sctp: fix random memory dereference with SCTP_HMAC_IDENT option.
[linux/fpc-iii.git] / net / sctp / socket.c
blob700d27d447ba8a7fa4935c3d06ec82f5be8ee4d1
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel implementation
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 static atomic_t sctp_sockets_allocated;
119 static void sctp_enter_memory_pressure(void)
121 sctp_memory_pressure = 1;
125 /* Get the sndbuf space available at the time on the association. */
126 static inline int sctp_wspace(struct sctp_association *asoc)
128 int amt;
130 if (asoc->ep->sndbuf_policy)
131 amt = asoc->sndbuf_used;
132 else
133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
135 if (amt >= asoc->base.sk->sk_sndbuf) {
136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 amt = 0;
138 else {
139 amt = sk_stream_wspace(asoc->base.sk);
140 if (amt < 0)
141 amt = 0;
143 } else {
144 amt = asoc->base.sk->sk_sndbuf - amt;
146 return amt;
149 /* Increment the used sndbuf space count of the corresponding association by
150 * the size of the outgoing data chunk.
151 * Also, set the skb destructor for sndbuf accounting later.
153 * Since it is always 1-1 between chunk and skb, and also a new skb is always
154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155 * destructor in the data chunk skb for the purpose of the sndbuf space
156 * tracking.
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
160 struct sctp_association *asoc = chunk->asoc;
161 struct sock *sk = asoc->base.sk;
163 /* The sndbuf space is tracked per association. */
164 sctp_association_hold(asoc);
166 skb_set_owner_w(chunk->skb, sk);
168 chunk->skb->destructor = sctp_wfree;
169 /* Save the chunk pointer in skb for sctp_wfree to use later. */
170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 sizeof(struct sk_buff) +
174 sizeof(struct sctp_chunk);
176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 sk->sk_wmem_queued += chunk->skb->truesize;
178 sk_mem_charge(sk, chunk->skb->truesize);
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 int len)
185 struct sctp_af *af;
187 /* Verify basic sockaddr. */
188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 if (!af)
190 return -EINVAL;
192 /* Is this a valid SCTP address? */
193 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 return -EINVAL;
196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 return -EINVAL;
199 return 0;
202 /* Look up the association by its id. If this is not a UDP-style
203 * socket, the ID field is always ignored.
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
207 struct sctp_association *asoc = NULL;
209 /* If this is not a UDP-style socket, assoc id should be ignored. */
210 if (!sctp_style(sk, UDP)) {
211 /* Return NULL if the socket state is not ESTABLISHED. It
212 * could be a TCP-style listening socket or a socket which
213 * hasn't yet called connect() to establish an association.
215 if (!sctp_sstate(sk, ESTABLISHED))
216 return NULL;
218 /* Get the first and the only association from the list. */
219 if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 struct sctp_association, asocs);
222 return asoc;
225 /* Otherwise this is a UDP-style socket. */
226 if (!id || (id == (sctp_assoc_t)-1))
227 return NULL;
229 spin_lock_bh(&sctp_assocs_id_lock);
230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 spin_unlock_bh(&sctp_assocs_id_lock);
233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 return NULL;
236 return asoc;
239 /* Look up the transport from an address and an assoc id. If both address and
240 * id are specified, the associations matching the address and the id should be
241 * the same.
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 struct sockaddr_storage *addr,
245 sctp_assoc_t id)
247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 struct sctp_transport *transport;
249 union sctp_addr *laddr = (union sctp_addr *)addr;
251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 laddr,
253 &transport);
255 if (!addr_asoc)
256 return NULL;
258 id_asoc = sctp_id2assoc(sk, id);
259 if (id_asoc && (id_asoc != addr_asoc))
260 return NULL;
262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 (union sctp_addr *)addr);
265 return transport;
268 /* API 3.1.2 bind() - UDP Style Syntax
269 * The syntax of bind() is,
271 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
273 * sd - the socket descriptor returned by socket().
274 * addr - the address structure (struct sockaddr_in or struct
275 * sockaddr_in6 [RFC 2553]),
276 * addr_len - the size of the address structure.
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
280 int retval = 0;
282 sctp_lock_sock(sk);
284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 sk, addr, addr_len);
287 /* Disallow binding twice. */
288 if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 addr_len);
291 else
292 retval = -EINVAL;
294 sctp_release_sock(sk);
296 return retval;
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 union sctp_addr *addr, int len)
305 struct sctp_af *af;
307 /* Check minimum size. */
308 if (len < sizeof (struct sockaddr))
309 return NULL;
311 /* Does this PF support this AF? */
312 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 return NULL;
315 /* If we get this far, af is valid. */
316 af = sctp_get_af_specific(addr->sa.sa_family);
318 if (len < af->sockaddr_len)
319 return NULL;
321 return af;
324 /* Bind a local address either to an endpoint or to an association. */
325 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327 struct sctp_sock *sp = sctp_sk(sk);
328 struct sctp_endpoint *ep = sp->ep;
329 struct sctp_bind_addr *bp = &ep->base.bind_addr;
330 struct sctp_af *af;
331 unsigned short snum;
332 int ret = 0;
334 /* Common sockaddr verification. */
335 af = sctp_sockaddr_af(sp, addr, len);
336 if (!af) {
337 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
338 sk, addr, len);
339 return -EINVAL;
342 snum = ntohs(addr->v4.sin_port);
344 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
345 ", port: %d, new port: %d, len: %d)\n",
347 addr,
348 bp->port, snum,
349 len);
351 /* PF specific bind() address verification. */
352 if (!sp->pf->bind_verify(sp, addr))
353 return -EADDRNOTAVAIL;
355 /* We must either be unbound, or bind to the same port.
356 * It's OK to allow 0 ports if we are already bound.
357 * We'll just inhert an already bound port in this case
359 if (bp->port) {
360 if (!snum)
361 snum = bp->port;
362 else if (snum != bp->port) {
363 SCTP_DEBUG_PRINTK("sctp_do_bind:"
364 " New port %d does not match existing port "
365 "%d.\n", snum, bp->port);
366 return -EINVAL;
370 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
371 return -EACCES;
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 if (ret == (long) sk) {
380 /* This endpoint has a conflicting address. */
381 return -EINVAL;
382 } else {
383 return -EADDRINUSE;
387 /* Refresh ephemeral port. */
388 if (!bp->port)
389 bp->port = inet_sk(sk)->num;
391 /* Add the address to the bind address list.
392 * Use GFP_ATOMIC since BHs will be disabled.
394 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
396 /* Copy back into socket for getsockname() use. */
397 if (!ret) {
398 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
399 af->to_sk_saddr(addr, sk);
402 return ret;
405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408 * at any one time. If a sender, after sending an ASCONF chunk, decides
409 * it needs to transfer another ASCONF Chunk, it MUST wait until the
410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411 * subsequent ASCONF. Note this restriction binds each side, so at any
412 * time two ASCONF may be in-transit on any given association (one sent
413 * from each endpoint).
415 static int sctp_send_asconf(struct sctp_association *asoc,
416 struct sctp_chunk *chunk)
418 int retval = 0;
420 /* If there is an outstanding ASCONF chunk, queue it for later
421 * transmission.
423 if (asoc->addip_last_asconf) {
424 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
425 goto out;
428 /* Hold the chunk until an ASCONF_ACK is received. */
429 sctp_chunk_hold(chunk);
430 retval = sctp_primitive_ASCONF(asoc, chunk);
431 if (retval)
432 sctp_chunk_free(chunk);
433 else
434 asoc->addip_last_asconf = chunk;
436 out:
437 return retval;
440 /* Add a list of addresses as bind addresses to local endpoint or
441 * association.
443 * Basically run through each address specified in the addrs/addrcnt
444 * array/length pair, determine if it is IPv6 or IPv4 and call
445 * sctp_do_bind() on it.
447 * If any of them fails, then the operation will be reversed and the
448 * ones that were added will be removed.
450 * Only sctp_setsockopt_bindx() is supposed to call this function.
452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
454 int cnt;
455 int retval = 0;
456 void *addr_buf;
457 struct sockaddr *sa_addr;
458 struct sctp_af *af;
460 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
461 sk, addrs, addrcnt);
463 addr_buf = addrs;
464 for (cnt = 0; cnt < addrcnt; cnt++) {
465 /* The list may contain either IPv4 or IPv6 address;
466 * determine the address length for walking thru the list.
468 sa_addr = (struct sockaddr *)addr_buf;
469 af = sctp_get_af_specific(sa_addr->sa_family);
470 if (!af) {
471 retval = -EINVAL;
472 goto err_bindx_add;
475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
476 af->sockaddr_len);
478 addr_buf += af->sockaddr_len;
480 err_bindx_add:
481 if (retval < 0) {
482 /* Failed. Cleanup the ones that have been added */
483 if (cnt > 0)
484 sctp_bindx_rem(sk, addrs, cnt);
485 return retval;
489 return retval;
492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
493 * associations that are part of the endpoint indicating that a list of local
494 * addresses are added to the endpoint.
496 * If any of the addresses is already in the bind address list of the
497 * association, we do not send the chunk for that association. But it will not
498 * affect other associations.
500 * Only sctp_setsockopt_bindx() is supposed to call this function.
502 static int sctp_send_asconf_add_ip(struct sock *sk,
503 struct sockaddr *addrs,
504 int addrcnt)
506 struct sctp_sock *sp;
507 struct sctp_endpoint *ep;
508 struct sctp_association *asoc;
509 struct sctp_bind_addr *bp;
510 struct sctp_chunk *chunk;
511 struct sctp_sockaddr_entry *laddr;
512 union sctp_addr *addr;
513 union sctp_addr saveaddr;
514 void *addr_buf;
515 struct sctp_af *af;
516 struct list_head *p;
517 int i;
518 int retval = 0;
520 if (!sctp_addip_enable)
521 return retval;
523 sp = sctp_sk(sk);
524 ep = sp->ep;
526 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
527 __func__, sk, addrs, addrcnt);
529 list_for_each_entry(asoc, &ep->asocs, asocs) {
531 if (!asoc->peer.asconf_capable)
532 continue;
534 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
535 continue;
537 if (!sctp_state(asoc, ESTABLISHED))
538 continue;
540 /* Check if any address in the packed array of addresses is
541 * in the bind address list of the association. If so,
542 * do not send the asconf chunk to its peer, but continue with
543 * other associations.
545 addr_buf = addrs;
546 for (i = 0; i < addrcnt; i++) {
547 addr = (union sctp_addr *)addr_buf;
548 af = sctp_get_af_specific(addr->v4.sin_family);
549 if (!af) {
550 retval = -EINVAL;
551 goto out;
554 if (sctp_assoc_lookup_laddr(asoc, addr))
555 break;
557 addr_buf += af->sockaddr_len;
559 if (i < addrcnt)
560 continue;
562 /* Use the first valid address in bind addr list of
563 * association as Address Parameter of ASCONF CHUNK.
565 bp = &asoc->base.bind_addr;
566 p = bp->address_list.next;
567 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
568 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
569 addrcnt, SCTP_PARAM_ADD_IP);
570 if (!chunk) {
571 retval = -ENOMEM;
572 goto out;
575 retval = sctp_send_asconf(asoc, chunk);
576 if (retval)
577 goto out;
579 /* Add the new addresses to the bind address list with
580 * use_as_src set to 0.
582 addr_buf = addrs;
583 for (i = 0; i < addrcnt; i++) {
584 addr = (union sctp_addr *)addr_buf;
585 af = sctp_get_af_specific(addr->v4.sin_family);
586 memcpy(&saveaddr, addr, af->sockaddr_len);
587 retval = sctp_add_bind_addr(bp, &saveaddr,
588 SCTP_ADDR_NEW, GFP_ATOMIC);
589 addr_buf += af->sockaddr_len;
593 out:
594 return retval;
597 /* Remove a list of addresses from bind addresses list. Do not remove the
598 * last address.
600 * Basically run through each address specified in the addrs/addrcnt
601 * array/length pair, determine if it is IPv6 or IPv4 and call
602 * sctp_del_bind() on it.
604 * If any of them fails, then the operation will be reversed and the
605 * ones that were removed will be added back.
607 * At least one address has to be left; if only one address is
608 * available, the operation will return -EBUSY.
610 * Only sctp_setsockopt_bindx() is supposed to call this function.
612 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
614 struct sctp_sock *sp = sctp_sk(sk);
615 struct sctp_endpoint *ep = sp->ep;
616 int cnt;
617 struct sctp_bind_addr *bp = &ep->base.bind_addr;
618 int retval = 0;
619 void *addr_buf;
620 union sctp_addr *sa_addr;
621 struct sctp_af *af;
623 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
624 sk, addrs, addrcnt);
626 addr_buf = addrs;
627 for (cnt = 0; cnt < addrcnt; cnt++) {
628 /* If the bind address list is empty or if there is only one
629 * bind address, there is nothing more to be removed (we need
630 * at least one address here).
632 if (list_empty(&bp->address_list) ||
633 (sctp_list_single_entry(&bp->address_list))) {
634 retval = -EBUSY;
635 goto err_bindx_rem;
638 sa_addr = (union sctp_addr *)addr_buf;
639 af = sctp_get_af_specific(sa_addr->sa.sa_family);
640 if (!af) {
641 retval = -EINVAL;
642 goto err_bindx_rem;
645 if (!af->addr_valid(sa_addr, sp, NULL)) {
646 retval = -EADDRNOTAVAIL;
647 goto err_bindx_rem;
650 if (sa_addr->v4.sin_port != htons(bp->port)) {
651 retval = -EINVAL;
652 goto err_bindx_rem;
655 /* FIXME - There is probably a need to check if sk->sk_saddr and
656 * sk->sk_rcv_addr are currently set to one of the addresses to
657 * be removed. This is something which needs to be looked into
658 * when we are fixing the outstanding issues with multi-homing
659 * socket routing and failover schemes. Refer to comments in
660 * sctp_do_bind(). -daisy
662 retval = sctp_del_bind_addr(bp, sa_addr);
664 addr_buf += af->sockaddr_len;
665 err_bindx_rem:
666 if (retval < 0) {
667 /* Failed. Add the ones that has been removed back */
668 if (cnt > 0)
669 sctp_bindx_add(sk, addrs, cnt);
670 return retval;
674 return retval;
677 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
678 * the associations that are part of the endpoint indicating that a list of
679 * local addresses are removed from the endpoint.
681 * If any of the addresses is already in the bind address list of the
682 * association, we do not send the chunk for that association. But it will not
683 * affect other associations.
685 * Only sctp_setsockopt_bindx() is supposed to call this function.
687 static int sctp_send_asconf_del_ip(struct sock *sk,
688 struct sockaddr *addrs,
689 int addrcnt)
691 struct sctp_sock *sp;
692 struct sctp_endpoint *ep;
693 struct sctp_association *asoc;
694 struct sctp_transport *transport;
695 struct sctp_bind_addr *bp;
696 struct sctp_chunk *chunk;
697 union sctp_addr *laddr;
698 void *addr_buf;
699 struct sctp_af *af;
700 struct sctp_sockaddr_entry *saddr;
701 int i;
702 int retval = 0;
704 if (!sctp_addip_enable)
705 return retval;
707 sp = sctp_sk(sk);
708 ep = sp->ep;
710 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
711 __func__, sk, addrs, addrcnt);
713 list_for_each_entry(asoc, &ep->asocs, asocs) {
715 if (!asoc->peer.asconf_capable)
716 continue;
718 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
719 continue;
721 if (!sctp_state(asoc, ESTABLISHED))
722 continue;
724 /* Check if any address in the packed array of addresses is
725 * not present in the bind address list of the association.
726 * If so, do not send the asconf chunk to its peer, but
727 * continue with other associations.
729 addr_buf = addrs;
730 for (i = 0; i < addrcnt; i++) {
731 laddr = (union sctp_addr *)addr_buf;
732 af = sctp_get_af_specific(laddr->v4.sin_family);
733 if (!af) {
734 retval = -EINVAL;
735 goto out;
738 if (!sctp_assoc_lookup_laddr(asoc, laddr))
739 break;
741 addr_buf += af->sockaddr_len;
743 if (i < addrcnt)
744 continue;
746 /* Find one address in the association's bind address list
747 * that is not in the packed array of addresses. This is to
748 * make sure that we do not delete all the addresses in the
749 * association.
751 bp = &asoc->base.bind_addr;
752 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
753 addrcnt, sp);
754 if (!laddr)
755 continue;
757 /* We do not need RCU protection throughout this loop
758 * because this is done under a socket lock from the
759 * setsockopt call.
761 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
762 SCTP_PARAM_DEL_IP);
763 if (!chunk) {
764 retval = -ENOMEM;
765 goto out;
768 /* Reset use_as_src flag for the addresses in the bind address
769 * list that are to be deleted.
771 addr_buf = addrs;
772 for (i = 0; i < addrcnt; i++) {
773 laddr = (union sctp_addr *)addr_buf;
774 af = sctp_get_af_specific(laddr->v4.sin_family);
775 list_for_each_entry(saddr, &bp->address_list, list) {
776 if (sctp_cmp_addr_exact(&saddr->a, laddr))
777 saddr->state = SCTP_ADDR_DEL;
779 addr_buf += af->sockaddr_len;
782 /* Update the route and saddr entries for all the transports
783 * as some of the addresses in the bind address list are
784 * about to be deleted and cannot be used as source addresses.
786 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
787 transports) {
788 dst_release(transport->dst);
789 sctp_transport_route(transport, NULL,
790 sctp_sk(asoc->base.sk));
793 retval = sctp_send_asconf(asoc, chunk);
795 out:
796 return retval;
799 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
801 * API 8.1
802 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
803 * int flags);
805 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
806 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
807 * or IPv6 addresses.
809 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
810 * Section 3.1.2 for this usage.
812 * addrs is a pointer to an array of one or more socket addresses. Each
813 * address is contained in its appropriate structure (i.e. struct
814 * sockaddr_in or struct sockaddr_in6) the family of the address type
815 * must be used to distinguish the address length (note that this
816 * representation is termed a "packed array" of addresses). The caller
817 * specifies the number of addresses in the array with addrcnt.
819 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
820 * -1, and sets errno to the appropriate error code.
822 * For SCTP, the port given in each socket address must be the same, or
823 * sctp_bindx() will fail, setting errno to EINVAL.
825 * The flags parameter is formed from the bitwise OR of zero or more of
826 * the following currently defined flags:
828 * SCTP_BINDX_ADD_ADDR
830 * SCTP_BINDX_REM_ADDR
832 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
833 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
834 * addresses from the association. The two flags are mutually exclusive;
835 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
836 * not remove all addresses from an association; sctp_bindx() will
837 * reject such an attempt with EINVAL.
839 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
840 * additional addresses with an endpoint after calling bind(). Or use
841 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
842 * socket is associated with so that no new association accepted will be
843 * associated with those addresses. If the endpoint supports dynamic
844 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
845 * endpoint to send the appropriate message to the peer to change the
846 * peers address lists.
848 * Adding and removing addresses from a connected association is
849 * optional functionality. Implementations that do not support this
850 * functionality should return EOPNOTSUPP.
852 * Basically do nothing but copying the addresses from user to kernel
853 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
854 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
855 * from userspace.
857 * We don't use copy_from_user() for optimization: we first do the
858 * sanity checks (buffer size -fast- and access check-healthy
859 * pointer); if all of those succeed, then we can alloc the memory
860 * (expensive operation) needed to copy the data to kernel. Then we do
861 * the copying without checking the user space area
862 * (__copy_from_user()).
864 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
865 * it.
867 * sk The sk of the socket
868 * addrs The pointer to the addresses in user land
869 * addrssize Size of the addrs buffer
870 * op Operation to perform (add or remove, see the flags of
871 * sctp_bindx)
873 * Returns 0 if ok, <0 errno code on error.
875 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
876 struct sockaddr __user *addrs,
877 int addrs_size, int op)
879 struct sockaddr *kaddrs;
880 int err;
881 int addrcnt = 0;
882 int walk_size = 0;
883 struct sockaddr *sa_addr;
884 void *addr_buf;
885 struct sctp_af *af;
887 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
888 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
890 if (unlikely(addrs_size <= 0))
891 return -EINVAL;
893 /* Check the user passed a healthy pointer. */
894 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
895 return -EFAULT;
897 /* Alloc space for the address array in kernel memory. */
898 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
899 if (unlikely(!kaddrs))
900 return -ENOMEM;
902 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
903 kfree(kaddrs);
904 return -EFAULT;
907 /* Walk through the addrs buffer and count the number of addresses. */
908 addr_buf = kaddrs;
909 while (walk_size < addrs_size) {
910 sa_addr = (struct sockaddr *)addr_buf;
911 af = sctp_get_af_specific(sa_addr->sa_family);
913 /* If the address family is not supported or if this address
914 * causes the address buffer to overflow return EINVAL.
916 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
917 kfree(kaddrs);
918 return -EINVAL;
920 addrcnt++;
921 addr_buf += af->sockaddr_len;
922 walk_size += af->sockaddr_len;
925 /* Do the work. */
926 switch (op) {
927 case SCTP_BINDX_ADD_ADDR:
928 err = sctp_bindx_add(sk, kaddrs, addrcnt);
929 if (err)
930 goto out;
931 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
932 break;
934 case SCTP_BINDX_REM_ADDR:
935 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
936 if (err)
937 goto out;
938 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
939 break;
941 default:
942 err = -EINVAL;
943 break;
946 out:
947 kfree(kaddrs);
949 return err;
952 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
954 * Common routine for handling connect() and sctp_connectx().
955 * Connect will come in with just a single address.
957 static int __sctp_connect(struct sock* sk,
958 struct sockaddr *kaddrs,
959 int addrs_size)
961 struct sctp_sock *sp;
962 struct sctp_endpoint *ep;
963 struct sctp_association *asoc = NULL;
964 struct sctp_association *asoc2;
965 struct sctp_transport *transport;
966 union sctp_addr to;
967 struct sctp_af *af;
968 sctp_scope_t scope;
969 long timeo;
970 int err = 0;
971 int addrcnt = 0;
972 int walk_size = 0;
973 union sctp_addr *sa_addr = NULL;
974 void *addr_buf;
975 unsigned short port;
976 unsigned int f_flags = 0;
978 sp = sctp_sk(sk);
979 ep = sp->ep;
981 /* connect() cannot be done on a socket that is already in ESTABLISHED
982 * state - UDP-style peeled off socket or a TCP-style socket that
983 * is already connected.
