2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
76 module_param(halt_poll_ns
, uint
, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns
);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow
= 2;
81 module_param(halt_poll_ns_grow
, uint
, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow
);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink
;
86 module_param(halt_poll_ns_shrink
, uint
, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink
);
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock
);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
99 static cpumask_var_t cpus_hardware_enabled
;
100 static int kvm_usage_count
;
101 static atomic_t hardware_enable_failed
;
103 struct kmem_cache
*kvm_vcpu_cache
;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
106 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
108 struct dentry
*kvm_debugfs_dir
;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
111 static int kvm_debugfs_num_entries
;
112 static const struct file_operations
*stat_fops_per_vm
[];
114 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
123 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn
);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
128 __visible
bool kvm_rebooting
;
129 EXPORT_SYMBOL_GPL(kvm_rebooting
);
131 static bool largepages_enabled
= true;
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
);
136 static unsigned long long kvm_createvm_count
;
137 static unsigned long long kvm_active_vms
;
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn
)
142 return PageReserved(pfn_to_page(pfn
));
148 * Switches to specified vcpu, until a matching vcpu_put()
150 int vcpu_load(struct kvm_vcpu
*vcpu
)
154 if (mutex_lock_killable(&vcpu
->mutex
))
157 preempt_notifier_register(&vcpu
->preempt_notifier
);
158 kvm_arch_vcpu_load(vcpu
, cpu
);
162 EXPORT_SYMBOL_GPL(vcpu_load
);
164 void vcpu_put(struct kvm_vcpu
*vcpu
)
167 kvm_arch_vcpu_put(vcpu
);
168 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
170 mutex_unlock(&vcpu
->mutex
);
172 EXPORT_SYMBOL_GPL(vcpu_put
);
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu
*vcpu
, unsigned req
)
177 int mode
= kvm_vcpu_exiting_guest_mode(vcpu
);
180 * We need to wait for the VCPU to reenable interrupts and get out of
181 * READING_SHADOW_PAGE_TABLES mode.
183 if (req
& KVM_REQUEST_WAIT
)
184 return mode
!= OUTSIDE_GUEST_MODE
;
187 * Need to kick a running VCPU, but otherwise there is nothing to do.
189 return mode
== IN_GUEST_MODE
;
192 static void ack_flush(void *_completed
)
196 static inline bool kvm_kick_many_cpus(const struct cpumask
*cpus
, bool wait
)
199 cpus
= cpu_online_mask
;
201 if (cpumask_empty(cpus
))
204 smp_call_function_many(cpus
, ack_flush
, NULL
, wait
);
208 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
213 struct kvm_vcpu
*vcpu
;
215 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
218 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
219 kvm_make_request(req
, vcpu
);
222 if (!(req
& KVM_REQUEST_NO_WAKEUP
) && kvm_vcpu_wake_up(vcpu
))
225 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
226 kvm_request_needs_ipi(vcpu
, req
))
227 __cpumask_set_cpu(cpu
, cpus
);
229 called
= kvm_kick_many_cpus(cpus
, !!(req
& KVM_REQUEST_WAIT
));
231 free_cpumask_var(cpus
);
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
239 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240 * kvm_make_all_cpus_request.
242 long dirty_count
= smp_load_acquire(&kvm
->tlbs_dirty
);
245 * We want to publish modifications to the page tables before reading
246 * mode. Pairs with a memory barrier in arch-specific code.
247 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248 * and smp_mb in walk_shadow_page_lockless_begin/end.
249 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
251 * There is already an smp_mb__after_atomic() before
252 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
255 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
256 ++kvm
->stat
.remote_tlb_flush
;
257 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
262 void kvm_reload_remote_mmus(struct kvm
*kvm
)
264 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
267 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
272 mutex_init(&vcpu
->mutex
);
277 init_swait_queue_head(&vcpu
->wq
);
278 kvm_async_pf_vcpu_init(vcpu
);
281 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
283 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
288 vcpu
->run
= page_address(page
);
290 kvm_vcpu_set_in_spin_loop(vcpu
, false);
291 kvm_vcpu_set_dy_eligible(vcpu
, false);
292 vcpu
->preempted
= false;
294 r
= kvm_arch_vcpu_init(vcpu
);
300 free_page((unsigned long)vcpu
->run
);
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
306 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
309 * no need for rcu_read_lock as VCPU_RUN is the only place that
310 * will change the vcpu->pid pointer and on uninit all file
311 * descriptors are already gone.
313 put_pid(rcu_dereference_protected(vcpu
->pid
, 1));
314 kvm_arch_vcpu_uninit(vcpu
);
315 free_page((unsigned long)vcpu
->run
);
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
322 return container_of(mn
, struct kvm
, mmu_notifier
);
325 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
326 struct mm_struct
*mm
,
327 unsigned long address
)
329 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
330 int need_tlb_flush
, idx
;
333 * When ->invalidate_page runs, the linux pte has been zapped
334 * already but the page is still allocated until
335 * ->invalidate_page returns. So if we increase the sequence
336 * here the kvm page fault will notice if the spte can't be
337 * established because the page is going to be freed. If
338 * instead the kvm page fault establishes the spte before
339 * ->invalidate_page runs, kvm_unmap_hva will release it
342 * The sequence increase only need to be seen at spin_unlock
343 * time, and not at spin_lock time.
345 * Increasing the sequence after the spin_unlock would be
346 * unsafe because the kvm page fault could then establish the
347 * pte after kvm_unmap_hva returned, without noticing the page
348 * is going to be freed.
350 idx
= srcu_read_lock(&kvm
->srcu
);
351 spin_lock(&kvm
->mmu_lock
);
353 kvm
->mmu_notifier_seq
++;
354 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
355 /* we've to flush the tlb before the pages can be freed */
357 kvm_flush_remote_tlbs(kvm
);
359 spin_unlock(&kvm
->mmu_lock
);
361 kvm_arch_mmu_notifier_invalidate_page(kvm
, address
);
363 srcu_read_unlock(&kvm
->srcu
, idx
);
366 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
367 struct mm_struct
*mm
,
368 unsigned long address
,
371 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
374 idx
= srcu_read_lock(&kvm
->srcu
);
375 spin_lock(&kvm
->mmu_lock
);
376 kvm
->mmu_notifier_seq
++;
377 kvm_set_spte_hva(kvm
, address
, pte
);
378 spin_unlock(&kvm
->mmu_lock
);
379 srcu_read_unlock(&kvm
->srcu
, idx
);
382 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
383 struct mm_struct
*mm
,
387 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
388 int need_tlb_flush
= 0, idx
;
390 idx
= srcu_read_lock(&kvm
->srcu
);
391 spin_lock(&kvm
->mmu_lock
);
393 * The count increase must become visible at unlock time as no
394 * spte can be established without taking the mmu_lock and
395 * count is also read inside the mmu_lock critical section.
397 kvm
->mmu_notifier_count
++;
398 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
399 need_tlb_flush
|= kvm
->tlbs_dirty
;
400 /* we've to flush the tlb before the pages can be freed */
402 kvm_flush_remote_tlbs(kvm
);
404 spin_unlock(&kvm
->mmu_lock
);
405 srcu_read_unlock(&kvm
->srcu
, idx
);
408 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
409 struct mm_struct
*mm
,
413 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
415 spin_lock(&kvm
->mmu_lock
);
417 * This sequence increase will notify the kvm page fault that
418 * the page that is going to be mapped in the spte could have
421 kvm
->mmu_notifier_seq
++;
424 * The above sequence increase must be visible before the
425 * below count decrease, which is ensured by the smp_wmb above
426 * in conjunction with the smp_rmb in mmu_notifier_retry().
428 kvm
->mmu_notifier_count
--;
429 spin_unlock(&kvm
->mmu_lock
);
431 BUG_ON(kvm
->mmu_notifier_count
< 0);
434 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
435 struct mm_struct
*mm
,
439 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
442 idx
= srcu_read_lock(&kvm
->srcu
);
443 spin_lock(&kvm
->mmu_lock
);
445 young
= kvm_age_hva(kvm
, start
, end
);
447 kvm_flush_remote_tlbs(kvm
);
449 spin_unlock(&kvm
->mmu_lock
);
450 srcu_read_unlock(&kvm
->srcu
, idx
);
455 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
456 struct mm_struct
*mm
,
460 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
463 idx
= srcu_read_lock(&kvm
->srcu
);
464 spin_lock(&kvm
->mmu_lock
);
466 * Even though we do not flush TLB, this will still adversely
467 * affect performance on pre-Haswell Intel EPT, where there is
468 * no EPT Access Bit to clear so that we have to tear down EPT
469 * tables instead. If we find this unacceptable, we can always
470 * add a parameter to kvm_age_hva so that it effectively doesn't
471 * do anything on clear_young.
473 * Also note that currently we never issue secondary TLB flushes
474 * from clear_young, leaving this job up to the regular system
475 * cadence. If we find this inaccurate, we might come up with a
476 * more sophisticated heuristic later.
478 young
= kvm_age_hva(kvm
, start
, end
);
479 spin_unlock(&kvm
->mmu_lock
);
480 srcu_read_unlock(&kvm
->srcu
, idx
);
485 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
486 struct mm_struct
*mm
,
487 unsigned long address
)
489 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
492 idx
= srcu_read_lock(&kvm
->srcu
);
493 spin_lock(&kvm
->mmu_lock
);
494 young
= kvm_test_age_hva(kvm
, address
);
495 spin_unlock(&kvm
->mmu_lock
);
496 srcu_read_unlock(&kvm
->srcu
, idx
);
501 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
502 struct mm_struct
*mm
)
504 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
507 idx
= srcu_read_lock(&kvm
->srcu
);
508 kvm_arch_flush_shadow_all(kvm
);
509 srcu_read_unlock(&kvm
->srcu
, idx
);
512 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
513 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
514 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
515 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
516 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
517 .clear_young
= kvm_mmu_notifier_clear_young
,
518 .test_young
= kvm_mmu_notifier_test_young
,
519 .change_pte
= kvm_mmu_notifier_change_pte
,
520 .release
= kvm_mmu_notifier_release
,
523 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
525 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
526 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
529 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
531 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
536 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
538 static struct kvm_memslots
*kvm_alloc_memslots(void)
541 struct kvm_memslots
*slots
;
543 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
547 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
548 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
553 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
555 if (!memslot
->dirty_bitmap
)
558 kvfree(memslot
->dirty_bitmap
);
559 memslot
->dirty_bitmap
= NULL
;
563 * Free any memory in @free but not in @dont.
