4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/hashtable.h>
16 #include <linux/sched.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
30 static struct kmem_cache
*userfaultfd_ctx_cachep __read_mostly
;
32 enum userfaultfd_state
{
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
41 struct userfaultfd_ctx
{
42 /* waitqueue head for the pending (i.e. not read) userfaults */
43 wait_queue_head_t fault_pending_wqh
;
44 /* waitqueue head for the userfaults */
45 wait_queue_head_t fault_wqh
;
46 /* waitqueue head for the pseudo fd to wakeup poll/read */
47 wait_queue_head_t fd_wqh
;
48 /* a refile sequence protected by fault_pending_wqh lock */
49 struct seqcount refile_seq
;
50 /* pseudo fd refcounting */
52 /* userfaultfd syscall flags */
55 enum userfaultfd_state state
;
58 /* mm with one ore more vmas attached to this userfaultfd_ctx */
62 struct userfaultfd_wait_queue
{
65 struct userfaultfd_ctx
*ctx
;
69 struct userfaultfd_wake_range
{
74 static int userfaultfd_wake_function(wait_queue_t
*wq
, unsigned mode
,
75 int wake_flags
, void *key
)
77 struct userfaultfd_wake_range
*range
= key
;
79 struct userfaultfd_wait_queue
*uwq
;
80 unsigned long start
, len
;
82 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
84 /* len == 0 means wake all */
87 if (len
&& (start
> uwq
->msg
.arg
.pagefault
.address
||
88 start
+ len
<= uwq
->msg
.arg
.pagefault
.address
))
90 WRITE_ONCE(uwq
->waken
, true);
92 * The implicit smp_mb__before_spinlock in try_to_wake_up()
93 * renders uwq->waken visible to other CPUs before the task is
96 ret
= wake_up_state(wq
->private, mode
);
99 * Wake only once, autoremove behavior.
101 * After the effect of list_del_init is visible to the
102 * other CPUs, the waitqueue may disappear from under
103 * us, see the !list_empty_careful() in
104 * handle_userfault(). try_to_wake_up() has an
105 * implicit smp_mb__before_spinlock, and the
106 * wq->private is read before calling the extern
107 * function "wake_up_state" (which in turns calls
108 * try_to_wake_up). While the spin_lock;spin_unlock;
109 * wouldn't be enough, the smp_mb__before_spinlock is
110 * enough to avoid an explicit smp_mb() here.
112 list_del_init(&wq
->task_list
);
118 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
120 * @ctx: [in] Pointer to the userfaultfd context.
122 * Returns: In case of success, returns not zero.
124 static void userfaultfd_ctx_get(struct userfaultfd_ctx
*ctx
)
126 if (!atomic_inc_not_zero(&ctx
->refcount
))
131 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
133 * @ctx: [in] Pointer to userfaultfd context.
135 * The userfaultfd context reference must have been previously acquired either
136 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
138 static void userfaultfd_ctx_put(struct userfaultfd_ctx
*ctx
)
140 if (atomic_dec_and_test(&ctx
->refcount
)) {
141 VM_BUG_ON(spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
142 VM_BUG_ON(waitqueue_active(&ctx
->fault_pending_wqh
));
143 VM_BUG_ON(spin_is_locked(&ctx
->fault_wqh
.lock
));
144 VM_BUG_ON(waitqueue_active(&ctx
->fault_wqh
));
145 VM_BUG_ON(spin_is_locked(&ctx
->fd_wqh
.lock
));
146 VM_BUG_ON(waitqueue_active(&ctx
->fd_wqh
));
148 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
152 static inline void msg_init(struct uffd_msg
*msg
)
154 BUILD_BUG_ON(sizeof(struct uffd_msg
) != 32);
156 * Must use memset to zero out the paddings or kernel data is
157 * leaked to userland.
159 memset(msg
, 0, sizeof(struct uffd_msg
));
162 static inline struct uffd_msg
userfault_msg(unsigned long address
,
164 unsigned long reason
)
168 msg
.event
= UFFD_EVENT_PAGEFAULT
;
169 msg
.arg
.pagefault
.address
= address
;
170 if (flags
& FAULT_FLAG_WRITE
)
172 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
173 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
174 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
175 * was a read fault, otherwise if set it means it's
178 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WRITE
;
179 if (reason
& VM_UFFD_WP
)
181 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
182 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
183 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
184 * a missing fault, otherwise if set it means it's a
185 * write protect fault.