984 * It cannot be done even on a TCP-style listening socket.
986 if (sctp_sstate(sk, ESTABLISHED) ||
987 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
988 err = -EISCONN;
989 goto out_free;
992 /* Walk through the addrs buffer and count the number of addresses. */
993 addr_buf = kaddrs;
994 while (walk_size < addrs_size) {
995 sa_addr = (union sctp_addr *)addr_buf;
996 af = sctp_get_af_specific(sa_addr->sa.sa_family);
997 port = ntohs(sa_addr->v4.sin_port);
999 /* If the address family is not supported or if this address
1000 * causes the address buffer to overflow return EINVAL.
1002 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1003 err = -EINVAL;
1004 goto out_free;
1007 /* Save current address so we can work with it */
1008 memcpy(&to, sa_addr, af->sockaddr_len);
1010 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1011 if (err)
1012 goto out_free;
1014 /* Make sure the destination port is correctly set
1015 * in all addresses.
1017 if (asoc && asoc->peer.port && asoc->peer.port != port)
1018 goto out_free;
1021 /* Check if there already is a matching association on the
1022 * endpoint (other than the one created here).
1024 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1025 if (asoc2 && asoc2 != asoc) {
1026 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1027 err = -EISCONN;
1028 else
1029 err = -EALREADY;
1030 goto out_free;
1033 /* If we could not find a matching association on the endpoint,
1034 * make sure that there is no peeled-off association matching
1035 * the peer address even on another socket.
1037 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1038 err = -EADDRNOTAVAIL;
1039 goto out_free;
1042 if (!asoc) {
1043 /* If a bind() or sctp_bindx() is not called prior to
1044 * an sctp_connectx() call, the system picks an
1045 * ephemeral port and will choose an address set
1046 * equivalent to binding with a wildcard address.
1048 if (!ep->base.bind_addr.port) {
1049 if (sctp_autobind(sk)) {
1050 err = -EAGAIN;
1051 goto out_free;
1053 } else {
1055 * If an unprivileged user inherits a 1-many
1056 * style socket with open associations on a
1057 * privileged port, it MAY be permitted to
1058 * accept new associations, but it SHOULD NOT
1059 * be permitted to open new associations.
1061 if (ep->base.bind_addr.port < PROT_SOCK &&
1062 !capable(CAP_NET_BIND_SERVICE)) {
1063 err = -EACCES;
1064 goto out_free;
1068 scope = sctp_scope(&to);
1069 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1070 if (!asoc) {
1071 err = -ENOMEM;
1072 goto out_free;
1076 /* Prime the peer's transport structures. */
1077 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1078 SCTP_UNKNOWN);
1079 if (!transport) {
1080 err = -ENOMEM;
1081 goto out_free;
1084 addrcnt++;
1085 addr_buf += af->sockaddr_len;
1086 walk_size += af->sockaddr_len;
1089 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1090 if (err < 0) {
1091 goto out_free;
1094 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1095 if (err < 0) {
1096 goto out_free;
1099 /* Initialize sk's dport and daddr for getpeername() */
1100 inet_sk(sk)->dport = htons(asoc->peer.port);
1101 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1102 af->to_sk_daddr(sa_addr, sk);
1103 sk->sk_err = 0;
1105 /* in-kernel sockets don't generally have a file allocated to them
1106 * if all they do is call sock_create_kern().
1108 if (sk->sk_socket->file)
1109 f_flags = sk->sk_socket->file->f_flags;
1111 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1113 err = sctp_wait_for_connect(asoc, &timeo);
1115 /* Don't free association on exit. */
1116 asoc = NULL;
1118 out_free:
1120 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1121 " kaddrs: %p err: %d\n",
1122 asoc, kaddrs, err);
1123 if (asoc)
1124 sctp_association_free(asoc);
1125 return err;
1128 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1130 * API 8.9
1131 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1133 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1134 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1135 * or IPv6 addresses.
1137 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1138 * Section 3.1.2 for this usage.
1140 * addrs is a pointer to an array of one or more socket addresses. Each
1141 * address is contained in its appropriate structure (i.e. struct
1142 * sockaddr_in or struct sockaddr_in6) the family of the address type
1143 * must be used to distengish the address length (note that this
1144 * representation is termed a "packed array" of addresses). The caller
1145 * specifies the number of addresses in the array with addrcnt.
1147 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1148 * -1, and sets errno to the appropriate error code.
1150 * For SCTP, the port given in each socket address must be the same, or
1151 * sctp_connectx() will fail, setting errno to EINVAL.
1153 * An application can use sctp_connectx to initiate an association with
1154 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1155 * allows a caller to specify multiple addresses at which a peer can be
1156 * reached. The way the SCTP stack uses the list of addresses to set up
1157 * the association is implementation dependant. This function only
1158 * specifies that the stack will try to make use of all the addresses in
1159 * the list when needed.
1161 * Note that the list of addresses passed in is only used for setting up
1162 * the association. It does not necessarily equal the set of addresses
1163 * the peer uses for the resulting association. If the caller wants to
1164 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1165 * retrieve them after the association has been set up.
1167 * Basically do nothing but copying the addresses from user to kernel
1168 * land and invoking either sctp_connectx(). This is used for tunneling
1169 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1171 * We don't use copy_from_user() for optimization: we first do the
1172 * sanity checks (buffer size -fast- and access check-healthy
1173 * pointer); if all of those succeed, then we can alloc the memory
1174 * (expensive operation) needed to copy the data to kernel. Then we do
1175 * the copying without checking the user space area
1176 * (__copy_from_user()).
1178 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1179 * it.
1181 * sk The sk of the socket
1182 * addrs The pointer to the addresses in user land
1183 * addrssize Size of the addrs buffer
1185 * Returns 0 if ok, <0 errno code on error.
1187 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1188 struct sockaddr __user *addrs,
1189 int addrs_size)
1191 int err = 0;
1192 struct sockaddr *kaddrs;
1194 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1195 __func__, sk, addrs, addrs_size);
1197 if (unlikely(addrs_size <= 0))
1198 return -EINVAL;
1200 /* Check the user passed a healthy pointer. */
1201 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1202 return -EFAULT;
1204 /* Alloc space for the address array in kernel memory. */
1205 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1206 if (unlikely(!kaddrs))
1207 return -ENOMEM;
1209 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1210 err = -EFAULT;
1211 } else {
1212 err = __sctp_connect(sk, kaddrs, addrs_size);
1215 kfree(kaddrs);
1216 return err;
1219 /* API 3.1.4 close() - UDP Style Syntax
1220 * Applications use close() to perform graceful shutdown (as described in
1221 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1222 * by a UDP-style socket.
1224 * The syntax is
1226 * ret = close(int sd);
1228 * sd - the socket descriptor of the associations to be closed.
1230 * To gracefully shutdown a specific association represented by the
1231 * UDP-style socket, an application should use the sendmsg() call,
1232 * passing no user data, but including the appropriate flag in the
1233 * ancillary data (see Section xxxx).
1235 * If sd in the close() call is a branched-off socket representing only
1236 * one association, the shutdown is performed on that association only.
1238 * 4.1.6 close() - TCP Style Syntax
1240 * Applications use close() to gracefully close down an association.
1242 * The syntax is:
1244 * int close(int sd);
1246 * sd - the socket descriptor of the association to be closed.
1248 * After an application calls close() on a socket descriptor, no further
1249 * socket operations will succeed on that descriptor.
1251 * API 7.1.4 SO_LINGER
1253 * An application using the TCP-style socket can use this option to
1254 * perform the SCTP ABORT primitive. The linger option structure is:
1256 * struct linger {
1257 * int l_onoff; // option on/off
1258 * int l_linger; // linger time
1259 * };
1261 * To enable the option, set l_onoff to 1. If the l_linger value is set
1262 * to 0, calling close() is the same as the ABORT primitive. If the
1263 * value is set to a negative value, the setsockopt() call will return
1264 * an error. If the value is set to a positive value linger_time, the
1265 * close() can be blocked for at most linger_time ms. If the graceful
1266 * shutdown phase does not finish during this period, close() will
1267 * return but the graceful shutdown phase continues in the system.
1269 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1271 struct sctp_endpoint *ep;
1272 struct sctp_association *asoc;
1273 struct list_head *pos, *temp;
1275 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1277 sctp_lock_sock(sk);
1278 sk->sk_shutdown = SHUTDOWN_MASK;
1280 ep = sctp_sk(sk)->ep;
1282 /* Walk all associations on an endpoint. */
1283 list_for_each_safe(pos, temp, &ep->asocs) {
1284 asoc = list_entry(pos, struct sctp_association, asocs);
1286 if (sctp_style(sk, TCP)) {
1287 /* A closed association can still be in the list if
1288 * it belongs to a TCP-style listening socket that is
1289 * not yet accepted. If so, free it. If not, send an
1290 * ABORT or SHUTDOWN based on the linger options.
1292 if (sctp_state(asoc, CLOSED)) {
1293 sctp_unhash_established(asoc);
1294 sctp_association_free(asoc);
1295 continue;
1299 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1300 struct sctp_chunk *chunk;
1302 chunk = sctp_make_abort_user(asoc, NULL, 0);
1303 if (chunk)
1304 sctp_primitive_ABORT(asoc, chunk);
1305 } else
1306 sctp_primitive_SHUTDOWN(asoc, NULL);
1309 /* Clean up any skbs sitting on the receive queue. */
1310 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1311 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1313 /* On a TCP-style socket, block for at most linger_time if set. */
1314 if (sctp_style(sk, TCP) && timeout)
1315 sctp_wait_for_close(sk, timeout);
1317 /* This will run the backlog queue. */
1318 sctp_release_sock(sk);
1320 /* Supposedly, no process has access to the socket, but
1321 * the net layers still may.
1323 sctp_local_bh_disable();
1324 sctp_bh_lock_sock(sk);
1326 /* Hold the sock, since sk_common_release() will put sock_put()
1327 * and we have just a little more cleanup.
1329 sock_hold(sk);
1330 sk_common_release(sk);
1332 sctp_bh_unlock_sock(sk);
1333 sctp_local_bh_enable();
1335 sock_put(sk);
1337 SCTP_DBG_OBJCNT_DEC(sock);
1340 /* Handle EPIPE error. */
1341 static int sctp_error(struct sock *sk, int flags, int err)
1343 if (err == -EPIPE)
1344 err = sock_error(sk) ? : -EPIPE;
1345 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1346 send_sig(SIGPIPE, current, 0);
1347 return err;
1350 /* API 3.1.3 sendmsg() - UDP Style Syntax
1352 * An application uses sendmsg() and recvmsg() calls to transmit data to
1353 * and receive data from its peer.
1355 * ssize_t sendmsg(int socket, const struct msghdr *message,
1356 * int flags);
1358 * socket - the socket descriptor of the endpoint.
1359 * message - pointer to the msghdr structure which contains a single
1360 * user message and possibly some ancillary data.
1362 * See Section 5 for complete description of the data
1363 * structures.
1365 * flags - flags sent or received with the user message, see Section
1366 * 5 for complete description of the flags.
1368 * Note: This function could use a rewrite especially when explicit
1369 * connect support comes in.
1371 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1373 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1375 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1376 struct msghdr *msg, size_t msg_len)
1378 struct sctp_sock *sp;
1379 struct sctp_endpoint *ep;
1380 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1381 struct sctp_transport *transport, *chunk_tp;
1382 struct sctp_chunk *chunk;
1383 union sctp_addr to;
1384 struct sockaddr *msg_name = NULL;
1385 struct sctp_sndrcvinfo default_sinfo = { 0 };
1386 struct sctp_sndrcvinfo *sinfo;
1387 struct sctp_initmsg *sinit;
1388 sctp_assoc_t associd = 0;
1389 sctp_cmsgs_t cmsgs = { NULL };
1390 int err;
1391 sctp_scope_t scope;
1392 long timeo;
1393 __u16 sinfo_flags = 0;
1394 struct sctp_datamsg *datamsg;
1395 int msg_flags = msg->msg_flags;
1397 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1398 sk, msg, msg_len);
1400 err = 0;
1401 sp = sctp_sk(sk);
1402 ep = sp->ep;
1404 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1406 /* We cannot send a message over a TCP-style listening socket. */
1407 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1408 err = -EPIPE;
1409 goto out_nounlock;
1412 /* Parse out the SCTP CMSGs. */
1413 err = sctp_msghdr_parse(msg, &cmsgs);
1415 if (err) {
1416 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1417 goto out_nounlock;
1420 /* Fetch the destination address for this packet. This
1421 * address only selects the association--it is not necessarily
1422 * the address we will send to.
1423 * For a peeled-off socket, msg_name is ignored.
1425 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1426 int msg_namelen = msg->msg_namelen;
1428 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1429 msg_namelen);
1430 if (err)
1431 return err;
1433 if (msg_namelen > sizeof(to))
1434 msg_namelen = sizeof(to);
1435 memcpy(&to, msg->msg_name, msg_namelen);
1436 msg_name = msg->msg_name;
1439 sinfo = cmsgs.info;
1440 sinit = cmsgs.init;
1442 /* Did the user specify SNDRCVINFO? */
1443 if (sinfo) {
1444 sinfo_flags = sinfo->sinfo_flags;
1445 associd = sinfo->sinfo_assoc_id;
1448 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1449 msg_len, sinfo_flags);
1451 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1452 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1453 err = -EINVAL;
1454 goto out_nounlock;
1457 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1458 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1459 * If SCTP_ABORT is set, the message length could be non zero with
1460 * the msg_iov set to the user abort reason.
1462 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1463 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1464 err = -EINVAL;
1465 goto out_nounlock;
1468 /* If SCTP_ADDR_OVER is set, there must be an address
1469 * specified in msg_name.
1471 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1472 err = -EINVAL;
1473 goto out_nounlock;
1476 transport = NULL;
1478 SCTP_DEBUG_PRINTK("About to look up association.\n");
1480 sctp_lock_sock(sk);
1482 /* If a msg_name has been specified, assume this is to be used. */
1483 if (msg_name) {
1484 /* Look for a matching association on the endpoint. */
1485 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1486 if (!asoc) {
1487 /* If we could not find a matching association on the
1488 * endpoint, make sure that it is not a TCP-style
1489 * socket that already has an association or there is
1490 * no peeled-off association on another socket.
1492 if ((sctp_style(sk, TCP) &&
1493 sctp_sstate(sk, ESTABLISHED)) ||
1494 sctp_endpoint_is_peeled_off(ep, &to)) {
1495 err = -EADDRNOTAVAIL;
1496 goto out_unlock;
1499 } else {
1500 asoc = sctp_id2assoc(sk, associd);
1501 if (!asoc) {
1502 err = -EPIPE;
1503 goto out_unlock;
1507 if (asoc) {
1508 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1510 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1511 * socket that has an association in CLOSED state. This can
1512 * happen when an accepted socket has an association that is
1513 * already CLOSED.
1515 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1516 err = -EPIPE;
1517 goto out_unlock;
1520 if (sinfo_flags & SCTP_EOF) {
1521 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1522 asoc);
1523 sctp_primitive_SHUTDOWN(asoc, NULL);
1524 err = 0;
1525 goto out_unlock;
1527 if (sinfo_flags & SCTP_ABORT) {
1529 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1530 if (!chunk) {
1531 err = -ENOMEM;
1532 goto out_unlock;
1535 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1536 sctp_primitive_ABORT(asoc, chunk);
1537 err = 0;
1538 goto out_unlock;
1542 /* Do we need to create the association? */
1543 if (!asoc) {
1544 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1546 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1547 err = -EINVAL;
1548 goto out_unlock;
1551 /* Check for invalid stream against the stream counts,
1552 * either the default or the user specified stream counts.
1554 if (sinfo) {
1555 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1556 /* Check against the defaults. */
1557 if (sinfo->sinfo_stream >=
1558 sp->initmsg.sinit_num_ostreams) {
1559 err = -EINVAL;
1560 goto out_unlock;
1562 } else {
1563 /* Check against the requested. */
1564 if (sinfo->sinfo_stream >=
1565 sinit->sinit_num_ostreams) {
1566 err = -EINVAL;
1567 goto out_unlock;
1573 * API 3.1.2 bind() - UDP Style Syntax
1574 * If a bind() or sctp_bindx() is not called prior to a
1575 * sendmsg() call that initiates a new association, the
1576 * system picks an ephemeral port and will choose an address
1577 * set equivalent to binding with a wildcard address.
1579 if (!ep->base.bind_addr.port) {
1580 if (sctp_autobind(sk)) {
1581 err = -EAGAIN;
1582 goto out_unlock;
1584 } else {
1586 * If an unprivileged user inherits a one-to-many
1587 * style socket with open associations on a privileged
1588 * port, it MAY be permitted to accept new associations,
1589 * but it SHOULD NOT be permitted to open new
1590 * associations.
1592 if (ep->base.bind_addr.port < PROT_SOCK &&
1593 !capable(CAP_NET_BIND_SERVICE)) {
1594 err = -EACCES;
1595 goto out_unlock;
1599 scope = sctp_scope(&to);
1600 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1601 if (!new_asoc) {
1602 err = -ENOMEM;
1603 goto out_unlock;
1605 asoc = new_asoc;
1607 /* If the SCTP_INIT ancillary data is specified, set all
1608 * the association init values accordingly.
1610 if (sinit) {
1611 if (sinit->sinit_num_ostreams) {
1612 asoc->c.sinit_num_ostreams =
1613 sinit->sinit_num_ostreams;
1615 if (sinit->sinit_max_instreams) {
1616 asoc->c.sinit_max_instreams =
1617 sinit->sinit_max_instreams;
1619 if (sinit->sinit_max_attempts) {
1620 asoc->max_init_attempts
1621 = sinit->sinit_max_attempts;
1623 if (sinit->sinit_max_init_timeo) {
1624 asoc->max_init_timeo =
1625 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1629 /* Prime the peer's transport structures. */
1630 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1631 if (!transport) {
1632 err = -ENOMEM;
1633 goto out_free;
1635 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1636 if (err < 0) {
1637 err = -ENOMEM;
1638 goto out_free;
1642 /* ASSERT: we have a valid association at this point. */
1643 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1645 if (!sinfo) {
1646 /* If the user didn't specify SNDRCVINFO, make up one with
1647 * some defaults.
1649 default_sinfo.sinfo_stream = asoc->default_stream;
1650 default_sinfo.sinfo_flags = asoc->default_flags;
1651 default_sinfo.sinfo_ppid = asoc->default_ppid;
1652 default_sinfo.sinfo_context = asoc->default_context;
1653 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1654 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1655 sinfo = &default_sinfo;
1658 /* API 7.1.7, the sndbuf size per association bounds the
1659 * maximum size of data that can be sent in a single send call.
1661 if (msg_len > sk->sk_sndbuf) {
1662 err = -EMSGSIZE;
1663 goto out_free;
1666 if (asoc->pmtu_pending)
1667 sctp_assoc_pending_pmtu(asoc);
1669 /* If fragmentation is disabled and the message length exceeds the
1670 * association fragmentation point, return EMSGSIZE. The I-D
1671 * does not specify what this error is, but this looks like
1672 * a great fit.
1674 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1675 err = -EMSGSIZE;
1676 goto out_free;
1679 if (sinfo) {
1680 /* Check for invalid stream. */
1681 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1682 err = -EINVAL;
1683 goto out_free;
1687 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1688 if (!sctp_wspace(asoc)) {
1689 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1690 if (err)
1691 goto out_free;
1694 /* If an address is passed with the sendto/sendmsg call, it is used
1695 * to override the primary destination address in the TCP model, or
1696 * when SCTP_ADDR_OVER flag is set in the UDP model.
1698 if ((sctp_style(sk, TCP) && msg_name) ||
1699 (sinfo_flags & SCTP_ADDR_OVER)) {
1700 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1701 if (!chunk_tp) {
1702 err = -EINVAL;
1703 goto out_free;
1705 } else
1706 chunk_tp = NULL;
1708 /* Auto-connect, if we aren't connected already. */
1709 if (sctp_state(asoc, CLOSED)) {
1710 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1711 if (err < 0)
1712 goto out_free;
1713 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1716 /* Break the message into multiple chunks of maximum size. */
1717 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1718 if (!datamsg) {
1719 err = -ENOMEM;
1720 goto out_free;
1723 /* Now send the (possibly) fragmented message. */
1724 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1725 sctp_chunk_hold(chunk);
1727 /* Do accounting for the write space. */
1728 sctp_set_owner_w(chunk);
1730 chunk->transport = chunk_tp;
1732 /* Send it to the lower layers. Note: all chunks
1733 * must either fail or succeed. The lower layer
1734 * works that way today. Keep it that way or this
1735 * breaks.
1737 err = sctp_primitive_SEND(asoc, chunk);
1738 /* Did the lower layer accept the chunk? */
1739 if (err)
1740 sctp_chunk_free(chunk);
1741 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1744 sctp_datamsg_put(datamsg);
1745 if (err)
1746 goto out_free;
1747 else
1748 err = msg_len;
1750 /* If we are already past ASSOCIATE, the lower
1751 * layers are responsible for association cleanup.
1753 goto out_unlock;
1755 out_free:
1756 if (new_asoc)
1757 sctp_association_free(asoc);
1758 out_unlock:
1759 sctp_release_sock(sk);
1761 out_nounlock:
1762 return sctp_error(sk, msg_flags, err);
1764 #if 0
1765 do_sock_err:
1766 if (msg_len)
1767 err = msg_len;
1768 else
1769 err = sock_error(sk);
1770 goto out;
1772 do_interrupted:
1773 if (msg_len)
1774 err = msg_len;
1775 goto out;
1776 #endif /* 0 */
1779 /* This is an extended version of skb_pull() that removes the data from the
1780 * start of a skb even when data is spread across the list of skb's in the
1781 * frag_list. len specifies the total amount of data that needs to be removed.
1782 * when 'len' bytes could be removed from the skb, it returns 0.
1783 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1784 * could not be removed.