565 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
566 struct kvm_memory_slot
*dont
)
568 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
569 kvm_destroy_dirty_bitmap(free
);
571 kvm_arch_free_memslot(kvm
, free
, dont
);
576 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
578 struct kvm_memory_slot
*memslot
;
583 kvm_for_each_memslot(memslot
, slots
)
584 kvm_free_memslot(kvm
, memslot
, NULL
);
589 static void kvm_destroy_vm_debugfs(struct kvm
*kvm
)
593 if (!kvm
->debugfs_dentry
)
596 debugfs_remove_recursive(kvm
->debugfs_dentry
);
598 if (kvm
->debugfs_stat_data
) {
599 for (i
= 0; i
< kvm_debugfs_num_entries
; i
++)
600 kfree(kvm
->debugfs_stat_data
[i
]);
601 kfree(kvm
->debugfs_stat_data
);
605 static int kvm_create_vm_debugfs(struct kvm
*kvm
, int fd
)
607 char dir_name
[ITOA_MAX_LEN
* 2];
608 struct kvm_stat_data
*stat_data
;
609 struct kvm_stats_debugfs_item
*p
;
611 if (!debugfs_initialized())
614 snprintf(dir_name
, sizeof(dir_name
), "%d-%d", task_pid_nr(current
), fd
);
615 kvm
->debugfs_dentry
= debugfs_create_dir(dir_name
,
617 if (!kvm
->debugfs_dentry
)
620 kvm
->debugfs_stat_data
= kcalloc(kvm_debugfs_num_entries
,
621 sizeof(*kvm
->debugfs_stat_data
),
623 if (!kvm
->debugfs_stat_data
)
626 for (p
= debugfs_entries
; p
->name
; p
++) {
627 stat_data
= kzalloc(sizeof(*stat_data
), GFP_KERNEL
);
631 stat_data
->kvm
= kvm
;
632 stat_data
->offset
= p
->offset
;
633 kvm
->debugfs_stat_data
[p
- debugfs_entries
] = stat_data
;
634 if (!debugfs_create_file(p
->name
, 0644,
637 stat_fops_per_vm
[p
->kind
]))
643 static struct kvm
*kvm_create_vm(unsigned long type
)
646 struct kvm
*kvm
= kvm_arch_alloc_vm();
649 return ERR_PTR(-ENOMEM
);
651 spin_lock_init(&kvm
->mmu_lock
);
653 kvm
->mm
= current
->mm
;
654 kvm_eventfd_init(kvm
);
655 mutex_init(&kvm
->lock
);
656 mutex_init(&kvm
->irq_lock
);
657 mutex_init(&kvm
->slots_lock
);
658 refcount_set(&kvm
->users_count
, 1);
659 INIT_LIST_HEAD(&kvm
->devices
);
661 r
= kvm_arch_init_vm(kvm
, type
);
663 goto out_err_no_disable
;
665 r
= hardware_enable_all();
667 goto out_err_no_disable
;
669 #ifdef CONFIG_HAVE_KVM_IRQFD
670 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
673 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
676 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
677 struct kvm_memslots
*slots
= kvm_alloc_memslots();
679 goto out_err_no_srcu
;
681 * Generations must be different for each address space.
682 * Init kvm generation close to the maximum to easily test the
683 * code of handling generation number wrap-around.
685 slots
->generation
= i
* 2 - 150;
686 rcu_assign_pointer(kvm
->memslots
[i
], slots
);
689 if (init_srcu_struct(&kvm
->srcu
))
690 goto out_err_no_srcu
;
691 if (init_srcu_struct(&kvm
->irq_srcu
))
692 goto out_err_no_irq_srcu
;
693 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
694 rcu_assign_pointer(kvm
->buses
[i
],
695 kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
));
700 r
= kvm_init_mmu_notifier(kvm
);
704 spin_lock(&kvm_lock
);
705 list_add(&kvm
->vm_list
, &vm_list
);
706 spin_unlock(&kvm_lock
);
708 preempt_notifier_inc();
713 cleanup_srcu_struct(&kvm
->irq_srcu
);
715 cleanup_srcu_struct(&kvm
->srcu
);
717 hardware_disable_all();
719 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
720 kfree(rcu_access_pointer(kvm
->buses
[i
]));
721 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
722 kvm_free_memslots(kvm
,
723 rcu_dereference_protected(kvm
->memslots
[i
], 1));
724 kvm_arch_free_vm(kvm
);
729 static void kvm_destroy_devices(struct kvm
*kvm
)
731 struct kvm_device
*dev
, *tmp
;
734 * We do not need to take the kvm->lock here, because nobody else
735 * has a reference to the struct kvm at this point and therefore
736 * cannot access the devices list anyhow.
738 list_for_each_entry_safe(dev
, tmp
, &kvm
->devices
, vm_node
) {
739 list_del(&dev
->vm_node
);
740 dev
->ops
->destroy(dev
);
744 static void kvm_destroy_vm(struct kvm
*kvm
)
747 struct mm_struct
*mm
= kvm
->mm
;
749 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM
, kvm
);
750 kvm_destroy_vm_debugfs(kvm
);
751 kvm_arch_sync_events(kvm
);
752 spin_lock(&kvm_lock
);
753 list_del(&kvm
->vm_list
);
754 spin_unlock(&kvm_lock
);
755 kvm_free_irq_routing(kvm
);
756 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
757 struct kvm_io_bus
*bus
;
759 bus
= rcu_dereference_protected(kvm
->buses
[i
], 1);
761 kvm_io_bus_destroy(bus
);
762 kvm
->buses
[i
] = NULL
;
764 kvm_coalesced_mmio_free(kvm
);
765 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
766 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
768 kvm_arch_flush_shadow_all(kvm
);
770 kvm_arch_destroy_vm(kvm
);
771 kvm_destroy_devices(kvm
);
772 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
773 kvm_free_memslots(kvm
,
774 rcu_dereference_protected(kvm
->memslots
[i
], 1));
775 cleanup_srcu_struct(&kvm
->irq_srcu
);
776 cleanup_srcu_struct(&kvm
->srcu
);
777 kvm_arch_free_vm(kvm
);
778 preempt_notifier_dec();
779 hardware_disable_all();
783 void kvm_get_kvm(struct kvm
*kvm
)
785 refcount_inc(&kvm
->users_count
);
787 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
789 void kvm_put_kvm(struct kvm
*kvm
)
791 if (refcount_dec_and_test(&kvm
->users_count
))
794 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
797 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
799 struct kvm
*kvm
= filp
->private_data
;
801 kvm_irqfd_release(kvm
);
808 * Allocation size is twice as large as the actual dirty bitmap size.
809 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
811 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
813 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
815 memslot
->dirty_bitmap
= kvzalloc(dirty_bytes
, GFP_KERNEL
);
816 if (!memslot
->dirty_bitmap
)
823 * Insert memslot and re-sort memslots based on their GFN,
824 * so binary search could be used to lookup GFN.
825 * Sorting algorithm takes advantage of having initially
826 * sorted array and known changed memslot position.
828 static void update_memslots(struct kvm_memslots
*slots
,
829 struct kvm_memory_slot
*new)
832 int i
= slots
->id_to_index
[id
];
833 struct kvm_memory_slot
*mslots
= slots
->memslots
;
835 WARN_ON(mslots
[i
].id
!= id
);
837 WARN_ON(!mslots
[i
].npages
);
838 if (mslots
[i
].npages
)
841 if (!mslots
[i
].npages
)
845 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
846 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
847 if (!mslots
[i
+ 1].npages
)
849 mslots
[i
] = mslots
[i
+ 1];
850 slots
->id_to_index
[mslots
[i
].id
] = i
;
855 * The ">=" is needed when creating a slot with base_gfn == 0,
856 * so that it moves before all those with base_gfn == npages == 0.
858 * On the other hand, if new->npages is zero, the above loop has
859 * already left i pointing to the beginning of the empty part of
860 * mslots, and the ">=" would move the hole backwards in this
861 * case---which is wrong. So skip the loop when deleting a slot.
865 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
866 mslots
[i
] = mslots
[i
- 1];
867 slots
->id_to_index
[mslots
[i
].id
] = i
;
871 WARN_ON_ONCE(i
!= slots
->used_slots
);
874 slots
->id_to_index
[mslots
[i
].id
] = i
;
877 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
879 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
881 #ifdef __KVM_HAVE_READONLY_MEM
882 valid_flags
|= KVM_MEM_READONLY
;
885 if (mem
->flags
& ~valid_flags
)
891 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
892 int as_id
, struct kvm_memslots
*slots
)
894 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
897 * Set the low bit in the generation, which disables SPTE caching
898 * until the end of synchronize_srcu_expedited.
900 WARN_ON(old_memslots
->generation
& 1);
901 slots
->generation
= old_memslots
->generation
+ 1;
903 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
904 synchronize_srcu_expedited(&kvm
->srcu
);
907 * Increment the new memslot generation a second time. This prevents
908 * vm exits that race with memslot updates from caching a memslot
909 * generation that will (potentially) be valid forever.
911 * Generations must be unique even across address spaces. We do not need
912 * a global counter for that, instead the generation space is evenly split
913 * across address spaces. For example, with two address spaces, address
914 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
915 * use generations 2, 6, 10, 14, ...