187 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WP
;
192 * Verify the pagetables are still not ok after having reigstered into
193 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
194 * userfault that has already been resolved, if userfaultfd_read and
195 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
198 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx
*ctx
,
199 unsigned long address
,
201 unsigned long reason
)
203 struct mm_struct
*mm
= ctx
->mm
;
210 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
212 pgd
= pgd_offset(mm
, address
);
213 if (!pgd_present(*pgd
))
215 pud
= pud_offset(pgd
, address
);
216 if (!pud_present(*pud
))
218 pmd
= pmd_offset(pud
, address
);
220 * READ_ONCE must function as a barrier with narrower scope
221 * and it must be equivalent to:
222 * _pmd = *pmd; barrier();
224 * This is to deal with the instability (as in
225 * pmd_trans_unstable) of the pmd.
227 _pmd
= READ_ONCE(*pmd
);
228 if (!pmd_present(_pmd
))
232 if (pmd_trans_huge(_pmd
))
236 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
237 * and use the standard pte_offset_map() instead of parsing _pmd.
239 pte
= pte_offset_map(pmd
, address
);
241 * Lockless access: we're in a wait_event so it's ok if it
253 * The locking rules involved in returning VM_FAULT_RETRY depending on
254 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
255 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
256 * recommendation in __lock_page_or_retry is not an understatement.
258 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
259 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
262 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
263 * set, VM_FAULT_RETRY can still be returned if and only if there are
264 * fatal_signal_pending()s, and the mmap_sem must be released before
267 int handle_userfault(struct fault_env
*fe
, unsigned long reason
)
269 struct mm_struct
*mm
= fe
->vma
->vm_mm
;
270 struct userfaultfd_ctx
*ctx
;
271 struct userfaultfd_wait_queue uwq
;
273 bool must_wait
, return_to_userland
;
276 BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
278 ret
= VM_FAULT_SIGBUS
;
279 ctx
= fe
->vma
->vm_userfaultfd_ctx
.ctx
;
283 BUG_ON(ctx
->mm
!= mm
);
285 VM_BUG_ON(reason
& ~(VM_UFFD_MISSING
|VM_UFFD_WP
));
286 VM_BUG_ON(!(reason
& VM_UFFD_MISSING
) ^ !!(reason
& VM_UFFD_WP
));
289 * If it's already released don't get it. This avoids to loop
290 * in __get_user_pages if userfaultfd_release waits on the
291 * caller of handle_userfault to release the mmap_sem.
293 if (unlikely(ACCESS_ONCE(ctx
->released
)))
297 * We don't do userfault handling for the final child pid update.
299 if (current
->flags
& PF_EXITING
)
303 * Check that we can return VM_FAULT_RETRY.
305 * NOTE: it should become possible to return VM_FAULT_RETRY
306 * even if FAULT_FLAG_TRIED is set without leading to gup()
307 * -EBUSY failures, if the userfaultfd is to be extended for
308 * VM_UFFD_WP tracking and we intend to arm the userfault
309 * without first stopping userland access to the memory. For
310 * VM_UFFD_MISSING userfaults this is enough for now.
312 if (unlikely(!(fe
->flags
& FAULT_FLAG_ALLOW_RETRY
))) {
314 * Validate the invariant that nowait must allow retry
315 * to be sure not to return SIGBUS erroneously on
316 * nowait invocations.
318 BUG_ON(fe
->flags
& FAULT_FLAG_RETRY_NOWAIT
);
319 #ifdef CONFIG_DEBUG_VM
320 if (printk_ratelimit()) {
322 "FAULT_FLAG_ALLOW_RETRY missing %x\n", fe
->flags
);
330 * Handle nowait, not much to do other than tell it to retry
333 ret
= VM_FAULT_RETRY
;
334 if (fe
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
337 /* take the reference before dropping the mmap_sem */
338 userfaultfd_ctx_get(ctx
);
340 init_waitqueue_func_entry(&uwq
.wq
, userfaultfd_wake_function
);
341 uwq
.wq
.private = current
;
342 uwq
.msg
= userfault_msg(fe
->address
, fe
->flags
, reason
);
347 (fe
->flags
& (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
)) ==
348 (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
);
349 blocking_state
= return_to_userland
? TASK_INTERRUPTIBLE
:
352 spin_lock(&ctx
->fault_pending_wqh
.lock
);
354 * After the __add_wait_queue the uwq is visible to userland
355 * through poll/read().