1786 static int sctp_skb_pull(struct sk_buff *skb, int len)
1788 struct sk_buff *list;
1789 int skb_len = skb_headlen(skb);
1790 int rlen;
1792 if (len <= skb_len) {
1793 __skb_pull(skb, len);
1794 return 0;
1796 len -= skb_len;
1797 __skb_pull(skb, skb_len);
1799 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1800 rlen = sctp_skb_pull(list, len);
1801 skb->len -= (len-rlen);
1802 skb->data_len -= (len-rlen);
1804 if (!rlen)
1805 return 0;
1807 len = rlen;
1810 return len;
1813 /* API 3.1.3 recvmsg() - UDP Style Syntax
1815 * ssize_t recvmsg(int socket, struct msghdr *message,
1816 * int flags);
1818 * socket - the socket descriptor of the endpoint.
1819 * message - pointer to the msghdr structure which contains a single
1820 * user message and possibly some ancillary data.
1822 * See Section 5 for complete description of the data
1823 * structures.
1825 * flags - flags sent or received with the user message, see Section
1826 * 5 for complete description of the flags.
1828 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1830 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1831 struct msghdr *msg, size_t len, int noblock,
1832 int flags, int *addr_len)
1834 struct sctp_ulpevent *event = NULL;
1835 struct sctp_sock *sp = sctp_sk(sk);
1836 struct sk_buff *skb;
1837 int copied;
1838 int err = 0;
1839 int skb_len;
1841 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1842 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1843 "len", len, "knoblauch", noblock,
1844 "flags", flags, "addr_len", addr_len);
1846 sctp_lock_sock(sk);
1848 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1849 err = -ENOTCONN;
1850 goto out;
1853 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1854 if (!skb)
1855 goto out;
1857 /* Get the total length of the skb including any skb's in the
1858 * frag_list.
1860 skb_len = skb->len;
1862 copied = skb_len;
1863 if (copied > len)
1864 copied = len;
1866 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1868 event = sctp_skb2event(skb);
1870 if (err)
1871 goto out_free;
1873 sock_recv_timestamp(msg, sk, skb);
1874 if (sctp_ulpevent_is_notification(event)) {
1875 msg->msg_flags |= MSG_NOTIFICATION;
1876 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1877 } else {
1878 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1881 /* Check if we allow SCTP_SNDRCVINFO. */
1882 if (sp->subscribe.sctp_data_io_event)
1883 sctp_ulpevent_read_sndrcvinfo(event, msg);
1884 #if 0
1885 /* FIXME: we should be calling IP/IPv6 layers. */
1886 if (sk->sk_protinfo.af_inet.cmsg_flags)
1887 ip_cmsg_recv(msg, skb);
1888 #endif
1890 err = copied;
1892 /* If skb's length exceeds the user's buffer, update the skb and
1893 * push it back to the receive_queue so that the next call to
1894 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1896 if (skb_len > copied) {
1897 msg->msg_flags &= ~MSG_EOR;
1898 if (flags & MSG_PEEK)
1899 goto out_free;
1900 sctp_skb_pull(skb, copied);
1901 skb_queue_head(&sk->sk_receive_queue, skb);
1903 /* When only partial message is copied to the user, increase
1904 * rwnd by that amount. If all the data in the skb is read,
1905 * rwnd is updated when the event is freed.
1907 if (!sctp_ulpevent_is_notification(event))
1908 sctp_assoc_rwnd_increase(event->asoc, copied);
1909 goto out;
1910 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1911 (event->msg_flags & MSG_EOR))
1912 msg->msg_flags |= MSG_EOR;
1913 else
1914 msg->msg_flags &= ~MSG_EOR;
1916 out_free:
1917 if (flags & MSG_PEEK) {
1918 /* Release the skb reference acquired after peeking the skb in
1919 * sctp_skb_recv_datagram().
1921 kfree_skb(skb);
1922 } else {
1923 /* Free the event which includes releasing the reference to
1924 * the owner of the skb, freeing the skb and updating the
1925 * rwnd.
1927 sctp_ulpevent_free(event);
1929 out:
1930 sctp_release_sock(sk);
1931 return err;
1934 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1936 * This option is a on/off flag. If enabled no SCTP message
1937 * fragmentation will be performed. Instead if a message being sent
1938 * exceeds the current PMTU size, the message will NOT be sent and
1939 * instead a error will be indicated to the user.
1941 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1942 char __user *optval, int optlen)
1944 int val;
1946 if (optlen < sizeof(int))
1947 return -EINVAL;
1949 if (get_user(val, (int __user *)optval))
1950 return -EFAULT;
1952 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1954 return 0;
1957 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1958 int optlen)
1960 if (optlen > sizeof(struct sctp_event_subscribe))
1961 return -EINVAL;
1962 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1963 return -EFAULT;
1964 return 0;
1967 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1969 * This socket option is applicable to the UDP-style socket only. When
1970 * set it will cause associations that are idle for more than the
1971 * specified number of seconds to automatically close. An association
1972 * being idle is defined an association that has NOT sent or received
1973 * user data. The special value of '0' indicates that no automatic
1974 * close of any associations should be performed. The option expects an
1975 * integer defining the number of seconds of idle time before an
1976 * association is closed.
1978 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1979 int optlen)
1981 struct sctp_sock *sp = sctp_sk(sk);
1983 /* Applicable to UDP-style socket only */
1984 if (sctp_style(sk, TCP))
1985 return -EOPNOTSUPP;
1986 if (optlen != sizeof(int))
1987 return -EINVAL;
1988 if (copy_from_user(&sp->autoclose, optval, optlen))
1989 return -EFAULT;
1991 return 0;
1994 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1996 * Applications can enable or disable heartbeats for any peer address of
1997 * an association, modify an address's heartbeat interval, force a
1998 * heartbeat to be sent immediately, and adjust the address's maximum
1999 * number of retransmissions sent before an address is considered
2000 * unreachable. The following structure is used to access and modify an
2001 * address's parameters:
2003 * struct sctp_paddrparams {
2004 * sctp_assoc_t spp_assoc_id;
2005 * struct sockaddr_storage spp_address;
2006 * uint32_t spp_hbinterval;
2007 * uint16_t spp_pathmaxrxt;
2008 * uint32_t spp_pathmtu;
2009 * uint32_t spp_sackdelay;
2010 * uint32_t spp_flags;
2011 * };
2013 * spp_assoc_id - (one-to-many style socket) This is filled in the
2014 * application, and identifies the association for
2015 * this query.
2016 * spp_address - This specifies which address is of interest.
2017 * spp_hbinterval - This contains the value of the heartbeat interval,
2018 * in milliseconds. If a value of zero
2019 * is present in this field then no changes are to
2020 * be made to this parameter.
2021 * spp_pathmaxrxt - This contains the maximum number of
2022 * retransmissions before this address shall be
2023 * considered unreachable. If a value of zero
2024 * is present in this field then no changes are to
2025 * be made to this parameter.
2026 * spp_pathmtu - When Path MTU discovery is disabled the value
2027 * specified here will be the "fixed" path mtu.
2028 * Note that if the spp_address field is empty
2029 * then all associations on this address will
2030 * have this fixed path mtu set upon them.
2032 * spp_sackdelay - When delayed sack is enabled, this value specifies
2033 * the number of milliseconds that sacks will be delayed
2034 * for. This value will apply to all addresses of an
2035 * association if the spp_address field is empty. Note
2036 * also, that if delayed sack is enabled and this
2037 * value is set to 0, no change is made to the last
2038 * recorded delayed sack timer value.
2040 * spp_flags - These flags are used to control various features
2041 * on an association. The flag field may contain
2042 * zero or more of the following options.
2044 * SPP_HB_ENABLE - Enable heartbeats on the
2045 * specified address. Note that if the address
2046 * field is empty all addresses for the association
2047 * have heartbeats enabled upon them.
2049 * SPP_HB_DISABLE - Disable heartbeats on the
2050 * speicifed address. Note that if the address
2051 * field is empty all addresses for the association
2052 * will have their heartbeats disabled. Note also
2053 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2054 * mutually exclusive, only one of these two should
2055 * be specified. Enabling both fields will have
2056 * undetermined results.
2058 * SPP_HB_DEMAND - Request a user initiated heartbeat
2059 * to be made immediately.
2061 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2062 * heartbeat delayis to be set to the value of 0
2063 * milliseconds.
2065 * SPP_PMTUD_ENABLE - This field will enable PMTU
2066 * discovery upon the specified address. Note that
2067 * if the address feild is empty then all addresses
2068 * on the association are effected.
2070 * SPP_PMTUD_DISABLE - This field will disable PMTU
2071 * discovery upon the specified address. Note that
2072 * if the address feild is empty then all addresses
2073 * on the association are effected. Not also that
2074 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2075 * exclusive. Enabling both will have undetermined
2076 * results.
2078 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2079 * on delayed sack. The time specified in spp_sackdelay
2080 * is used to specify the sack delay for this address. Note
2081 * that if spp_address is empty then all addresses will
2082 * enable delayed sack and take on the sack delay
2083 * value specified in spp_sackdelay.
2084 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2085 * off delayed sack. If the spp_address field is blank then
2086 * delayed sack is disabled for the entire association. Note
2087 * also that this field is mutually exclusive to
2088 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2089 * results.
2091 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2092 struct sctp_transport *trans,
2093 struct sctp_association *asoc,
2094 struct sctp_sock *sp,
2095 int hb_change,
2096 int pmtud_change,
2097 int sackdelay_change)
2099 int error;
2101 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2102 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2103 if (error)
2104 return error;
2107 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2108 * this field is ignored. Note also that a value of zero indicates
2109 * the current setting should be left unchanged.
2111 if (params->spp_flags & SPP_HB_ENABLE) {
2113 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2114 * set. This lets us use 0 value when this flag
2115 * is set.
2117 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2118 params->spp_hbinterval = 0;
2120 if (params->spp_hbinterval ||
2121 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2122 if (trans) {
2123 trans->hbinterval =
2124 msecs_to_jiffies(params->spp_hbinterval);
2125 } else if (asoc) {
2126 asoc->hbinterval =
2127 msecs_to_jiffies(params->spp_hbinterval);
2128 } else {
2129 sp->hbinterval = params->spp_hbinterval;
2134 if (hb_change) {
2135 if (trans) {
2136 trans->param_flags =
2137 (trans->param_flags & ~SPP_HB) | hb_change;
2138 } else if (asoc) {
2139 asoc->param_flags =
2140 (asoc->param_flags & ~SPP_HB) | hb_change;
2141 } else {
2142 sp->param_flags =
2143 (sp->param_flags & ~SPP_HB) | hb_change;
2147 /* When Path MTU discovery is disabled the value specified here will
2148 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2149 * include the flag SPP_PMTUD_DISABLE for this field to have any
2150 * effect).
2152 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2153 if (trans) {
2154 trans->pathmtu = params->spp_pathmtu;
2155 sctp_assoc_sync_pmtu(asoc);
2156 } else if (asoc) {
2157 asoc->pathmtu = params->spp_pathmtu;
2158 sctp_frag_point(sp, params->spp_pathmtu);
2159 } else {
2160 sp->pathmtu = params->spp_pathmtu;
2164 if (pmtud_change) {
2165 if (trans) {
2166 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2167 (params->spp_flags & SPP_PMTUD_ENABLE);
2168 trans->param_flags =
2169 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2170 if (update) {
2171 sctp_transport_pmtu(trans);
2172 sctp_assoc_sync_pmtu(asoc);
2174 } else if (asoc) {
2175 asoc->param_flags =
2176 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2177 } else {
2178 sp->param_flags =
2179 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2183 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2184 * value of this field is ignored. Note also that a value of zero
2185 * indicates the current setting should be left unchanged.
2187 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2188 if (trans) {
2189 trans->sackdelay =
2190 msecs_to_jiffies(params->spp_sackdelay);
2191 } else if (asoc) {
2192 asoc->sackdelay =
2193 msecs_to_jiffies(params->spp_sackdelay);
2194 } else {
2195 sp->sackdelay = params->spp_sackdelay;
2199 if (sackdelay_change) {
2200 if (trans) {
2201 trans->param_flags =
2202 (trans->param_flags & ~SPP_SACKDELAY) |
2203 sackdelay_change;
2204 } else if (asoc) {
2205 asoc->param_flags =
2206 (asoc->param_flags & ~SPP_SACKDELAY) |
2207 sackdelay_change;
2208 } else {
2209 sp->param_flags =
2210 (sp->param_flags & ~SPP_SACKDELAY) |
2211 sackdelay_change;
2215 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2216 * of this field is ignored. Note also that a value of zero
2217 * indicates the current setting should be left unchanged.
2219 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2220 if (trans) {
2221 trans->pathmaxrxt = params->spp_pathmaxrxt;
2222 } else if (asoc) {
2223 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2224 } else {
2225 sp->pathmaxrxt = params->spp_pathmaxrxt;
2229 return 0;
2232 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2233 char __user *optval, int optlen)
2235 struct sctp_paddrparams params;
2236 struct sctp_transport *trans = NULL;
2237 struct sctp_association *asoc = NULL;
2238 struct sctp_sock *sp = sctp_sk(sk);
2239 int error;
2240 int hb_change, pmtud_change, sackdelay_change;
2242 if (optlen != sizeof(struct sctp_paddrparams))
2243 return - EINVAL;
2245 if (copy_from_user(&params, optval, optlen))
2246 return -EFAULT;
2248 /* Validate flags and value parameters. */
2249 hb_change = params.spp_flags & SPP_HB;
2250 pmtud_change = params.spp_flags & SPP_PMTUD;
2251 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2253 if (hb_change == SPP_HB ||
2254 pmtud_change == SPP_PMTUD ||
2255 sackdelay_change == SPP_SACKDELAY ||
2256 params.spp_sackdelay > 500 ||
2257 (params.spp_pathmtu
2258 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2259 return -EINVAL;
2261 /* If an address other than INADDR_ANY is specified, and
2262 * no transport is found, then the request is invalid.
2264 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2265 trans = sctp_addr_id2transport(sk, &params.spp_address,
2266 params.spp_assoc_id);
2267 if (!trans)
2268 return -EINVAL;
2271 /* Get association, if assoc_id != 0 and the socket is a one
2272 * to many style socket, and an association was not found, then
2273 * the id was invalid.
2275 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2276 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2277 return -EINVAL;
2279 /* Heartbeat demand can only be sent on a transport or
2280 * association, but not a socket.
2282 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2283 return -EINVAL;
2285 /* Process parameters. */
2286 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2287 hb_change, pmtud_change,
2288 sackdelay_change);
2290 if (error)
2291 return error;
2293 /* If changes are for association, also apply parameters to each
2294 * transport.
2296 if (!trans && asoc) {
2297 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2298 transports) {
2299 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2300 hb_change, pmtud_change,
2301 sackdelay_change);
2305 return 0;
2308 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2310 * This options will get or set the delayed ack timer. The time is set
2311 * in milliseconds. If the assoc_id is 0, then this sets or gets the
2312 * endpoints default delayed ack timer value. If the assoc_id field is
2313 * non-zero, then the set or get effects the specified association.
2315 * struct sctp_assoc_value {
2316 * sctp_assoc_t assoc_id;
2317 * uint32_t assoc_value;
2318 * };
2320 * assoc_id - This parameter, indicates which association the
2321 * user is preforming an action upon. Note that if
2322 * this field's value is zero then the endpoints
2323 * default value is changed (effecting future
2324 * associations only).
2326 * assoc_value - This parameter contains the number of milliseconds
2327 * that the user is requesting the delayed ACK timer
2328 * be set to. Note that this value is defined in
2329 * the standard to be between 200 and 500 milliseconds.
2331 * Note: a value of zero will leave the value alone,
2332 * but disable SACK delay. A non-zero value will also
2333 * enable SACK delay.
2336 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2337 char __user *optval, int optlen)
2339 struct sctp_assoc_value params;
2340 struct sctp_transport *trans = NULL;
2341 struct sctp_association *asoc = NULL;
2342 struct sctp_sock *sp = sctp_sk(sk);
2344 if (optlen != sizeof(struct sctp_assoc_value))
2345 return - EINVAL;
2347 if (copy_from_user(&params, optval, optlen))
2348 return -EFAULT;
2350 /* Validate value parameter. */
2351 if (params.assoc_value > 500)
2352 return -EINVAL;
2354 /* Get association, if assoc_id != 0 and the socket is a one
2355 * to many style socket, and an association was not found, then
2356 * the id was invalid.
2358 asoc = sctp_id2assoc(sk, params.assoc_id);
2359 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2360 return -EINVAL;
2362 if (params.assoc_value) {
2363 if (asoc) {
2364 asoc->sackdelay =
2365 msecs_to_jiffies(params.assoc_value);
2366 asoc->param_flags =
2367 (asoc->param_flags & ~SPP_SACKDELAY) |
2368 SPP_SACKDELAY_ENABLE;
2369 } else {
2370 sp->sackdelay = params.assoc_value;
2371 sp->param_flags =
2372 (sp->param_flags & ~SPP_SACKDELAY) |
2373 SPP_SACKDELAY_ENABLE;
2375 } else {
2376 if (asoc) {
2377 asoc->param_flags =
2378 (asoc->param_flags & ~SPP_SACKDELAY) |
2379 SPP_SACKDELAY_DISABLE;
2380 } else {
2381 sp->param_flags =
2382 (sp->param_flags & ~SPP_SACKDELAY) |
2383 SPP_SACKDELAY_DISABLE;
2387 /* If change is for association, also apply to each transport. */
2388 if (asoc) {
2389 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2390 transports) {
2391 if (params.assoc_value) {
2392 trans->sackdelay =
2393 msecs_to_jiffies(params.assoc_value);
2394 trans->param_flags =
2395 (trans->param_flags & ~SPP_SACKDELAY) |
2396 SPP_SACKDELAY_ENABLE;
2397 } else {
2398 trans->param_flags =
2399 (trans->param_flags & ~SPP_SACKDELAY) |
2400 SPP_SACKDELAY_DISABLE;
2405 return 0;
2408 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2410 * Applications can specify protocol parameters for the default association
2411 * initialization. The option name argument to setsockopt() and getsockopt()
2412 * is SCTP_INITMSG.
2414 * Setting initialization parameters is effective only on an unconnected
2415 * socket (for UDP-style sockets only future associations are effected
2416 * by the change). With TCP-style sockets, this option is inherited by
2417 * sockets derived from a listener socket.
2419 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2421 struct sctp_initmsg sinit;
2422 struct sctp_sock *sp = sctp_sk(sk);
2424 if (optlen != sizeof(struct sctp_initmsg))
2425 return -EINVAL;
2426 if (copy_from_user(&sinit, optval, optlen))
2427 return -EFAULT;
2429 if (sinit.sinit_num_ostreams)
2430 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2431 if (sinit.sinit_max_instreams)
2432 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2433 if (sinit.sinit_max_attempts)
2434 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2435 if (sinit.sinit_max_init_timeo)
2436 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2438 return 0;
2442 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2444 * Applications that wish to use the sendto() system call may wish to
2445 * specify a default set of parameters that would normally be supplied
2446 * through the inclusion of ancillary data. This socket option allows
2447 * such an application to set the default sctp_sndrcvinfo structure.
2448 * The application that wishes to use this socket option simply passes
2449 * in to this call the sctp_sndrcvinfo structure defined in Section
2450 * 5.2.2) The input parameters accepted by this call include
2451 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2452 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2453 * to this call if the caller is using the UDP model.
2455 static int sctp_setsockopt_default_send_param(struct sock *sk,
2456 char __user *optval, int optlen)
2458 struct sctp_sndrcvinfo info;
2459 struct sctp_association *asoc;
2460 struct sctp_sock *sp = sctp_sk(sk);
2462 if (optlen != sizeof(struct sctp_sndrcvinfo))
2463 return -EINVAL;
2464 if (copy_from_user(&info, optval, optlen))
2465 return -EFAULT;
2467 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2468 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2469 return -EINVAL;
2471 if (asoc) {
2472 asoc->default_stream = info.sinfo_stream;
2473 asoc->default_flags = info.sinfo_flags;
2474 asoc->default_ppid = info.sinfo_ppid;
2475 asoc->default_context = info.sinfo_context;
2476 asoc->default_timetolive = info.sinfo_timetolive;
2477 } else {
2478 sp->default_stream = info.sinfo_stream;
2479 sp->default_flags = info.sinfo_flags;
2480 sp->default_ppid = info.sinfo_ppid;
2481 sp->default_context = info.sinfo_context;
2482 sp->default_timetolive = info.sinfo_timetolive;
2485 return 0;
2488 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2490 * Requests that the local SCTP stack use the enclosed peer address as
2491 * the association primary. The enclosed address must be one of the
2492 * association peer's addresses.
2494 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2495 int optlen)
2497 struct sctp_prim prim;
2498 struct sctp_transport *trans;
2500 if (optlen != sizeof(struct sctp_prim))
2501 return -EINVAL;
2503 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2504 return -EFAULT;
2506 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2507 if (!trans)
2508 return -EINVAL;
2510 sctp_assoc_set_primary(trans->asoc, trans);
2512 return 0;
2516 * 7.1.5 SCTP_NODELAY
2518 * Turn on/off any Nagle-like algorithm. This means that packets are
2519 * generally sent as soon as possible and no unnecessary delays are
2520 * introduced, at the cost of more packets in the network. Expects an
2521 * integer boolean flag.
2523 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2524 int optlen)
2526 int val;
2528 if (optlen < sizeof(int))
2529 return -EINVAL;
2530 if (get_user(val, (int __user *)optval))
2531 return -EFAULT;
2533 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2534 return 0;
2539 * 7.1.1 SCTP_RTOINFO
2541 * The protocol parameters used to initialize and bound retransmission
2542 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2543 * and modify these parameters.
2544 * All parameters are time values, in milliseconds. A value of 0, when
2545 * modifying the parameters, indicates that the current value should not
2546 * be changed.
