se_dev
->dev_attrib
.block_size
;
2409 bidi_length
= cmd
->data_length
;
2411 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2412 &cmd
->t_bidi_data_nents
,
2413 bidi_length
, zero_flag
, false);
2415 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2418 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2419 cmd
->data_length
, zero_flag
, false);
2421 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2422 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2425 * Special case for COMPARE_AND_WRITE with fabrics
2426 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2428 u32 caw_length
= cmd
->t_task_nolb
*
2429 cmd
->se_dev
->dev_attrib
.block_size
;
2431 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2432 &cmd
->t_bidi_data_nents
,
2433 caw_length
, zero_flag
, false);
2435 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2438 * If this command is not a write we can execute it right here,
2439 * for write buffers we need to notify the fabric driver first
2440 * and let it call back once the write buffers are ready.
2442 target_add_to_state_list(cmd
);
2443 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2444 target_execute_cmd(cmd
);
2447 transport_cmd_check_stop(cmd
, false, true);
2449 ret
= cmd
->se_tfo
->write_pending(cmd
);
2450 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2453 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2456 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2459 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2460 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2461 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2464 EXPORT_SYMBOL(transport_generic_new_cmd
);
2466 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2470 ret
= cmd
->se_tfo
->write_pending(cmd
);
2471 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2472 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2474 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2479 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2480 unsigned long *flags
);
2482 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2484 unsigned long flags
;
2486 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2487 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2488 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2491 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2494 bool aborted
= false, tas
= false;
2496 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2497 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2498 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2500 if (!aborted
|| tas
)
2501 ret
= transport_put_cmd(cmd
);
2504 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2506 * Handle WRITE failure case where transport_generic_new_cmd()
2507 * has already added se_cmd to state_list, but fabric has
2508 * failed command before I/O submission.
2510 if (cmd
->state_active
)
2511 target_remove_from_state_list(cmd
);
2514 transport_lun_remove_cmd(cmd
);
2516 if (!aborted
|| tas
)
2517 ret
= transport_put_cmd(cmd
);
2520 * If the task has been internally aborted due to TMR ABORT_TASK
2521 * or LUN_RESET, target_core_tmr.c is responsible for performing
2522 * the remaining calls to target_put_sess_cmd(), and not the
2523 * callers of this function.
2526 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2527 wait_for_completion(&cmd
->cmd_wait_comp
);
2528 cmd
->se_tfo
->release_cmd(cmd
);
2533 EXPORT_SYMBOL(transport_generic_free_cmd
);
2535 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2536 * @se_cmd: command descriptor to add
2537 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2539 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2541 struct se_session
*se_sess
= se_cmd
->se_sess
;
2542 unsigned long flags
;
2546 * Add a second kref if the fabric caller is expecting to handle
2547 * fabric acknowledgement that requires two target_put_sess_cmd()
2548 * invocations before se_cmd descriptor release.
2551 kref_get(&se_cmd
->cmd_kref
);
2553 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2554 if (se_sess
->sess_tearing_down
) {
2558 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2560 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2562 if (ret
&& ack_kref
)
2563 target_put_sess_cmd(se_cmd
);
2567 EXPORT_SYMBOL(target_get_sess_cmd
);
2569 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2571 transport_free_pages(cmd
);
2573 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2574 core_tmr_release_req(cmd
->se_tmr_req
);
2575 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2576 kfree(cmd
->t_task_cdb
);
2579 static void target_release_cmd_kref(struct kref
*kref
)
2581 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2582 struct se_session
*se_sess
= se_cmd
->se_sess
;
2583 unsigned long flags
;
2586 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2588 spin_lock(&se_cmd
->t_state_lock
);
2589 fabric_stop
= (se_cmd
->transport_state
& CMD_T_FABRIC_STOP
) &&
2590 (se_cmd
->transport_state
& CMD_T_ABORTED
);
2591 spin_unlock(&se_cmd
->t_state_lock
);
2593 if (se_cmd
->cmd_wait_set
|| fabric_stop
) {
2594 list_del_init(&se_cmd
->se_cmd_list
);
2595 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2596 target_free_cmd_mem(se_cmd
);
2597 complete(&se_cmd
->cmd_wait_comp
);
2600 list_del_init(&se_cmd
->se_cmd_list
);
2601 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2603 target_free_cmd_mem(se_cmd
);
2604 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2607 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2608 * @se_cmd: command descriptor to drop
2610 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2612 struct se_session
*se_sess
= se_cmd
->se_sess
;
2615 target_free_cmd_mem(se_cmd
);
2616 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2619 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2621 EXPORT_SYMBOL(target_put_sess_cmd
);
2623 /* target_sess_cmd_list_set_waiting - Flag all commands in
2624 * sess_cmd_list to complete cmd_wait_comp. Set
2625 * sess_tearing_down so no more commands are queued.