357 __add_wait_queue(&ctx
->fault_pending_wqh
, &uwq
.wq
);
359 * The smp_mb() after __set_current_state prevents the reads
360 * following the spin_unlock to happen before the list_add in
363 set_current_state(blocking_state
);
364 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
366 must_wait
= userfaultfd_must_wait(ctx
, fe
->address
, fe
->flags
, reason
);
367 up_read(&mm
->mmap_sem
);
369 if (likely(must_wait
&& !ACCESS_ONCE(ctx
->released
) &&
370 (return_to_userland
? !signal_pending(current
) :
371 !fatal_signal_pending(current
)))) {
372 wake_up_poll(&ctx
->fd_wqh
, POLLIN
);
374 ret
|= VM_FAULT_MAJOR
;
377 * False wakeups can orginate even from rwsem before
378 * up_read() however userfaults will wait either for a
379 * targeted wakeup on the specific uwq waitqueue from
380 * wake_userfault() or for signals or for uffd
383 while (!READ_ONCE(uwq
.waken
)) {
385 * This needs the full smp_store_mb()
386 * guarantee as the state write must be
387 * visible to other CPUs before reading
388 * uwq.waken from other CPUs.
390 set_current_state(blocking_state
);
391 if (READ_ONCE(uwq
.waken
) ||
392 READ_ONCE(ctx
->released
) ||
393 (return_to_userland
? signal_pending(current
) :
394 fatal_signal_pending(current
)))
400 __set_current_state(TASK_RUNNING
);
402 if (return_to_userland
) {
403 if (signal_pending(current
) &&
404 !fatal_signal_pending(current
)) {
406 * If we got a SIGSTOP or SIGCONT and this is
407 * a normal userland page fault, just let
408 * userland return so the signal will be
409 * handled and gdb debugging works. The page
410 * fault code immediately after we return from
411 * this function is going to release the
412 * mmap_sem and it's not depending on it
413 * (unlike gup would if we were not to return
416 * If a fatal signal is pending we still take
417 * the streamlined VM_FAULT_RETRY failure path
418 * and there's no need to retake the mmap_sem
421 down_read(&mm
->mmap_sem
);
422 ret
= VM_FAULT_NOPAGE
;
427 * Here we race with the list_del; list_add in
428 * userfaultfd_ctx_read(), however because we don't ever run
429 * list_del_init() to refile across the two lists, the prev
430 * and next pointers will never point to self. list_add also
431 * would never let any of the two pointers to point to
432 * self. So list_empty_careful won't risk to see both pointers
433 * pointing to self at any time during the list refile. The
434 * only case where list_del_init() is called is the full
435 * removal in the wake function and there we don't re-list_add
436 * and it's fine not to block on the spinlock. The uwq on this
437 * kernel stack can be released after the list_del_init.
439 if (!list_empty_careful(&uwq
.wq
.task_list
)) {
440 spin_lock(&ctx
->fault_pending_wqh
.lock
);
442 * No need of list_del_init(), the uwq on the stack
443 * will be freed shortly anyway.
445 list_del(&uwq
.wq
.task_list
);
446 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
450 * ctx may go away after this if the userfault pseudo fd is
453 userfaultfd_ctx_put(ctx
);
459 static int userfaultfd_release(struct inode
*inode
, struct file
*file
)
461 struct userfaultfd_ctx
*ctx
= file
->private_data
;
462 struct mm_struct
*mm
= ctx
->mm
;
463 struct vm_area_struct
*vma
, *prev
;
464 /* len == 0 means wake all */
465 struct userfaultfd_wake_range range
= { .len
= 0, };
466 unsigned long new_flags
;
468 ACCESS_ONCE(ctx
->released
) = true;
470 if (!mmget_not_zero(mm
))
474 * Flush page faults out of all CPUs. NOTE: all page faults
475 * must be retried without returning VM_FAULT_SIGBUS if
476 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
477 * changes while handle_userfault released the mmap_sem. So
478 * it's critical that released is set to true (above), before
479 * taking the mmap_sem for writing.
481 down_write(&mm
->mmap_sem
);
483 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
485 BUG_ON(!!vma
->vm_userfaultfd_ctx
.ctx
^
486 !!(vma
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
487 if (vma
->vm_userfaultfd_ctx
.ctx
!= ctx
) {
491 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
492 prev
= vma_merge(mm
, prev
, vma
->vm_start
, vma
->vm_end
,
493 new_flags
, vma
->anon_vma
,
494 vma
->vm_file
, vma
->vm_pgoff
,
501 vma
->vm_flags
= new_flags
;
502 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
504 up_write(&mm
->mmap_sem
);
508 * After no new page faults can wait on this fault_*wqh, flush
509 * the last page faults that may have been already waiting on
512 spin_lock(&ctx
->fault_pending_wqh
.lock
);
513 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
, &range
);
514 __wake_up_locked_key(&ctx
->fault_wqh
, TASK_NORMAL
, &range
);
515 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
517 wake_up_poll(&ctx
->fd_wqh
, POLLHUP
);
518 userfaultfd_ctx_put(ctx
);
522 /* fault_pending_wqh.lock must be hold by the caller */
523 static inline struct userfaultfd_wait_queue
*find_userfault(
524 struct userfaultfd_ctx
*ctx
)
527 struct userfaultfd_wait_queue
*uwq
;
529 VM_BUG_ON(!spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
532 if (!waitqueue_active(&ctx
->fault_pending_wqh
))
534 /* walk in reverse to provide FIFO behavior to read userfaults */
535 wq
= list_last_entry(&ctx
->fault_pending_wqh
.task_list
,
536 typeof(*wq
), task_list
);
537 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
542 static unsigned int userfaultfd_poll(struct file
*file
, poll_table
*wait
)
544 struct userfaultfd_ctx
*ctx
= file
->private_data
;
547 poll_wait(file
, &ctx
->fd_wqh
, wait
);
549 switch (ctx
->state
) {
550 case UFFD_STATE_WAIT_API
:
552 case UFFD_STATE_RUNNING
:
554 * poll() never guarantees that read won't block.