2549 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2550 struct sctp_rtoinfo rtoinfo;
2551 struct sctp_association *asoc;
2553 if (optlen != sizeof (struct sctp_rtoinfo))
2554 return -EINVAL;
2556 if (copy_from_user(&rtoinfo, optval, optlen))
2557 return -EFAULT;
2559 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2561 /* Set the values to the specific association */
2562 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2563 return -EINVAL;
2565 if (asoc) {
2566 if (rtoinfo.srto_initial != 0)
2567 asoc->rto_initial =
2568 msecs_to_jiffies(rtoinfo.srto_initial);
2569 if (rtoinfo.srto_max != 0)
2570 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2571 if (rtoinfo.srto_min != 0)
2572 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2573 } else {
2574 /* If there is no association or the association-id = 0
2575 * set the values to the endpoint.
2577 struct sctp_sock *sp = sctp_sk(sk);
2579 if (rtoinfo.srto_initial != 0)
2580 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2581 if (rtoinfo.srto_max != 0)
2582 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2583 if (rtoinfo.srto_min != 0)
2584 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2587 return 0;
2592 * 7.1.2 SCTP_ASSOCINFO
2594 * This option is used to tune the maximum retransmission attempts
2595 * of the association.
2596 * Returns an error if the new association retransmission value is
2597 * greater than the sum of the retransmission value of the peer.
2598 * See [SCTP] for more information.
2601 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2604 struct sctp_assocparams assocparams;
2605 struct sctp_association *asoc;
2607 if (optlen != sizeof(struct sctp_assocparams))
2608 return -EINVAL;
2609 if (copy_from_user(&assocparams, optval, optlen))
2610 return -EFAULT;
2612 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2614 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2615 return -EINVAL;
2617 /* Set the values to the specific association */
2618 if (asoc) {
2619 if (assocparams.sasoc_asocmaxrxt != 0) {
2620 __u32 path_sum = 0;
2621 int paths = 0;
2622 struct sctp_transport *peer_addr;
2624 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2625 transports) {
2626 path_sum += peer_addr->pathmaxrxt;
2627 paths++;
2630 /* Only validate asocmaxrxt if we have more then
2631 * one path/transport. We do this because path
2632 * retransmissions are only counted when we have more
2633 * then one path.
2635 if (paths > 1 &&
2636 assocparams.sasoc_asocmaxrxt > path_sum)
2637 return -EINVAL;
2639 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2642 if (assocparams.sasoc_cookie_life != 0) {
2643 asoc->cookie_life.tv_sec =
2644 assocparams.sasoc_cookie_life / 1000;
2645 asoc->cookie_life.tv_usec =
2646 (assocparams.sasoc_cookie_life % 1000)
2647 * 1000;
2649 } else {
2650 /* Set the values to the endpoint */
2651 struct sctp_sock *sp = sctp_sk(sk);
2653 if (assocparams.sasoc_asocmaxrxt != 0)
2654 sp->assocparams.sasoc_asocmaxrxt =
2655 assocparams.sasoc_asocmaxrxt;
2656 if (assocparams.sasoc_cookie_life != 0)
2657 sp->assocparams.sasoc_cookie_life =
2658 assocparams.sasoc_cookie_life;
2660 return 0;
2664 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2666 * This socket option is a boolean flag which turns on or off mapped V4
2667 * addresses. If this option is turned on and the socket is type
2668 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2669 * If this option is turned off, then no mapping will be done of V4
2670 * addresses and a user will receive both PF_INET6 and PF_INET type
2671 * addresses on the socket.
2673 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2675 int val;
2676 struct sctp_sock *sp = sctp_sk(sk);
2678 if (optlen < sizeof(int))
2679 return -EINVAL;
2680 if (get_user(val, (int __user *)optval))
2681 return -EFAULT;
2682 if (val)
2683 sp->v4mapped = 1;
2684 else
2685 sp->v4mapped = 0;
2687 return 0;
2691 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2693 * This socket option specifies the maximum size to put in any outgoing
2694 * SCTP chunk. If a message is larger than this size it will be
2695 * fragmented by SCTP into the specified size. Note that the underlying
2696 * SCTP implementation may fragment into smaller sized chunks when the
2697 * PMTU of the underlying association is smaller than the value set by
2698 * the user.
2700 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2702 struct sctp_association *asoc;
2703 struct sctp_sock *sp = sctp_sk(sk);
2704 int val;
2706 if (optlen < sizeof(int))
2707 return -EINVAL;
2708 if (get_user(val, (int __user *)optval))
2709 return -EFAULT;
2710 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2711 return -EINVAL;
2712 sp->user_frag = val;
2714 /* Update the frag_point of the existing associations. */
2715 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
2716 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2719 return 0;
2724 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2726 * Requests that the peer mark the enclosed address as the association
2727 * primary. The enclosed address must be one of the association's
2728 * locally bound addresses. The following structure is used to make a
2729 * set primary request:
2731 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2732 int optlen)
2734 struct sctp_sock *sp;
2735 struct sctp_endpoint *ep;
2736 struct sctp_association *asoc = NULL;
2737 struct sctp_setpeerprim prim;
2738 struct sctp_chunk *chunk;
2739 int err;
2741 sp = sctp_sk(sk);
2742 ep = sp->ep;
2744 if (!sctp_addip_enable)
2745 return -EPERM;
2747 if (optlen != sizeof(struct sctp_setpeerprim))
2748 return -EINVAL;
2750 if (copy_from_user(&prim, optval, optlen))
2751 return -EFAULT;
2753 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2754 if (!asoc)
2755 return -EINVAL;
2757 if (!asoc->peer.asconf_capable)
2758 return -EPERM;
2760 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2761 return -EPERM;
2763 if (!sctp_state(asoc, ESTABLISHED))
2764 return -ENOTCONN;
2766 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2767 return -EADDRNOTAVAIL;
2769 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2770 chunk = sctp_make_asconf_set_prim(asoc,
2771 (union sctp_addr *)&prim.sspp_addr);
2772 if (!chunk)
2773 return -ENOMEM;
2775 err = sctp_send_asconf(asoc, chunk);
2777 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2779 return err;
2782 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2783 int optlen)
2785 struct sctp_setadaptation adaptation;
2787 if (optlen != sizeof(struct sctp_setadaptation))
2788 return -EINVAL;
2789 if (copy_from_user(&adaptation, optval, optlen))
2790 return -EFAULT;
2792 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2794 return 0;
2798 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2800 * The context field in the sctp_sndrcvinfo structure is normally only
2801 * used when a failed message is retrieved holding the value that was
2802 * sent down on the actual send call. This option allows the setting of
2803 * a default context on an association basis that will be received on
2804 * reading messages from the peer. This is especially helpful in the
2805 * one-2-many model for an application to keep some reference to an
2806 * internal state machine that is processing messages on the
2807 * association. Note that the setting of this value only effects
2808 * received messages from the peer and does not effect the value that is
2809 * saved with outbound messages.
2811 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2812 int optlen)
2814 struct sctp_assoc_value params;
2815 struct sctp_sock *sp;
2816 struct sctp_association *asoc;
2818 if (optlen != sizeof(struct sctp_assoc_value))
2819 return -EINVAL;
2820 if (copy_from_user(&params, optval, optlen))
2821 return -EFAULT;
2823 sp = sctp_sk(sk);
2825 if (params.assoc_id != 0) {
2826 asoc = sctp_id2assoc(sk, params.assoc_id);
2827 if (!asoc)
2828 return -EINVAL;
2829 asoc->default_rcv_context = params.assoc_value;
2830 } else {
2831 sp->default_rcv_context = params.assoc_value;
2834 return 0;
2838 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2840 * This options will at a minimum specify if the implementation is doing
2841 * fragmented interleave. Fragmented interleave, for a one to many
2842 * socket, is when subsequent calls to receive a message may return
2843 * parts of messages from different associations. Some implementations
2844 * may allow you to turn this value on or off. If so, when turned off,
2845 * no fragment interleave will occur (which will cause a head of line
2846 * blocking amongst multiple associations sharing the same one to many
2847 * socket). When this option is turned on, then each receive call may
2848 * come from a different association (thus the user must receive data
2849 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2850 * association each receive belongs to.
2852 * This option takes a boolean value. A non-zero value indicates that
2853 * fragmented interleave is on. A value of zero indicates that
2854 * fragmented interleave is off.
2856 * Note that it is important that an implementation that allows this
2857 * option to be turned on, have it off by default. Otherwise an unaware
2858 * application using the one to many model may become confused and act
2859 * incorrectly.
2861 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2862 char __user *optval,
2863 int optlen)
2865 int val;
2867 if (optlen != sizeof(int))
2868 return -EINVAL;
2869 if (get_user(val, (int __user *)optval))
2870 return -EFAULT;
2872 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2874 return 0;
2878 * 7.1.25. Set or Get the sctp partial delivery point
2879 * (SCTP_PARTIAL_DELIVERY_POINT)
2880 * This option will set or get the SCTP partial delivery point. This
2881 * point is the size of a message where the partial delivery API will be
2882 * invoked to help free up rwnd space for the peer. Setting this to a
2883 * lower value will cause partial delivery's to happen more often. The
2884 * calls argument is an integer that sets or gets the partial delivery
2885 * point.
2887 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2888 char __user *optval,
2889 int optlen)
2891 u32 val;
2893 if (optlen != sizeof(u32))
2894 return -EINVAL;
2895 if (get_user(val, (int __user *)optval))
2896 return -EFAULT;
2898 sctp_sk(sk)->pd_point = val;
2900 return 0; /* is this the right error code? */
2904 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
2906 * This option will allow a user to change the maximum burst of packets
2907 * that can be emitted by this association. Note that the default value
2908 * is 4, and some implementations may restrict this setting so that it
2909 * can only be lowered.
2911 * NOTE: This text doesn't seem right. Do this on a socket basis with
2912 * future associations inheriting the socket value.
2914 static int sctp_setsockopt_maxburst(struct sock *sk,
2915 char __user *optval,
2916 int optlen)
2918 struct sctp_assoc_value params;
2919 struct sctp_sock *sp;
2920 struct sctp_association *asoc;
2921 int val;
2922 int assoc_id = 0;
2924 if (optlen < sizeof(int))
2925 return -EINVAL;
2927 if (optlen == sizeof(int)) {
2928 printk(KERN_WARNING
2929 "SCTP: Use of int in max_burst socket option deprecated\n");
2930 printk(KERN_WARNING
2931 "SCTP: Use struct sctp_assoc_value instead\n");
2932 if (copy_from_user(&val, optval, optlen))
2933 return -EFAULT;
2934 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2935 if (copy_from_user(&params, optval, optlen))
2936 return -EFAULT;
2937 val = params.assoc_value;
2938 assoc_id = params.assoc_id;
2939 } else
2940 return -EINVAL;
2942 sp = sctp_sk(sk);
2944 if (assoc_id != 0) {
2945 asoc = sctp_id2assoc(sk, assoc_id);
2946 if (!asoc)
2947 return -EINVAL;
2948 asoc->max_burst = val;
2949 } else
2950 sp->max_burst = val;
2952 return 0;
2956 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
2958 * This set option adds a chunk type that the user is requesting to be
2959 * received only in an authenticated way. Changes to the list of chunks
2960 * will only effect future associations on the socket.
2962 static int sctp_setsockopt_auth_chunk(struct sock *sk,
2963 char __user *optval,
2964 int optlen)
2966 struct sctp_authchunk val;
2968 if (!sctp_auth_enable)
2969 return -EACCES;
2971 if (optlen != sizeof(struct sctp_authchunk))
2972 return -EINVAL;
2973 if (copy_from_user(&val, optval, optlen))
2974 return -EFAULT;
2976 switch (val.sauth_chunk) {
2977 case SCTP_CID_INIT:
2978 case SCTP_CID_INIT_ACK:
2979 case SCTP_CID_SHUTDOWN_COMPLETE:
2980 case SCTP_CID_AUTH:
2981 return -EINVAL;
2984 /* add this chunk id to the endpoint */
2985 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
2989 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
2991 * This option gets or sets the list of HMAC algorithms that the local
2992 * endpoint requires the peer to use.
2994 static int sctp_setsockopt_hmac_ident(struct sock *sk,
2995 char __user *optval,
2996 int optlen)
2998 struct sctp_hmacalgo *hmacs;
2999 u32 idents;
3000 int err;
3002 if (!sctp_auth_enable)
3003 return -EACCES;
3005 if (optlen < sizeof(struct sctp_hmacalgo))
3006 return -EINVAL;
3008 hmacs = kmalloc(optlen, GFP_KERNEL);
3009 if (!hmacs)
3010 return -ENOMEM;
3012 if (copy_from_user(hmacs, optval, optlen)) {
3013 err = -EFAULT;
3014 goto out;
3017 idents = hmacs->shmac_num_idents;
3018 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3019 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3020 err = -EINVAL;
3021 goto out;
3024 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3025 out:
3026 kfree(hmacs);
3027 return err;
3031 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3033 * This option will set a shared secret key which is used to build an
3034 * association shared key.
3036 static int sctp_setsockopt_auth_key(struct sock *sk,
3037 char __user *optval,
3038 int optlen)
3040 struct sctp_authkey *authkey;
3041 struct sctp_association *asoc;
3042 int ret;
3044 if (!sctp_auth_enable)
3045 return -EACCES;
3047 if (optlen <= sizeof(struct sctp_authkey))
3048 return -EINVAL;
3050 authkey = kmalloc(optlen, GFP_KERNEL);
3051 if (!authkey)
3052 return -ENOMEM;
3054 if (copy_from_user(authkey, optval, optlen)) {
3055 ret = -EFAULT;
3056 goto out;
3059 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3060 ret = -EINVAL;
3061 goto out;
3064 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3065 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3066 ret = -EINVAL;
3067 goto out;
3070 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3071 out:
3072 kfree(authkey);
3073 return ret;
3077 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3079 * This option will get or set the active shared key to be used to build
3080 * the association shared key.
3082 static int sctp_setsockopt_active_key(struct sock *sk,
3083 char __user *optval,
3084 int optlen)
3086 struct sctp_authkeyid val;
3087 struct sctp_association *asoc;
3089 if (!sctp_auth_enable)
3090 return -EACCES;
3092 if (optlen != sizeof(struct sctp_authkeyid))
3093 return -EINVAL;
3094 if (copy_from_user(&val, optval, optlen))
3095 return -EFAULT;
3097 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3098 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3099 return -EINVAL;
3101 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3102 val.scact_keynumber);
3106 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3108 * This set option will delete a shared secret key from use.
3110 static int sctp_setsockopt_del_key(struct sock *sk,
3111 char __user *optval,
3112 int optlen)
3114 struct sctp_authkeyid val;
3115 struct sctp_association *asoc;
3117 if (!sctp_auth_enable)
3118 return -EACCES;
3120 if (optlen != sizeof(struct sctp_authkeyid))
3121 return -EINVAL;
3122 if (copy_from_user(&val, optval, optlen))
3123 return -EFAULT;
3125 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3126 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3127 return -EINVAL;
3129 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3130 val.scact_keynumber);
3135 /* API 6.2 setsockopt(), getsockopt()
3137 * Applications use setsockopt() and getsockopt() to set or retrieve
3138 * socket options. Socket options are used to change the default
3139 * behavior of sockets calls. They are described in Section 7.
3141 * The syntax is:
3143 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3144 * int __user *optlen);
3145 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3146 * int optlen);
3148 * sd - the socket descript.
3149 * level - set to IPPROTO_SCTP for all SCTP options.
3150 * optname - the option name.
3151 * optval - the buffer to store the value of the option.
3152 * optlen - the size of the buffer.
3154 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3155 char __user *optval, int optlen)
3157 int retval = 0;
3159 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3160 sk, optname);
3162 /* I can hardly begin to describe how wrong this is. This is
3163 * so broken as to be worse than useless. The API draft
3164 * REALLY is NOT helpful here... I am not convinced that the
3165 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3166 * are at all well-founded.
3168 if (level != SOL_SCTP) {
3169 struct sctp_af *af = sctp_sk(sk)->pf->af;
3170 retval = af->setsockopt(sk, level, optname, optval, optlen);
3171 goto out_nounlock;
3174 sctp_lock_sock(sk);
3176 switch (optname) {
3177 case SCTP_SOCKOPT_BINDX_ADD:
3178 /* 'optlen' is the size of the addresses buffer. */
3179 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3180 optlen, SCTP_BINDX_ADD_ADDR);
3181 break;
3183 case SCTP_SOCKOPT_BINDX_REM:
3184 /* 'optlen' is the size of the addresses buffer. */
3185 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3186 optlen, SCTP_BINDX_REM_ADDR);
3187 break;
3189 case SCTP_SOCKOPT_CONNECTX:
3190 /* 'optlen' is the size of the addresses buffer. */
3191 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
3192 optlen);
3193 break;
3195 case SCTP_DISABLE_FRAGMENTS:
3196 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3197 break;
3199 case SCTP_EVENTS:
3200 retval = sctp_setsockopt_events(sk, optval, optlen);
3201 break;
3203 case SCTP_AUTOCLOSE:
3204 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3205 break;
3207 case SCTP_PEER_ADDR_PARAMS:
3208 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3209 break;
3211 case SCTP_DELAYED_ACK_TIME:
3212 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
3213 break;
3214 case SCTP_PARTIAL_DELIVERY_POINT:
3215 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3216 break;
3218 case SCTP_INITMSG:
3219 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3220 break;
3221 case SCTP_DEFAULT_SEND_PARAM:
3222 retval = sctp_setsockopt_default_send_param(sk, optval,
3223 optlen);
3224 break;
3225 case SCTP_PRIMARY_ADDR:
3226 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3227 break;
3228 case SCTP_SET_PEER_PRIMARY_ADDR:
3229 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3230 break;
3231 case SCTP_NODELAY:
3232 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3233 break;
3234 case SCTP_RTOINFO:
3235 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3236 break;
3237 case SCTP_ASSOCINFO:
3238 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3239 break;
3240 case SCTP_I_WANT_MAPPED_V4_ADDR:
3241 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3242 break;
3243 case SCTP_MAXSEG:
3244 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3245 break;
3246 case SCTP_ADAPTATION_LAYER:
3247 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3248 break;
3249 case SCTP_CONTEXT:
3250 retval = sctp_setsockopt_context(sk, optval, optlen);
3251 break;
3252 case SCTP_FRAGMENT_INTERLEAVE:
3253 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3254 break;
3255 case SCTP_MAX_BURST:
3256 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3257 break;
3258 case SCTP_AUTH_CHUNK:
3259 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3260 break;
3261 case SCTP_HMAC_IDENT:
3262 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3263 break;
3264 case SCTP_AUTH_KEY:
3265 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3266 break;
3267 case SCTP_AUTH_ACTIVE_KEY:
3268 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3269 break;
3270 case SCTP_AUTH_DELETE_KEY:
3271 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3272 break;
3273 default:
3274 retval = -ENOPROTOOPT;
3275 break;
3278 sctp_release_sock(sk);
3280 out_nounlock:
3281 return retval;
3284 /* API 3.1.6 connect() - UDP Style Syntax
3286 * An application may use the connect() call in the UDP model to initiate an
3287 * association without sending data.
3289 * The syntax is:
3291 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3293 * sd: the socket descriptor to have a new association added to.
3295 * nam: the address structure (either struct sockaddr_in or struct
3296 * sockaddr_in6 defined in RFC2553 [7]).
3298 * len: the size of the address.
3300 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3301 int addr_len)
3303 int err = 0;
3304 struct sctp_af *af;
3306 sctp_lock_sock(sk);
3308 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3309 __func__, sk, addr, addr_len);
3311 /* Validate addr_len before calling common connect/connectx routine. */
3312 af = sctp_get_af_specific(addr->sa_family);
3313 if (!af || addr_len < af->sockaddr_len) {
3314 err = -EINVAL;
3315 } else {
3316 /* Pass correct addr len to common routine (so it knows there
3317 * is only one address being passed.
3319 err = __sctp_connect(sk, addr, af->sockaddr_len);
3322 sctp_release_sock(sk);
3323 return err;
3326 /* FIXME: Write comments. */
3327 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3329 return -EOPNOTSUPP; /* STUB */
3332 /* 4.1.4 accept() - TCP Style Syntax
3334 * Applications use accept() call to remove an established SCTP
3335 * association from the accept queue of the endpoint. A new socket
3336 * descriptor will be returned from accept() to represent the newly
3337 * formed association.
3339 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3341 struct sctp_sock *sp;
3342 struct sctp_endpoint *ep;
3343 struct sock *newsk = NULL;
3344 struct sctp_association *asoc;
3345 long timeo;
3346 int error = 0;
3348 sctp_lock_sock(sk);
3350 sp = sctp_sk(sk);
3351 ep = sp->ep;
3353 if (!sctp_style(sk, TCP)) {
3354 error = -EOPNOTSUPP;
3355 goto out;
3358 if (!sctp_sstate(sk, LISTENING)) {
3359 error = -EINVAL;
3360 goto out;
3363 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3365 error = sctp_wait_for_accept(sk, timeo);
3366 if (error)
3367 goto out;
3369 /* We treat the list of associations on the endpoint as the accept
3370 * queue and pick the first association on the list.
3372 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3374 newsk = sp->pf->create_accept_sk(sk, asoc);
3375 if (!newsk) {
3376 error = -ENOMEM;
3377 goto out;
3380 /* Populate the fields of the newsk from the oldsk and migrate the
3381 * asoc to the newsk.
3383 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3385 out:
3386 sctp_release_sock(sk);
3387 *err = error;
3388 return newsk;
3391 /* The SCTP ioctl handler. */
3392 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3394 return -ENOIOCTLCMD;
3397 /* This is the function which gets called during socket creation to
3398 * initialized the SCTP-specific portion of the sock.
3399 * The sock structure should already be zero-filled memory.
3401 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3403 struct sctp_endpoint *ep;
3404 struct sctp_sock *sp;
3406 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3408 sp = sctp_sk(sk);
3410 /* Initialize the SCTP per socket area. */
3411 switch (sk->sk_type) {
3412 case SOCK_SEQPACKET:
3413 sp->type = SCTP_SOCKET_UDP;
3414 break;
3415 case SOCK_STREAM:
3416 sp->type = SCTP_SOCKET_TCP;
3417 break;
3418 default:
3419 return -ESOCKTNOSUPPORT;
3422 /* Initialize default send parameters. These parameters can be
3423 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3425 sp->default_stream = 0;
3426 sp->default_ppid = 0;
3427 sp->default_flags = 0;
3428 sp->default_context = 0;
3429 sp->default_timetolive = 0;
3431 sp->default_rcv_context = 0;
3432 sp->max_burst = sctp_max_burst;
3434 /* Initialize default setup parameters. These parameters
3435 * can be modified with the SCTP_INITMSG socket option or
3436 * overridden by the SCTP_INIT CMSG.