917 slots
->generation
+= KVM_ADDRESS_SPACE_NUM
* 2 - 1;
919 kvm_arch_memslots_updated(kvm
, slots
);
925 * Allocate some memory and give it an address in the guest physical address
928 * Discontiguous memory is allowed, mostly for framebuffers.
930 * Must be called holding kvm->slots_lock for write.
932 int __kvm_set_memory_region(struct kvm
*kvm
,
933 const struct kvm_userspace_memory_region
*mem
)
937 unsigned long npages
;
938 struct kvm_memory_slot
*slot
;
939 struct kvm_memory_slot old
, new;
940 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
942 enum kvm_mr_change change
;
944 r
= check_memory_region_flags(mem
);
949 as_id
= mem
->slot
>> 16;
952 /* General sanity checks */
953 if (mem
->memory_size
& (PAGE_SIZE
- 1))
955 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
957 /* We can read the guest memory with __xxx_user() later on. */
958 if ((id
< KVM_USER_MEM_SLOTS
) &&
959 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
960 !access_ok(VERIFY_WRITE
,
961 (void __user
*)(unsigned long)mem
->userspace_addr
,
964 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
966 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
969 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
970 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
971 npages
= mem
->memory_size
>> PAGE_SHIFT
;
973 if (npages
> KVM_MEM_MAX_NR_PAGES
)
979 new.base_gfn
= base_gfn
;
981 new.flags
= mem
->flags
;
985 change
= KVM_MR_CREATE
;
986 else { /* Modify an existing slot. */
987 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
988 (npages
!= old
.npages
) ||
989 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
992 if (base_gfn
!= old
.base_gfn
)
993 change
= KVM_MR_MOVE
;
994 else if (new.flags
!= old
.flags
)
995 change
= KVM_MR_FLAGS_ONLY
;
996 else { /* Nothing to change. */
1005 change
= KVM_MR_DELETE
;
1010 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
1011 /* Check for overlaps */
1013 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
1014 if ((slot
->id
>= KVM_USER_MEM_SLOTS
) ||
1017 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
1018 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
1023 /* Free page dirty bitmap if unneeded */
1024 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
1025 new.dirty_bitmap
= NULL
;
1028 if (change
== KVM_MR_CREATE
) {
1029 new.userspace_addr
= mem
->userspace_addr
;
1031 if (kvm_arch_create_memslot(kvm
, &new, npages
))
1035 /* Allocate page dirty bitmap if needed */
1036 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
1037 if (kvm_create_dirty_bitmap(&new) < 0)
1041 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
1044 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
1046 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
1047 slot
= id_to_memslot(slots
, id
);
1048 slot
->flags
|= KVM_MEMSLOT_INVALID
;
1050 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1052 /* From this point no new shadow pages pointing to a deleted,
1053 * or moved, memslot will be created.
1055 * validation of sp->gfn happens in:
1056 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1057 * - kvm_is_visible_gfn (mmu_check_roots)
1059 kvm_arch_flush_shadow_memslot(kvm
, slot
);
1062 * We can re-use the old_memslots from above, the only difference
1063 * from the currently installed memslots is the invalid flag. This
1064 * will get overwritten by update_memslots anyway.
1066 slots
= old_memslots
;
1069 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
1073 /* actual memory is freed via old in kvm_free_memslot below */
1074 if (change
== KVM_MR_DELETE
) {
1075 new.dirty_bitmap
= NULL
;
1076 memset(&new.arch
, 0, sizeof(new.arch
));
1079 update_memslots(slots
, &new);
1080 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1082 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
1084 kvm_free_memslot(kvm
, &old
, &new);
1085 kvfree(old_memslots
);
1091 kvm_free_memslot(kvm
, &new, &old
);
1095 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1097 int kvm_set_memory_region(struct kvm
*kvm
,
1098 const struct kvm_userspace_memory_region
*mem
)
1102 mutex_lock(&kvm
->slots_lock
);
1103 r
= __kvm_set_memory_region(kvm
, mem
);
1104 mutex_unlock(&kvm
->slots_lock
);
1107 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1109 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1110 struct kvm_userspace_memory_region
*mem
)
1112 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1115 return kvm_set_memory_region(kvm
, mem
);
1118 int kvm_get_dirty_log(struct kvm
*kvm
,
1119 struct kvm_dirty_log
*log
, int *is_dirty
)
1121 struct kvm_memslots
*slots
;
1122 struct kvm_memory_slot
*memslot
;
1125 unsigned long any
= 0;
1127 as_id
= log
->slot
>> 16;
1128 id
= (u16
)log
->slot
;
1129 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1132 slots
= __kvm_memslots(kvm
, as_id
);
1133 memslot
= id_to_memslot(slots
, id
);
1134 if (!memslot
->dirty_bitmap
)
1137 n
= kvm_dirty_bitmap_bytes(memslot
);
1139 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1140 any
= memslot
->dirty_bitmap
[i
];
1142 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1149 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1151 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1153 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1154 * are dirty write protect them for next write.
1155 * @kvm: pointer to kvm instance
1156 * @log: slot id and address to which we copy the log
1157 * @is_dirty: flag set if any page is dirty
1159 * We need to keep it in mind that VCPU threads can write to the bitmap
1160 * concurrently. So, to avoid losing track of dirty pages we keep the
1163 * 1. Take a snapshot of the bit and clear it if needed.
1164 * 2. Write protect the corresponding page.
1165 * 3. Copy the snapshot to the userspace.
1166 * 4. Upon return caller flushes TLB's if needed.
1168 * Between 2 and 4, the guest may write to the page using the remaining TLB
1169 * entry. This is not a problem because the page is reported dirty using
1170 * the snapshot taken before and step 4 ensures that writes done after
1171 * exiting to userspace will be logged for the next call.
1174 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1175 struct kvm_dirty_log
*log
, bool *is_dirty
)
1177 struct kvm_memslots
*slots
;
1178 struct kvm_memory_slot
*memslot
;
1181 unsigned long *dirty_bitmap
;
1182 unsigned long *dirty_bitmap_buffer
;
1184 as_id
= log
->slot
>> 16;
1185 id
= (u16
)log
->slot
;
1186 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1189 slots
= __kvm_memslots(kvm
, as_id
);
1190 memslot
= id_to_memslot(slots
, id
);
1192 dirty_bitmap
= memslot
->dirty_bitmap
;
1196 n
= kvm_dirty_bitmap_bytes(memslot
);
1198 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
1199 memset(dirty_bitmap_buffer
, 0, n
);
1201 spin_lock(&kvm
->mmu_lock
);
1203 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1207 if (!dirty_bitmap
[i
])
1212 mask
= xchg(&dirty_bitmap
[i
], 0);
1213 dirty_bitmap_buffer
[i
] = mask
;
1216 offset
= i
* BITS_PER_LONG
;
1217 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1222 spin_unlock(&kvm
->mmu_lock
);
1223 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1227 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1230 bool kvm_largepages_enabled(void)
1232 return largepages_enabled
;
1235 void kvm_disable_largepages(void)
1237 largepages_enabled
= false;
1239 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1241 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1243 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1245 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1247 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1249 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1252 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1254 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1256 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1257 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1262 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1264 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1266 struct vm_area_struct
*vma
;
1267 unsigned long addr
, size
;
1271 addr
= gfn_to_hva(kvm
, gfn
);
1272 if (kvm_is_error_hva(addr
))
1275 down_read(¤t
->mm
->mmap_sem
);
1276 vma
= find_vma(current
->mm
, addr
);
1280 size
= vma_kernel_pagesize(vma
);
1283 up_read(¤t
->mm
->mmap_sem
);
1288 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1290 return slot
->flags
& KVM_MEM_READONLY
;
1293 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1294 gfn_t
*nr_pages
, bool write
)
1296 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1297 return KVM_HVA_ERR_BAD
;
1299 if (memslot_is_readonly(slot
) && write
)
1300 return KVM_HVA_ERR_RO_BAD
;
1303 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1305 return __gfn_to_hva_memslot(slot
, gfn
);
1308 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1311 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1314 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1317 return gfn_to_hva_many(slot
, gfn
, NULL
);
1319 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1321 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1323 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1325 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1327 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1329 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1331 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1334 * If writable is set to false, the hva returned by this function is only
1335 * allowed to be read.
1337 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1338 gfn_t gfn
, bool *writable
)
1340 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1342 if (!kvm_is_error_hva(hva
) && writable
)
1343 *writable
= !memslot_is_readonly(slot
);
1348 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1350 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1352 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1355 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1357 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1359 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1362 static int get_user_page_nowait(unsigned long start
, int write
,
1365 int flags
= FOLL_NOWAIT
| FOLL_HWPOISON
;
1368 flags
|= FOLL_WRITE
;
1370 return get_user_pages(start
, 1, flags
, page
, NULL
);
1373 static inline int check_user_page_hwpoison(unsigned long addr
)
1375 int rc
, flags
= FOLL_HWPOISON
| FOLL_WRITE
;
1377 rc
= get_user_pages(addr
, 1, flags
, NULL
, NULL
);
1378 return rc
== -EHWPOISON
;
1382 * The atomic path to get the writable pfn which will be stored in @pfn,
1383 * true indicates success, otherwise false is returned.
1385 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1386 bool write_fault
, bool *writable
, kvm_pfn_t
*pfn
)
1388 struct page
*page
[1];
1391 if (!(async
|| atomic
))
1395 * Fast pin a writable pfn only if it is a write fault request
1396 * or the caller allows to map a writable pfn for a read fault
1399 if (!(write_fault
|| writable
))
1402 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1404 *pfn
= page_to_pfn(page
[0]);
1415 * The slow path to get the pfn of the specified host virtual address,
1416 * 1 indicates success, -errno is returned if error is detected.
1418 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1419 bool *writable
, kvm_pfn_t
*pfn
)
1421 struct page
*page
[1];
1427 *writable
= write_fault
;
1430 down_read(¤t
->mm
->mmap_sem
);
1431 npages
= get_user_page_nowait(addr
, write_fault
, page
);
1432 up_read(¤t
->mm
->mmap_sem
);
1434 unsigned int flags
= FOLL_HWPOISON
;
1437 flags
|= FOLL_WRITE
;
1439 npages
= get_user_pages_unlocked(addr
, 1, page
, flags
);
1444 /* map read fault as writable if possible */
1445 if (unlikely(!write_fault
) && writable
) {
1446 struct page
*wpage
[1];
1448 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1457 *pfn
= page_to_pfn(page
[0]);
1461 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1463 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1466 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1472 static int hva_to_pfn_remapped(struct vm_area_struct
*vma
,
1473 unsigned long addr
, bool *async
,
1474 bool write_fault
, kvm_pfn_t
*p_pfn
)
1479 r
= follow_pfn(vma
, addr
, &pfn
);
1482 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1483 * not call the fault handler, so do it here.
1485 bool unlocked
= false;
1486 r
= fixup_user_fault(current
, current
->mm
, addr
,
1487 (write_fault
? FAULT_FLAG_WRITE
: 0),
1494 r
= follow_pfn(vma
, addr
, &pfn
);
1502 * Get a reference here because callers of *hva_to_pfn* and
1503 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1504 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1505 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1506 * simply do nothing for reserved pfns.
1508 * Whoever called remap_pfn_range is also going to call e.g.
1509 * unmap_mapping_range before the underlying pages are freed,
1510 * causing a call to our MMU notifier.
1519 * Pin guest page in memory and return its pfn.
1520 * @addr: host virtual address which maps memory to the guest
1521 * @atomic: whether this function can sleep
1522 * @async: whether this function need to wait IO complete if the
1523 * host page is not in the memory
1524 * @write_fault: whether we should get a writable host page
1525 * @writable: whether it allows to map a writable host page for !@write_fault
1527 * The function will map a writable host page for these two cases:
1528 * 1): @write_fault = true
1529 * 2): @write_fault = false && @writable, @writable will tell the caller
1530 * whether the mapping is writable.
1532 static kvm_pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1533 bool write_fault
, bool *writable
)
1535 struct vm_area_struct
*vma
;
1539 /* we can do it either atomically or asynchronously, not both */
1540 BUG_ON(atomic
&& async
);
1542 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1546 return KVM_PFN_ERR_FAULT
;
1548 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1552 down_read(¤t
->mm
->mmap_sem
);
1553 if (npages
== -EHWPOISON
||
1554 (!async
&& check_user_page_hwpoison(addr
))) {
1555 pfn
= KVM_PFN_ERR_HWPOISON
;
1560 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1563 pfn
= KVM_PFN_ERR_FAULT
;
1564 else if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) {
1565 r
= hva_to_pfn_remapped(vma
, addr
, async
, write_fault
, &pfn
);
1569 pfn
= KVM_PFN_ERR_FAULT
;
1571 if (async
&& vma_is_valid(vma
, write_fault
))
1573 pfn
= KVM_PFN_ERR_FAULT
;
1576 up_read(¤t
->mm
->mmap_sem
);
1580 kvm_pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1581 bool atomic
, bool *async
, bool write_fault
,
1584 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1586 if (addr
== KVM_HVA_ERR_RO_BAD
) {
1589 return KVM_PFN_ERR_RO_FAULT
;
1592 if (kvm_is_error_hva(addr
)) {
1595 return KVM_PFN_NOSLOT
;
1598 /* Do not map writable pfn in the readonly memslot. */
1599 if (writable
&& memslot_is_readonly(slot
)) {
1604 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1607 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1609 kvm_pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1612 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1613 write_fault
, writable
);
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1617 kvm_pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1619 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1621 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1623 kvm_pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1625 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1627 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1629 kvm_pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1631 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1633 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1635 kvm_pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1637 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1639 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1641 kvm_pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1643 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1645 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1647 kvm_pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1649 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1651 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1653 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1654 struct page
**pages
, int nr_pages
)
1659 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1660 if (kvm_is_error_hva(addr
))
1663 if (entry
< nr_pages
)
1666 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1668 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1670 static struct page
*kvm_pfn_to_page(kvm_pfn_t pfn
)
1672 if (is_error_noslot_pfn(pfn
))
1673 return KVM_ERR_PTR_BAD_PAGE
;
1675 if (kvm_is_reserved_pfn(pfn
)) {
1677 return KVM_ERR_PTR_BAD_PAGE
;
1680 return pfn_to_page(pfn
);
1683 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1687 pfn
= gfn_to_pfn(kvm
, gfn
);
1689 return kvm_pfn_to_page(pfn
);
1691 EXPORT_SYMBOL_GPL(gfn_to_page
);
1693 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1697 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1699 return kvm_pfn_to_page(pfn
);
1701 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1703 void kvm_release_page_clean(struct page
*page
)
1705 WARN_ON(is_error_page(page
));
1707 kvm_release_pfn_clean(page_to_pfn(page
));
1709 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1711 void kvm_release_pfn_clean(kvm_pfn_t pfn
)
1713 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1714 put_page(pfn_to_page(pfn
));
1716 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1718 void kvm_release_page_dirty(struct page
*page
)
1720 WARN_ON(is_error_page(page
));
1722 kvm_release_pfn_dirty(page_to_pfn(page
));
1724 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1726 static void kvm_release_pfn_dirty(kvm_pfn_t pfn
)
1728 kvm_set_pfn_dirty(pfn
);
1729 kvm_release_pfn_clean(pfn
);
1732 void kvm_set_pfn_dirty(kvm_pfn_t pfn
)
1734 if (!kvm_is_reserved_pfn(pfn
)) {
1735 struct page
*page
= pfn_to_page(pfn
);
1737 if (!PageReserved(page
))
1741 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1743 void kvm_set_pfn_accessed(kvm_pfn_t pfn
)
1745 if (!kvm_is_reserved_pfn(pfn
))
1746 mark_page_accessed(pfn_to_page(pfn
));
1748 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1750 void kvm_get_pfn(kvm_pfn_t pfn
)
1752 if (!kvm_is_reserved_pfn(pfn
))
1753 get_page(pfn_to_page(pfn
));
1755 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1757 static int next_segment(unsigned long len
, int offset
)
1759 if (len
> PAGE_SIZE
- offset
)
1760 return PAGE_SIZE
- offset
;
1765 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1766 void *data
, int offset
, int len
)
1771 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1772 if (kvm_is_error_hva(addr
))
1774 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1780 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1783 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1785 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1787 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1789 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1790 int offset
, int len
)
1792 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1794 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1796 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1798 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1800 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1802 int offset
= offset_in_page(gpa
);
1805 while ((seg
= next_segment(len
, offset
)) != 0) {
1806 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1816 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1818 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1820 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1822 int offset
= offset_in_page(gpa
);
1825 while ((seg
= next_segment(len
, offset
)) != 0) {
1826 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1836 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1838 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1839 void *data
, int offset
, unsigned long len
)
1844 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1845 if (kvm_is_error_hva(addr
))
1847 pagefault_disable();
1848 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1855 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1858 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1859 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1860 int offset
= offset_in_page(gpa
);
1862 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1864 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1866 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1867 void *data
, unsigned long len
)
1869 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1870 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1871 int offset
= offset_in_page(gpa
);
1873 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1877 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1878 const void *data
, int offset
, int len
)
1883 addr
= gfn_to_hva_memslot(memslot
, gfn
);
1884 if (kvm_is_error_hva(addr
))
1886 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1889 mark_page_dirty_in_slot(memslot
, gfn
);
1893 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
1894 const void *data
, int offset
, int len
)
1896 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1898 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1900 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1902 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1903 const void *data
, int offset
, int len
)
1905 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1907 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1909 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
1911 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1914 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1916 int offset
= offset_in_page(gpa
);
1919 while ((seg
= next_segment(len
, offset
)) != 0) {
1920 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1930 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1932 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1935 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1937 int offset
= offset_in_page(gpa
);
1940 while ((seg
= next_segment(len
, offset
)) != 0) {
1941 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1951 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
1953 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots
*slots
,
1954 struct gfn_to_hva_cache
*ghc
,
1955 gpa_t gpa
, unsigned long len
)
1957 int offset
= offset_in_page(gpa
);
1958 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1959 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1960 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1961 gfn_t nr_pages_avail
;
1964 ghc
->generation
= slots
->generation
;
1966 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
1967 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1968 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1972 * If the requested region crosses two memslots, we still
1973 * verify that the entire region is valid here.
1975 while (start_gfn
<= end_gfn
) {
1976 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
1977 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1979 if (kvm_is_error_hva(ghc
->hva
))
1981 start_gfn
+= nr_pages_avail
;
1983 /* Use the slow path for cross page reads and writes. */
1984 ghc
->memslot
= NULL
;
1989 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1990 gpa_t gpa
, unsigned long len
)
1992 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1993 return __kvm_gfn_to_hva_cache_init(slots
, ghc
, gpa
, len
);
1995 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1997 int kvm_write_guest_offset_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1998 void *data
, int offset
, unsigned long len
)
2000 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2002 gpa_t gpa
= ghc
->gpa
+ offset
;
2004 BUG_ON(len
+ offset
> ghc
->len
);
2006 if (slots
->generation
!= ghc
->generation
)
2007 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
2009 if (unlikely(!ghc
->memslot
))
2010 return kvm_write_guest(kvm
, gpa
, data
, len
);
2012 if (kvm_is_error_hva(ghc
->hva
))
2015 r
= __copy_to_user((void __user
*)ghc
->hva
+ offset
, data
, len
);
2018 mark_page_dirty_in_slot(ghc
->memslot
, gpa
>> PAGE_SHIFT
);
2022 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached
);
2024 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2025 void *data
, unsigned long len
)
2027 return kvm_write_guest_offset_cached(kvm
, ghc
, data
, 0, len
);
2029 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
2031 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2032 void *data
, unsigned long len
)
2034 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2037 BUG_ON(len
> ghc
->len
);
2039 if (slots
->generation
!= ghc
->generation
)
2040 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
2042 if (unlikely(!ghc
->memslot
))
2043 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
2045 if (kvm_is_error_hva(ghc
->hva
))
2048 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
2054 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
2056 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
2058 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2060 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
2062 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
2064 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
2066 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2068 int offset
= offset_in_page(gpa
);
2071 while ((seg
= next_segment(len
, offset
)) != 0) {
2072 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
2081 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
2083 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
2086 if (memslot
&& memslot
->dirty_bitmap
) {
2087 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
2089 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
2093 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
2095 struct kvm_memory_slot
*memslot
;
2097 memslot
= gfn_to_memslot(kvm
, gfn
);
2098 mark_page_dirty_in_slot(memslot
, gfn
);
2100 EXPORT_SYMBOL_GPL(mark_page_dirty
);
2102 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2104 struct kvm_memory_slot
*memslot
;
2106 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2107 mark_page_dirty_in_slot(memslot
, gfn
);
2109 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
2111 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2113 unsigned int old
, val
, grow
;
2115 old
= val
= vcpu
->halt_poll_ns
;
2116 grow
= READ_ONCE(halt_poll_ns_grow
);
2118 if (val
== 0 && grow
)
2123 if (val
> halt_poll_ns
)
2126 vcpu
->halt_poll_ns
= val
;
2127 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
2130 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2132 unsigned int old
, val
, shrink
;
2134 old
= val
= vcpu
->halt_poll_ns
;
2135 shrink
= READ_ONCE(halt_poll_ns_shrink
);
2141 vcpu
->halt_poll_ns
= val
;
2142 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
2145 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
2147 if (kvm_arch_vcpu_runnable(vcpu
)) {
2148 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
2151 if (kvm_cpu_has_pending_timer(vcpu
))
2153 if (signal_pending(current
))
2160 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2162 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2165 DECLARE_SWAITQUEUE(wait
);
2166 bool waited
= false;
2169 start
= cur
= ktime_get();
2170 if (vcpu
->halt_poll_ns
) {
2171 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2173 ++vcpu
->stat
.halt_attempted_poll
;
2176 * This sets KVM_REQ_UNHALT if an interrupt
2179 if (kvm_vcpu_check_block(vcpu
) < 0) {
2180 ++vcpu
->stat
.halt_successful_poll
;
2181 if (!vcpu_valid_wakeup(vcpu
))
2182 ++vcpu
->stat
.halt_poll_invalid
;
2186 } while (single_task_running() && ktime_before(cur
, stop
));
2189 kvm_arch_vcpu_blocking(vcpu
);
2192 prepare_to_swait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2194 if (kvm_vcpu_check_block(vcpu
) < 0)
2201 finish_swait(&vcpu
->wq
, &wait
);
2204 kvm_arch_vcpu_unblocking(vcpu
);
2206 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2208 if (!vcpu_valid_wakeup(vcpu
))
2209 shrink_halt_poll_ns(vcpu
);
2210 else if (halt_poll_ns
) {
2211 if (block_ns
<= vcpu
->halt_poll_ns
)
2213 /* we had a long block, shrink polling */
2214 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2215 shrink_halt_poll_ns(vcpu
);
2216 /* we had a short halt and our poll time is too small */
2217 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2218 block_ns
< halt_poll_ns
)
2219 grow_halt_poll_ns(vcpu
);
2221 vcpu
->halt_poll_ns
= 0;
2223 trace_kvm_vcpu_wakeup(block_ns
, waited
, vcpu_valid_wakeup(vcpu
));
2224 kvm_arch_vcpu_block_finish(vcpu
);
2226 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2228 bool kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
)
2230 struct swait_queue_head
*wqp
;
2232 wqp
= kvm_arch_vcpu_wq(vcpu
);
2233 if (swait_active(wqp
)) {
2235 ++vcpu
->stat
.halt_wakeup
;
2241 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up
);
2245 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2247 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2250 int cpu
= vcpu
->cpu
;
2252 if (kvm_vcpu_wake_up(vcpu
))
2256 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2257 if (kvm_arch_vcpu_should_kick(vcpu
))
2258 smp_send_reschedule(cpu
);
2261 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2262 #endif /* !CONFIG_S390 */
2264 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2267 struct task_struct
*task
= NULL
;
2271 pid
= rcu_dereference(target
->pid
);
2273 task
= get_pid_task(pid
, PIDTYPE_PID
);
2277 ret
= yield_to(task
, 1);
2278 put_task_struct(task
);
2282 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2285 * Helper that checks whether a VCPU is eligible for directed yield.
2286 * Most eligible candidate to yield is decided by following heuristics:
2288 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2289 * (preempted lock holder), indicated by @in_spin_loop.
2290 * Set at the beiginning and cleared at the end of interception/PLE handler.
2292 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2293 * chance last time (mostly it has become eligible now since we have probably
2294 * yielded to lockholder in last iteration. This is done by toggling
2295 * @dy_eligible each time a VCPU checked for eligibility.)
2297 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2298 * to preempted lock-holder could result in wrong VCPU selection and CPU
2299 * burning. Giving priority for a potential lock-holder increases lock
2302 * Since algorithm is based on heuristics, accessing another VCPU data without
2303 * locking does not harm. It may result in trying to yield to same VCPU, fail
2304 * and continue with next VCPU and so on.
2306 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2311 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2312 vcpu
->spin_loop
.dy_eligible
;
2314 if (vcpu
->spin_loop
.in_spin_loop
)
2315 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2323 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
2325 struct kvm
*kvm
= me
->kvm
;
2326 struct kvm_vcpu
*vcpu
;
2327 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2333 kvm_vcpu_set_in_spin_loop(me
, true);
2335 * We boost the priority of a VCPU that is runnable but not
2336 * currently running, because it got preempted by something
2337 * else and called schedule in __vcpu_run. Hopefully that
2338 * VCPU is holding the lock that we need and will release it.
2339 * We approximate round-robin by starting at the last boosted VCPU.
2341 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2342 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2343 if (!pass
&& i
<= last_boosted_vcpu
) {
2344 i
= last_boosted_vcpu
;
2346 } else if (pass
&& i
> last_boosted_vcpu
)
2348 if (!ACCESS_ONCE(vcpu
->preempted
))
2352 if (swait_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2354 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2357 yielded
= kvm_vcpu_yield_to(vcpu
);
2359 kvm
->last_boosted_vcpu
= i
;
2361 } else if (yielded
< 0) {
2368 kvm_vcpu_set_in_spin_loop(me
, false);
2370 /* Ensure vcpu is not eligible during next spinloop */
2371 kvm_vcpu_set_dy_eligible(me
, false);
2373 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2375 static int kvm_vcpu_fault(struct vm_fault
*vmf
)
2377 struct kvm_vcpu
*vcpu
= vmf
->vma
->vm_file
->private_data
;
2380 if (vmf
->pgoff
== 0)
2381 page
= virt_to_page(vcpu
->run
);
2383 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2384 page
= virt_to_page(vcpu
->arch
.pio_data
);
2386 #ifdef CONFIG_KVM_MMIO
2387 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2388 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2391 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2397 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2398 .fault
= kvm_vcpu_fault
,
2401 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2403 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2407 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2409 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2411 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2412 kvm_put_kvm(vcpu
->kvm
);
2416 static struct file_operations kvm_vcpu_fops
= {
2417 .release
= kvm_vcpu_release
,
2418 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2419 #ifdef CONFIG_KVM_COMPAT
2420 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
2422 .mmap
= kvm_vcpu_mmap
,
2423 .llseek
= noop_llseek
,
2427 * Allocates an inode for the vcpu.
2429 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2431 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2434 static int kvm_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
2436 char dir_name
[ITOA_MAX_LEN
* 2];
2439 if (!kvm_arch_has_vcpu_debugfs())
2442 if (!debugfs_initialized())
2445 snprintf(dir_name
, sizeof(dir_name
), "vcpu%d", vcpu
->vcpu_id
);
2446 vcpu
->debugfs_dentry
= debugfs_create_dir(dir_name
,
2447 vcpu
->kvm
->debugfs_dentry
);
2448 if (!vcpu
->debugfs_dentry
)
2451 ret
= kvm_arch_create_vcpu_debugfs(vcpu
);
2453 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2461 * Creates some virtual cpus. Good luck creating more than one.
2463 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2466 struct kvm_vcpu
*vcpu
;
2468 if (id
>= KVM_MAX_VCPU_ID
)
2471 mutex_lock(&kvm
->lock
);
2472 if (kvm
->created_vcpus
== KVM_MAX_VCPUS
) {
2473 mutex_unlock(&kvm
->lock
);
2477 kvm
->created_vcpus
++;
2478 mutex_unlock(&kvm
->lock
);
2480 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2483 goto vcpu_decrement
;
2486 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2488 r
= kvm_arch_vcpu_setup(vcpu
);
2492 r
= kvm_create_vcpu_debugfs(vcpu
);
2496 mutex_lock(&kvm
->lock
);
2497 if (kvm_get_vcpu_by_id(kvm
, id
)) {
2499 goto unlock_vcpu_destroy
;
2502 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2504 /* Now it's all set up, let userspace reach it */
2506 r
= create_vcpu_fd(vcpu
);
2509 goto unlock_vcpu_destroy
;
2512 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2515 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2516 * before kvm->online_vcpu's incremented value.
2519 atomic_inc(&kvm
->online_vcpus
);
2521 mutex_unlock(&kvm
->lock
);
2522 kvm_arch_vcpu_postcreate(vcpu
);
2525 unlock_vcpu_destroy
:
2526 mutex_unlock(&kvm
->lock
);
2527 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2529 kvm_arch_vcpu_destroy(vcpu
);
2531 mutex_lock(&kvm
->lock
);
2532 kvm
->created_vcpus
--;
2533 mutex_unlock(&kvm
->lock
);
2537 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2540 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2541 vcpu
->sigset_active
= 1;
2542 vcpu
->sigset
= *sigset
;
2544 vcpu
->sigset_active
= 0;
2548 static long kvm_vcpu_ioctl(struct file
*filp
,
2549 unsigned int ioctl
, unsigned long arg
)
2551 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2552 void __user
*argp
= (void __user
*)arg
;
2554 struct kvm_fpu
*fpu
= NULL
;
2555 struct kvm_sregs
*kvm_sregs
= NULL
;
2557 if (vcpu
->kvm
->mm
!= current
->mm
)
2560 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2563 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2565 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2566 * so vcpu_load() would break it.
2568 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_S390_IRQ
|| ioctl
== KVM_INTERRUPT
)
2569 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2573 r
= vcpu_load(vcpu
);
2582 oldpid
= rcu_access_pointer(vcpu
->pid
);
2583 if (unlikely(oldpid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2584 /* The thread running this VCPU changed. */
2585 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
2587 rcu_assign_pointer(vcpu
->pid
, newpid
);
2592 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2593 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2596 case KVM_GET_REGS
: {
2597 struct kvm_regs
*kvm_regs
;
2600 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2603 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2607 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2614 case KVM_SET_REGS
: {
2615 struct kvm_regs
*kvm_regs
;
2618 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2619 if (IS_ERR(kvm_regs
)) {
2620 r
= PTR_ERR(kvm_regs
);
2623 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2627 case KVM_GET_SREGS
: {
2628 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2632 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2636 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2641 case KVM_SET_SREGS
: {
2642 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2643 if (IS_ERR(kvm_sregs
)) {
2644 r
= PTR_ERR(kvm_sregs
);
2648 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2651 case KVM_GET_MP_STATE
: {
2652 struct kvm_mp_state mp_state
;
2654 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2658 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2663 case KVM_SET_MP_STATE
: {
2664 struct kvm_mp_state mp_state
;
2667 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2669 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2672 case KVM_TRANSLATE
: {
2673 struct kvm_translation tr
;
2676 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2678 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2682 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2687 case KVM_SET_GUEST_DEBUG
: {
2688 struct kvm_guest_debug dbg
;
2691 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2693 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2696 case KVM_SET_SIGNAL_MASK
: {
2697 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2698 struct kvm_signal_mask kvm_sigmask
;
2699 sigset_t sigset
, *p
;
2704 if (copy_from_user(&kvm_sigmask
, argp
,
2705 sizeof(kvm_sigmask
)))
2708 if (kvm_sigmask
.len
!= sizeof(sigset
))
2711 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2716 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2720 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2724 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2728 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2734 fpu
= memdup_user(argp
, sizeof(*fpu
));
2740 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2744 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2753 #ifdef CONFIG_KVM_COMPAT
2754 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2755 unsigned int ioctl
, unsigned long arg
)
2757 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2758 void __user
*argp
= compat_ptr(arg
);
2761 if (vcpu
->kvm
->mm
!= current
->mm
)
2765 case KVM_SET_SIGNAL_MASK
: {
2766 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2767 struct kvm_signal_mask kvm_sigmask
;
2768 compat_sigset_t csigset
;
2773 if (copy_from_user(&kvm_sigmask
, argp
,
2774 sizeof(kvm_sigmask
)))
2777 if (kvm_sigmask
.len
!= sizeof(csigset
))
2780 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2783 sigset_from_compat(&sigset
, &csigset
);
2784 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2786 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2790 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2798 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2799 int (*accessor
)(struct kvm_device
*dev
,
2800 struct kvm_device_attr
*attr
),
2803 struct kvm_device_attr attr
;
2808 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2811 return accessor(dev
, &attr
);
2814 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2817 struct kvm_device
*dev
= filp
->private_data
;
2820 case KVM_SET_DEVICE_ATTR
:
2821 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2822 case KVM_GET_DEVICE_ATTR
:
2823 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2824 case KVM_HAS_DEVICE_ATTR
:
2825 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2827 if (dev
->ops
->ioctl
)
2828 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2834 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2836 struct kvm_device
*dev
= filp
->private_data
;
2837 struct kvm
*kvm
= dev
->kvm
;
2843 static const struct file_operations kvm_device_fops
= {
2844 .unlocked_ioctl
= kvm_device_ioctl
,
2845 #ifdef CONFIG_KVM_COMPAT
2846 .compat_ioctl
= kvm_device_ioctl
,
2848 .release
= kvm_device_release
,
2851 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2853 if (filp
->f_op
!= &kvm_device_fops
)
2856 return filp
->private_data
;
2859 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2860 #ifdef CONFIG_KVM_MPIC
2861 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2862 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2866 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2868 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2871 if (kvm_device_ops_table
[type
] != NULL
)
2874 kvm_device_ops_table
[type
] = ops
;
2878 void kvm_unregister_device_ops(u32 type
)
2880 if (kvm_device_ops_table
[type
] != NULL
)
2881 kvm_device_ops_table
[type
] = NULL
;
2884 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2885 struct kvm_create_device
*cd
)
2887 struct kvm_device_ops
*ops
= NULL
;
2888 struct kvm_device
*dev
;
2889 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2892 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2895 ops
= kvm_device_ops_table
[cd
->type
];
2902 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2909 mutex_lock(&kvm
->lock
);
2910 ret
= ops
->create(dev
, cd
->type
);
2912 mutex_unlock(&kvm
->lock
);
2916 list_add(&dev
->vm_node
, &kvm
->devices
);
2917 mutex_unlock(&kvm
->lock
);
2922 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2924 mutex_lock(&kvm
->lock
);
2925 list_del(&dev
->vm_node
);
2926 mutex_unlock(&kvm
->lock
);
2936 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2939 case KVM_CAP_USER_MEMORY
:
2940 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2941 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2942 case KVM_CAP_INTERNAL_ERROR_DATA
:
2943 #ifdef CONFIG_HAVE_KVM_MSI
2944 case KVM_CAP_SIGNAL_MSI
:
2946 #ifdef CONFIG_HAVE_KVM_IRQFD
2948 case KVM_CAP_IRQFD_RESAMPLE
:
2950 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
2951 case KVM_CAP_CHECK_EXTENSION_VM
:
2953 #ifdef CONFIG_KVM_MMIO
2954 case KVM_CAP_COALESCED_MMIO
:
2955 return KVM_COALESCED_MMIO_PAGE_OFFSET
;
2957 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2958 case KVM_CAP_IRQ_ROUTING
:
2959 return KVM_MAX_IRQ_ROUTES
;
2961 #if KVM_ADDRESS_SPACE_NUM > 1
2962 case KVM_CAP_MULTI_ADDRESS_SPACE
:
2963 return KVM_ADDRESS_SPACE_NUM
;
2965 case KVM_CAP_MAX_VCPU_ID
:
2966 return KVM_MAX_VCPU_ID
;
2970 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2973 static long kvm_vm_ioctl(struct file
*filp
,
2974 unsigned int ioctl
, unsigned long arg
)
2976 struct kvm
*kvm
= filp
->private_data
;
2977 void __user
*argp
= (void __user
*)arg
;
2980 if (kvm
->mm
!= current
->mm
)
2983 case KVM_CREATE_VCPU
:
2984 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2986 case KVM_SET_USER_MEMORY_REGION
: {
2987 struct kvm_userspace_memory_region kvm_userspace_mem
;
2990 if (copy_from_user(&kvm_userspace_mem
, argp
,
2991 sizeof(kvm_userspace_mem
)))
2994 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2997 case KVM_GET_DIRTY_LOG
: {
2998 struct kvm_dirty_log log
;
3001 if (copy_from_user(&log
, argp
, sizeof(log
)))
3003 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3006 #ifdef CONFIG_KVM_MMIO
3007 case KVM_REGISTER_COALESCED_MMIO
: {
3008 struct kvm_coalesced_mmio_zone zone
;
3011 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3013 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
3016 case KVM_UNREGISTER_COALESCED_MMIO
: {
3017 struct kvm_coalesced_mmio_zone zone
;
3020 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3022 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
3027 struct kvm_irqfd data
;
3030 if (copy_from_user(&data
, argp
, sizeof(data
)))
3032 r
= kvm_irqfd(kvm
, &data
);
3035 case KVM_IOEVENTFD
: {
3036 struct kvm_ioeventfd data
;
3039 if (copy_from_user(&data
, argp
, sizeof(data
)))
3041 r
= kvm_ioeventfd(kvm
, &data
);
3044 #ifdef CONFIG_HAVE_KVM_MSI
3045 case KVM_SIGNAL_MSI
: {
3049 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
3051 r
= kvm_send_userspace_msi(kvm
, &msi
);
3055 #ifdef __KVM_HAVE_IRQ_LINE
3056 case KVM_IRQ_LINE_STATUS
:
3057 case KVM_IRQ_LINE
: {
3058 struct kvm_irq_level irq_event
;
3061 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
3064 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
3065 ioctl
== KVM_IRQ_LINE_STATUS
);
3070 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3071 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
3079 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3080 case KVM_SET_GSI_ROUTING
: {
3081 struct kvm_irq_routing routing
;
3082 struct kvm_irq_routing __user
*urouting
;
3083 struct kvm_irq_routing_entry
*entries
= NULL
;
3086 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
3089 if (!kvm_arch_can_set_irq_routing(kvm
))
3091 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
3097 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
3102 if (copy_from_user(entries
, urouting
->entries
,
3103 routing
.nr
* sizeof(*entries
)))
3104 goto out_free_irq_routing
;
3106 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
3108 out_free_irq_routing
:
3112 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3113 case KVM_CREATE_DEVICE
: {
3114 struct kvm_create_device cd
;
3117 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
3120 r
= kvm_ioctl_create_device(kvm
, &cd
);
3125 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
3131 case KVM_CHECK_EXTENSION
:
3132 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
3135 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
3141 #ifdef CONFIG_KVM_COMPAT
3142 struct compat_kvm_dirty_log
{
3146 compat_uptr_t dirty_bitmap
; /* one bit per page */
3151 static long kvm_vm_compat_ioctl(struct file
*filp
,
3152 unsigned int ioctl
, unsigned long arg
)
3154 struct kvm
*kvm
= filp
->private_data
;
3157 if (kvm
->mm
!= current
->mm
)
3160 case KVM_GET_DIRTY_LOG
: {
3161 struct compat_kvm_dirty_log compat_log
;
3162 struct kvm_dirty_log log
;
3164 if (copy_from_user(&compat_log
, (void __user
*)arg
,
3165 sizeof(compat_log
)))
3167 log
.slot
= compat_log
.slot
;
3168 log
.padding1
= compat_log
.padding1
;
3169 log
.padding2
= compat_log
.padding2
;
3170 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
3172 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3176 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
3182 static struct file_operations kvm_vm_fops
= {
3183 .release
= kvm_vm_release
,
3184 .unlocked_ioctl
= kvm_vm_ioctl
,
3185 #ifdef CONFIG_KVM_COMPAT
3186 .compat_ioctl
= kvm_vm_compat_ioctl
,
3188 .llseek
= noop_llseek
,
3191 static int kvm_dev_ioctl_create_vm(unsigned long type
)
3197 kvm
= kvm_create_vm(type
);
3199 return PTR_ERR(kvm
);
3200 #ifdef CONFIG_KVM_MMIO
3201 r
= kvm_coalesced_mmio_init(kvm
);
3207 r
= get_unused_fd_flags(O_CLOEXEC
);
3212 file
= anon_inode_getfile("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
3216 return PTR_ERR(file
);
3220 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3221 * already set, with ->release() being kvm_vm_release(). In error
3222 * cases it will be called by the final fput(file) and will take
3223 * care of doing kvm_put_kvm(kvm).
3225 if (kvm_create_vm_debugfs(kvm
, r
) < 0) {
3230 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM
, kvm
);
3232 fd_install(r
, file
);
3236 static long kvm_dev_ioctl(struct file
*filp
,
3237 unsigned int ioctl
, unsigned long arg
)
3242 case KVM_GET_API_VERSION
:
3245 r
= KVM_API_VERSION
;
3248 r
= kvm_dev_ioctl_create_vm(arg
);
3250 case KVM_CHECK_EXTENSION
:
3251 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3253 case KVM_GET_VCPU_MMAP_SIZE
:
3256 r
= PAGE_SIZE
; /* struct kvm_run */
3258 r
+= PAGE_SIZE
; /* pio data page */
3260 #ifdef CONFIG_KVM_MMIO
3261 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3264 case KVM_TRACE_ENABLE
:
3265 case KVM_TRACE_PAUSE
:
3266 case KVM_TRACE_DISABLE
:
3270 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3276 static struct file_operations kvm_chardev_ops
= {
3277 .unlocked_ioctl
= kvm_dev_ioctl
,
3278 .compat_ioctl
= kvm_dev_ioctl
,
3279 .llseek
= noop_llseek
,
3282 static struct miscdevice kvm_dev
= {
3288 static void hardware_enable_nolock(void *junk
)
3290 int cpu
= raw_smp_processor_id();
3293 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3296 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3298 r
= kvm_arch_hardware_enable();
3301 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3302 atomic_inc(&hardware_enable_failed
);
3303 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3307 static int kvm_starting_cpu(unsigned int cpu
)
3309 raw_spin_lock(&kvm_count_lock
);
3310 if (kvm_usage_count
)
3311 hardware_enable_nolock(NULL
);
3312 raw_spin_unlock(&kvm_count_lock
);
3316 static void hardware_disable_nolock(void *junk
)
3318 int cpu
= raw_smp_processor_id();
3320 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3322 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3323 kvm_arch_hardware_disable();
3326 static int kvm_dying_cpu(unsigned int cpu
)
3328 raw_spin_lock(&kvm_count_lock
);
3329 if (kvm_usage_count
)
3330 hardware_disable_nolock(NULL
);
3331 raw_spin_unlock(&kvm_count_lock
);
3335 static void hardware_disable_all_nolock(void)
3337 BUG_ON(!kvm_usage_count
);
3340 if (!kvm_usage_count
)
3341 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3344 static void hardware_disable_all(void)
3346 raw_spin_lock(&kvm_count_lock
);
3347 hardware_disable_all_nolock();
3348 raw_spin_unlock(&kvm_count_lock
);
3351 static int hardware_enable_all(void)
3355 raw_spin_lock(&kvm_count_lock
);
3358 if (kvm_usage_count
== 1) {
3359 atomic_set(&hardware_enable_failed
, 0);
3360 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3362 if (atomic_read(&hardware_enable_failed
)) {
3363 hardware_disable_all_nolock();
3368 raw_spin_unlock(&kvm_count_lock
);
3373 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3377 * Some (well, at least mine) BIOSes hang on reboot if
3380 * And Intel TXT required VMX off for all cpu when system shutdown.
3382 pr_info("kvm: exiting hardware virtualization\n");
3383 kvm_rebooting
= true;
3384 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3388 static struct notifier_block kvm_reboot_notifier
= {
3389 .notifier_call
= kvm_reboot
,
3393 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3397 for (i
= 0; i
< bus
->dev_count
; i
++) {
3398 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3400 kvm_iodevice_destructor(pos
);
3405 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3406 const struct kvm_io_range
*r2
)
3408 gpa_t addr1
= r1
->addr
;
3409 gpa_t addr2
= r2
->addr
;
3414 /* If r2->len == 0, match the exact address. If r2->len != 0,
3415 * accept any overlapping write. Any order is acceptable for
3416 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3417 * we process all of them.
3430 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3432 return kvm_io_bus_cmp(p1
, p2
);
3435 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
3436 gpa_t addr
, int len
)
3438 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
3444 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
3445 kvm_io_bus_sort_cmp
, NULL
);
3450 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3451 gpa_t addr
, int len
)
3453 struct kvm_io_range
*range
, key
;
3456 key
= (struct kvm_io_range
) {
3461 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3462 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3466 off
= range
- bus
->range
;
3468 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3474 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3475 struct kvm_io_range
*range
, const void *val
)
3479 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3483 while (idx
< bus
->dev_count
&&
3484 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3485 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3494 /* kvm_io_bus_write - called under kvm->slots_lock */
3495 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3496 int len
, const void *val
)
3498 struct kvm_io_bus
*bus
;
3499 struct kvm_io_range range
;
3502 range
= (struct kvm_io_range
) {
3507 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3510 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3511 return r
< 0 ? r
: 0;
3514 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3515 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3516 gpa_t addr
, int len
, const void *val
, long cookie
)
3518 struct kvm_io_bus
*bus
;
3519 struct kvm_io_range range
;
3521 range
= (struct kvm_io_range
) {
3526 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3530 /* First try the device referenced by cookie. */
3531 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3532 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3533 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3538 * cookie contained garbage; fall back to search and return the
3539 * correct cookie value.
3541 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3544 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3545 struct kvm_io_range
*range
, void *val
)
3549 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3553 while (idx
< bus
->dev_count
&&
3554 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3555 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3563 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3565 /* kvm_io_bus_read - called under kvm->slots_lock */
3566 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3569 struct kvm_io_bus
*bus
;
3570 struct kvm_io_range range
;
3573 range
= (struct kvm_io_range
) {
3578 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3581 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3582 return r
< 0 ? r
: 0;
3586 /* Caller must hold slots_lock. */
3587 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3588 int len
, struct kvm_io_device
*dev
)
3590 struct kvm_io_bus
*new_bus
, *bus
;
3592 bus
= kvm_get_bus(kvm
, bus_idx
);
3596 /* exclude ioeventfd which is limited by maximum fd */
3597 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3600 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3601 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3604 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3605 sizeof(struct kvm_io_range
)));
3606 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3607 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3608 synchronize_srcu_expedited(&kvm
->srcu
);
3614 /* Caller must hold slots_lock. */
3615 void kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3616 struct kvm_io_device
*dev
)
3619 struct kvm_io_bus
*new_bus
, *bus
;
3621 bus
= kvm_get_bus(kvm
, bus_idx
);
3625 for (i
= 0; i
< bus
->dev_count
; i
++)
3626 if (bus
->range
[i
].dev
== dev
) {
3630 if (i
== bus
->dev_count
)
3633 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3634 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3636 pr_err("kvm: failed to shrink bus, removing it completely\n");
3640 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3641 new_bus
->dev_count
--;
3642 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3643 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3646 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3647 synchronize_srcu_expedited(&kvm
->srcu
);
3652 struct kvm_io_device
*kvm_io_bus_get_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3655 struct kvm_io_bus
*bus
;
3656 int dev_idx
, srcu_idx
;
3657 struct kvm_io_device
*iodev
= NULL
;
3659 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
3661 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
3665 dev_idx
= kvm_io_bus_get_first_dev(bus
, addr
, 1);
3669 iodev
= bus
->range
[dev_idx
].dev
;
3672 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
3676 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev
);
3678 static int kvm_debugfs_open(struct inode
*inode
, struct file
*file
,
3679 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
3682 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3685 /* The debugfs files are a reference to the kvm struct which
3686 * is still valid when kvm_destroy_vm is called.
3687 * To avoid the race between open and the removal of the debugfs
3688 * directory we test against the users count.
3690 if (!refcount_inc_not_zero(&stat_data
->kvm
->users_count
))
3693 if (simple_attr_open(inode
, file
, get
, set
, fmt
)) {
3694 kvm_put_kvm(stat_data
->kvm
);
3701 static int kvm_debugfs_release(struct inode
*inode
, struct file
*file
)
3703 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3706 simple_attr_release(inode
, file
);
3707 kvm_put_kvm(stat_data
->kvm
);
3712 static int vm_stat_get_per_vm(void *data
, u64
*val
)
3714 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3716 *val
= *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
);
3721 static int vm_stat_clear_per_vm(void *data
, u64 val
)
3723 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3728 *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
) = 0;
3733 static int vm_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3735 __simple_attr_check_format("%llu\n", 0ull);
3736 return kvm_debugfs_open(inode
, file
, vm_stat_get_per_vm
,
3737 vm_stat_clear_per_vm
, "%llu\n");
3740 static const struct file_operations vm_stat_get_per_vm_fops
= {
3741 .owner
= THIS_MODULE
,
3742 .open
= vm_stat_get_per_vm_open
,
3743 .release
= kvm_debugfs_release
,
3744 .read
= simple_attr_read
,
3745 .write
= simple_attr_write
,
3746 .llseek
= no_llseek
,
3749 static int vcpu_stat_get_per_vm(void *data
, u64
*val
)
3752 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3753 struct kvm_vcpu
*vcpu
;
3757 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3758 *val
+= *(u64
*)((void *)vcpu
+ stat_data
->offset
);
3763 static int vcpu_stat_clear_per_vm(void *data
, u64 val
)
3766 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3767 struct kvm_vcpu
*vcpu
;
3772 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3773 *(u64
*)((void *)vcpu
+ stat_data
->offset
) = 0;
3778 static int vcpu_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3780 __simple_attr_check_format("%llu\n", 0ull);
3781 return kvm_debugfs_open(inode
, file
, vcpu_stat_get_per_vm
,
3782 vcpu_stat_clear_per_vm
, "%llu\n");
3785 static const struct file_operations vcpu_stat_get_per_vm_fops
= {
3786 .owner
= THIS_MODULE
,
3787 .open
= vcpu_stat_get_per_vm_open
,
3788 .release
= kvm_debugfs_release
,
3789 .read
= simple_attr_read
,
3790 .write
= simple_attr_write
,
3791 .llseek
= no_llseek
,
3794 static const struct file_operations
*stat_fops_per_vm
[] = {
3795 [KVM_STAT_VCPU
] = &vcpu_stat_get_per_vm_fops
,
3796 [KVM_STAT_VM
] = &vm_stat_get_per_vm_fops
,
3799 static int vm_stat_get(void *_offset
, u64
*val
)
3801 unsigned offset
= (long)_offset
;
3803 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3807 spin_lock(&kvm_lock
);
3808 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3810 vm_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3813 spin_unlock(&kvm_lock
);
3817 static int vm_stat_clear(void *_offset
, u64 val
)
3819 unsigned offset
= (long)_offset
;
3821 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3826 spin_lock(&kvm_lock
);
3827 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3829 vm_stat_clear_per_vm((void *)&stat_tmp
, 0);
3831 spin_unlock(&kvm_lock
);
3836 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, vm_stat_clear
, "%llu\n");
3838 static int vcpu_stat_get(void *_offset
, u64
*val
)
3840 unsigned offset
= (long)_offset
;
3842 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3846 spin_lock(&kvm_lock
);
3847 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3849 vcpu_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3852 spin_unlock(&kvm_lock
);
3856 static int vcpu_stat_clear(void *_offset
, u64 val
)
3858 unsigned offset
= (long)_offset
;
3860 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3865 spin_lock(&kvm_lock
);
3866 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3868 vcpu_stat_clear_per_vm((void *)&stat_tmp
, 0);
3870 spin_unlock(&kvm_lock
);
3875 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, vcpu_stat_clear
,
3878 static const struct file_operations
*stat_fops
[] = {
3879 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3880 [KVM_STAT_VM
] = &vm_stat_fops
,
3883 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
)
3885 struct kobj_uevent_env
*env
;
3886 unsigned long long created
, active
;
3888 if (!kvm_dev
.this_device
|| !kvm
)
3891 spin_lock(&kvm_lock
);
3892 if (type
== KVM_EVENT_CREATE_VM
) {
3893 kvm_createvm_count
++;
3895 } else if (type
== KVM_EVENT_DESTROY_VM
) {
3898 created
= kvm_createvm_count
;
3899 active
= kvm_active_vms
;
3900 spin_unlock(&kvm_lock
);
3902 env
= kzalloc(sizeof(*env
), GFP_KERNEL
);
3906 add_uevent_var(env
, "CREATED=%llu", created
);
3907 add_uevent_var(env
, "COUNT=%llu", active
);
3909 if (type
== KVM_EVENT_CREATE_VM
) {
3910 add_uevent_var(env
, "EVENT=create");
3911 kvm
->userspace_pid
= task_pid_nr(current
);
3912 } else if (type
== KVM_EVENT_DESTROY_VM
) {
3913 add_uevent_var(env
, "EVENT=destroy");
3915 add_uevent_var(env
, "PID=%d", kvm
->userspace_pid
);
3917 if (kvm
->debugfs_dentry
) {
3918 char *tmp
, *p
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3921 tmp
= dentry_path_raw(kvm
->debugfs_dentry
, p
, PATH_MAX
);
3923 add_uevent_var(env
, "STATS_PATH=%s", tmp
);
3927 /* no need for checks, since we are adding at most only 5 keys */
3928 env
->envp
[env
->envp_idx
++] = NULL
;
3929 kobject_uevent_env(&kvm_dev
.this_device
->kobj
, KOBJ_CHANGE
, env
->envp
);
3933 static int kvm_init_debug(void)
3936 struct kvm_stats_debugfs_item
*p
;
3938 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3939 if (kvm_debugfs_dir
== NULL
)
3942 kvm_debugfs_num_entries
= 0;
3943 for (p
= debugfs_entries
; p
->name
; ++p
, kvm_debugfs_num_entries
++) {
3944 if (!debugfs_create_file(p
->name
, 0644, kvm_debugfs_dir
,
3945 (void *)(long)p
->offset
,
3946 stat_fops
[p
->kind
]))
3953 debugfs_remove_recursive(kvm_debugfs_dir
);
3958 static int kvm_suspend(void)
3960 if (kvm_usage_count
)
3961 hardware_disable_nolock(NULL
);
3965 static void kvm_resume(void)
3967 if (kvm_usage_count
) {
3968 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3969 hardware_enable_nolock(NULL
);
3973 static struct syscore_ops kvm_syscore_ops
= {
3974 .suspend
= kvm_suspend
,
3975 .resume
= kvm_resume
,
3979 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3981 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3984 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3986 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3988 if (vcpu
->preempted
)
3989 vcpu
->preempted
= false;
3991 kvm_arch_sched_in(vcpu
, cpu
);
3993 kvm_arch_vcpu_load(vcpu
, cpu
);
3996 static void kvm_sched_out(struct preempt_notifier
*pn
,
3997 struct task_struct
*next
)
3999 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
4001 if (current
->state
== TASK_RUNNING
)
4002 vcpu
->preempted
= true;
4003 kvm_arch_vcpu_put(vcpu
);
4006 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
4007 struct module
*module
)
4012 r
= kvm_arch_init(opaque
);
4017 * kvm_arch_init makes sure there's at most one caller
4018 * for architectures that support multiple implementations,
4019 * like intel and amd on x86.
4020 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4021 * conflicts in case kvm is already setup for another implementation.
4023 r
= kvm_irqfd_init();
4027 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
4032 r
= kvm_arch_hardware_setup();
4036 for_each_online_cpu(cpu
) {
4037 smp_call_function_single(cpu
,
4038 kvm_arch_check_processor_compat
,
4044 r
= cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING
, "kvm/cpu:starting",
4045 kvm_starting_cpu
, kvm_dying_cpu
);
4048 register_reboot_notifier(&kvm_reboot_notifier
);
4050 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4052 vcpu_align
= __alignof__(struct kvm_vcpu
);
4053 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
4055 if (!kvm_vcpu_cache
) {
4060 r
= kvm_async_pf_init();
4064 kvm_chardev_ops
.owner
= module
;
4065 kvm_vm_fops
.owner
= module
;
4066 kvm_vcpu_fops
.owner
= module
;
4068 r
= misc_register(&kvm_dev
);
4070 pr_err("kvm: misc device register failed\n");
4074 register_syscore_ops(&kvm_syscore_ops
);
4076 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
4077 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
4079 r
= kvm_init_debug();
4081 pr_err("kvm: create debugfs files failed\n");
4085 r
= kvm_vfio_ops_init();
4091 unregister_syscore_ops(&kvm_syscore_ops
);
4092 misc_deregister(&kvm_dev
);
4094 kvm_async_pf_deinit();
4096 kmem_cache_destroy(kvm_vcpu_cache
);
4098 unregister_reboot_notifier(&kvm_reboot_notifier
);
4099 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4102 kvm_arch_hardware_unsetup();
4104 free_cpumask_var(cpus_hardware_enabled
);
4112 EXPORT_SYMBOL_GPL(kvm_init
);
4116 debugfs_remove_recursive(kvm_debugfs_dir
);
4117 misc_deregister(&kvm_dev
);
4118 kmem_cache_destroy(kvm_vcpu_cache
);
4119 kvm_async_pf_deinit();
4120 unregister_syscore_ops(&kvm_syscore_ops
);
4121 unregister_reboot_notifier(&kvm_reboot_notifier
);
4122 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4123 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
4124 kvm_arch_hardware_unsetup();
4127 free_cpumask_var(cpus_hardware_enabled
);
4128 kvm_vfio_ops_exit();
4130 EXPORT_SYMBOL_GPL(kvm_exit
);