555 * userfaults can be waken before they're read().
557 if (unlikely(!(file
->f_flags
& O_NONBLOCK
)))
560 * lockless access to see if there are pending faults
561 * __pollwait last action is the add_wait_queue but
562 * the spin_unlock would allow the waitqueue_active to
563 * pass above the actual list_add inside
564 * add_wait_queue critical section. So use a full
565 * memory barrier to serialize the list_add write of
566 * add_wait_queue() with the waitqueue_active read
571 if (waitqueue_active(&ctx
->fault_pending_wqh
))
579 static ssize_t
userfaultfd_ctx_read(struct userfaultfd_ctx
*ctx
, int no_wait
,
580 struct uffd_msg
*msg
)
583 DECLARE_WAITQUEUE(wait
, current
);
584 struct userfaultfd_wait_queue
*uwq
;
586 /* always take the fd_wqh lock before the fault_pending_wqh lock */
587 spin_lock(&ctx
->fd_wqh
.lock
);
588 __add_wait_queue(&ctx
->fd_wqh
, &wait
);
590 set_current_state(TASK_INTERRUPTIBLE
);
591 spin_lock(&ctx
->fault_pending_wqh
.lock
);
592 uwq
= find_userfault(ctx
);
595 * Use a seqcount to repeat the lockless check
596 * in wake_userfault() to avoid missing
597 * wakeups because during the refile both
598 * waitqueue could become empty if this is the
601 write_seqcount_begin(&ctx
->refile_seq
);
604 * The fault_pending_wqh.lock prevents the uwq
605 * to disappear from under us.
607 * Refile this userfault from
608 * fault_pending_wqh to fault_wqh, it's not
609 * pending anymore after we read it.
611 * Use list_del() by hand (as
612 * userfaultfd_wake_function also uses
613 * list_del_init() by hand) to be sure nobody
614 * changes __remove_wait_queue() to use
615 * list_del_init() in turn breaking the
616 * !list_empty_careful() check in
617 * handle_userfault(). The uwq->wq.task_list
618 * must never be empty at any time during the
619 * refile, or the waitqueue could disappear
620 * from under us. The "wait_queue_head_t"
621 * parameter of __remove_wait_queue() is unused
624 list_del(&uwq
->wq
.task_list
);
625 __add_wait_queue(&ctx
->fault_wqh
, &uwq
->wq
);
627 write_seqcount_end(&ctx
->refile_seq
);
629 /* careful to always initialize msg if ret == 0 */
631 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
635 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
636 if (signal_pending(current
)) {
644 spin_unlock(&ctx
->fd_wqh
.lock
);
646 spin_lock(&ctx
->fd_wqh
.lock
);
648 __remove_wait_queue(&ctx
->fd_wqh
, &wait
);
649 __set_current_state(TASK_RUNNING
);
650 spin_unlock(&ctx
->fd_wqh
.lock
);
655 static ssize_t
userfaultfd_read(struct file
*file
, char __user
*buf
,
656 size_t count
, loff_t
*ppos
)
658 struct userfaultfd_ctx
*ctx
= file
->private_data
;
659 ssize_t _ret
, ret
= 0;
661 int no_wait
= file
->f_flags
& O_NONBLOCK
;
663 if (ctx
->state
== UFFD_STATE_WAIT_API
)
667 if (count
< sizeof(msg
))
668 return ret
? ret
: -EINVAL
;
669 _ret
= userfaultfd_ctx_read(ctx
, no_wait
, &msg
);
671 return ret
? ret
: _ret
;
672 if (copy_to_user((__u64 __user
*) buf
, &msg
, sizeof(msg
)))
673 return ret
? ret
: -EFAULT
;
676 count
-= sizeof(msg
);
678 * Allow to read more than one fault at time but only
679 * block if waiting for the very first one.