3438 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3439 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3440 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3441 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3443 /* Initialize default RTO related parameters. These parameters can
3444 * be modified for with the SCTP_RTOINFO socket option.
3446 sp->rtoinfo.srto_initial = sctp_rto_initial;
3447 sp->rtoinfo.srto_max = sctp_rto_max;
3448 sp->rtoinfo.srto_min = sctp_rto_min;
3450 /* Initialize default association related parameters. These parameters
3451 * can be modified with the SCTP_ASSOCINFO socket option.
3453 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3454 sp->assocparams.sasoc_number_peer_destinations = 0;
3455 sp->assocparams.sasoc_peer_rwnd = 0;
3456 sp->assocparams.sasoc_local_rwnd = 0;
3457 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3459 /* Initialize default event subscriptions. By default, all the
3460 * options are off.
3462 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3464 /* Default Peer Address Parameters. These defaults can
3465 * be modified via SCTP_PEER_ADDR_PARAMS
3467 sp->hbinterval = sctp_hb_interval;
3468 sp->pathmaxrxt = sctp_max_retrans_path;
3469 sp->pathmtu = 0; // allow default discovery
3470 sp->sackdelay = sctp_sack_timeout;
3471 sp->param_flags = SPP_HB_ENABLE |
3472 SPP_PMTUD_ENABLE |
3473 SPP_SACKDELAY_ENABLE;
3475 /* If enabled no SCTP message fragmentation will be performed.
3476 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3478 sp->disable_fragments = 0;
3480 /* Enable Nagle algorithm by default. */
3481 sp->nodelay = 0;
3483 /* Enable by default. */
3484 sp->v4mapped = 1;
3486 /* Auto-close idle associations after the configured
3487 * number of seconds. A value of 0 disables this
3488 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3489 * for UDP-style sockets only.
3491 sp->autoclose = 0;
3493 /* User specified fragmentation limit. */
3494 sp->user_frag = 0;
3496 sp->adaptation_ind = 0;
3498 sp->pf = sctp_get_pf_specific(sk->sk_family);
3500 /* Control variables for partial data delivery. */
3501 atomic_set(&sp->pd_mode, 0);
3502 skb_queue_head_init(&sp->pd_lobby);
3503 sp->frag_interleave = 0;
3505 /* Create a per socket endpoint structure. Even if we
3506 * change the data structure relationships, this may still
3507 * be useful for storing pre-connect address information.
3509 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3510 if (!ep)
3511 return -ENOMEM;
3513 sp->ep = ep;
3514 sp->hmac = NULL;
3516 SCTP_DBG_OBJCNT_INC(sock);
3517 atomic_inc(&sctp_sockets_allocated);
3518 return 0;
3521 /* Cleanup any SCTP per socket resources. */
3522 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3524 struct sctp_endpoint *ep;
3526 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3528 /* Release our hold on the endpoint. */
3529 ep = sctp_sk(sk)->ep;
3530 sctp_endpoint_free(ep);
3531 atomic_dec(&sctp_sockets_allocated);
3532 return 0;
3535 /* API 4.1.7 shutdown() - TCP Style Syntax
3536 * int shutdown(int socket, int how);
3538 * sd - the socket descriptor of the association to be closed.
3539 * how - Specifies the type of shutdown. The values are
3540 * as follows:
3541 * SHUT_RD
3542 * Disables further receive operations. No SCTP
3543 * protocol action is taken.
3544 * SHUT_WR
3545 * Disables further send operations, and initiates
3546 * the SCTP shutdown sequence.
3547 * SHUT_RDWR
3548 * Disables further send and receive operations
3549 * and initiates the SCTP shutdown sequence.
3551 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3553 struct sctp_endpoint *ep;
3554 struct sctp_association *asoc;
3556 if (!sctp_style(sk, TCP))
3557 return;
3559 if (how & SEND_SHUTDOWN) {
3560 ep = sctp_sk(sk)->ep;
3561 if (!list_empty(&ep->asocs)) {
3562 asoc = list_entry(ep->asocs.next,
3563 struct sctp_association, asocs);
3564 sctp_primitive_SHUTDOWN(asoc, NULL);
3569 /* 7.2.1 Association Status (SCTP_STATUS)
3571 * Applications can retrieve current status information about an
3572 * association, including association state, peer receiver window size,
3573 * number of unacked data chunks, and number of data chunks pending
3574 * receipt. This information is read-only.
3576 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3577 char __user *optval,
3578 int __user *optlen)
3580 struct sctp_status status;
3581 struct sctp_association *asoc = NULL;
3582 struct sctp_transport *transport;
3583 sctp_assoc_t associd;
3584 int retval = 0;
3586 if (len < sizeof(status)) {
3587 retval = -EINVAL;
3588 goto out;
3591 len = sizeof(status);
3592 if (copy_from_user(&status, optval, len)) {
3593 retval = -EFAULT;
3594 goto out;
3597 associd = status.sstat_assoc_id;
3598 asoc = sctp_id2assoc(sk, associd);
3599 if (!asoc) {
3600 retval = -EINVAL;
3601 goto out;
3604 transport = asoc->peer.primary_path;
3606 status.sstat_assoc_id = sctp_assoc2id(asoc);
3607 status.sstat_state = asoc->state;
3608 status.sstat_rwnd = asoc->peer.rwnd;
3609 status.sstat_unackdata = asoc->unack_data;
3611 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3612 status.sstat_instrms = asoc->c.sinit_max_instreams;
3613 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3614 status.sstat_fragmentation_point = asoc->frag_point;
3615 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3616 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3617 transport->af_specific->sockaddr_len);
3618 /* Map ipv4 address into v4-mapped-on-v6 address. */
3619 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3620 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3621 status.sstat_primary.spinfo_state = transport->state;
3622 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3623 status.sstat_primary.spinfo_srtt = transport->srtt;
3624 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3625 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3627 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3628 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3630 if (put_user(len, optlen)) {
3631 retval = -EFAULT;
3632 goto out;
3635 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3636 len, status.sstat_state, status.sstat_rwnd,
3637 status.sstat_assoc_id);
3639 if (copy_to_user(optval, &status, len)) {
3640 retval = -EFAULT;
3641 goto out;
3644 out:
3645 return (retval);
3649 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3651 * Applications can retrieve information about a specific peer address
3652 * of an association, including its reachability state, congestion
3653 * window, and retransmission timer values. This information is
3654 * read-only.
3656 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3657 char __user *optval,
3658 int __user *optlen)
3660 struct sctp_paddrinfo pinfo;
3661 struct sctp_transport *transport;
3662 int retval = 0;
3664 if (len < sizeof(pinfo)) {
3665 retval = -EINVAL;
3666 goto out;
3669 len = sizeof(pinfo);
3670 if (copy_from_user(&pinfo, optval, len)) {
3671 retval = -EFAULT;
3672 goto out;
3675 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3676 pinfo.spinfo_assoc_id);
3677 if (!transport)
3678 return -EINVAL;
3680 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3681 pinfo.spinfo_state = transport->state;
3682 pinfo.spinfo_cwnd = transport->cwnd;
3683 pinfo.spinfo_srtt = transport->srtt;
3684 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3685 pinfo.spinfo_mtu = transport->pathmtu;
3687 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3688 pinfo.spinfo_state = SCTP_ACTIVE;
3690 if (put_user(len, optlen)) {
3691 retval = -EFAULT;
3692 goto out;
3695 if (copy_to_user(optval, &pinfo, len)) {
3696 retval = -EFAULT;
3697 goto out;
3700 out:
3701 return (retval);
3704 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3706 * This option is a on/off flag. If enabled no SCTP message
3707 * fragmentation will be performed. Instead if a message being sent
3708 * exceeds the current PMTU size, the message will NOT be sent and
3709 * instead a error will be indicated to the user.
3711 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3712 char __user *optval, int __user *optlen)
3714 int val;
3716 if (len < sizeof(int))
3717 return -EINVAL;
3719 len = sizeof(int);
3720 val = (sctp_sk(sk)->disable_fragments == 1);
3721 if (put_user(len, optlen))
3722 return -EFAULT;
3723 if (copy_to_user(optval, &val, len))
3724 return -EFAULT;
3725 return 0;
3728 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3730 * This socket option is used to specify various notifications and
3731 * ancillary data the user wishes to receive.
3733 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3734 int __user *optlen)
3736 if (len < sizeof(struct sctp_event_subscribe))
3737 return -EINVAL;
3738 len = sizeof(struct sctp_event_subscribe);
3739 if (put_user(len, optlen))
3740 return -EFAULT;
3741 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3742 return -EFAULT;
3743 return 0;
3746 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3748 * This socket option is applicable to the UDP-style socket only. When
3749 * set it will cause associations that are idle for more than the
3750 * specified number of seconds to automatically close. An association
3751 * being idle is defined an association that has NOT sent or received
3752 * user data. The special value of '0' indicates that no automatic
3753 * close of any associations should be performed. The option expects an
3754 * integer defining the number of seconds of idle time before an
3755 * association is closed.
3757 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3759 /* Applicable to UDP-style socket only */
3760 if (sctp_style(sk, TCP))
3761 return -EOPNOTSUPP;
3762 if (len < sizeof(int))
3763 return -EINVAL;
3764 len = sizeof(int);
3765 if (put_user(len, optlen))
3766 return -EFAULT;
3767 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3768 return -EFAULT;
3769 return 0;
3772 /* Helper routine to branch off an association to a new socket. */
3773 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3774 struct socket **sockp)
3776 struct sock *sk = asoc->base.sk;
3777 struct socket *sock;
3778 struct inet_sock *inetsk;
3779 struct sctp_af *af;
3780 int err = 0;
3782 /* An association cannot be branched off from an already peeled-off
3783 * socket, nor is this supported for tcp style sockets.
3785 if (!sctp_style(sk, UDP))
3786 return -EINVAL;
3788 /* Create a new socket. */
3789 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3790 if (err < 0)
3791 return err;
3793 /* Populate the fields of the newsk from the oldsk and migrate the
3794 * asoc to the newsk.
3796 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3798 /* Make peeled-off sockets more like 1-1 accepted sockets.
3799 * Set the daddr and initialize id to something more random
3801 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3802 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3803 inetsk = inet_sk(sock->sk);
3804 inetsk->id = asoc->next_tsn ^ jiffies;
3806 *sockp = sock;
3808 return err;
3811 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3813 sctp_peeloff_arg_t peeloff;
3814 struct socket *newsock;
3815 int retval = 0;
3816 struct sctp_association *asoc;
3818 if (len < sizeof(sctp_peeloff_arg_t))
3819 return -EINVAL;
3820 len = sizeof(sctp_peeloff_arg_t);
3821 if (copy_from_user(&peeloff, optval, len))
3822 return -EFAULT;
3824 asoc = sctp_id2assoc(sk, peeloff.associd);
3825 if (!asoc) {
3826 retval = -EINVAL;
3827 goto out;
3830 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
3832 retval = sctp_do_peeloff(asoc, &newsock);
3833 if (retval < 0)
3834 goto out;
3836 /* Map the socket to an unused fd that can be returned to the user. */
3837 retval = sock_map_fd(newsock);
3838 if (retval < 0) {
3839 sock_release(newsock);
3840 goto out;
3843 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3844 __func__, sk, asoc, newsock->sk, retval);
3846 /* Return the fd mapped to the new socket. */
3847 peeloff.sd = retval;
3848 if (put_user(len, optlen))
3849 return -EFAULT;
3850 if (copy_to_user(optval, &peeloff, len))
3851 retval = -EFAULT;
3853 out:
3854 return retval;
3857 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3859 * Applications can enable or disable heartbeats for any peer address of
3860 * an association, modify an address's heartbeat interval, force a
3861 * heartbeat to be sent immediately, and adjust the address's maximum
3862 * number of retransmissions sent before an address is considered
3863 * unreachable. The following structure is used to access and modify an
3864 * address's parameters:
3866 * struct sctp_paddrparams {
3867 * sctp_assoc_t spp_assoc_id;
3868 * struct sockaddr_storage spp_address;
3869 * uint32_t spp_hbinterval;
3870 * uint16_t spp_pathmaxrxt;
3871 * uint32_t spp_pathmtu;
3872 * uint32_t spp_sackdelay;
3873 * uint32_t spp_flags;
3874 * };
3876 * spp_assoc_id - (one-to-many style socket) This is filled in the
3877 * application, and identifies the association for
3878 * this query.
3879 * spp_address - This specifies which address is of interest.
3880 * spp_hbinterval - This contains the value of the heartbeat interval,
3881 * in milliseconds. If a value of zero
3882 * is present in this field then no changes are to
3883 * be made to this parameter.
3884 * spp_pathmaxrxt - This contains the maximum number of
3885 * retransmissions before this address shall be
3886 * considered unreachable. If a value of zero
3887 * is present in this field then no changes are to
3888 * be made to this parameter.
3889 * spp_pathmtu - When Path MTU discovery is disabled the value
3890 * specified here will be the "fixed" path mtu.
3891 * Note that if the spp_address field is empty
3892 * then all associations on this address will
3893 * have this fixed path mtu set upon them.
3895 * spp_sackdelay - When delayed sack is enabled, this value specifies
3896 * the number of milliseconds that sacks will be delayed
3897 * for. This value will apply to all addresses of an
3898 * association if the spp_address field is empty. Note
3899 * also, that if delayed sack is enabled and this
3900 * value is set to 0, no change is made to the last
3901 * recorded delayed sack timer value.
3903 * spp_flags - These flags are used to control various features
3904 * on an association. The flag field may contain
3905 * zero or more of the following options.
3907 * SPP_HB_ENABLE - Enable heartbeats on the
3908 * specified address. Note that if the address
3909 * field is empty all addresses for the association
3910 * have heartbeats enabled upon them.
3912 * SPP_HB_DISABLE - Disable heartbeats on the
3913 * speicifed address. Note that if the address
3914 * field is empty all addresses for the association
3915 * will have their heartbeats disabled. Note also
3916 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
3917 * mutually exclusive, only one of these two should
3918 * be specified. Enabling both fields will have
3919 * undetermined results.
3921 * SPP_HB_DEMAND - Request a user initiated heartbeat
3922 * to be made immediately.
3924 * SPP_PMTUD_ENABLE - This field will enable PMTU
3925 * discovery upon the specified address. Note that
3926 * if the address feild is empty then all addresses
3927 * on the association are effected.
3929 * SPP_PMTUD_DISABLE - This field will disable PMTU
3930 * discovery upon the specified address. Note that
3931 * if the address feild is empty then all addresses
3932 * on the association are effected. Not also that
3933 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3934 * exclusive. Enabling both will have undetermined
3935 * results.
3937 * SPP_SACKDELAY_ENABLE - Setting this flag turns
3938 * on delayed sack. The time specified in spp_sackdelay
3939 * is used to specify the sack delay for this address. Note
3940 * that if spp_address is empty then all addresses will
3941 * enable delayed sack and take on the sack delay
3942 * value specified in spp_sackdelay.
3943 * SPP_SACKDELAY_DISABLE - Setting this flag turns
3944 * off delayed sack. If the spp_address field is blank then
3945 * delayed sack is disabled for the entire association. Note
3946 * also that this field is mutually exclusive to
3947 * SPP_SACKDELAY_ENABLE, setting both will have undefined
3948 * results.
3950 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3951 char __user *optval, int __user *optlen)
3953 struct sctp_paddrparams params;
3954 struct sctp_transport *trans = NULL;
3955 struct sctp_association *asoc = NULL;
3956 struct sctp_sock *sp = sctp_sk(sk);
3958 if (len < sizeof(struct sctp_paddrparams))
3959 return -EINVAL;
3960 len = sizeof(struct sctp_paddrparams);
3961 if (copy_from_user(&params, optval, len))
3962 return -EFAULT;
3964 /* If an address other than INADDR_ANY is specified, and
3965 * no transport is found, then the request is invalid.
3967 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3968 trans = sctp_addr_id2transport(sk, &params.spp_address,
3969 params.spp_assoc_id);
3970 if (!trans) {
3971 SCTP_DEBUG_PRINTK("Failed no transport\n");
3972 return -EINVAL;
3976 /* Get association, if assoc_id != 0 and the socket is a one
3977 * to many style socket, and an association was not found, then
3978 * the id was invalid.
3980 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3981 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3982 SCTP_DEBUG_PRINTK("Failed no association\n");
3983 return -EINVAL;
3986 if (trans) {
3987 /* Fetch transport values. */
3988 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3989 params.spp_pathmtu = trans->pathmtu;
3990 params.spp_pathmaxrxt = trans->pathmaxrxt;
3991 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
3993 /*draft-11 doesn't say what to return in spp_flags*/
3994 params.spp_flags = trans->param_flags;
3995 } else if (asoc) {
3996 /* Fetch association values. */
3997 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3998 params.spp_pathmtu = asoc->pathmtu;
3999 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4000 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4002 /*draft-11 doesn't say what to return in spp_flags*/
4003 params.spp_flags = asoc->param_flags;
4004 } else {
4005 /* Fetch socket values. */
4006 params.spp_hbinterval = sp->hbinterval;
4007 params.spp_pathmtu = sp->pathmtu;
4008 params.spp_sackdelay = sp->sackdelay;
4009 params.spp_pathmaxrxt = sp->pathmaxrxt;
4011 /*draft-11 doesn't say what to return in spp_flags*/
4012 params.spp_flags = sp->param_flags;
4015 if (copy_to_user(optval, &params, len))
4016 return -EFAULT;
4018 if (put_user(len, optlen))
4019 return -EFAULT;
4021 return 0;
4024 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
4026 * This options will get or set the delayed ack timer. The time is set
4027 * in milliseconds. If the assoc_id is 0, then this sets or gets the
4028 * endpoints default delayed ack timer value. If the assoc_id field is
4029 * non-zero, then the set or get effects the specified association.
4031 * struct sctp_assoc_value {
4032 * sctp_assoc_t assoc_id;
4033 * uint32_t assoc_value;
4034 * };
4036 * assoc_id - This parameter, indicates which association the
4037 * user is preforming an action upon. Note that if
4038 * this field's value is zero then the endpoints
4039 * default value is changed (effecting future
4040 * associations only).
4042 * assoc_value - This parameter contains the number of milliseconds
4043 * that the user is requesting the delayed ACK timer
4044 * be set to. Note that this value is defined in
4045 * the standard to be between 200 and 500 milliseconds.
4047 * Note: a value of zero will leave the value alone,
4048 * but disable SACK delay. A non-zero value will also
4049 * enable SACK delay.
4051 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
4052 char __user *optval,
4053 int __user *optlen)
4055 struct sctp_assoc_value params;
4056 struct sctp_association *asoc = NULL;
4057 struct sctp_sock *sp = sctp_sk(sk);
4059 if (len < sizeof(struct sctp_assoc_value))
4060 return - EINVAL;
4062 len = sizeof(struct sctp_assoc_value);
4064 if (copy_from_user(&params, optval, len))
4065 return -EFAULT;
4067 /* Get association, if assoc_id != 0 and the socket is a one
4068 * to many style socket, and an association was not found, then
4069 * the id was invalid.
4071 asoc = sctp_id2assoc(sk, params.assoc_id);
4072 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
4073 return -EINVAL;
4075 if (asoc) {
4076 /* Fetch association values. */
4077 if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
4078 params.assoc_value = jiffies_to_msecs(
4079 asoc->sackdelay);
4080 else
4081 params.assoc_value = 0;
4082 } else {
4083 /* Fetch socket values. */
4084 if (sp->param_flags & SPP_SACKDELAY_ENABLE)
4085 params.assoc_value = sp->sackdelay;
4086 else
4087 params.assoc_value = 0;
4090 if (copy_to_user(optval, &params, len))
4091 return -EFAULT;
4093 if (put_user(len, optlen))
4094 return -EFAULT;
4096 return 0;
4099 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4101 * Applications can specify protocol parameters for the default association
4102 * initialization. The option name argument to setsockopt() and getsockopt()
4103 * is SCTP_INITMSG.
4105 * Setting initialization parameters is effective only on an unconnected
4106 * socket (for UDP-style sockets only future associations are effected
4107 * by the change). With TCP-style sockets, this option is inherited by
4108 * sockets derived from a listener socket.