2626 * @se_sess: session to flag
2628 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2630 struct se_cmd
*se_cmd
;
2631 unsigned long flags
;
2634 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2635 if (se_sess
->sess_tearing_down
) {
2636 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2639 se_sess
->sess_tearing_down
= 1;
2640 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2642 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
) {
2643 rc
= kref_get_unless_zero(&se_cmd
->cmd_kref
);
2645 se_cmd
->cmd_wait_set
= 1;
2646 spin_lock(&se_cmd
->t_state_lock
);
2647 se_cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2648 spin_unlock(&se_cmd
->t_state_lock
);
2652 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2654 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2656 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2657 * @se_sess: session to wait for active I/O
2659 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2661 struct se_cmd
*se_cmd
, *tmp_cmd
;
2662 unsigned long flags
;
2665 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2666 &se_sess
->sess_wait_list
, se_cmd_list
) {
2667 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2668 " %d\n", se_cmd
, se_cmd
->t_state
,
2669 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2671 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2672 tas
= (se_cmd
->transport_state
& CMD_T_TAS
);
2673 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2675 if (!target_put_sess_cmd(se_cmd
)) {
2677 target_put_sess_cmd(se_cmd
);
2680 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2681 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2682 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2683 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2685 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2688 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2689 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2690 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2693 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2695 void transport_clear_lun_ref(struct se_lun
*lun
)
2697 percpu_ref_kill(&lun
->lun_ref
);
2698 wait_for_completion(&lun
->lun_ref_comp
);
2702 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2703 bool *aborted
, bool *tas
, unsigned long *flags
)
2704 __releases(&cmd
->t_state_lock
)
2705 __acquires(&cmd
->t_state_lock
)
2708 assert_spin_locked(&cmd
->t_state_lock
);
2709 WARN_ON_ONCE(!irqs_disabled());
2712 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2714 if (cmd
->transport_state
& CMD_T_ABORTED
)
2717 if (cmd
->transport_state
& CMD_T_TAS
)
2720 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2721 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2724 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2725 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2728 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2731 if (fabric_stop
&& *aborted
)
2734 cmd
->transport_state
|= CMD_T_STOP
;
2736 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2737 " t_state: %d, CMD_T_STOP\n", cmd
, cmd
->tag
,
2738 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2740 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2742 wait_for_completion(&cmd
->t_transport_stop_comp
);
2744 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2745 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2747 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2748 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
2754 * transport_wait_for_tasks - wait for completion to occur
2755 * @cmd: command to wait
2757 * Called from frontend fabric context to wait for storage engine
2758 * to pause and/or release frontend generated struct se_cmd.
2760 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2762 unsigned long flags
;
2763 bool ret
, aborted
= false, tas
= false;
2765 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2766 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
2767 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2771 EXPORT_SYMBOL(transport_wait_for_tasks
);
2777 bool add_sector_info
;
2780 static const struct sense_info sense_info_table
[] = {
2784 [TCM_NON_EXISTENT_LUN
] = {
2785 .key
= ILLEGAL_REQUEST
,
2786 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2788 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
2789 .key
= ILLEGAL_REQUEST
,
2790 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2792 [TCM_SECTOR_COUNT_TOO_MANY
] = {
2793 .key
= ILLEGAL_REQUEST
,
2794 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2796 [TCM_UNKNOWN_MODE_PAGE
] = {
2797 .key
= ILLEGAL_REQUEST
,
2798 .asc
= 0x24, /* INVALID FIELD IN CDB */
2800 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
2801 .key
= ABORTED_COMMAND
,
2802 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2805 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
2806 .key
= ABORTED_COMMAND
,
2807 .asc
= 0x0c, /* WRITE ERROR */
2808 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2810 [TCM_INVALID_CDB_FIELD
] = {
2811 .key
= ILLEGAL_REQUEST
,
2812 .asc
= 0x24, /* INVALID FIELD IN CDB */
2814 [TCM_INVALID_PARAMETER_LIST
] = {
2815 .key
= ILLEGAL_REQUEST
,
2816 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
2818 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
2819 .key
= ILLEGAL_REQUEST
,
2820 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
2822 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
2823 .key
= ILLEGAL_REQUEST
,
2824 .asc
= 0x0c, /* WRITE ERROR */
2825 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2827 [TCM_SERVICE_CRC_ERROR
] = {
2828 .key
= ABORTED_COMMAND
,
2829 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
2830 .ascq
= 0x05, /* N/A */
2832 [TCM_SNACK_REJECTED
] = {
2833 .key
= ABORTED_COMMAND
,
2834 .asc
= 0x11, /* READ ERROR */
2835 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
2837 [TCM_WRITE_PROTECTED
] = {
2838 .key
= DATA_PROTECT
,
2839 .asc
= 0x27, /* WRITE PROTECTED */
2841 [TCM_ADDRESS_OUT_OF_RANGE
] = {
2842 .key
= ILLEGAL_REQUEST
,
2843 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2845 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
2846 .key
= UNIT_ATTENTION
,
2848 [TCM_CHECK_CONDITION_NOT_READY
] = {
2851 [TCM_MISCOMPARE_VERIFY
] = {
2853 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2856 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
2857 .key
= ABORTED_COMMAND
,
2859 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2860 .add_sector_info
= true,
2862 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
2863 .key
= ABORTED_COMMAND
,
2865 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2866 .add_sector_info
= true,
2868 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
2869 .key
= ABORTED_COMMAND
,
2871 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2872 .add_sector_info
= true,
2874 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
2876 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2877 * Solaris initiators. Returning NOT READY instead means the
2878 * operations will be retried a finite number of times and we
2879 * can survive intermittent errors.
2882 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2886 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
2888 const struct sense_info
*si
;
2889 u8
*buffer
= cmd
->sense_buffer
;
2890 int r
= (__force
int)reason
;
2892 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
2894 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
2895 si
= &sense_info_table
[r
];
2897 si
= &sense_info_table
[(__force
int)
2898 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
2900 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
2901 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2902 WARN_ON_ONCE(asc
== 0);
2903 } else if (si
->asc
== 0) {
2904 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
2905 asc
= cmd
->scsi_asc
;
2906 ascq
= cmd
->scsi_ascq
;
2912 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
2913 if (si
->add_sector_info
)
2914 return scsi_set_sense_information(buffer
,
2915 cmd
->scsi_sense_length
,
2922 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2923 sense_reason_t reason
, int from_transport
)
2925 unsigned long flags
;
2927 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2928 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2929 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2932 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2933 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2935 if (!from_transport
) {
2938 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2939 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2940 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2941 rc
= translate_sense_reason(cmd
, reason
);
2946 trace_target_cmd_complete(cmd
);
2947 return cmd
->se_tfo
->queue_status(cmd
);
2949 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
2951 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2952 __releases(&cmd
->t_state_lock
)
2953 __acquires(&cmd
->t_state_lock
)
2955 assert_spin_locked(&cmd
->t_state_lock
);
2956 WARN_ON_ONCE(!irqs_disabled());
2958 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
2961 * If cmd has been aborted but either no status is to be sent or it has
2962 * already been sent, just return
2964 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
2966 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
2970 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2971 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
2973 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
2974 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2975 trace_target_cmd_complete(cmd
);
2977 spin_unlock_irq(&cmd
->t_state_lock
);
2978 cmd
->se_tfo
->queue_status(cmd
);
2979 spin_lock_irq(&cmd
->t_state_lock
);
2984 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2988 spin_lock_irq(&cmd
->t_state_lock
);
2989 ret
= __transport_check_aborted_status(cmd
, send_status
);
2990 spin_unlock_irq(&cmd
->t_state_lock
);
2994 EXPORT_SYMBOL(transport_check_aborted_status
);
2996 void transport_send_task_abort(struct se_cmd
*cmd
)
2998 unsigned long flags
;
3000 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3001 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
3002 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3005 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3008 * If there are still expected incoming fabric WRITEs, we wait
3009 * until until they have completed before sending a TASK_ABORTED
3010 * response. This response with TASK_ABORTED status will be
3011 * queued back to fabric module by transport_check_aborted_status().
3013 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3014 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3015 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3016 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3017 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3020 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3021 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3026 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3028 transport_lun_remove_cmd(cmd
);
3030 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3031 cmd
->t_task_cdb
[0], cmd
->tag
);
3033 trace_target_cmd_complete(cmd
);
3034 cmd
->se_tfo
->queue_status(cmd
);
3037 static void target_tmr_work(struct work_struct
*work
)
3039 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3040 struct se_device
*dev
= cmd
->se_dev
;
3041 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3042 unsigned long flags
;
3045 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3046 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3047 tmr
->response
= TMR_FUNCTION_REJECTED
;
3048 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3051 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3053 switch (tmr
->function
) {
3054 case TMR_ABORT_TASK
:
3055 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3057 case TMR_ABORT_TASK_SET
:
3059 case TMR_CLEAR_TASK_SET
:
3060 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3063 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3064 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3065 TMR_FUNCTION_REJECTED
;
3066 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3067 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3068 cmd
->orig_fe_lun
, 0x29,
3069 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3072 case TMR_TARGET_WARM_RESET
:
3073 tmr
->response
= TMR_FUNCTION_REJECTED
;
3075 case TMR_TARGET_COLD_RESET
:
3076 tmr
->response
= TMR_FUNCTION_REJECTED
;
3079 pr_err("Uknown TMR function: 0x%02x.\n",
3081 tmr
->response
= TMR_FUNCTION_REJECTED
;
3085 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3086 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3087 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3090 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3091 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3093 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3096 transport_cmd_check_stop_to_fabric(cmd
);
3099 int transport_generic_handle_tmr(
3102 unsigned long flags
;
3104 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3105 cmd
->transport_state
|= CMD_T_ACTIVE
;
3106 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3108 INIT_WORK(&cmd
->work
, target_tmr_work
);
3109 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3112 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3115 target_check_wce(struct se_device
*dev
)
3119 if (dev
->transport
->get_write_cache
)
3120 wce
= dev
->transport
->get_write_cache(dev
);
3121 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3128 target_check_fua(struct se_device
*dev
)
3130 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;