681 no_wait
= O_NONBLOCK
;
685 static void __wake_userfault(struct userfaultfd_ctx
*ctx
,
686 struct userfaultfd_wake_range
*range
)
688 unsigned long start
, end
;
690 start
= range
->start
;
691 end
= range
->start
+ range
->len
;
693 spin_lock(&ctx
->fault_pending_wqh
.lock
);
694 /* wake all in the range and autoremove */
695 if (waitqueue_active(&ctx
->fault_pending_wqh
))
696 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
,
698 if (waitqueue_active(&ctx
->fault_wqh
))
699 __wake_up_locked_key(&ctx
->fault_wqh
, TASK_NORMAL
, range
);
700 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
703 static __always_inline
void wake_userfault(struct userfaultfd_ctx
*ctx
,
704 struct userfaultfd_wake_range
*range
)
710 * To be sure waitqueue_active() is not reordered by the CPU
711 * before the pagetable update, use an explicit SMP memory
712 * barrier here. PT lock release or up_read(mmap_sem) still
713 * have release semantics that can allow the
714 * waitqueue_active() to be reordered before the pte update.
719 * Use waitqueue_active because it's very frequent to
720 * change the address space atomically even if there are no
721 * userfaults yet. So we take the spinlock only when we're
722 * sure we've userfaults to wake.
725 seq
= read_seqcount_begin(&ctx
->refile_seq
);
726 need_wakeup
= waitqueue_active(&ctx
->fault_pending_wqh
) ||
727 waitqueue_active(&ctx
->fault_wqh
);
729 } while (read_seqcount_retry(&ctx
->refile_seq
, seq
));
731 __wake_userfault(ctx
, range
);
734 static __always_inline
int validate_range(struct mm_struct
*mm
,
735 __u64 start
, __u64 len
)
737 __u64 task_size
= mm
->task_size
;
739 if (start
& ~PAGE_MASK
)
741 if (len
& ~PAGE_MASK
)
745 if (start
< mmap_min_addr
)
747 if (start
>= task_size
)
749 if (len
> task_size
- start
)
754 static int userfaultfd_register(struct userfaultfd_ctx
*ctx
,
757 struct mm_struct
*mm
= ctx
->mm
;
758 struct vm_area_struct
*vma
, *prev
, *cur
;
760 struct uffdio_register uffdio_register
;
761 struct uffdio_register __user
*user_uffdio_register
;
762 unsigned long vm_flags
, new_flags
;
764 unsigned long start
, end
, vma_end
;
766 user_uffdio_register
= (struct uffdio_register __user
*) arg
;
769 if (copy_from_user(&uffdio_register
, user_uffdio_register
,
770 sizeof(uffdio_register
)-sizeof(__u64
)))
774 if (!uffdio_register
.mode
)
776 if (uffdio_register
.mode
& ~(UFFDIO_REGISTER_MODE_MISSING
|
777 UFFDIO_REGISTER_MODE_WP
))
780 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MISSING
)
781 vm_flags
|= VM_UFFD_MISSING
;
782 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
) {
783 vm_flags
|= VM_UFFD_WP
;
785 * FIXME: remove the below error constraint by
786 * implementing the wprotect tracking mode.
792 ret
= validate_range(mm
, uffdio_register
.range
.start
,
793 uffdio_register
.range
.len
);
797 start
= uffdio_register
.range
.start
;
798 end
= start
+ uffdio_register
.range
.len
;
801 if (!mmget_not_zero(mm
))
804 down_write(&mm
->mmap_sem
);
805 vma
= find_vma_prev(mm
, start
, &prev
);
809 /* check that there's at least one vma in the range */
811 if (vma
->vm_start
>= end
)
815 * Search for not compatible vmas.
817 * FIXME: this shall be relaxed later so that it doesn't fail
818 * on tmpfs backed vmas (in addition to the current allowance
819 * on anonymous vmas).
822 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
825 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
826 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
828 /* check not compatible vmas */
834 * Check that this vma isn't already owned by a
835 * different userfaultfd. We can't allow more than one
836 * userfaultfd to own a single vma simultaneously or we
837 * wouldn't know which one to deliver the userfaults to.
840 if (cur
->vm_userfaultfd_ctx
.ctx
&&
841 cur
->vm_userfaultfd_ctx
.ctx
!= ctx
)
848 if (vma
->vm_start
< start
)
856 BUG_ON(vma
->vm_userfaultfd_ctx
.ctx
&&
857 vma
->vm_userfaultfd_ctx
.ctx
!= ctx
);
860 * Nothing to do: this vma is already registered into this
861 * userfaultfd and with the right tracking mode too.
863 if (vma
->vm_userfaultfd_ctx
.ctx
== ctx
&&
864 (vma
->vm_flags
& vm_flags
) == vm_flags
)
867 if (vma
->vm_start
> start
)
868 start
= vma
->vm_start
;
869 vma_end
= min(end
, vma
->vm_end
);
871 new_flags
= (vma
->vm_flags
& ~vm_flags
) | vm_flags
;
872 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
873 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
875 ((struct vm_userfaultfd_ctx
){ ctx
}));
880 if (vma
->vm_start
< start
) {
881 ret
= split_vma(mm
, vma
, start
, 1);
885 if (vma
->vm_end
> end
) {
886 ret
= split_vma(mm
, vma
, end
, 0);
892 * In the vma_merge() successful mprotect-like case 8:
893 * the next vma was merged into the current one and
894 * the current one has not been updated yet.
896 vma
->vm_flags
= new_flags
;
897 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
903 } while (vma
&& vma
->vm_start
< end
);
905 up_write(&mm
->mmap_sem
);
909 * Now that we scanned all vmas we can already tell
910 * userland which ioctls methods are guaranteed to
911 * succeed on this range.
913 if (put_user(UFFD_API_RANGE_IOCTLS
,
914 &user_uffdio_register
->ioctls
))
921 static int userfaultfd_unregister(struct userfaultfd_ctx
*ctx
,
924 struct mm_struct
*mm
= ctx
->mm
;
925 struct vm_area_struct
*vma
, *prev
, *cur
;
927 struct uffdio_range uffdio_unregister
;
928 unsigned long new_flags
;
930 unsigned long start
, end
, vma_end
;
931 const void __user
*buf
= (void __user
*)arg
;
934 if (copy_from_user(&uffdio_unregister
, buf
, sizeof(uffdio_unregister
)))
937 ret
= validate_range(mm
, uffdio_unregister
.start
,
938 uffdio_unregister
.len
);
942 start
= uffdio_unregister
.start
;
943 end
= start
+ uffdio_unregister
.len
;
946 if (!mmget_not_zero(mm
))
949 down_write(&mm
->mmap_sem
);
950 vma
= find_vma_prev(mm
, start
, &prev
);
954 /* check that there's at least one vma in the range */
956 if (vma
->vm_start
>= end
)
960 * Search for not compatible vmas.
962 * FIXME: this shall be relaxed later so that it doesn't fail
963 * on tmpfs backed vmas (in addition to the current allowance
964 * on anonymous vmas).
968 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
971 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
972 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
975 * Check not compatible vmas, not strictly required
976 * here as not compatible vmas cannot have an
977 * userfaultfd_ctx registered on them, but this
978 * provides for more strict behavior to notice
979 * unregistration errors.
988 if (vma
->vm_start
< start
)
998 * Nothing to do: this vma is already registered into this
999 * userfaultfd and with the right tracking mode too.
1001 if (!vma
->vm_userfaultfd_ctx
.ctx
)
1004 if (vma
->vm_start
> start
)
1005 start
= vma
->vm_start
;
1006 vma_end
= min(end
, vma
->vm_end
);
1008 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
1009 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1010 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1017 if (vma
->vm_start
< start
) {
1018 ret
= split_vma(mm
, vma
, start
, 1);
1022 if (vma
->vm_end
> end
) {
1023 ret
= split_vma(mm
, vma
, end
, 0);
1029 * In the vma_merge() successful mprotect-like case 8:
1030 * the next vma was merged into the current one and
1031 * the current one has not been updated yet.
1033 vma
->vm_flags
= new_flags
;
1034 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
1038 start
= vma
->vm_end
;
1040 } while (vma
&& vma
->vm_start
< end
);
1042 up_write(&mm
->mmap_sem
);
1049 * userfaultfd_wake may be used in combination with the
1050 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1052 static int userfaultfd_wake(struct userfaultfd_ctx
*ctx
,
1056 struct uffdio_range uffdio_wake
;
1057 struct userfaultfd_wake_range range
;
1058 const void __user
*buf
= (void __user
*)arg
;
1061 if (copy_from_user(&uffdio_wake
, buf
, sizeof(uffdio_wake
)))
1064 ret
= validate_range(ctx
->mm
, uffdio_wake
.start
, uffdio_wake
.len
);
1068 range
.start
= uffdio_wake
.start
;
1069 range
.len
= uffdio_wake
.len
;
1072 * len == 0 means wake all and we don't want to wake all here,
1073 * so check it again to be sure.
1075 VM_BUG_ON(!range
.len
);
1077 wake_userfault(ctx
, &range
);
1084 static int userfaultfd_copy(struct userfaultfd_ctx
*ctx
,
1088 struct uffdio_copy uffdio_copy
;
1089 struct uffdio_copy __user
*user_uffdio_copy
;
1090 struct userfaultfd_wake_range range
;
1092 user_uffdio_copy
= (struct uffdio_copy __user
*) arg
;
1095 if (copy_from_user(&uffdio_copy
, user_uffdio_copy
,
1096 /* don't copy "copy" last field */
1097 sizeof(uffdio_copy
)-sizeof(__s64
)))
1100 ret
= validate_range(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.len
);
1104 * double check for wraparound just in case. copy_from_user()
1105 * will later check uffdio_copy.src + uffdio_copy.len to fit
1106 * in the userland range.
1109 if (uffdio_copy
.src
+ uffdio_copy
.len
<= uffdio_copy
.src
)
1111 if (uffdio_copy
.mode
& ~UFFDIO_COPY_MODE_DONTWAKE
)
1113 if (mmget_not_zero(ctx
->mm
)) {
1114 ret
= mcopy_atomic(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.src
,
1118 if (unlikely(put_user(ret
, &user_uffdio_copy
->copy
)))
1123 /* len == 0 would wake all */
1125 if (!(uffdio_copy
.mode
& UFFDIO_COPY_MODE_DONTWAKE
)) {
1126 range
.start
= uffdio_copy
.dst
;
1127 wake_userfault(ctx
, &range
);
1129 ret
= range
.len
== uffdio_copy
.len
? 0 : -EAGAIN
;
1134 static int userfaultfd_zeropage(struct userfaultfd_ctx
*ctx
,
1138 struct uffdio_zeropage uffdio_zeropage
;
1139 struct uffdio_zeropage __user
*user_uffdio_zeropage
;
1140 struct userfaultfd_wake_range range
;
1142 user_uffdio_zeropage
= (struct uffdio_zeropage __user
*) arg
;
1145 if (copy_from_user(&uffdio_zeropage
, user_uffdio_zeropage
,
1146 /* don't copy "zeropage" last field */
1147 sizeof(uffdio_zeropage
)-sizeof(__s64
)))
1150 ret
= validate_range(ctx
->mm
, uffdio_zeropage
.range
.start
,
1151 uffdio_zeropage
.range
.len
);
1155 if (uffdio_zeropage
.mode
& ~UFFDIO_ZEROPAGE_MODE_DONTWAKE
)
1158 if (mmget_not_zero(ctx
->mm
)) {
1159 ret
= mfill_zeropage(ctx
->mm
, uffdio_zeropage
.range
.start
,
1160 uffdio_zeropage
.range
.len
);
1163 if (unlikely(put_user(ret
, &user_uffdio_zeropage
->zeropage
)))
1167 /* len == 0 would wake all */
1170 if (!(uffdio_zeropage
.mode
& UFFDIO_ZEROPAGE_MODE_DONTWAKE
)) {
1171 range
.start
= uffdio_zeropage
.range
.start
;
1172 wake_userfault(ctx
, &range
);
1174 ret
= range
.len
== uffdio_zeropage
.range
.len
? 0 : -EAGAIN
;
1180 * userland asks for a certain API version and we return which bits
1181 * and ioctl commands are implemented in this kernel for such API
1182 * version or -EINVAL if unknown.
1184 static int userfaultfd_api(struct userfaultfd_ctx
*ctx
,
1187 struct uffdio_api uffdio_api
;
1188 void __user
*buf
= (void __user
*)arg
;
1192 if (ctx
->state
!= UFFD_STATE_WAIT_API
)
1195 if (copy_from_user(&uffdio_api
, buf
, sizeof(uffdio_api
)))
1197 if (uffdio_api
.api
!= UFFD_API
|| uffdio_api
.features
) {
1198 memset(&uffdio_api
, 0, sizeof(uffdio_api
));
1199 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1204 uffdio_api
.features
= UFFD_API_FEATURES
;
1205 uffdio_api
.ioctls
= UFFD_API_IOCTLS
;
1207 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1209 ctx
->state
= UFFD_STATE_RUNNING
;
1215 static long userfaultfd_ioctl(struct file
*file
, unsigned cmd
,
1219 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1221 if (cmd
!= UFFDIO_API
&& ctx
->state
== UFFD_STATE_WAIT_API
)
1226 ret
= userfaultfd_api(ctx
, arg
);
1228 case UFFDIO_REGISTER
:
1229 ret
= userfaultfd_register(ctx
, arg
);
1231 case UFFDIO_UNREGISTER
:
1232 ret
= userfaultfd_unregister(ctx
, arg
);
1235 ret
= userfaultfd_wake(ctx
, arg
);
1238 ret
= userfaultfd_copy(ctx
, arg
);
1240 case UFFDIO_ZEROPAGE
:
1241 ret
= userfaultfd_zeropage(ctx
, arg
);
1247 #ifdef CONFIG_PROC_FS
1248 static void userfaultfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1250 struct userfaultfd_ctx
*ctx
= f
->private_data
;
1252 struct userfaultfd_wait_queue
*uwq
;
1253 unsigned long pending
= 0, total
= 0;
1255 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1256 list_for_each_entry(wq
, &ctx
->fault_pending_wqh
.task_list
, task_list
) {
1257 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
1261 list_for_each_entry(wq
, &ctx
->fault_wqh
.task_list
, task_list
) {
1262 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
1265 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1268 * If more protocols will be added, there will be all shown
1269 * separated by a space. Like this:
1270 * protocols: aa:... bb:...
1272 seq_printf(m
, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1273 pending
, total
, UFFD_API
, UFFD_API_FEATURES
,
1274 UFFD_API_IOCTLS
|UFFD_API_RANGE_IOCTLS
);
1278 static const struct file_operations userfaultfd_fops
= {
1279 #ifdef CONFIG_PROC_FS
1280 .show_fdinfo
= userfaultfd_show_fdinfo
,
1282 .release
= userfaultfd_release
,
1283 .poll
= userfaultfd_poll
,
1284 .read
= userfaultfd_read
,
1285 .unlocked_ioctl
= userfaultfd_ioctl
,
1286 .compat_ioctl
= userfaultfd_ioctl
,
1287 .llseek
= noop_llseek
,
1290 static void init_once_userfaultfd_ctx(void *mem
)
1292 struct userfaultfd_ctx
*ctx
= (struct userfaultfd_ctx
*) mem
;
1294 init_waitqueue_head(&ctx
->fault_pending_wqh
);
1295 init_waitqueue_head(&ctx
->fault_wqh
);
1296 init_waitqueue_head(&ctx
->fd_wqh
);
1297 seqcount_init(&ctx
->refile_seq
);
1301 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1302 * @flags: Flags for the userfaultfd file.
1304 * This function creates an userfaultfd file pointer, w/out installing
1305 * it into the fd table. This is useful when the userfaultfd file is
1306 * used during the initialization of data structures that require
1307 * extra setup after the userfaultfd creation. So the userfaultfd
1308 * creation is split into the file pointer creation phase, and the
1309 * file descriptor installation phase. In this way races with
1310 * userspace closing the newly installed file descriptor can be
1311 * avoided. Returns an userfaultfd file pointer, or a proper error
1314 static struct file
*userfaultfd_file_create(int flags
)
1317 struct userfaultfd_ctx
*ctx
;
1319 BUG_ON(!current
->mm
);
1321 /* Check the UFFD_* constants for consistency. */
1322 BUILD_BUG_ON(UFFD_CLOEXEC
!= O_CLOEXEC
);
1323 BUILD_BUG_ON(UFFD_NONBLOCK
!= O_NONBLOCK
);
1325 file
= ERR_PTR(-EINVAL
);
1326 if (flags
& ~UFFD_SHARED_FCNTL_FLAGS
)
1329 file
= ERR_PTR(-ENOMEM
);
1330 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
1334 atomic_set(&ctx
->refcount
, 1);
1336 ctx
->state
= UFFD_STATE_WAIT_API
;
1337 ctx
->released
= false;
1338 ctx
->mm
= current
->mm
;
1339 /* prevent the mm struct to be freed */
1340 atomic_inc(&ctx
->mm
->mm_count
);
1342 file
= anon_inode_getfile("[userfaultfd]", &userfaultfd_fops
, ctx
,
1343 O_RDWR
| (flags
& UFFD_SHARED_FCNTL_FLAGS
));
1346 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
1352 SYSCALL_DEFINE1(userfaultfd
, int, flags
)
1357 error
= get_unused_fd_flags(flags
& UFFD_SHARED_FCNTL_FLAGS
);
1362 file
= userfaultfd_file_create(flags
);
1364 error
= PTR_ERR(file
);
1365 goto err_put_unused_fd
;
1367 fd_install(fd
, file
);
1377 static int __init
userfaultfd_init(void)
1379 userfaultfd_ctx_cachep
= kmem_cache_create("userfaultfd_ctx_cache",
1380 sizeof(struct userfaultfd_ctx
),
1382 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1383 init_once_userfaultfd_ctx
);
1386 __initcall(userfaultfd_init
);