4110 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4112 if (len < sizeof(struct sctp_initmsg))
4113 return -EINVAL;
4114 len = sizeof(struct sctp_initmsg);
4115 if (put_user(len, optlen))
4116 return -EFAULT;
4117 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4118 return -EFAULT;
4119 return 0;
4122 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4123 char __user *optval,
4124 int __user *optlen)
4126 sctp_assoc_t id;
4127 struct sctp_association *asoc;
4128 struct list_head *pos;
4129 int cnt = 0;
4131 if (len < sizeof(sctp_assoc_t))
4132 return -EINVAL;
4134 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4135 return -EFAULT;
4137 /* For UDP-style sockets, id specifies the association to query. */
4138 asoc = sctp_id2assoc(sk, id);
4139 if (!asoc)
4140 return -EINVAL;
4142 list_for_each(pos, &asoc->peer.transport_addr_list) {
4143 cnt ++;
4146 return cnt;
4150 * Old API for getting list of peer addresses. Does not work for 32-bit
4151 * programs running on a 64-bit kernel
4153 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4154 char __user *optval,
4155 int __user *optlen)
4157 struct sctp_association *asoc;
4158 int cnt = 0;
4159 struct sctp_getaddrs_old getaddrs;
4160 struct sctp_transport *from;
4161 void __user *to;
4162 union sctp_addr temp;
4163 struct sctp_sock *sp = sctp_sk(sk);
4164 int addrlen;
4166 if (len < sizeof(struct sctp_getaddrs_old))
4167 return -EINVAL;
4169 len = sizeof(struct sctp_getaddrs_old);
4171 if (copy_from_user(&getaddrs, optval, len))
4172 return -EFAULT;
4174 if (getaddrs.addr_num <= 0) return -EINVAL;
4176 /* For UDP-style sockets, id specifies the association to query. */
4177 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4178 if (!asoc)
4179 return -EINVAL;
4181 to = (void __user *)getaddrs.addrs;
4182 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4183 transports) {
4184 memcpy(&temp, &from->ipaddr, sizeof(temp));
4185 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4186 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4187 if (copy_to_user(to, &temp, addrlen))
4188 return -EFAULT;
4189 to += addrlen ;
4190 cnt ++;
4191 if (cnt >= getaddrs.addr_num) break;
4193 getaddrs.addr_num = cnt;
4194 if (put_user(len, optlen))
4195 return -EFAULT;
4196 if (copy_to_user(optval, &getaddrs, len))
4197 return -EFAULT;
4199 return 0;
4202 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4203 char __user *optval, int __user *optlen)
4205 struct sctp_association *asoc;
4206 int cnt = 0;
4207 struct sctp_getaddrs getaddrs;
4208 struct sctp_transport *from;
4209 void __user *to;
4210 union sctp_addr temp;
4211 struct sctp_sock *sp = sctp_sk(sk);
4212 int addrlen;
4213 size_t space_left;
4214 int bytes_copied;
4216 if (len < sizeof(struct sctp_getaddrs))
4217 return -EINVAL;
4219 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4220 return -EFAULT;
4222 /* For UDP-style sockets, id specifies the association to query. */
4223 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4224 if (!asoc)
4225 return -EINVAL;
4227 to = optval + offsetof(struct sctp_getaddrs,addrs);
4228 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4230 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4231 transports) {
4232 memcpy(&temp, &from->ipaddr, sizeof(temp));
4233 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4234 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4235 if (space_left < addrlen)
4236 return -ENOMEM;
4237 if (copy_to_user(to, &temp, addrlen))
4238 return -EFAULT;
4239 to += addrlen;
4240 cnt++;
4241 space_left -= addrlen;
4244 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4245 return -EFAULT;
4246 bytes_copied = ((char __user *)to) - optval;
4247 if (put_user(bytes_copied, optlen))
4248 return -EFAULT;
4250 return 0;
4253 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4254 char __user *optval,
4255 int __user *optlen)
4257 sctp_assoc_t id;
4258 struct sctp_bind_addr *bp;
4259 struct sctp_association *asoc;
4260 struct sctp_sockaddr_entry *addr;
4261 int cnt = 0;
4263 if (len < sizeof(sctp_assoc_t))
4264 return -EINVAL;
4266 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4267 return -EFAULT;
4270 * For UDP-style sockets, id specifies the association to query.
4271 * If the id field is set to the value '0' then the locally bound
4272 * addresses are returned without regard to any particular
4273 * association.
4275 if (0 == id) {
4276 bp = &sctp_sk(sk)->ep->base.bind_addr;
4277 } else {
4278 asoc = sctp_id2assoc(sk, id);
4279 if (!asoc)
4280 return -EINVAL;
4281 bp = &asoc->base.bind_addr;
4284 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4285 * addresses from the global local address list.
4287 if (sctp_list_single_entry(&bp->address_list)) {
4288 addr = list_entry(bp->address_list.next,
4289 struct sctp_sockaddr_entry, list);
4290 if (sctp_is_any(&addr->a)) {
4291 rcu_read_lock();
4292 list_for_each_entry_rcu(addr,
4293 &sctp_local_addr_list, list) {
4294 if (!addr->valid)
4295 continue;
4297 if ((PF_INET == sk->sk_family) &&
4298 (AF_INET6 == addr->a.sa.sa_family))
4299 continue;
4301 cnt++;
4303 rcu_read_unlock();
4304 } else {
4305 cnt = 1;
4307 goto done;
4310 /* Protection on the bound address list is not needed,
4311 * since in the socket option context we hold the socket lock,
4312 * so there is no way that the bound address list can change.
4314 list_for_each_entry(addr, &bp->address_list, list) {
4315 cnt ++;
4317 done:
4318 return cnt;
4321 /* Helper function that copies local addresses to user and returns the number
4322 * of addresses copied.
4324 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4325 int max_addrs, void *to,
4326 int *bytes_copied)
4328 struct sctp_sockaddr_entry *addr;
4329 union sctp_addr temp;
4330 int cnt = 0;
4331 int addrlen;
4333 rcu_read_lock();
4334 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4335 if (!addr->valid)
4336 continue;
4338 if ((PF_INET == sk->sk_family) &&
4339 (AF_INET6 == addr->a.sa.sa_family))
4340 continue;
4341 memcpy(&temp, &addr->a, sizeof(temp));
4342 if (!temp.v4.sin_port)
4343 temp.v4.sin_port = htons(port);
4345 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4346 &temp);
4347 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4348 memcpy(to, &temp, addrlen);
4350 to += addrlen;
4351 *bytes_copied += addrlen;
4352 cnt ++;
4353 if (cnt >= max_addrs) break;
4355 rcu_read_unlock();
4357 return cnt;
4360 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4361 size_t space_left, int *bytes_copied)
4363 struct sctp_sockaddr_entry *addr;
4364 union sctp_addr temp;
4365 int cnt = 0;
4366 int addrlen;
4368 rcu_read_lock();
4369 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4370 if (!addr->valid)
4371 continue;
4373 if ((PF_INET == sk->sk_family) &&
4374 (AF_INET6 == addr->a.sa.sa_family))
4375 continue;
4376 memcpy(&temp, &addr->a, sizeof(temp));
4377 if (!temp.v4.sin_port)
4378 temp.v4.sin_port = htons(port);
4380 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4381 &temp);
4382 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4383 if (space_left < addrlen) {
4384 cnt = -ENOMEM;
4385 break;
4387 memcpy(to, &temp, addrlen);
4389 to += addrlen;
4390 cnt ++;
4391 space_left -= addrlen;
4392 *bytes_copied += addrlen;
4394 rcu_read_unlock();
4396 return cnt;
4399 /* Old API for getting list of local addresses. Does not work for 32-bit
4400 * programs running on a 64-bit kernel
4402 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4403 char __user *optval, int __user *optlen)
4405 struct sctp_bind_addr *bp;
4406 struct sctp_association *asoc;
4407 int cnt = 0;
4408 struct sctp_getaddrs_old getaddrs;
4409 struct sctp_sockaddr_entry *addr;
4410 void __user *to;
4411 union sctp_addr temp;
4412 struct sctp_sock *sp = sctp_sk(sk);
4413 int addrlen;
4414 int err = 0;
4415 void *addrs;
4416 void *buf;
4417 int bytes_copied = 0;
4419 if (len < sizeof(struct sctp_getaddrs_old))
4420 return -EINVAL;
4422 len = sizeof(struct sctp_getaddrs_old);
4423 if (copy_from_user(&getaddrs, optval, len))
4424 return -EFAULT;
4426 if (getaddrs.addr_num <= 0 ||
4427 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr)))
4428 return -EINVAL;
4430 * For UDP-style sockets, id specifies the association to query.
4431 * If the id field is set to the value '0' then the locally bound
4432 * addresses are returned without regard to any particular
4433 * association.
4435 if (0 == getaddrs.assoc_id) {
4436 bp = &sctp_sk(sk)->ep->base.bind_addr;
4437 } else {
4438 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4439 if (!asoc)
4440 return -EINVAL;
4441 bp = &asoc->base.bind_addr;
4444 to = getaddrs.addrs;
4446 /* Allocate space for a local instance of packed array to hold all
4447 * the data. We store addresses here first and then put write them
4448 * to the user in one shot.
4450 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4451 GFP_KERNEL);
4452 if (!addrs)
4453 return -ENOMEM;
4455 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4456 * addresses from the global local address list.
4458 if (sctp_list_single_entry(&bp->address_list)) {
4459 addr = list_entry(bp->address_list.next,
4460 struct sctp_sockaddr_entry, list);
4461 if (sctp_is_any(&addr->a)) {
4462 cnt = sctp_copy_laddrs_old(sk, bp->port,
4463 getaddrs.addr_num,
4464 addrs, &bytes_copied);
4465 goto copy_getaddrs;
4469 buf = addrs;
4470 /* Protection on the bound address list is not needed since
4471 * in the socket option context we hold a socket lock and
4472 * thus the bound address list can't change.
4474 list_for_each_entry(addr, &bp->address_list, list) {
4475 memcpy(&temp, &addr->a, sizeof(temp));
4476 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4477 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4478 memcpy(buf, &temp, addrlen);
4479 buf += addrlen;
4480 bytes_copied += addrlen;
4481 cnt ++;
4482 if (cnt >= getaddrs.addr_num) break;
4485 copy_getaddrs:
4486 /* copy the entire address list into the user provided space */
4487 if (copy_to_user(to, addrs, bytes_copied)) {
4488 err = -EFAULT;
4489 goto error;
4492 /* copy the leading structure back to user */
4493 getaddrs.addr_num = cnt;
4494 if (copy_to_user(optval, &getaddrs, len))
4495 err = -EFAULT;
4497 error:
4498 kfree(addrs);
4499 return err;
4502 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4503 char __user *optval, int __user *optlen)
4505 struct sctp_bind_addr *bp;
4506 struct sctp_association *asoc;
4507 int cnt = 0;
4508 struct sctp_getaddrs getaddrs;
4509 struct sctp_sockaddr_entry *addr;
4510 void __user *to;
4511 union sctp_addr temp;
4512 struct sctp_sock *sp = sctp_sk(sk);
4513 int addrlen;
4514 int err = 0;
4515 size_t space_left;
4516 int bytes_copied = 0;
4517 void *addrs;
4518 void *buf;
4520 if (len < sizeof(struct sctp_getaddrs))
4521 return -EINVAL;
4523 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4524 return -EFAULT;
4527 * For UDP-style sockets, id specifies the association to query.
4528 * If the id field is set to the value '0' then the locally bound
4529 * addresses are returned without regard to any particular
4530 * association.
4532 if (0 == getaddrs.assoc_id) {
4533 bp = &sctp_sk(sk)->ep->base.bind_addr;
4534 } else {
4535 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4536 if (!asoc)
4537 return -EINVAL;
4538 bp = &asoc->base.bind_addr;
4541 to = optval + offsetof(struct sctp_getaddrs,addrs);
4542 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4544 addrs = kmalloc(space_left, GFP_KERNEL);
4545 if (!addrs)
4546 return -ENOMEM;
4548 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4549 * addresses from the global local address list.
4551 if (sctp_list_single_entry(&bp->address_list)) {
4552 addr = list_entry(bp->address_list.next,
4553 struct sctp_sockaddr_entry, list);
4554 if (sctp_is_any(&addr->a)) {
4555 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4556 space_left, &bytes_copied);
4557 if (cnt < 0) {
4558 err = cnt;
4559 goto out;
4561 goto copy_getaddrs;
4565 buf = addrs;
4566 /* Protection on the bound address list is not needed since
4567 * in the socket option context we hold a socket lock and
4568 * thus the bound address list can't change.
4570 list_for_each_entry(addr, &bp->address_list, list) {
4571 memcpy(&temp, &addr->a, sizeof(temp));
4572 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4573 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4574 if (space_left < addrlen) {
4575 err = -ENOMEM; /*fixme: right error?*/
4576 goto out;
4578 memcpy(buf, &temp, addrlen);
4579 buf += addrlen;
4580 bytes_copied += addrlen;
4581 cnt ++;
4582 space_left -= addrlen;
4585 copy_getaddrs:
4586 if (copy_to_user(to, addrs, bytes_copied)) {
4587 err = -EFAULT;
4588 goto out;
4590 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4591 err = -EFAULT;
4592 goto out;
4594 if (put_user(bytes_copied, optlen))
4595 err = -EFAULT;
4596 out:
4597 kfree(addrs);
4598 return err;
4601 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4603 * Requests that the local SCTP stack use the enclosed peer address as
4604 * the association primary. The enclosed address must be one of the
4605 * association peer's addresses.
4607 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4608 char __user *optval, int __user *optlen)
4610 struct sctp_prim prim;
4611 struct sctp_association *asoc;
4612 struct sctp_sock *sp = sctp_sk(sk);
4614 if (len < sizeof(struct sctp_prim))
4615 return -EINVAL;
4617 len = sizeof(struct sctp_prim);
4619 if (copy_from_user(&prim, optval, len))
4620 return -EFAULT;
4622 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4623 if (!asoc)
4624 return -EINVAL;
4626 if (!asoc->peer.primary_path)
4627 return -ENOTCONN;
4629 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4630 asoc->peer.primary_path->af_specific->sockaddr_len);
4632 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4633 (union sctp_addr *)&prim.ssp_addr);
4635 if (put_user(len, optlen))
4636 return -EFAULT;
4637 if (copy_to_user(optval, &prim, len))
4638 return -EFAULT;
4640 return 0;
4644 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4646 * Requests that the local endpoint set the specified Adaptation Layer
4647 * Indication parameter for all future INIT and INIT-ACK exchanges.
4649 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4650 char __user *optval, int __user *optlen)
4652 struct sctp_setadaptation adaptation;
4654 if (len < sizeof(struct sctp_setadaptation))
4655 return -EINVAL;
4657 len = sizeof(struct sctp_setadaptation);
4659 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4661 if (put_user(len, optlen))
4662 return -EFAULT;
4663 if (copy_to_user(optval, &adaptation, len))
4664 return -EFAULT;
4666 return 0;
4671 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4673 * Applications that wish to use the sendto() system call may wish to
4674 * specify a default set of parameters that would normally be supplied
4675 * through the inclusion of ancillary data. This socket option allows
4676 * such an application to set the default sctp_sndrcvinfo structure.
4679 * The application that wishes to use this socket option simply passes
4680 * in to this call the sctp_sndrcvinfo structure defined in Section
4681 * 5.2.2) The input parameters accepted by this call include
4682 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4683 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4684 * to this call if the caller is using the UDP model.
4686 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4688 static int sctp_getsockopt_default_send_param(struct sock *sk,
4689 int len, char __user *optval,
4690 int __user *optlen)
4692 struct sctp_sndrcvinfo info;
4693 struct sctp_association *asoc;
4694 struct sctp_sock *sp = sctp_sk(sk);
4696 if (len < sizeof(struct sctp_sndrcvinfo))
4697 return -EINVAL;
4699 len = sizeof(struct sctp_sndrcvinfo);
4701 if (copy_from_user(&info, optval, len))
4702 return -EFAULT;
4704 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4705 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4706 return -EINVAL;
4708 if (asoc) {
4709 info.sinfo_stream = asoc->default_stream;
4710 info.sinfo_flags = asoc->default_flags;
4711 info.sinfo_ppid = asoc->default_ppid;
4712 info.sinfo_context = asoc->default_context;
4713 info.sinfo_timetolive = asoc->default_timetolive;
4714 } else {
4715 info.sinfo_stream = sp->default_stream;
4716 info.sinfo_flags = sp->default_flags;
4717 info.sinfo_ppid = sp->default_ppid;
4718 info.sinfo_context = sp->default_context;
4719 info.sinfo_timetolive = sp->default_timetolive;
4722 if (put_user(len, optlen))
4723 return -EFAULT;
4724 if (copy_to_user(optval, &info, len))
4725 return -EFAULT;
4727 return 0;
4732 * 7.1.5 SCTP_NODELAY
4734 * Turn on/off any Nagle-like algorithm. This means that packets are
4735 * generally sent as soon as possible and no unnecessary delays are
4736 * introduced, at the cost of more packets in the network. Expects an
4737 * integer boolean flag.
4740 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4741 char __user *optval, int __user *optlen)
4743 int val;
4745 if (len < sizeof(int))
4746 return -EINVAL;
4748 len = sizeof(int);
4749 val = (sctp_sk(sk)->nodelay == 1);
4750 if (put_user(len, optlen))
4751 return -EFAULT;
4752 if (copy_to_user(optval, &val, len))
4753 return -EFAULT;
4754 return 0;
4759 * 7.1.1 SCTP_RTOINFO
4761 * The protocol parameters used to initialize and bound retransmission
4762 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4763 * and modify these parameters.
4764 * All parameters are time values, in milliseconds. A value of 0, when
4765 * modifying the parameters, indicates that the current value should not
4766 * be changed.
4769 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4770 char __user *optval,
4771 int __user *optlen) {
4772 struct sctp_rtoinfo rtoinfo;
4773 struct sctp_association *asoc;
4775 if (len < sizeof (struct sctp_rtoinfo))
4776 return -EINVAL;
4778 len = sizeof(struct sctp_rtoinfo);
4780 if (copy_from_user(&rtoinfo, optval, len))
4781 return -EFAULT;
4783 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4785 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4786 return -EINVAL;
4788 /* Values corresponding to the specific association. */
4789 if (asoc) {
4790 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4791 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4792 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4793 } else {
4794 /* Values corresponding to the endpoint. */
4795 struct sctp_sock *sp = sctp_sk(sk);
4797 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4798 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4799 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4802 if (put_user(len, optlen))
4803 return -EFAULT;
4805 if (copy_to_user(optval, &rtoinfo, len))
4806 return -EFAULT;
4808 return 0;
4813 * 7.1.2 SCTP_ASSOCINFO
4815 * This option is used to tune the maximum retransmission attempts
4816 * of the association.
4817 * Returns an error if the new association retransmission value is
4818 * greater than the sum of the retransmission value of the peer.
4819 * See [SCTP] for more information.
4822 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4823 char __user *optval,
4824 int __user *optlen)
4827 struct sctp_assocparams assocparams;
4828 struct sctp_association *asoc;
4829 struct list_head *pos;
4830 int cnt = 0;
4832 if (len < sizeof (struct sctp_assocparams))
4833 return -EINVAL;
4835 len = sizeof(struct sctp_assocparams);
4837 if (copy_from_user(&assocparams, optval, len))
4838 return -EFAULT;
4840 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4842 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4843 return -EINVAL;
4845 /* Values correspoinding to the specific association */
4846 if (asoc) {
4847 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4848 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4849 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4850 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4851 * 1000) +
4852 (asoc->cookie_life.tv_usec
4853 / 1000);
4855 list_for_each(pos, &asoc->peer.transport_addr_list) {
4856 cnt ++;
4859 assocparams.sasoc_number_peer_destinations = cnt;
4860 } else {
4861 /* Values corresponding to the endpoint */
4862 struct sctp_sock *sp = sctp_sk(sk);
4864 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4865 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4866 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4867 assocparams.sasoc_cookie_life =
4868 sp->assocparams.sasoc_cookie_life;
4869 assocparams.sasoc_number_peer_destinations =
4870 sp->assocparams.
4871 sasoc_number_peer_destinations;
4874 if (put_user(len, optlen))
4875 return -EFAULT;
4877 if (copy_to_user(optval, &assocparams, len))
4878 return -EFAULT;
4880 return 0;
4884 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4886 * This socket option is a boolean flag which turns on or off mapped V4
4887 * addresses. If this option is turned on and the socket is type
4888 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4889 * If this option is turned off, then no mapping will be done of V4
4890 * addresses and a user will receive both PF_INET6 and PF_INET type
4891 * addresses on the socket.
4893 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4894 char __user *optval, int __user *optlen)
4896 int val;
4897 struct sctp_sock *sp = sctp_sk(sk);
4899 if (len < sizeof(int))
4900 return -EINVAL;
4902 len = sizeof(int);
4903 val = sp->v4mapped;
4904 if (put_user(len, optlen))
4905 return -EFAULT;
4906 if (copy_to_user(optval, &val, len))
4907 return -EFAULT;
4909 return 0;
4913 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4914 * (chapter and verse is quoted at sctp_setsockopt_context())
4916 static int sctp_getsockopt_context(struct sock *sk, int len,
4917 char __user *optval, int __user *optlen)
4919 struct sctp_assoc_value params;
4920 struct sctp_sock *sp;
4921 struct sctp_association *asoc;
4923 if (len < sizeof(struct sctp_assoc_value))
4924 return -EINVAL;
4926 len = sizeof(struct sctp_assoc_value);
4928 if (copy_from_user(&params, optval, len))
4929 return -EFAULT;
4931 sp = sctp_sk(sk);
4933 if (params.assoc_id != 0) {
4934 asoc = sctp_id2assoc(sk, params.assoc_id);
4935 if (!asoc)
4936 return -EINVAL;
4937 params.assoc_value = asoc->default_rcv_context;
4938 } else {
4939 params.assoc_value = sp->default_rcv_context;
4942 if (put_user(len, optlen))
4943 return -EFAULT;
4944 if (copy_to_user(optval, &params, len))
4945 return -EFAULT;
4947 return 0;
4951 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4953 * This socket option specifies the maximum size to put in any outgoing
4954 * SCTP chunk. If a message is larger than this size it will be
4955 * fragmented by SCTP into the specified size. Note that the underlying
4956 * SCTP implementation may fragment into smaller sized chunks when the
4957 * PMTU of the underlying association is smaller than the value set by
4958 * the user.
4960 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4961 char __user *optval, int __user *optlen)
4963 int val;
4965 if (len < sizeof(int))
4966 return -EINVAL;
4968 len = sizeof(int);
4970 val = sctp_sk(sk)->user_frag;
4971 if (put_user(len, optlen))
4972 return -EFAULT;
4973 if (copy_to_user(optval, &val, len))
4974 return -EFAULT;
4976 return 0;
4980 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4981 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4983 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4984 char __user *optval, int __user *optlen)
4986 int val;
4988 if (len < sizeof(int))
4989 return -EINVAL;
4991 len = sizeof(int);
4993 val = sctp_sk(sk)->frag_interleave;
4994 if (put_user(len, optlen))
4995 return -EFAULT;
4996 if (copy_to_user(optval, &val, len))
4997 return -EFAULT;
4999 return 0;
5003 * 7.1.25. Set or Get the sctp partial delivery point
5004 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5006 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5007 char __user *optval,
5008 int __user *optlen)
5010 u32 val;
5012 if (len < sizeof(u32))
5013 return -EINVAL;
5015 len = sizeof(u32);
5017 val = sctp_sk(sk)->pd_point;
5018 if (put_user(len, optlen))
5019 return -EFAULT;
5020 if (copy_to_user(optval, &val, len))
5021 return -EFAULT;
5023 return -ENOTSUPP;
5027 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5028 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5030 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5031 char __user *optval,
5032 int __user *optlen)
5034 struct sctp_assoc_value params;
5035 struct sctp_sock *sp;
5036 struct sctp_association *asoc;
5038 if (len < sizeof(int))
5039 return -EINVAL;
5041 if (len == sizeof(int)) {
5042 printk(KERN_WARNING
5043 "SCTP: Use of int in max_burst socket option deprecated\n");
5044 printk(KERN_WARNING
5045 "SCTP: Use struct sctp_assoc_value instead\n");
5046 params.assoc_id = 0;
5047 } else if (len == sizeof (struct sctp_assoc_value)) {
5048 if (copy_from_user(&params, optval, len))
5049 return -EFAULT;
5050 } else
5051 return -EINVAL;
5053 sp = sctp_sk(sk);
5055 if (params.assoc_id != 0) {
5056 asoc = sctp_id2assoc(sk, params.assoc_id);
5057 if (!asoc)
5058 return -EINVAL;
5059 params.assoc_value = asoc->max_burst;
5060 } else
5061 params.assoc_value = sp->max_burst;
5063 if (len == sizeof(int)) {
5064 if (copy_to_user(optval, &params.assoc_value, len))
5065 return -EFAULT;
5066 } else {
5067 if (copy_to_user(optval, &params, len))
5068 return -EFAULT;
5071 return 0;
5075 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5076 char __user *optval, int __user *optlen)
5078 struct sctp_hmacalgo __user *p = (void __user *)optval;
5079 struct sctp_hmac_algo_param *hmacs;
5080 __u16 data_len = 0;
5081 u32 num_idents;
5083 if (!sctp_auth_enable)
5084 return -EACCES;
5086 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5087 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5089 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5090 return -EINVAL;
5092 len = sizeof(struct sctp_hmacalgo) + data_len;
5093 num_idents = data_len / sizeof(u16);
5095 if (put_user(len, optlen))
5096 return -EFAULT;
5097 if (put_user(num_idents, &p->shmac_num_idents))
5098 return -EFAULT;
5099 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5100 return -EFAULT;
5101 return 0;
5104 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5105 char __user *optval, int __user *optlen)
5107 struct sctp_authkeyid val;
5108 struct sctp_association *asoc;
5110 if (!sctp_auth_enable)
5111 return -EACCES;
5113 if (len < sizeof(struct sctp_authkeyid))
5114 return -EINVAL;
5115 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5116 return -EFAULT;
5118 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5119 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5120 return -EINVAL;
5122 if (asoc)
5123 val.scact_keynumber = asoc->active_key_id;
5124 else
5125 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5127 len = sizeof(struct sctp_authkeyid);
5128 if (put_user(len, optlen))
5129 return -EFAULT;
5130 if (copy_to_user(optval, &val, len))
5131 return -EFAULT;
5133 return 0;
5136 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5137 char __user *optval, int __user *optlen)
5139 struct sctp_authchunks __user *p = (void __user *)optval;
5140 struct sctp_authchunks val;
5141 struct sctp_association *asoc;
5142 struct sctp_chunks_param *ch;
5143 u32 num_chunks = 0;
5144 char __user *to;
5146 if (!sctp_auth_enable)
5147 return -EACCES;
5149 if (len < sizeof(struct sctp_authchunks))
5150 return -EINVAL;
5152 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5153 return -EFAULT;
5155 to = p->gauth_chunks;
5156 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5157 if (!asoc)
5158 return -EINVAL;
5160 ch = asoc->peer.peer_chunks;
5161 if (!ch)
5162 goto num;
5164 /* See if the user provided enough room for all the data */
5165 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5166 if (len < num_chunks)
5167 return -EINVAL;
5169 if (copy_to_user(to, ch->chunks, num_chunks))
5170 return -EFAULT;
5171 num:
5172 len = sizeof(struct sctp_authchunks) + num_chunks;
5173 if (put_user(len, optlen)) return -EFAULT;
5174 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5175 return -EFAULT;
5176 return 0;
5179 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5180 char __user *optval, int __user *optlen)
5182 struct sctp_authchunks __user *p = (void __user *)optval;
5183 struct sctp_authchunks val;
5184 struct sctp_association *asoc;
5185 struct sctp_chunks_param *ch;
5186 u32 num_chunks = 0;
5187 char __user *to;
5189 if (!sctp_auth_enable)
5190 return -EACCES;
5192 if (len < sizeof(struct sctp_authchunks))
5193 return -EINVAL;
5195 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5196 return -EFAULT;
5198 to = p->gauth_chunks;
5199 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5200 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5201 return -EINVAL;
5203 if (asoc)
5204 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5205 else
5206 ch = sctp_sk(sk)->ep->auth_chunk_list;
5208 if (!ch)
5209 goto num;
5211 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5212 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5213 return -EINVAL;
5215 if (copy_to_user(to, ch->chunks, num_chunks))
5216 return -EFAULT;
5217 num:
5218 len = sizeof(struct sctp_authchunks) + num_chunks;
5219 if (put_user(len, optlen))
5220 return -EFAULT;
5221 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5222 return -EFAULT;
5224 return 0;
5227 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5228 char __user *optval, int __user *optlen)
5230 int retval = 0;
5231 int len;
5233 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5234 sk, optname);
5236 /* I can hardly begin to describe how wrong this is. This is
5237 * so broken as to be worse than useless. The API draft
5238 * REALLY is NOT helpful here... I am not convinced that the
5239 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5240 * are at all well-founded.
5242 if (level != SOL_SCTP) {
5243 struct sctp_af *af = sctp_sk(sk)->pf->af;
5245 retval = af->getsockopt(sk, level, optname, optval, optlen);
5246 return retval;
5249 if (get_user(len, optlen))
5250 return -EFAULT;
5252 sctp_lock_sock(sk);
5254 switch (optname) {
5255 case SCTP_STATUS:
5256 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5257 break;
5258 case SCTP_DISABLE_FRAGMENTS:
5259 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5260 optlen);
5261 break;
5262 case SCTP_EVENTS:
5263 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5264 break;
5265 case SCTP_AUTOCLOSE:
5266 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5267 break;
5268 case SCTP_SOCKOPT_PEELOFF:
5269 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5270 break;
5271 case SCTP_PEER_ADDR_PARAMS:
5272 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5273 optlen);
5274 break;
5275 case SCTP_DELAYED_ACK_TIME:
5276 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
5277 optlen);
5278 break;
5279 case SCTP_INITMSG:
5280 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5281 break;
5282 case SCTP_GET_PEER_ADDRS_NUM_OLD:
5283 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5284 optlen);
5285 break;
5286 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5287 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5288 optlen);
5289 break;
5290 case SCTP_GET_PEER_ADDRS_OLD:
5291 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5292 optlen);
5293 break;
5294 case SCTP_GET_LOCAL_ADDRS_OLD:
5295 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5296 optlen);
5297 break;
5298 case SCTP_GET_PEER_ADDRS:
5299 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5300 optlen);
5301 break;
5302 case SCTP_GET_LOCAL_ADDRS:
5303 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5304 optlen);
5305 break;
5306 case SCTP_DEFAULT_SEND_PARAM:
5307 retval = sctp_getsockopt_default_send_param(sk, len,
5308 optval, optlen);
5309 break;
5310 case SCTP_PRIMARY_ADDR:
5311 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5312 break;
5313 case SCTP_NODELAY:
5314 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5315 break;
5316 case SCTP_RTOINFO:
5317 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5318 break;
5319 case SCTP_ASSOCINFO:
5320 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5321 break;
5322 case SCTP_I_WANT_MAPPED_V4_ADDR:
5323 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5324 break;
5325 case SCTP_MAXSEG:
5326 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5327 break;
5328 case SCTP_GET_PEER_ADDR_INFO:
5329 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5330 optlen);
5331 break;
5332 case SCTP_ADAPTATION_LAYER:
5333 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5334 optlen);
5335 break;
5336 case SCTP_CONTEXT:
5337 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5338 break;
5339 case SCTP_FRAGMENT_INTERLEAVE:
5340 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5341 optlen);
5342 break;
5343 case SCTP_PARTIAL_DELIVERY_POINT:
5344 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5345 optlen);
5346 break;
5347 case SCTP_MAX_BURST:
5348 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5349 break;
5350 case SCTP_AUTH_KEY:
5351 case SCTP_AUTH_CHUNK:
5352 case SCTP_AUTH_DELETE_KEY:
5353 retval = -EOPNOTSUPP;
5354 break;
5355 case SCTP_HMAC_IDENT:
5356 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5357 break;
5358 case SCTP_AUTH_ACTIVE_KEY:
5359 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5360 break;
5361 case SCTP_PEER_AUTH_CHUNKS:
5362 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5363 optlen);
5364 break;
5365 case SCTP_LOCAL_AUTH_CHUNKS:
5366 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5367 optlen);
5368 break;
5369 default:
5370 retval = -ENOPROTOOPT;
5371 break;
5374 sctp_release_sock(sk);
5375 return retval;
5378 static void sctp_hash(struct sock *sk)
5380 /* STUB */
5383 static void sctp_unhash(struct sock *sk)
5385 /* STUB */
5388 /* Check if port is acceptable. Possibly find first available port.
5390 * The port hash table (contained in the 'global' SCTP protocol storage
5391 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5392 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5393 * list (the list number is the port number hashed out, so as you
5394 * would expect from a hash function, all the ports in a given list have
5395 * such a number that hashes out to the same list number; you were
5396 * expecting that, right?); so each list has a set of ports, with a
5397 * link to the socket (struct sock) that uses it, the port number and
5398 * a fastreuse flag (FIXME: NPI ipg).
5400 static struct sctp_bind_bucket *sctp_bucket_create(
5401 struct sctp_bind_hashbucket *head, unsigned short snum);
5403 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5405 struct sctp_bind_hashbucket *head; /* hash list */
5406 struct sctp_bind_bucket *pp; /* hash list port iterator */
5407 struct hlist_node *node;
5408 unsigned short snum;
5409 int ret;
5411 snum = ntohs(addr->v4.sin_port);
5413 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5414 sctp_local_bh_disable();
5416 if (snum == 0) {
5417 /* Search for an available port. */
5418 int low, high, remaining, index;
5419 unsigned int rover;
5421 inet_get_local_port_range(&low, &high);
5422 remaining = (high - low) + 1;
5423 rover = net_random() % remaining + low;
5425 do {
5426 rover++;
5427 if ((rover < low) || (rover > high))
5428 rover = low;
5429 index = sctp_phashfn(rover);
5430 head = &sctp_port_hashtable[index];
5431 sctp_spin_lock(&head->lock);
5432 sctp_for_each_hentry(pp, node, &head->chain)
5433 if (pp->port == rover)
5434 goto next;
5435 break;
5436 next:
5437 sctp_spin_unlock(&head->lock);
5438 } while (--remaining > 0);
5440 /* Exhausted local port range during search? */
5441 ret = 1;
5442 if (remaining <= 0)
5443 goto fail;
5445 /* OK, here is the one we will use. HEAD (the port
5446 * hash table list entry) is non-NULL and we hold it's
5447 * mutex.
5449 snum = rover;
5450 } else {
5451 /* We are given an specific port number; we verify
5452 * that it is not being used. If it is used, we will
5453 * exahust the search in the hash list corresponding
5454 * to the port number (snum) - we detect that with the
5455 * port iterator, pp being NULL.
5457 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5458 sctp_spin_lock(&head->lock);
5459 sctp_for_each_hentry(pp, node, &head->chain) {
5460 if (pp->port == snum)
5461 goto pp_found;
5464 pp = NULL;
5465 goto pp_not_found;
5466 pp_found:
5467 if (!hlist_empty(&pp->owner)) {
5468 /* We had a port hash table hit - there is an
5469 * available port (pp != NULL) and it is being
5470 * used by other socket (pp->owner not empty); that other
5471 * socket is going to be sk2.
5473 int reuse = sk->sk_reuse;
5474 struct sock *sk2;
5475 struct hlist_node *node;
5477 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5478 if (pp->fastreuse && sk->sk_reuse &&
5479 sk->sk_state != SCTP_SS_LISTENING)
5480 goto success;
5482 /* Run through the list of sockets bound to the port
5483 * (pp->port) [via the pointers bind_next and
5484 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5485 * we get the endpoint they describe and run through
5486 * the endpoint's list of IP (v4 or v6) addresses,
5487 * comparing each of the addresses with the address of
5488 * the socket sk. If we find a match, then that means
5489 * that this port/socket (sk) combination are already
5490 * in an endpoint.
5492 sk_for_each_bound(sk2, node, &pp->owner) {
5493 struct sctp_endpoint *ep2;
5494 ep2 = sctp_sk(sk2)->ep;
5496 if (reuse && sk2->sk_reuse &&
5497 sk2->sk_state != SCTP_SS_LISTENING)
5498 continue;
5500 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5501 sctp_sk(sk))) {
5502 ret = (long)sk2;
5503 goto fail_unlock;
5506 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5508 pp_not_found:
5509 /* If there was a hash table miss, create a new port. */
5510 ret = 1;
5511 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5512 goto fail_unlock;
5514 /* In either case (hit or miss), make sure fastreuse is 1 only
5515 * if sk->sk_reuse is too (that is, if the caller requested
5516 * SO_REUSEADDR on this socket -sk-).
5518 if (hlist_empty(&pp->owner)) {
5519 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5520 pp->fastreuse = 1;
5521 else
5522 pp->fastreuse = 0;
5523 } else if (pp->fastreuse &&
5524 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5525 pp->fastreuse = 0;
5527 /* We are set, so fill up all the data in the hash table
5528 * entry, tie the socket list information with the rest of the
5529 * sockets FIXME: Blurry, NPI (ipg).
5531 success:
5532 if (!sctp_sk(sk)->bind_hash) {
5533 inet_sk(sk)->num = snum;
5534 sk_add_bind_node(sk, &pp->owner);
5535 sctp_sk(sk)->bind_hash = pp;
5537 ret = 0;
5539 fail_unlock:
5540 sctp_spin_unlock(&head->lock);
5542 fail:
5543 sctp_local_bh_enable();
5544 return ret;
5547 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5548 * port is requested.
5550 static int sctp_get_port(struct sock *sk, unsigned short snum)
5552 long ret;
5553 union sctp_addr addr;
5554 struct sctp_af *af = sctp_sk(sk)->pf->af;
5556 /* Set up a dummy address struct from the sk. */
5557 af->from_sk(&addr, sk);
5558 addr.v4.sin_port = htons(snum);
5560 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5561 ret = sctp_get_port_local(sk, &addr);
5563 return (ret ? 1 : 0);
5567 * 3.1.3 listen() - UDP Style Syntax
5569 * By default, new associations are not accepted for UDP style sockets.
5570 * An application uses listen() to mark a socket as being able to
5571 * accept new associations.
5573 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5575 struct sctp_sock *sp = sctp_sk(sk);
5576 struct sctp_endpoint *ep = sp->ep;
5578 /* Only UDP style sockets that are not peeled off are allowed to
5579 * listen().
5581 if (!sctp_style(sk, UDP))
5582 return -EINVAL;
5584 /* If backlog is zero, disable listening. */
5585 if (!backlog) {
5586 if (sctp_sstate(sk, CLOSED))
5587 return 0;
5589 sctp_unhash_endpoint(ep);
5590 sk->sk_state = SCTP_SS_CLOSED;
5591 return 0;
5594 /* Return if we are already listening. */
5595 if (sctp_sstate(sk, LISTENING))
5596 return 0;
5599 * If a bind() or sctp_bindx() is not called prior to a listen()
5600 * call that allows new associations to be accepted, the system
5601 * picks an ephemeral port and will choose an address set equivalent
5602 * to binding with a wildcard address.
5604 * This is not currently spelled out in the SCTP sockets
5605 * extensions draft, but follows the practice as seen in TCP
5606 * sockets.
5608 * Additionally, turn off fastreuse flag since we are not listening
5610 sk->sk_state = SCTP_SS_LISTENING;
5611 if (!ep->base.bind_addr.port) {
5612 if (sctp_autobind(sk))
5613 return -EAGAIN;
5614 } else
5615 sctp_sk(sk)->bind_hash->fastreuse = 0;
5617 sctp_hash_endpoint(ep);
5618 return 0;
5622 * 4.1.3 listen() - TCP Style Syntax
5624 * Applications uses listen() to ready the SCTP endpoint for accepting
5625 * inbound associations.
5627 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5629 struct sctp_sock *sp = sctp_sk(sk);
5630 struct sctp_endpoint *ep = sp->ep;
5632 /* If backlog is zero, disable listening. */
5633 if (!backlog) {
5634 if (sctp_sstate(sk, CLOSED))
5635 return 0;
5637 sctp_unhash_endpoint(ep);
5638 sk->sk_state = SCTP_SS_CLOSED;
5639 return 0;
5642 if (sctp_sstate(sk, LISTENING))
5643 return 0;
5646 * If a bind() or sctp_bindx() is not called prior to a listen()
5647 * call that allows new associations to be accepted, the system
5648 * picks an ephemeral port and will choose an address set equivalent
5649 * to binding with a wildcard address.
5651 * This is not currently spelled out in the SCTP sockets
5652 * extensions draft, but follows the practice as seen in TCP
5653 * sockets.
5655 sk->sk_state = SCTP_SS_LISTENING;
5656 if (!ep->base.bind_addr.port) {
5657 if (sctp_autobind(sk))
5658 return -EAGAIN;
5659 } else
5660 sctp_sk(sk)->bind_hash->fastreuse = 0;
5662 sk->sk_max_ack_backlog = backlog;
5663 sctp_hash_endpoint(ep);
5664 return 0;
5668 * Move a socket to LISTENING state.
5670 int sctp_inet_listen(struct socket *sock, int backlog)
5672 struct sock *sk = sock->sk;
5673 struct crypto_hash *tfm = NULL;
5674 int err = -EINVAL;
5676 if (unlikely(backlog < 0))
5677 goto out;
5679 sctp_lock_sock(sk);
5681 if (sock->state != SS_UNCONNECTED)
5682 goto out;
5684 /* Allocate HMAC for generating cookie. */
5685 if (sctp_hmac_alg) {
5686 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5687 if (IS_ERR(tfm)) {
5688 if (net_ratelimit()) {
5689 printk(KERN_INFO
5690 "SCTP: failed to load transform for %s: %ld\n",
5691 sctp_hmac_alg, PTR_ERR(tfm));
5693 err = -ENOSYS;
5694 goto out;
5698 switch (sock->type) {
5699 case SOCK_SEQPACKET:
5700 err = sctp_seqpacket_listen(sk, backlog);
5701 break;
5702 case SOCK_STREAM:
5703 err = sctp_stream_listen(sk, backlog);
5704 break;
5705 default:
5706 break;
5709 if (err)
5710 goto cleanup;
5712 /* Store away the transform reference. */
5713 sctp_sk(sk)->hmac = tfm;
5714 out:
5715 sctp_release_sock(sk);
5716 return err;
5717 cleanup:
5718 crypto_free_hash(tfm);
5719 goto out;
5723 * This function is done by modeling the current datagram_poll() and the
5724 * tcp_poll(). Note that, based on these implementations, we don't
5725 * lock the socket in this function, even though it seems that,
5726 * ideally, locking or some other mechanisms can be used to ensure
5727 * the integrity of the counters (sndbuf and wmem_alloc) used
5728 * in this place. We assume that we don't need locks either until proven
5729 * otherwise.
5731 * Another thing to note is that we include the Async I/O support
5732 * here, again, by modeling the current TCP/UDP code. We don't have
5733 * a good way to test with it yet.
5735 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5737 struct sock *sk = sock->sk;
5738 struct sctp_sock *sp = sctp_sk(sk);
5739 unsigned int mask;
5741 poll_wait(file, sk->sk_sleep, wait);
5743 /* A TCP-style listening socket becomes readable when the accept queue
5744 * is not empty.
5746 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5747 return (!list_empty(&sp->ep->asocs)) ?
5748 (POLLIN | POLLRDNORM) : 0;
5750 mask = 0;
5752 /* Is there any exceptional events? */
5753 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5754 mask |= POLLERR;
5755 if (sk->sk_shutdown & RCV_SHUTDOWN)
5756 mask |= POLLRDHUP;
5757 if (sk->sk_shutdown == SHUTDOWN_MASK)
5758 mask |= POLLHUP;
5760 /* Is it readable? Reconsider this code with TCP-style support. */
5761 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5762 (sk->sk_shutdown & RCV_SHUTDOWN))
5763 mask |= POLLIN | POLLRDNORM;
5765 /* The association is either gone or not ready. */
5766 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5767 return mask;
5769 /* Is it writable? */
5770 if (sctp_writeable(sk)) {
5771 mask |= POLLOUT | POLLWRNORM;
5772 } else {
5773 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5775 * Since the socket is not locked, the buffer
5776 * might be made available after the writeable check and
5777 * before the bit is set. This could cause a lost I/O
5778 * signal. tcp_poll() has a race breaker for this race
5779 * condition. Based on their implementation, we put
5780 * in the following code to cover it as well.
5782 if (sctp_writeable(sk))
5783 mask |= POLLOUT | POLLWRNORM;
5785 return mask;
5788 /********************************************************************
5789 * 2nd Level Abstractions
5790 ********************************************************************/
5792 static struct sctp_bind_bucket *sctp_bucket_create(
5793 struct sctp_bind_hashbucket *head, unsigned short snum)
5795 struct sctp_bind_bucket *pp;
5797 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5798 if (pp) {
5799 SCTP_DBG_OBJCNT_INC(bind_bucket);
5800 pp->port = snum;
5801 pp->fastreuse = 0;
5802 INIT_HLIST_HEAD(&pp->owner);
5803 hlist_add_head(&pp->node, &head->chain);
5805 return pp;
5808 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5809 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5811 if (pp && hlist_empty(&pp->owner)) {
5812 __hlist_del(&pp->node);
5813 kmem_cache_free(sctp_bucket_cachep, pp);
5814 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5818 /* Release this socket's reference to a local port. */
5819 static inline void __sctp_put_port(struct sock *sk)
5821 struct sctp_bind_hashbucket *head =
5822 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5823 struct sctp_bind_bucket *pp;
5825 sctp_spin_lock(&head->lock);
5826 pp = sctp_sk(sk)->bind_hash;
5827 __sk_del_bind_node(sk);
5828 sctp_sk(sk)->bind_hash = NULL;
5829 inet_sk(sk)->num = 0;
5830 sctp_bucket_destroy(pp);
5831 sctp_spin_unlock(&head->lock);
5834 void sctp_put_port(struct sock *sk)
5836 sctp_local_bh_disable();
5837 __sctp_put_port(sk);
5838 sctp_local_bh_enable();
5842 * The system picks an ephemeral port and choose an address set equivalent
5843 * to binding with a wildcard address.
5844 * One of those addresses will be the primary address for the association.
5845 * This automatically enables the multihoming capability of SCTP.
5847 static int sctp_autobind(struct sock *sk)
5849 union sctp_addr autoaddr;
5850 struct sctp_af *af;
5851 __be16 port;
5853 /* Initialize a local sockaddr structure to INADDR_ANY. */
5854 af = sctp_sk(sk)->pf->af;
5856 port = htons(inet_sk(sk)->num);
5857 af->inaddr_any(&autoaddr, port);
5859 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5862 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5864 * From RFC 2292
5865 * 4.2 The cmsghdr Structure *
5867 * When ancillary data is sent or received, any number of ancillary data
5868 * objects can be specified by the msg_control and msg_controllen members of
5869 * the msghdr structure, because each object is preceded by
5870 * a cmsghdr structure defining the object's length (the cmsg_len member).
5871 * Historically Berkeley-derived implementations have passed only one object
5872 * at a time, but this API allows multiple objects to be
5873 * passed in a single call to sendmsg() or recvmsg(). The following example
5874 * shows two ancillary data objects in a control buffer.
5876 * |<--------------------------- msg_controllen -------------------------->|
5877 * | |
5879 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5881 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5882 * | | |
5884 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5886 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5887 * | | | | |
5889 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5890 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5892 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5894 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5898 * msg_control
5899 * points here
5901 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5902 sctp_cmsgs_t *cmsgs)
5904 struct cmsghdr *cmsg;
5905 struct msghdr *my_msg = (struct msghdr *)msg;
5907 for (cmsg = CMSG_FIRSTHDR(msg);
5908 cmsg != NULL;
5909 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
5910 if (!CMSG_OK(my_msg, cmsg))
5911 return -EINVAL;
5913 /* Should we parse this header or ignore? */
5914 if (cmsg->cmsg_level != IPPROTO_SCTP)
5915 continue;
5917 /* Strictly check lengths following example in SCM code. */
5918 switch (cmsg->cmsg_type) {
5919 case SCTP_INIT:
5920 /* SCTP Socket API Extension
5921 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5923 * This cmsghdr structure provides information for
5924 * initializing new SCTP associations with sendmsg().
5925 * The SCTP_INITMSG socket option uses this same data
5926 * structure. This structure is not used for
5927 * recvmsg().
5929 * cmsg_level cmsg_type cmsg_data[]
5930 * ------------ ------------ ----------------------
5931 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5933 if (cmsg->cmsg_len !=
5934 CMSG_LEN(sizeof(struct sctp_initmsg)))
5935 return -EINVAL;
5936 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5937 break;
5939 case SCTP_SNDRCV:
5940 /* SCTP Socket API Extension
5941 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5943 * This cmsghdr structure specifies SCTP options for
5944 * sendmsg() and describes SCTP header information
5945 * about a received message through recvmsg().
5947 * cmsg_level cmsg_type cmsg_data[]
5948 * ------------ ------------ ----------------------
5949 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5951 if (cmsg->cmsg_len !=
5952 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5953 return -EINVAL;
5955 cmsgs->info =
5956 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5958 /* Minimally, validate the sinfo_flags. */
5959 if (cmsgs->info->sinfo_flags &
5960 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5961 SCTP_ABORT | SCTP_EOF))
5962 return -EINVAL;
5963 break;
5965 default:
5966 return -EINVAL;
5969 return 0;
5973 * Wait for a packet..
5974 * Note: This function is the same function as in core/datagram.c
5975 * with a few modifications to make lksctp work.
5977 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5979 int error;
5980 DEFINE_WAIT(wait);
5982 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5984 /* Socket errors? */
5985 error = sock_error(sk);
5986 if (error)
5987 goto out;
5989 if (!skb_queue_empty(&sk->sk_receive_queue))
5990 goto ready;
5992 /* Socket shut down? */
5993 if (sk->sk_shutdown & RCV_SHUTDOWN)
5994 goto out;
5996 /* Sequenced packets can come disconnected. If so we report the
5997 * problem.
5999 error = -ENOTCONN;
6001 /* Is there a good reason to think that we may receive some data? */
6002 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6003 goto out;
6005 /* Handle signals. */
6006 if (signal_pending(current))
6007 goto interrupted;
6009 /* Let another process have a go. Since we are going to sleep
6010 * anyway. Note: This may cause odd behaviors if the message
6011 * does not fit in the user's buffer, but this seems to be the
6012 * only way to honor MSG_DONTWAIT realistically.
6014 sctp_release_sock(sk);
6015 *timeo_p = schedule_timeout(*timeo_p);
6016 sctp_lock_sock(sk);
6018 ready:
6019 finish_wait(sk->sk_sleep, &wait);
6020 return 0;
6022 interrupted:
6023 error = sock_intr_errno(*timeo_p);
6025 out:
6026 finish_wait(sk->sk_sleep, &wait);
6027 *err = error;
6028 return error;
6031 /* Receive a datagram.
6032 * Note: This is pretty much the same routine as in core/datagram.c
6033 * with a few changes to make lksctp work.
6035 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6036 int noblock, int *err)
6038 int error;
6039 struct sk_buff *skb;
6040 long timeo;
6042 timeo = sock_rcvtimeo(sk, noblock);
6044 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6045 timeo, MAX_SCHEDULE_TIMEOUT);
6047 do {
6048 /* Again only user level code calls this function,
6049 * so nothing interrupt level
6050 * will suddenly eat the receive_queue.
6052 * Look at current nfs client by the way...
6053 * However, this function was corrent in any case. 8)
6055 if (flags & MSG_PEEK) {
6056 spin_lock_bh(&sk->sk_receive_queue.lock);
6057 skb = skb_peek(&sk->sk_receive_queue);
6058 if (skb)
6059 atomic_inc(&skb->users);
6060 spin_unlock_bh(&sk->sk_receive_queue.lock);
6061 } else {
6062 skb = skb_dequeue(&sk->sk_receive_queue);
6065 if (skb)
6066 return skb;
6068 /* Caller is allowed not to check sk->sk_err before calling. */
6069 error = sock_error(sk);
6070 if (error)
6071 goto no_packet;
6073 if (sk->sk_shutdown & RCV_SHUTDOWN)
6074 break;
6076 /* User doesn't want to wait. */
6077 error = -EAGAIN;
6078 if (!timeo)
6079 goto no_packet;
6080 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6082 return NULL;
6084 no_packet:
6085 *err = error;
6086 return NULL;
6089 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6090 static void __sctp_write_space(struct sctp_association *asoc)
6092 struct sock *sk = asoc->base.sk;
6093 struct socket *sock = sk->sk_socket;
6095 if ((sctp_wspace(asoc) > 0) && sock) {
6096 if (waitqueue_active(&asoc->wait))
6097 wake_up_interruptible(&asoc->wait);
6099 if (sctp_writeable(sk)) {
6100 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6101 wake_up_interruptible(sk->sk_sleep);
6103 /* Note that we try to include the Async I/O support
6104 * here by modeling from the current TCP/UDP code.
6105 * We have not tested with it yet.
6107 if (sock->fasync_list &&
6108 !(sk->sk_shutdown & SEND_SHUTDOWN))
6109 sock_wake_async(sock,
6110 SOCK_WAKE_SPACE, POLL_OUT);
6115 /* Do accounting for the sndbuf space.
6116 * Decrement the used sndbuf space of the corresponding association by the
6117 * data size which was just transmitted(freed).
6119 static void sctp_wfree(struct sk_buff *skb)
6121 struct sctp_association *asoc;
6122 struct sctp_chunk *chunk;
6123 struct sock *sk;
6125 /* Get the saved chunk pointer. */
6126 chunk = *((struct sctp_chunk **)(skb->cb));
6127 asoc = chunk->asoc;
6128 sk = asoc->base.sk;
6129 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6130 sizeof(struct sk_buff) +
6131 sizeof(struct sctp_chunk);
6133 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6136 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6138 sk->sk_wmem_queued -= skb->truesize;
6139 sk_mem_uncharge(sk, skb->truesize);
6141 sock_wfree(skb);
6142 __sctp_write_space(asoc);
6144 sctp_association_put(asoc);
6147 /* Do accounting for the receive space on the socket.
6148 * Accounting for the association is done in ulpevent.c
6149 * We set this as a destructor for the cloned data skbs so that
6150 * accounting is done at the correct time.
6152 void sctp_sock_rfree(struct sk_buff *skb)
6154 struct sock *sk = skb->sk;
6155 struct sctp_ulpevent *event = sctp_skb2event(skb);
6157 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6160 * Mimic the behavior of sock_rfree
6162 sk_mem_uncharge(sk, event->rmem_len);
6166 /* Helper function to wait for space in the sndbuf. */
6167 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6168 size_t msg_len)
6170 struct sock *sk = asoc->base.sk;
6171 int err = 0;
6172 long current_timeo = *timeo_p;
6173 DEFINE_WAIT(wait);
6175 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6176 asoc, (long)(*timeo_p), msg_len);
6178 /* Increment the association's refcnt. */
6179 sctp_association_hold(asoc);
6181 /* Wait on the association specific sndbuf space. */
6182 for (;;) {
6183 prepare_to_wait_exclusive(&asoc->wait, &wait,
6184 TASK_INTERRUPTIBLE);
6185 if (!*timeo_p)
6186 goto do_nonblock;
6187 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6188 asoc->base.dead)
6189 goto do_error;
6190 if (signal_pending(current))
6191 goto do_interrupted;
6192 if (msg_len <= sctp_wspace(asoc))
6193 break;
6195 /* Let another process have a go. Since we are going
6196 * to sleep anyway.
6198 sctp_release_sock(sk);
6199 current_timeo = schedule_timeout(current_timeo);
6200 BUG_ON(sk != asoc->base.sk);
6201 sctp_lock_sock(sk);
6203 *timeo_p = current_timeo;
6206 out:
6207 finish_wait(&asoc->wait, &wait);
6209 /* Release the association's refcnt. */
6210 sctp_association_put(asoc);
6212 return err;
6214 do_error:
6215 err = -EPIPE;
6216 goto out;
6218 do_interrupted:
6219 err = sock_intr_errno(*timeo_p);
6220 goto out;
6222 do_nonblock:
6223 err = -EAGAIN;
6224 goto out;
6227 /* If socket sndbuf has changed, wake up all per association waiters. */
6228 void sctp_write_space(struct sock *sk)
6230 struct sctp_association *asoc;
6232 /* Wake up the tasks in each wait queue. */
6233 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6234 __sctp_write_space(asoc);
6238 /* Is there any sndbuf space available on the socket?
6240 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6241 * associations on the same socket. For a UDP-style socket with
6242 * multiple associations, it is possible for it to be "unwriteable"
6243 * prematurely. I assume that this is acceptable because
6244 * a premature "unwriteable" is better than an accidental "writeable" which
6245 * would cause an unwanted block under certain circumstances. For the 1-1
6246 * UDP-style sockets or TCP-style sockets, this code should work.
6247 * - Daisy
6249 static int sctp_writeable(struct sock *sk)
6251 int amt = 0;
6253 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6254 if (amt < 0)
6255 amt = 0;
6256 return amt;
6259 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6260 * returns immediately with EINPROGRESS.
6262 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6264 struct sock *sk = asoc->base.sk;
6265 int err = 0;
6266 long current_timeo = *timeo_p;
6267 DEFINE_WAIT(wait);
6269 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6270 (long)(*timeo_p));
6272 /* Increment the association's refcnt. */
6273 sctp_association_hold(asoc);
6275 for (;;) {
6276 prepare_to_wait_exclusive(&asoc->wait, &wait,
6277 TASK_INTERRUPTIBLE);
6278 if (!*timeo_p)
6279 goto do_nonblock;
6280 if (sk->sk_shutdown & RCV_SHUTDOWN)
6281 break;
6282 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6283 asoc->base.dead)
6284 goto do_error;
6285 if (signal_pending(current))
6286 goto do_interrupted;
6288 if (sctp_state(asoc, ESTABLISHED))
6289 break;
6291 /* Let another process have a go. Since we are going
6292 * to sleep anyway.
6294 sctp_release_sock(sk);
6295 current_timeo = schedule_timeout(current_timeo);
6296 sctp_lock_sock(sk);
6298 *timeo_p = current_timeo;
6301 out:
6302 finish_wait(&asoc->wait, &wait);
6304 /* Release the association's refcnt. */
6305 sctp_association_put(asoc);
6307 return err;
6309 do_error:
6310 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6311 err = -ETIMEDOUT;
6312 else
6313 err = -ECONNREFUSED;
6314 goto out;
6316 do_interrupted:
6317 err = sock_intr_errno(*timeo_p);
6318 goto out;
6320 do_nonblock:
6321 err = -EINPROGRESS;
6322 goto out;
6325 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6327 struct sctp_endpoint *ep;
6328 int err = 0;
6329 DEFINE_WAIT(wait);
6331 ep = sctp_sk(sk)->ep;
6334 for (;;) {
6335 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6336 TASK_INTERRUPTIBLE);
6338 if (list_empty(&ep->asocs)) {
6339 sctp_release_sock(sk);
6340 timeo = schedule_timeout(timeo);
6341 sctp_lock_sock(sk);
6344 err = -EINVAL;
6345 if (!sctp_sstate(sk, LISTENING))
6346 break;
6348 err = 0;
6349 if (!list_empty(&ep->asocs))
6350 break;
6352 err = sock_intr_errno(timeo);
6353 if (signal_pending(current))
6354 break;
6356 err = -EAGAIN;
6357 if (!timeo)
6358 break;
6361 finish_wait(sk->sk_sleep, &wait);
6363 return err;
6366 static void sctp_wait_for_close(struct sock *sk, long timeout)
6368 DEFINE_WAIT(wait);
6370 do {
6371 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6372 if (list_empty(&sctp_sk(sk)->ep->asocs))
6373 break;
6374 sctp_release_sock(sk);
6375 timeout = schedule_timeout(timeout);
6376 sctp_lock_sock(sk);
6377 } while (!signal_pending(current) && timeout);
6379 finish_wait(sk->sk_sleep, &wait);
6382 static void sctp_sock_rfree_frag(struct sk_buff *skb)
6384 struct sk_buff *frag;
6386 if (!skb->data_len)
6387 goto done;
6389 /* Don't forget the fragments. */
6390 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6391 sctp_sock_rfree_frag(frag);
6393 done:
6394 sctp_sock_rfree(skb);
6397 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6399 struct sk_buff *frag;
6401 if (!skb->data_len)
6402 goto done;
6404 /* Don't forget the fragments. */
6405 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6406 sctp_skb_set_owner_r_frag(frag, sk);
6408 done:
6409 sctp_skb_set_owner_r(skb, sk);
6412 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6413 * and its messages to the newsk.
6415 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6416 struct sctp_association *assoc,
6417 sctp_socket_type_t type)
6419 struct sctp_sock *oldsp = sctp_sk(oldsk);
6420 struct sctp_sock *newsp = sctp_sk(newsk);
6421 struct sctp_bind_bucket *pp; /* hash list port iterator */
6422 struct sctp_endpoint *newep = newsp->ep;
6423 struct sk_buff *skb, *tmp;
6424 struct sctp_ulpevent *event;
6425 struct sctp_bind_hashbucket *head;
6427 /* Migrate socket buffer sizes and all the socket level options to the
6428 * new socket.
6430 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6431 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6432 /* Brute force copy old sctp opt. */
6433 inet_sk_copy_descendant(newsk, oldsk);
6435 /* Restore the ep value that was overwritten with the above structure
6436 * copy.
6438 newsp->ep = newep;
6439 newsp->hmac = NULL;
6441 /* Hook this new socket in to the bind_hash list. */
6442 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6443 sctp_local_bh_disable();
6444 sctp_spin_lock(&head->lock);
6445 pp = sctp_sk(oldsk)->bind_hash;
6446 sk_add_bind_node(newsk, &pp->owner);
6447 sctp_sk(newsk)->bind_hash = pp;
6448 inet_sk(newsk)->num = inet_sk(oldsk)->num;
6449 sctp_spin_unlock(&head->lock);
6450 sctp_local_bh_enable();
6452 /* Copy the bind_addr list from the original endpoint to the new
6453 * endpoint so that we can handle restarts properly
6455 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6456 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6458 /* Move any messages in the old socket's receive queue that are for the
6459 * peeled off association to the new socket's receive queue.
6461 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6462 event = sctp_skb2event(skb);
6463 if (event->asoc == assoc) {
6464 sctp_sock_rfree_frag(skb);
6465 __skb_unlink(skb, &oldsk->sk_receive_queue);
6466 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6467 sctp_skb_set_owner_r_frag(skb, newsk);
6471 /* Clean up any messages pending delivery due to partial
6472 * delivery. Three cases:
6473 * 1) No partial deliver; no work.
6474 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6475 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6477 skb_queue_head_init(&newsp->pd_lobby);
6478 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6480 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6481 struct sk_buff_head *queue;
6483 /* Decide which queue to move pd_lobby skbs to. */
6484 if (assoc->ulpq.pd_mode) {
6485 queue = &newsp->pd_lobby;
6486 } else
6487 queue = &newsk->sk_receive_queue;
6489 /* Walk through the pd_lobby, looking for skbs that
6490 * need moved to the new socket.
6492 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6493 event = sctp_skb2event(skb);
6494 if (event->asoc == assoc) {
6495 sctp_sock_rfree_frag(skb);
6496 __skb_unlink(skb, &oldsp->pd_lobby);
6497 __skb_queue_tail(queue, skb);
6498 sctp_skb_set_owner_r_frag(skb, newsk);
6502 /* Clear up any skbs waiting for the partial
6503 * delivery to finish.
6505 if (assoc->ulpq.pd_mode)
6506 sctp_clear_pd(oldsk, NULL);
6510 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6511 sctp_sock_rfree_frag(skb);
6512 sctp_skb_set_owner_r_frag(skb, newsk);
6515 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6516 sctp_sock_rfree_frag(skb);
6517 sctp_skb_set_owner_r_frag(skb, newsk);
6520 /* Set the type of socket to indicate that it is peeled off from the
6521 * original UDP-style socket or created with the accept() call on a
6522 * TCP-style socket..
6524 newsp->type = type;
6526 /* Mark the new socket "in-use" by the user so that any packets
6527 * that may arrive on the association after we've moved it are
6528 * queued to the backlog. This prevents a potential race between
6529 * backlog processing on the old socket and new-packet processing
6530 * on the new socket.
6532 * The caller has just allocated newsk so we can guarantee that other
6533 * paths won't try to lock it and then oldsk.
6535 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6536 sctp_assoc_migrate(assoc, newsk);
6538 /* If the association on the newsk is already closed before accept()
6539 * is called, set RCV_SHUTDOWN flag.
6541 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6542 newsk->sk_shutdown |= RCV_SHUTDOWN;
6544 newsk->sk_state = SCTP_SS_ESTABLISHED;
6545 sctp_release_sock(newsk);
6549 /* This proto struct describes the ULP interface for SCTP. */
6550 struct proto sctp_prot = {
6551 .name = "SCTP",
6552 .owner = THIS_MODULE,
6553 .close = sctp_close,
6554 .connect = sctp_connect,
6555 .disconnect = sctp_disconnect,
6556 .accept = sctp_accept,
6557 .ioctl = sctp_ioctl,
6558 .init = sctp_init_sock,
6559 .destroy = sctp_destroy_sock,
6560 .shutdown = sctp_shutdown,
6561 .setsockopt = sctp_setsockopt,
6562 .getsockopt = sctp_getsockopt,
6563 .sendmsg = sctp_sendmsg,
6564 .recvmsg = sctp_recvmsg,
6565 .bind = sctp_bind,
6566 .backlog_rcv = sctp_backlog_rcv,
6567 .hash = sctp_hash,
6568 .unhash = sctp_unhash,
6569 .get_port = sctp_get_port,
6570 .obj_size = sizeof(struct sctp_sock),
6571 .sysctl_mem = sysctl_sctp_mem,
6572 .sysctl_rmem = sysctl_sctp_rmem,
6573 .sysctl_wmem = sysctl_sctp_wmem,
6574 .memory_pressure = &sctp_memory_pressure,
6575 .enter_memory_pressure = sctp_enter_memory_pressure,
6576 .memory_allocated = &sctp_memory_allocated,
6577 .sockets_allocated = &sctp_sockets_allocated,
6580 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6582 struct proto sctpv6_prot = {
6583 .name = "SCTPv6",
6584 .owner = THIS_MODULE,
6585 .close = sctp_close,
6586 .connect = sctp_connect,
6587 .disconnect = sctp_disconnect,
6588 .accept = sctp_accept,
6589 .ioctl = sctp_ioctl,
6590 .init = sctp_init_sock,
6591 .destroy = sctp_destroy_sock,
6592 .shutdown = sctp_shutdown,
6593 .setsockopt = sctp_setsockopt,
6594 .getsockopt = sctp_getsockopt,
6595 .sendmsg = sctp_sendmsg,
6596 .recvmsg = sctp_recvmsg,
6597 .bind = sctp_bind,
6598 .backlog_rcv = sctp_backlog_rcv,
6599 .hash = sctp_hash,
6600 .unhash = sctp_unhash,
6601 .get_port = sctp_get_port,
6602 .obj_size = sizeof(struct sctp6_sock),
6603 .sysctl_mem = sysctl_sctp_mem,
6604 .sysctl_rmem = sysctl_sctp_rmem,
6605 .sysctl_wmem = sysctl_sctp_wmem,
6606 .memory_pressure = &sctp_memory_pressure,
6607 .enter_memory_pressure = sctp_enter_memory_pressure,
6608 .memory_allocated = &sctp_memory_allocated,
6609 .sockets_allocated = &sctp_sockets_allocated,
6611 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */