[PATCH] dvb: stv0299: reduce i2c xfer and set register 0x12 from inittab
[linux/fpc-iii.git] / mm / memory.c
blob0f60baf6f69b36c0b0a5ddd65021be62c7150690
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
70 unsigned long num_physpages;
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
91 void pgd_clear_bad(pgd_t *pgd)
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
97 void pud_clear_bad(pud_t *pud)
99 pud_ERROR(*pud);
100 pud_clear(pud);
103 void pmd_clear_bad(pmd_t *pmd)
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_lock_deinit(page);
118 pte_free_tlb(tlb, page);
119 dec_page_state(nr_page_table_pages);
120 tlb->mm->nr_ptes--;
123 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
124 unsigned long addr, unsigned long end,
125 unsigned long floor, unsigned long ceiling)
127 pmd_t *pmd;
128 unsigned long next;
129 unsigned long start;
131 start = addr;
132 pmd = pmd_offset(pud, addr);
133 do {
134 next = pmd_addr_end(addr, end);
135 if (pmd_none_or_clear_bad(pmd))
136 continue;
137 free_pte_range(tlb, pmd);
138 } while (pmd++, addr = next, addr != end);
140 start &= PUD_MASK;
141 if (start < floor)
142 return;
143 if (ceiling) {
144 ceiling &= PUD_MASK;
145 if (!ceiling)
146 return;
148 if (end - 1 > ceiling - 1)
149 return;
151 pmd = pmd_offset(pud, start);
152 pud_clear(pud);
153 pmd_free_tlb(tlb, pmd);
156 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
157 unsigned long addr, unsigned long end,
158 unsigned long floor, unsigned long ceiling)
160 pud_t *pud;
161 unsigned long next;
162 unsigned long start;
164 start = addr;
165 pud = pud_offset(pgd, addr);
166 do {
167 next = pud_addr_end(addr, end);
168 if (pud_none_or_clear_bad(pud))
169 continue;
170 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
171 } while (pud++, addr = next, addr != end);
173 start &= PGDIR_MASK;
174 if (start < floor)
175 return;
176 if (ceiling) {
177 ceiling &= PGDIR_MASK;
178 if (!ceiling)
179 return;
181 if (end - 1 > ceiling - 1)
182 return;
184 pud = pud_offset(pgd, start);
185 pgd_clear(pgd);
186 pud_free_tlb(tlb, pud);
190 * This function frees user-level page tables of a process.
192 * Must be called with pagetable lock held.
194 void free_pgd_range(struct mmu_gather **tlb,
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
198 pgd_t *pgd;
199 unsigned long next;
200 unsigned long start;
203 * The next few lines have given us lots of grief...
205 * Why are we testing PMD* at this top level? Because often
206 * there will be no work to do at all, and we'd prefer not to
207 * go all the way down to the bottom just to discover that.
209 * Why all these "- 1"s? Because 0 represents both the bottom
210 * of the address space and the top of it (using -1 for the
211 * top wouldn't help much: the masks would do the wrong thing).
212 * The rule is that addr 0 and floor 0 refer to the bottom of
213 * the address space, but end 0 and ceiling 0 refer to the top
214 * Comparisons need to use "end - 1" and "ceiling - 1" (though
215 * that end 0 case should be mythical).
217 * Wherever addr is brought up or ceiling brought down, we must
218 * be careful to reject "the opposite 0" before it confuses the
219 * subsequent tests. But what about where end is brought down
220 * by PMD_SIZE below? no, end can't go down to 0 there.
222 * Whereas we round start (addr) and ceiling down, by different
223 * masks at different levels, in order to test whether a table
224 * now has no other vmas using it, so can be freed, we don't
225 * bother to round floor or end up - the tests don't need that.
228 addr &= PMD_MASK;
229 if (addr < floor) {
230 addr += PMD_SIZE;
231 if (!addr)
232 return;
234 if (ceiling) {
235 ceiling &= PMD_MASK;
236 if (!ceiling)
237 return;
239 if (end - 1 > ceiling - 1)
240 end -= PMD_SIZE;
241 if (addr > end - 1)
242 return;
244 start = addr;
245 pgd = pgd_offset((*tlb)->mm, addr);
246 do {
247 next = pgd_addr_end(addr, end);
248 if (pgd_none_or_clear_bad(pgd))
249 continue;
250 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
251 } while (pgd++, addr = next, addr != end);
253 if (!(*tlb)->fullmm)
254 flush_tlb_pgtables((*tlb)->mm, start, end);
257 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
258 unsigned long floor, unsigned long ceiling)
260 while (vma) {
261 struct vm_area_struct *next = vma->vm_next;
262 unsigned long addr = vma->vm_start;
265 * Hide vma from rmap and vmtruncate before freeing pgtables
267 anon_vma_unlink(vma);
268 unlink_file_vma(vma);
270 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
271 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
272 floor, next? next->vm_start: ceiling);
273 } else {
275 * Optimization: gather nearby vmas into one call down
277 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
278 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
279 HPAGE_SIZE)) {
280 vma = next;
281 next = vma->vm_next;
282 anon_vma_unlink(vma);
283 unlink_file_vma(vma);
285 free_pgd_range(tlb, addr, vma->vm_end,
286 floor, next? next->vm_start: ceiling);
288 vma = next;
292 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
294 struct page *new = pte_alloc_one(mm, address);
295 if (!new)
296 return -ENOMEM;
298 pte_lock_init(new);
299 spin_lock(&mm->page_table_lock);
300 if (pmd_present(*pmd)) { /* Another has populated it */
301 pte_lock_deinit(new);
302 pte_free(new);
303 } else {
304 mm->nr_ptes++;
305 inc_page_state(nr_page_table_pages);
306 pmd_populate(mm, pmd, new);
308 spin_unlock(&mm->page_table_lock);
309 return 0;
312 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
314 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
315 if (!new)
316 return -ENOMEM;
318 spin_lock(&init_mm.page_table_lock);
319 if (pmd_present(*pmd)) /* Another has populated it */
320 pte_free_kernel(new);
321 else
322 pmd_populate_kernel(&init_mm, pmd, new);
323 spin_unlock(&init_mm.page_table_lock);
324 return 0;
327 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
329 if (file_rss)
330 add_mm_counter(mm, file_rss, file_rss);
331 if (anon_rss)
332 add_mm_counter(mm, anon_rss, anon_rss);
336 * This function is called to print an error when a pte in a
337 * !VM_RESERVED region is found pointing to an invalid pfn (which
338 * is an error.
340 * The calling function must still handle the error.
342 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
344 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
345 "vm_flags = %lx, vaddr = %lx\n",
346 (long long)pte_val(pte),
347 (vma->vm_mm == current->mm ? current->comm : "???"),
348 vma->vm_flags, vaddr);
349 dump_stack();
353 * copy one vm_area from one task to the other. Assumes the page tables
354 * already present in the new task to be cleared in the whole range
355 * covered by this vma.
358 static inline void
359 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
360 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
361 unsigned long addr, int *rss)
363 unsigned long vm_flags = vma->vm_flags;
364 pte_t pte = *src_pte;
365 struct page *page;
366 unsigned long pfn;
368 /* pte contains position in swap or file, so copy. */
369 if (unlikely(!pte_present(pte))) {
370 if (!pte_file(pte)) {
371 swap_duplicate(pte_to_swp_entry(pte));
372 /* make sure dst_mm is on swapoff's mmlist. */
373 if (unlikely(list_empty(&dst_mm->mmlist))) {
374 spin_lock(&mmlist_lock);
375 if (list_empty(&dst_mm->mmlist))
376 list_add(&dst_mm->mmlist,
377 &src_mm->mmlist);
378 spin_unlock(&mmlist_lock);
381 goto out_set_pte;
384 /* If the region is VM_RESERVED, the mapping is not
385 * mapped via rmap - duplicate the pte as is.
387 if (vm_flags & VM_RESERVED)
388 goto out_set_pte;
390 pfn = pte_pfn(pte);
391 /* If the pte points outside of valid memory but
392 * the region is not VM_RESERVED, we have a problem.
394 if (unlikely(!pfn_valid(pfn))) {
395 print_bad_pte(vma, pte, addr);
396 goto out_set_pte; /* try to do something sane */
399 page = pfn_to_page(pfn);
402 * If it's a COW mapping, write protect it both
403 * in the parent and the child
405 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
406 ptep_set_wrprotect(src_mm, addr, src_pte);
407 pte = *src_pte;
411 * If it's a shared mapping, mark it clean in
412 * the child
414 if (vm_flags & VM_SHARED)
415 pte = pte_mkclean(pte);
416 pte = pte_mkold(pte);
417 get_page(page);
418 page_dup_rmap(page);
419 rss[!!PageAnon(page)]++;
421 out_set_pte:
422 set_pte_at(dst_mm, addr, dst_pte, pte);
425 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
426 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
427 unsigned long addr, unsigned long end)
429 pte_t *src_pte, *dst_pte;
430 spinlock_t *src_ptl, *dst_ptl;
431 int progress = 0;
432 int rss[2];
434 again:
435 rss[1] = rss[0] = 0;
436 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
437 if (!dst_pte)
438 return -ENOMEM;
439 src_pte = pte_offset_map_nested(src_pmd, addr);
440 src_ptl = pte_lockptr(src_mm, src_pmd);
441 spin_lock(src_ptl);
443 do {
445 * We are holding two locks at this point - either of them
446 * could generate latencies in another task on another CPU.
448 if (progress >= 32) {
449 progress = 0;
450 if (need_resched() ||
451 need_lockbreak(src_ptl) ||
452 need_lockbreak(dst_ptl))
453 break;
455 if (pte_none(*src_pte)) {
456 progress++;
457 continue;
459 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
460 progress += 8;
461 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
463 spin_unlock(src_ptl);
464 pte_unmap_nested(src_pte - 1);
465 add_mm_rss(dst_mm, rss[0], rss[1]);
466 pte_unmap_unlock(dst_pte - 1, dst_ptl);
467 cond_resched();
468 if (addr != end)
469 goto again;
470 return 0;
473 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
474 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
475 unsigned long addr, unsigned long end)
477 pmd_t *src_pmd, *dst_pmd;
478 unsigned long next;
480 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
481 if (!dst_pmd)
482 return -ENOMEM;
483 src_pmd = pmd_offset(src_pud, addr);
484 do {
485 next = pmd_addr_end(addr, end);
486 if (pmd_none_or_clear_bad(src_pmd))
487 continue;
488 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
489 vma, addr, next))
490 return -ENOMEM;
491 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
492 return 0;
495 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
496 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
497 unsigned long addr, unsigned long end)
499 pud_t *src_pud, *dst_pud;
500 unsigned long next;
502 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
503 if (!dst_pud)
504 return -ENOMEM;
505 src_pud = pud_offset(src_pgd, addr);
506 do {
507 next = pud_addr_end(addr, end);
508 if (pud_none_or_clear_bad(src_pud))
509 continue;
510 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
511 vma, addr, next))
512 return -ENOMEM;
513 } while (dst_pud++, src_pud++, addr = next, addr != end);
514 return 0;
517 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
518 struct vm_area_struct *vma)
520 pgd_t *src_pgd, *dst_pgd;
521 unsigned long next;
522 unsigned long addr = vma->vm_start;
523 unsigned long end = vma->vm_end;
526 * Don't copy ptes where a page fault will fill them correctly.
527 * Fork becomes much lighter when there are big shared or private
528 * readonly mappings. The tradeoff is that copy_page_range is more
529 * efficient than faulting.
531 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
532 if (!vma->anon_vma)
533 return 0;
536 if (is_vm_hugetlb_page(vma))
537 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
539 dst_pgd = pgd_offset(dst_mm, addr);
540 src_pgd = pgd_offset(src_mm, addr);
541 do {
542 next = pgd_addr_end(addr, end);
543 if (pgd_none_or_clear_bad(src_pgd))
544 continue;
545 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
546 vma, addr, next))
547 return -ENOMEM;
548 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
549 return 0;
552 static void zap_pte_range(struct mmu_gather *tlb,
553 struct vm_area_struct *vma, pmd_t *pmd,
554 unsigned long addr, unsigned long end,
555 struct zap_details *details)
557 struct mm_struct *mm = tlb->mm;
558 pte_t *pte;
559 spinlock_t *ptl;
560 int file_rss = 0;
561 int anon_rss = 0;
563 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
564 do {
565 pte_t ptent = *pte;
566 if (pte_none(ptent))
567 continue;
568 if (pte_present(ptent)) {
569 struct page *page = NULL;
570 if (!(vma->vm_flags & VM_RESERVED)) {
571 unsigned long pfn = pte_pfn(ptent);
572 if (unlikely(!pfn_valid(pfn)))
573 print_bad_pte(vma, ptent, addr);
574 else
575 page = pfn_to_page(pfn);
577 if (unlikely(details) && page) {
579 * unmap_shared_mapping_pages() wants to
580 * invalidate cache without truncating:
581 * unmap shared but keep private pages.
583 if (details->check_mapping &&
584 details->check_mapping != page->mapping)
585 continue;
587 * Each page->index must be checked when
588 * invalidating or truncating nonlinear.
590 if (details->nonlinear_vma &&
591 (page->index < details->first_index ||
592 page->index > details->last_index))
593 continue;
595 ptent = ptep_get_and_clear_full(mm, addr, pte,
596 tlb->fullmm);
597 tlb_remove_tlb_entry(tlb, pte, addr);
598 if (unlikely(!page))
599 continue;
600 if (unlikely(details) && details->nonlinear_vma
601 && linear_page_index(details->nonlinear_vma,
602 addr) != page->index)
603 set_pte_at(mm, addr, pte,
604 pgoff_to_pte(page->index));
605 if (PageAnon(page))
606 anon_rss--;
607 else {
608 if (pte_dirty(ptent))
609 set_page_dirty(page);
610 if (pte_young(ptent))
611 mark_page_accessed(page);
612 file_rss--;
614 page_remove_rmap(page);
615 tlb_remove_page(tlb, page);
616 continue;
619 * If details->check_mapping, we leave swap entries;
620 * if details->nonlinear_vma, we leave file entries.
622 if (unlikely(details))
623 continue;
624 if (!pte_file(ptent))
625 free_swap_and_cache(pte_to_swp_entry(ptent));
626 pte_clear_full(mm, addr, pte, tlb->fullmm);
627 } while (pte++, addr += PAGE_SIZE, addr != end);
629 add_mm_rss(mm, file_rss, anon_rss);
630 pte_unmap_unlock(pte - 1, ptl);
633 static inline void zap_pmd_range(struct mmu_gather *tlb,
634 struct vm_area_struct *vma, pud_t *pud,
635 unsigned long addr, unsigned long end,
636 struct zap_details *details)
638 pmd_t *pmd;
639 unsigned long next;
641 pmd = pmd_offset(pud, addr);
642 do {
643 next = pmd_addr_end(addr, end);
644 if (pmd_none_or_clear_bad(pmd))
645 continue;
646 zap_pte_range(tlb, vma, pmd, addr, next, details);
647 } while (pmd++, addr = next, addr != end);
650 static inline void zap_pud_range(struct mmu_gather *tlb,
651 struct vm_area_struct *vma, pgd_t *pgd,
652 unsigned long addr, unsigned long end,
653 struct zap_details *details)
655 pud_t *pud;
656 unsigned long next;
658 pud = pud_offset(pgd, addr);
659 do {
660 next = pud_addr_end(addr, end);
661 if (pud_none_or_clear_bad(pud))
662 continue;
663 zap_pmd_range(tlb, vma, pud, addr, next, details);
664 } while (pud++, addr = next, addr != end);
667 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
668 unsigned long addr, unsigned long end,
669 struct zap_details *details)
671 pgd_t *pgd;
672 unsigned long next;
674 if (details && !details->check_mapping && !details->nonlinear_vma)
675 details = NULL;
677 BUG_ON(addr >= end);
678 tlb_start_vma(tlb, vma);
679 pgd = pgd_offset(vma->vm_mm, addr);
680 do {
681 next = pgd_addr_end(addr, end);
682 if (pgd_none_or_clear_bad(pgd))
683 continue;
684 zap_pud_range(tlb, vma, pgd, addr, next, details);
685 } while (pgd++, addr = next, addr != end);
686 tlb_end_vma(tlb, vma);
689 #ifdef CONFIG_PREEMPT
690 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
691 #else
692 /* No preempt: go for improved straight-line efficiency */
693 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
694 #endif
697 * unmap_vmas - unmap a range of memory covered by a list of vma's
698 * @tlbp: address of the caller's struct mmu_gather
699 * @vma: the starting vma
700 * @start_addr: virtual address at which to start unmapping
701 * @end_addr: virtual address at which to end unmapping
702 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
703 * @details: details of nonlinear truncation or shared cache invalidation
705 * Returns the end address of the unmapping (restart addr if interrupted).
707 * Unmap all pages in the vma list.
709 * We aim to not hold locks for too long (for scheduling latency reasons).
710 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
711 * return the ending mmu_gather to the caller.
713 * Only addresses between `start' and `end' will be unmapped.
715 * The VMA list must be sorted in ascending virtual address order.
717 * unmap_vmas() assumes that the caller will flush the whole unmapped address
718 * range after unmap_vmas() returns. So the only responsibility here is to
719 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
720 * drops the lock and schedules.
722 unsigned long unmap_vmas(struct mmu_gather **tlbp,
723 struct vm_area_struct *vma, unsigned long start_addr,
724 unsigned long end_addr, unsigned long *nr_accounted,
725 struct zap_details *details)
727 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
728 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
729 int tlb_start_valid = 0;
730 unsigned long start = start_addr;
731 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
732 int fullmm = (*tlbp)->fullmm;
734 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
735 unsigned long end;
737 start = max(vma->vm_start, start_addr);
738 if (start >= vma->vm_end)
739 continue;
740 end = min(vma->vm_end, end_addr);
741 if (end <= vma->vm_start)
742 continue;
744 if (vma->vm_flags & VM_ACCOUNT)
745 *nr_accounted += (end - start) >> PAGE_SHIFT;
747 while (start != end) {
748 unsigned long block;
750 if (!tlb_start_valid) {
751 tlb_start = start;
752 tlb_start_valid = 1;
755 if (is_vm_hugetlb_page(vma)) {
756 block = end - start;
757 unmap_hugepage_range(vma, start, end);
758 } else {
759 block = min(zap_bytes, end - start);
760 unmap_page_range(*tlbp, vma, start,
761 start + block, details);
764 start += block;
765 zap_bytes -= block;
766 if ((long)zap_bytes > 0)
767 continue;
769 tlb_finish_mmu(*tlbp, tlb_start, start);
771 if (need_resched() ||
772 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
773 if (i_mmap_lock) {
774 *tlbp = NULL;
775 goto out;
777 cond_resched();
780 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
781 tlb_start_valid = 0;
782 zap_bytes = ZAP_BLOCK_SIZE;
785 out:
786 return start; /* which is now the end (or restart) address */
790 * zap_page_range - remove user pages in a given range
791 * @vma: vm_area_struct holding the applicable pages
792 * @address: starting address of pages to zap
793 * @size: number of bytes to zap
794 * @details: details of nonlinear truncation or shared cache invalidation
796 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
797 unsigned long size, struct zap_details *details)
799 struct mm_struct *mm = vma->vm_mm;
800 struct mmu_gather *tlb;
801 unsigned long end = address + size;
802 unsigned long nr_accounted = 0;
804 lru_add_drain();
805 tlb = tlb_gather_mmu(mm, 0);
806 update_hiwater_rss(mm);
807 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
808 if (tlb)
809 tlb_finish_mmu(tlb, address, end);
810 return end;
814 * Do a quick page-table lookup for a single page.
816 struct page *follow_page(struct mm_struct *mm, unsigned long address,
817 unsigned int flags)
819 pgd_t *pgd;
820 pud_t *pud;
821 pmd_t *pmd;
822 pte_t *ptep, pte;
823 spinlock_t *ptl;
824 unsigned long pfn;
825 struct page *page;
827 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
828 if (!IS_ERR(page)) {
829 BUG_ON(flags & FOLL_GET);
830 goto out;
833 page = NULL;
834 pgd = pgd_offset(mm, address);
835 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
836 goto no_page_table;
838 pud = pud_offset(pgd, address);
839 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
840 goto no_page_table;
842 pmd = pmd_offset(pud, address);
843 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
844 goto no_page_table;
846 if (pmd_huge(*pmd)) {
847 BUG_ON(flags & FOLL_GET);
848 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
849 goto out;
852 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
853 if (!ptep)
854 goto out;
856 pte = *ptep;
857 if (!pte_present(pte))
858 goto unlock;
859 if ((flags & FOLL_WRITE) && !pte_write(pte))
860 goto unlock;
861 pfn = pte_pfn(pte);
862 if (!pfn_valid(pfn))
863 goto unlock;
865 page = pfn_to_page(pfn);
866 if (flags & FOLL_GET)
867 get_page(page);
868 if (flags & FOLL_TOUCH) {
869 if ((flags & FOLL_WRITE) &&
870 !pte_dirty(pte) && !PageDirty(page))
871 set_page_dirty(page);
872 mark_page_accessed(page);
874 unlock:
875 pte_unmap_unlock(ptep, ptl);
876 out:
877 return page;
879 no_page_table:
881 * When core dumping an enormous anonymous area that nobody
882 * has touched so far, we don't want to allocate page tables.
884 if (flags & FOLL_ANON) {
885 page = ZERO_PAGE(address);
886 if (flags & FOLL_GET)
887 get_page(page);
888 BUG_ON(flags & FOLL_WRITE);
890 return page;
893 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
894 unsigned long start, int len, int write, int force,
895 struct page **pages, struct vm_area_struct **vmas)
897 int i;
898 unsigned int vm_flags;
901 * Require read or write permissions.
902 * If 'force' is set, we only require the "MAY" flags.
904 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
905 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
906 i = 0;
908 do {
909 struct vm_area_struct *vma;
910 unsigned int foll_flags;
912 vma = find_extend_vma(mm, start);
913 if (!vma && in_gate_area(tsk, start)) {
914 unsigned long pg = start & PAGE_MASK;
915 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
916 pgd_t *pgd;
917 pud_t *pud;
918 pmd_t *pmd;
919 pte_t *pte;
920 if (write) /* user gate pages are read-only */
921 return i ? : -EFAULT;
922 if (pg > TASK_SIZE)
923 pgd = pgd_offset_k(pg);
924 else
925 pgd = pgd_offset_gate(mm, pg);
926 BUG_ON(pgd_none(*pgd));
927 pud = pud_offset(pgd, pg);
928 BUG_ON(pud_none(*pud));
929 pmd = pmd_offset(pud, pg);
930 if (pmd_none(*pmd))
931 return i ? : -EFAULT;
932 pte = pte_offset_map(pmd, pg);
933 if (pte_none(*pte)) {
934 pte_unmap(pte);
935 return i ? : -EFAULT;
937 if (pages) {
938 pages[i] = pte_page(*pte);
939 get_page(pages[i]);
941 pte_unmap(pte);
942 if (vmas)
943 vmas[i] = gate_vma;
944 i++;
945 start += PAGE_SIZE;
946 len--;
947 continue;
950 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
951 || !(vm_flags & vma->vm_flags))
952 return i ? : -EFAULT;
954 if (is_vm_hugetlb_page(vma)) {
955 i = follow_hugetlb_page(mm, vma, pages, vmas,
956 &start, &len, i);
957 continue;
960 foll_flags = FOLL_TOUCH;
961 if (pages)
962 foll_flags |= FOLL_GET;
963 if (!write && !(vma->vm_flags & VM_LOCKED) &&
964 (!vma->vm_ops || !vma->vm_ops->nopage))
965 foll_flags |= FOLL_ANON;
967 do {
968 struct page *page;
970 if (write)
971 foll_flags |= FOLL_WRITE;
973 cond_resched();
974 while (!(page = follow_page(mm, start, foll_flags))) {
975 int ret;
976 ret = __handle_mm_fault(mm, vma, start,
977 foll_flags & FOLL_WRITE);
979 * The VM_FAULT_WRITE bit tells us that do_wp_page has
980 * broken COW when necessary, even if maybe_mkwrite
981 * decided not to set pte_write. We can thus safely do
982 * subsequent page lookups as if they were reads.
984 if (ret & VM_FAULT_WRITE)
985 foll_flags &= ~FOLL_WRITE;
987 switch (ret & ~VM_FAULT_WRITE) {
988 case VM_FAULT_MINOR:
989 tsk->min_flt++;
990 break;
991 case VM_FAULT_MAJOR:
992 tsk->maj_flt++;
993 break;
994 case VM_FAULT_SIGBUS:
995 return i ? i : -EFAULT;
996 case VM_FAULT_OOM:
997 return i ? i : -ENOMEM;
998 default:
999 BUG();
1002 if (pages) {
1003 pages[i] = page;
1004 flush_dcache_page(page);
1006 if (vmas)
1007 vmas[i] = vma;
1008 i++;
1009 start += PAGE_SIZE;
1010 len--;
1011 } while (len && start < vma->vm_end);
1012 } while (len);
1013 return i;
1015 EXPORT_SYMBOL(get_user_pages);
1017 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1018 unsigned long addr, unsigned long end, pgprot_t prot)
1020 pte_t *pte;
1021 spinlock_t *ptl;
1023 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1024 if (!pte)
1025 return -ENOMEM;
1026 do {
1027 struct page *page = ZERO_PAGE(addr);
1028 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1029 page_cache_get(page);
1030 page_add_file_rmap(page);
1031 inc_mm_counter(mm, file_rss);
1032 BUG_ON(!pte_none(*pte));
1033 set_pte_at(mm, addr, pte, zero_pte);
1034 } while (pte++, addr += PAGE_SIZE, addr != end);
1035 pte_unmap_unlock(pte - 1, ptl);
1036 return 0;
1039 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1040 unsigned long addr, unsigned long end, pgprot_t prot)
1042 pmd_t *pmd;
1043 unsigned long next;
1045 pmd = pmd_alloc(mm, pud, addr);
1046 if (!pmd)
1047 return -ENOMEM;
1048 do {
1049 next = pmd_addr_end(addr, end);
1050 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1051 return -ENOMEM;
1052 } while (pmd++, addr = next, addr != end);
1053 return 0;
1056 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1057 unsigned long addr, unsigned long end, pgprot_t prot)
1059 pud_t *pud;
1060 unsigned long next;
1062 pud = pud_alloc(mm, pgd, addr);
1063 if (!pud)
1064 return -ENOMEM;
1065 do {
1066 next = pud_addr_end(addr, end);
1067 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1068 return -ENOMEM;
1069 } while (pud++, addr = next, addr != end);
1070 return 0;
1073 int zeromap_page_range(struct vm_area_struct *vma,
1074 unsigned long addr, unsigned long size, pgprot_t prot)
1076 pgd_t *pgd;
1077 unsigned long next;
1078 unsigned long end = addr + size;
1079 struct mm_struct *mm = vma->vm_mm;
1080 int err;
1082 BUG_ON(addr >= end);
1083 pgd = pgd_offset(mm, addr);
1084 flush_cache_range(vma, addr, end);
1085 do {
1086 next = pgd_addr_end(addr, end);
1087 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1088 if (err)
1089 break;
1090 } while (pgd++, addr = next, addr != end);
1091 return err;
1095 * maps a range of physical memory into the requested pages. the old
1096 * mappings are removed. any references to nonexistent pages results
1097 * in null mappings (currently treated as "copy-on-access")
1099 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1100 unsigned long addr, unsigned long end,
1101 unsigned long pfn, pgprot_t prot)
1103 pte_t *pte;
1104 spinlock_t *ptl;
1106 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1107 if (!pte)
1108 return -ENOMEM;
1109 do {
1110 BUG_ON(!pte_none(*pte));
1111 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1112 pfn++;
1113 } while (pte++, addr += PAGE_SIZE, addr != end);
1114 pte_unmap_unlock(pte - 1, ptl);
1115 return 0;
1118 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1119 unsigned long addr, unsigned long end,
1120 unsigned long pfn, pgprot_t prot)
1122 pmd_t *pmd;
1123 unsigned long next;
1125 pfn -= addr >> PAGE_SHIFT;
1126 pmd = pmd_alloc(mm, pud, addr);
1127 if (!pmd)
1128 return -ENOMEM;
1129 do {
1130 next = pmd_addr_end(addr, end);
1131 if (remap_pte_range(mm, pmd, addr, next,
1132 pfn + (addr >> PAGE_SHIFT), prot))
1133 return -ENOMEM;
1134 } while (pmd++, addr = next, addr != end);
1135 return 0;
1138 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1139 unsigned long addr, unsigned long end,
1140 unsigned long pfn, pgprot_t prot)
1142 pud_t *pud;
1143 unsigned long next;
1145 pfn -= addr >> PAGE_SHIFT;
1146 pud = pud_alloc(mm, pgd, addr);
1147 if (!pud)
1148 return -ENOMEM;
1149 do {
1150 next = pud_addr_end(addr, end);
1151 if (remap_pmd_range(mm, pud, addr, next,
1152 pfn + (addr >> PAGE_SHIFT), prot))
1153 return -ENOMEM;
1154 } while (pud++, addr = next, addr != end);
1155 return 0;
1158 /* Note: this is only safe if the mm semaphore is held when called. */
1159 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1160 unsigned long pfn, unsigned long size, pgprot_t prot)
1162 pgd_t *pgd;
1163 unsigned long next;
1164 unsigned long end = addr + PAGE_ALIGN(size);
1165 struct mm_struct *mm = vma->vm_mm;
1166 int err;
1169 * Physically remapped pages are special. Tell the
1170 * rest of the world about it:
1171 * VM_IO tells people not to look at these pages
1172 * (accesses can have side effects).
1173 * VM_RESERVED tells the core MM not to "manage" these pages
1174 * (e.g. refcount, mapcount, try to swap them out).
1176 vma->vm_flags |= VM_IO | VM_RESERVED;
1178 BUG_ON(addr >= end);
1179 pfn -= addr >> PAGE_SHIFT;
1180 pgd = pgd_offset(mm, addr);
1181 flush_cache_range(vma, addr, end);
1182 do {
1183 next = pgd_addr_end(addr, end);
1184 err = remap_pud_range(mm, pgd, addr, next,
1185 pfn + (addr >> PAGE_SHIFT), prot);
1186 if (err)
1187 break;
1188 } while (pgd++, addr = next, addr != end);
1189 return err;
1191 EXPORT_SYMBOL(remap_pfn_range);
1194 * handle_pte_fault chooses page fault handler according to an entry
1195 * which was read non-atomically. Before making any commitment, on
1196 * those architectures or configurations (e.g. i386 with PAE) which
1197 * might give a mix of unmatched parts, do_swap_page and do_file_page
1198 * must check under lock before unmapping the pte and proceeding
1199 * (but do_wp_page is only called after already making such a check;
1200 * and do_anonymous_page and do_no_page can safely check later on).
1202 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1203 pte_t *page_table, pte_t orig_pte)
1205 int same = 1;
1206 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1207 if (sizeof(pte_t) > sizeof(unsigned long)) {
1208 spinlock_t *ptl = pte_lockptr(mm, pmd);
1209 spin_lock(ptl);
1210 same = pte_same(*page_table, orig_pte);
1211 spin_unlock(ptl);
1213 #endif
1214 pte_unmap(page_table);
1215 return same;
1219 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1220 * servicing faults for write access. In the normal case, do always want
1221 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1222 * that do not have writing enabled, when used by access_process_vm.
1224 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1226 if (likely(vma->vm_flags & VM_WRITE))
1227 pte = pte_mkwrite(pte);
1228 return pte;
1232 * This routine handles present pages, when users try to write
1233 * to a shared page. It is done by copying the page to a new address
1234 * and decrementing the shared-page counter for the old page.
1236 * Note that this routine assumes that the protection checks have been
1237 * done by the caller (the low-level page fault routine in most cases).
1238 * Thus we can safely just mark it writable once we've done any necessary
1239 * COW.
1241 * We also mark the page dirty at this point even though the page will
1242 * change only once the write actually happens. This avoids a few races,
1243 * and potentially makes it more efficient.
1245 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1246 * but allow concurrent faults), with pte both mapped and locked.
1247 * We return with mmap_sem still held, but pte unmapped and unlocked.
1249 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1250 unsigned long address, pte_t *page_table, pmd_t *pmd,
1251 spinlock_t *ptl, pte_t orig_pte)
1253 struct page *old_page, *new_page;
1254 unsigned long pfn = pte_pfn(orig_pte);
1255 pte_t entry;
1256 int ret = VM_FAULT_MINOR;
1258 BUG_ON(vma->vm_flags & VM_RESERVED);
1260 if (unlikely(!pfn_valid(pfn))) {
1262 * Page table corrupted: show pte and kill process.
1264 print_bad_pte(vma, orig_pte, address);
1265 ret = VM_FAULT_OOM;
1266 goto unlock;
1268 old_page = pfn_to_page(pfn);
1270 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1271 int reuse = can_share_swap_page(old_page);
1272 unlock_page(old_page);
1273 if (reuse) {
1274 flush_cache_page(vma, address, pfn);
1275 entry = pte_mkyoung(orig_pte);
1276 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1277 ptep_set_access_flags(vma, address, page_table, entry, 1);
1278 update_mmu_cache(vma, address, entry);
1279 lazy_mmu_prot_update(entry);
1280 ret |= VM_FAULT_WRITE;
1281 goto unlock;
1286 * Ok, we need to copy. Oh, well..
1288 page_cache_get(old_page);
1289 pte_unmap_unlock(page_table, ptl);
1291 if (unlikely(anon_vma_prepare(vma)))
1292 goto oom;
1293 if (old_page == ZERO_PAGE(address)) {
1294 new_page = alloc_zeroed_user_highpage(vma, address);
1295 if (!new_page)
1296 goto oom;
1297 } else {
1298 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1299 if (!new_page)
1300 goto oom;
1301 copy_user_highpage(new_page, old_page, address);
1305 * Re-check the pte - we dropped the lock
1307 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1308 if (likely(pte_same(*page_table, orig_pte))) {
1309 page_remove_rmap(old_page);
1310 if (!PageAnon(old_page)) {
1311 inc_mm_counter(mm, anon_rss);
1312 dec_mm_counter(mm, file_rss);
1314 flush_cache_page(vma, address, pfn);
1315 entry = mk_pte(new_page, vma->vm_page_prot);
1316 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1317 ptep_establish(vma, address, page_table, entry);
1318 update_mmu_cache(vma, address, entry);
1319 lazy_mmu_prot_update(entry);
1320 lru_cache_add_active(new_page);
1321 page_add_anon_rmap(new_page, vma, address);
1323 /* Free the old page.. */
1324 new_page = old_page;
1325 ret |= VM_FAULT_WRITE;
1327 page_cache_release(new_page);
1328 page_cache_release(old_page);
1329 unlock:
1330 pte_unmap_unlock(page_table, ptl);
1331 return ret;
1332 oom:
1333 page_cache_release(old_page);
1334 return VM_FAULT_OOM;
1338 * Helper functions for unmap_mapping_range().
1340 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1342 * We have to restart searching the prio_tree whenever we drop the lock,
1343 * since the iterator is only valid while the lock is held, and anyway
1344 * a later vma might be split and reinserted earlier while lock dropped.
1346 * The list of nonlinear vmas could be handled more efficiently, using
1347 * a placeholder, but handle it in the same way until a need is shown.
1348 * It is important to search the prio_tree before nonlinear list: a vma
1349 * may become nonlinear and be shifted from prio_tree to nonlinear list
1350 * while the lock is dropped; but never shifted from list to prio_tree.
1352 * In order to make forward progress despite restarting the search,
1353 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1354 * quickly skip it next time around. Since the prio_tree search only
1355 * shows us those vmas affected by unmapping the range in question, we
1356 * can't efficiently keep all vmas in step with mapping->truncate_count:
1357 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1358 * mapping->truncate_count and vma->vm_truncate_count are protected by
1359 * i_mmap_lock.
1361 * In order to make forward progress despite repeatedly restarting some
1362 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1363 * and restart from that address when we reach that vma again. It might
1364 * have been split or merged, shrunk or extended, but never shifted: so
1365 * restart_addr remains valid so long as it remains in the vma's range.
1366 * unmap_mapping_range forces truncate_count to leap over page-aligned
1367 * values so we can save vma's restart_addr in its truncate_count field.
1369 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1371 static void reset_vma_truncate_counts(struct address_space *mapping)
1373 struct vm_area_struct *vma;
1374 struct prio_tree_iter iter;
1376 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1377 vma->vm_truncate_count = 0;
1378 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1379 vma->vm_truncate_count = 0;
1382 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1383 unsigned long start_addr, unsigned long end_addr,
1384 struct zap_details *details)
1386 unsigned long restart_addr;
1387 int need_break;
1389 again:
1390 restart_addr = vma->vm_truncate_count;
1391 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1392 start_addr = restart_addr;
1393 if (start_addr >= end_addr) {
1394 /* Top of vma has been split off since last time */
1395 vma->vm_truncate_count = details->truncate_count;
1396 return 0;
1400 restart_addr = zap_page_range(vma, start_addr,
1401 end_addr - start_addr, details);
1402 need_break = need_resched() ||
1403 need_lockbreak(details->i_mmap_lock);
1405 if (restart_addr >= end_addr) {
1406 /* We have now completed this vma: mark it so */
1407 vma->vm_truncate_count = details->truncate_count;
1408 if (!need_break)
1409 return 0;
1410 } else {
1411 /* Note restart_addr in vma's truncate_count field */
1412 vma->vm_truncate_count = restart_addr;
1413 if (!need_break)
1414 goto again;
1417 spin_unlock(details->i_mmap_lock);
1418 cond_resched();
1419 spin_lock(details->i_mmap_lock);
1420 return -EINTR;
1423 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1424 struct zap_details *details)
1426 struct vm_area_struct *vma;
1427 struct prio_tree_iter iter;
1428 pgoff_t vba, vea, zba, zea;
1430 restart:
1431 vma_prio_tree_foreach(vma, &iter, root,
1432 details->first_index, details->last_index) {
1433 /* Skip quickly over those we have already dealt with */
1434 if (vma->vm_truncate_count == details->truncate_count)
1435 continue;
1437 vba = vma->vm_pgoff;
1438 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1439 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1440 zba = details->first_index;
1441 if (zba < vba)
1442 zba = vba;
1443 zea = details->last_index;
1444 if (zea > vea)
1445 zea = vea;
1447 if (unmap_mapping_range_vma(vma,
1448 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1449 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1450 details) < 0)
1451 goto restart;
1455 static inline void unmap_mapping_range_list(struct list_head *head,
1456 struct zap_details *details)
1458 struct vm_area_struct *vma;
1461 * In nonlinear VMAs there is no correspondence between virtual address
1462 * offset and file offset. So we must perform an exhaustive search
1463 * across *all* the pages in each nonlinear VMA, not just the pages
1464 * whose virtual address lies outside the file truncation point.
1466 restart:
1467 list_for_each_entry(vma, head, shared.vm_set.list) {
1468 /* Skip quickly over those we have already dealt with */
1469 if (vma->vm_truncate_count == details->truncate_count)
1470 continue;
1471 details->nonlinear_vma = vma;
1472 if (unmap_mapping_range_vma(vma, vma->vm_start,
1473 vma->vm_end, details) < 0)
1474 goto restart;
1479 * unmap_mapping_range - unmap the portion of all mmaps
1480 * in the specified address_space corresponding to the specified
1481 * page range in the underlying file.
1482 * @mapping: the address space containing mmaps to be unmapped.
1483 * @holebegin: byte in first page to unmap, relative to the start of
1484 * the underlying file. This will be rounded down to a PAGE_SIZE
1485 * boundary. Note that this is different from vmtruncate(), which
1486 * must keep the partial page. In contrast, we must get rid of
1487 * partial pages.
1488 * @holelen: size of prospective hole in bytes. This will be rounded
1489 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1490 * end of the file.
1491 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1492 * but 0 when invalidating pagecache, don't throw away private data.
1494 void unmap_mapping_range(struct address_space *mapping,
1495 loff_t const holebegin, loff_t const holelen, int even_cows)
1497 struct zap_details details;
1498 pgoff_t hba = holebegin >> PAGE_SHIFT;
1499 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1501 /* Check for overflow. */
1502 if (sizeof(holelen) > sizeof(hlen)) {
1503 long long holeend =
1504 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1505 if (holeend & ~(long long)ULONG_MAX)
1506 hlen = ULONG_MAX - hba + 1;
1509 details.check_mapping = even_cows? NULL: mapping;
1510 details.nonlinear_vma = NULL;
1511 details.first_index = hba;
1512 details.last_index = hba + hlen - 1;
1513 if (details.last_index < details.first_index)
1514 details.last_index = ULONG_MAX;
1515 details.i_mmap_lock = &mapping->i_mmap_lock;
1517 spin_lock(&mapping->i_mmap_lock);
1519 /* serialize i_size write against truncate_count write */
1520 smp_wmb();
1521 /* Protect against page faults, and endless unmapping loops */
1522 mapping->truncate_count++;
1524 * For archs where spin_lock has inclusive semantics like ia64
1525 * this smp_mb() will prevent to read pagetable contents
1526 * before the truncate_count increment is visible to
1527 * other cpus.
1529 smp_mb();
1530 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1531 if (mapping->truncate_count == 0)
1532 reset_vma_truncate_counts(mapping);
1533 mapping->truncate_count++;
1535 details.truncate_count = mapping->truncate_count;
1537 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1538 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1539 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1540 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1541 spin_unlock(&mapping->i_mmap_lock);
1543 EXPORT_SYMBOL(unmap_mapping_range);
1546 * Handle all mappings that got truncated by a "truncate()"
1547 * system call.
1549 * NOTE! We have to be ready to update the memory sharing
1550 * between the file and the memory map for a potential last
1551 * incomplete page. Ugly, but necessary.
1553 int vmtruncate(struct inode * inode, loff_t offset)
1555 struct address_space *mapping = inode->i_mapping;
1556 unsigned long limit;
1558 if (inode->i_size < offset)
1559 goto do_expand;
1561 * truncation of in-use swapfiles is disallowed - it would cause
1562 * subsequent swapout to scribble on the now-freed blocks.
1564 if (IS_SWAPFILE(inode))
1565 goto out_busy;
1566 i_size_write(inode, offset);
1567 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1568 truncate_inode_pages(mapping, offset);
1569 goto out_truncate;
1571 do_expand:
1572 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1573 if (limit != RLIM_INFINITY && offset > limit)
1574 goto out_sig;
1575 if (offset > inode->i_sb->s_maxbytes)
1576 goto out_big;
1577 i_size_write(inode, offset);
1579 out_truncate:
1580 if (inode->i_op && inode->i_op->truncate)
1581 inode->i_op->truncate(inode);
1582 return 0;
1583 out_sig:
1584 send_sig(SIGXFSZ, current, 0);
1585 out_big:
1586 return -EFBIG;
1587 out_busy:
1588 return -ETXTBSY;
1591 EXPORT_SYMBOL(vmtruncate);
1594 * Primitive swap readahead code. We simply read an aligned block of
1595 * (1 << page_cluster) entries in the swap area. This method is chosen
1596 * because it doesn't cost us any seek time. We also make sure to queue
1597 * the 'original' request together with the readahead ones...
1599 * This has been extended to use the NUMA policies from the mm triggering
1600 * the readahead.
1602 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1604 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1606 #ifdef CONFIG_NUMA
1607 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1608 #endif
1609 int i, num;
1610 struct page *new_page;
1611 unsigned long offset;
1614 * Get the number of handles we should do readahead io to.
1616 num = valid_swaphandles(entry, &offset);
1617 for (i = 0; i < num; offset++, i++) {
1618 /* Ok, do the async read-ahead now */
1619 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1620 offset), vma, addr);
1621 if (!new_page)
1622 break;
1623 page_cache_release(new_page);
1624 #ifdef CONFIG_NUMA
1626 * Find the next applicable VMA for the NUMA policy.
1628 addr += PAGE_SIZE;
1629 if (addr == 0)
1630 vma = NULL;
1631 if (vma) {
1632 if (addr >= vma->vm_end) {
1633 vma = next_vma;
1634 next_vma = vma ? vma->vm_next : NULL;
1636 if (vma && addr < vma->vm_start)
1637 vma = NULL;
1638 } else {
1639 if (next_vma && addr >= next_vma->vm_start) {
1640 vma = next_vma;
1641 next_vma = vma->vm_next;
1644 #endif
1646 lru_add_drain(); /* Push any new pages onto the LRU now */
1650 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1651 * but allow concurrent faults), and pte mapped but not yet locked.
1652 * We return with mmap_sem still held, but pte unmapped and unlocked.
1654 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1655 unsigned long address, pte_t *page_table, pmd_t *pmd,
1656 int write_access, pte_t orig_pte)
1658 spinlock_t *ptl;
1659 struct page *page;
1660 swp_entry_t entry;
1661 pte_t pte;
1662 int ret = VM_FAULT_MINOR;
1664 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1665 goto out;
1667 entry = pte_to_swp_entry(orig_pte);
1668 page = lookup_swap_cache(entry);
1669 if (!page) {
1670 swapin_readahead(entry, address, vma);
1671 page = read_swap_cache_async(entry, vma, address);
1672 if (!page) {
1674 * Back out if somebody else faulted in this pte
1675 * while we released the pte lock.
1677 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1678 if (likely(pte_same(*page_table, orig_pte)))
1679 ret = VM_FAULT_OOM;
1680 goto unlock;
1683 /* Had to read the page from swap area: Major fault */
1684 ret = VM_FAULT_MAJOR;
1685 inc_page_state(pgmajfault);
1686 grab_swap_token();
1689 mark_page_accessed(page);
1690 lock_page(page);
1693 * Back out if somebody else already faulted in this pte.
1695 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1696 if (unlikely(!pte_same(*page_table, orig_pte)))
1697 goto out_nomap;
1699 if (unlikely(!PageUptodate(page))) {
1700 ret = VM_FAULT_SIGBUS;
1701 goto out_nomap;
1704 /* The page isn't present yet, go ahead with the fault. */
1706 inc_mm_counter(mm, anon_rss);
1707 pte = mk_pte(page, vma->vm_page_prot);
1708 if (write_access && can_share_swap_page(page)) {
1709 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1710 write_access = 0;
1713 flush_icache_page(vma, page);
1714 set_pte_at(mm, address, page_table, pte);
1715 page_add_anon_rmap(page, vma, address);
1717 swap_free(entry);
1718 if (vm_swap_full())
1719 remove_exclusive_swap_page(page);
1720 unlock_page(page);
1722 if (write_access) {
1723 if (do_wp_page(mm, vma, address,
1724 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1725 ret = VM_FAULT_OOM;
1726 goto out;
1729 /* No need to invalidate - it was non-present before */
1730 update_mmu_cache(vma, address, pte);
1731 lazy_mmu_prot_update(pte);
1732 unlock:
1733 pte_unmap_unlock(page_table, ptl);
1734 out:
1735 return ret;
1736 out_nomap:
1737 pte_unmap_unlock(page_table, ptl);
1738 unlock_page(page);
1739 page_cache_release(page);
1740 return ret;
1744 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1745 * but allow concurrent faults), and pte mapped but not yet locked.
1746 * We return with mmap_sem still held, but pte unmapped and unlocked.
1748 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1749 unsigned long address, pte_t *page_table, pmd_t *pmd,
1750 int write_access)
1752 struct page *page;
1753 spinlock_t *ptl;
1754 pte_t entry;
1756 if (write_access) {
1757 /* Allocate our own private page. */
1758 pte_unmap(page_table);
1760 if (unlikely(anon_vma_prepare(vma)))
1761 goto oom;
1762 page = alloc_zeroed_user_highpage(vma, address);
1763 if (!page)
1764 goto oom;
1766 entry = mk_pte(page, vma->vm_page_prot);
1767 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1769 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1770 if (!pte_none(*page_table))
1771 goto release;
1772 inc_mm_counter(mm, anon_rss);
1773 lru_cache_add_active(page);
1774 SetPageReferenced(page);
1775 page_add_anon_rmap(page, vma, address);
1776 } else {
1777 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1778 page = ZERO_PAGE(address);
1779 page_cache_get(page);
1780 entry = mk_pte(page, vma->vm_page_prot);
1782 ptl = pte_lockptr(mm, pmd);
1783 spin_lock(ptl);
1784 if (!pte_none(*page_table))
1785 goto release;
1786 inc_mm_counter(mm, file_rss);
1787 page_add_file_rmap(page);
1790 set_pte_at(mm, address, page_table, entry);
1792 /* No need to invalidate - it was non-present before */
1793 update_mmu_cache(vma, address, entry);
1794 lazy_mmu_prot_update(entry);
1795 unlock:
1796 pte_unmap_unlock(page_table, ptl);
1797 return VM_FAULT_MINOR;
1798 release:
1799 page_cache_release(page);
1800 goto unlock;
1801 oom:
1802 return VM_FAULT_OOM;
1806 * do_no_page() tries to create a new page mapping. It aggressively
1807 * tries to share with existing pages, but makes a separate copy if
1808 * the "write_access" parameter is true in order to avoid the next
1809 * page fault.
1811 * As this is called only for pages that do not currently exist, we
1812 * do not need to flush old virtual caches or the TLB.
1814 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1815 * but allow concurrent faults), and pte mapped but not yet locked.
1816 * We return with mmap_sem still held, but pte unmapped and unlocked.
1818 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1819 unsigned long address, pte_t *page_table, pmd_t *pmd,
1820 int write_access)
1822 spinlock_t *ptl;
1823 struct page *new_page;
1824 struct address_space *mapping = NULL;
1825 pte_t entry;
1826 unsigned int sequence = 0;
1827 int ret = VM_FAULT_MINOR;
1828 int anon = 0;
1830 pte_unmap(page_table);
1832 if (vma->vm_file) {
1833 mapping = vma->vm_file->f_mapping;
1834 sequence = mapping->truncate_count;
1835 smp_rmb(); /* serializes i_size against truncate_count */
1837 retry:
1838 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1840 * No smp_rmb is needed here as long as there's a full
1841 * spin_lock/unlock sequence inside the ->nopage callback
1842 * (for the pagecache lookup) that acts as an implicit
1843 * smp_mb() and prevents the i_size read to happen
1844 * after the next truncate_count read.
1847 /* no page was available -- either SIGBUS or OOM */
1848 if (new_page == NOPAGE_SIGBUS)
1849 return VM_FAULT_SIGBUS;
1850 if (new_page == NOPAGE_OOM)
1851 return VM_FAULT_OOM;
1854 * Should we do an early C-O-W break?
1856 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1857 struct page *page;
1859 if (unlikely(anon_vma_prepare(vma)))
1860 goto oom;
1861 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1862 if (!page)
1863 goto oom;
1864 copy_user_highpage(page, new_page, address);
1865 page_cache_release(new_page);
1866 new_page = page;
1867 anon = 1;
1870 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1872 * For a file-backed vma, someone could have truncated or otherwise
1873 * invalidated this page. If unmap_mapping_range got called,
1874 * retry getting the page.
1876 if (mapping && unlikely(sequence != mapping->truncate_count)) {
1877 pte_unmap_unlock(page_table, ptl);
1878 page_cache_release(new_page);
1879 cond_resched();
1880 sequence = mapping->truncate_count;
1881 smp_rmb();
1882 goto retry;
1886 * This silly early PAGE_DIRTY setting removes a race
1887 * due to the bad i386 page protection. But it's valid
1888 * for other architectures too.
1890 * Note that if write_access is true, we either now have
1891 * an exclusive copy of the page, or this is a shared mapping,
1892 * so we can make it writable and dirty to avoid having to
1893 * handle that later.
1895 /* Only go through if we didn't race with anybody else... */
1896 if (pte_none(*page_table)) {
1897 flush_icache_page(vma, new_page);
1898 entry = mk_pte(new_page, vma->vm_page_prot);
1899 if (write_access)
1900 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1901 set_pte_at(mm, address, page_table, entry);
1902 if (anon) {
1903 inc_mm_counter(mm, anon_rss);
1904 lru_cache_add_active(new_page);
1905 page_add_anon_rmap(new_page, vma, address);
1906 } else if (!(vma->vm_flags & VM_RESERVED)) {
1907 inc_mm_counter(mm, file_rss);
1908 page_add_file_rmap(new_page);
1910 } else {
1911 /* One of our sibling threads was faster, back out. */
1912 page_cache_release(new_page);
1913 goto unlock;
1916 /* no need to invalidate: a not-present page shouldn't be cached */
1917 update_mmu_cache(vma, address, entry);
1918 lazy_mmu_prot_update(entry);
1919 unlock:
1920 pte_unmap_unlock(page_table, ptl);
1921 return ret;
1922 oom:
1923 page_cache_release(new_page);
1924 return VM_FAULT_OOM;
1928 * Fault of a previously existing named mapping. Repopulate the pte
1929 * from the encoded file_pte if possible. This enables swappable
1930 * nonlinear vmas.
1932 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1933 * but allow concurrent faults), and pte mapped but not yet locked.
1934 * We return with mmap_sem still held, but pte unmapped and unlocked.
1936 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1937 unsigned long address, pte_t *page_table, pmd_t *pmd,
1938 int write_access, pte_t orig_pte)
1940 pgoff_t pgoff;
1941 int err;
1943 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1944 return VM_FAULT_MINOR;
1946 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1948 * Page table corrupted: show pte and kill process.
1950 print_bad_pte(vma, orig_pte, address);
1951 return VM_FAULT_OOM;
1953 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1955 pgoff = pte_to_pgoff(orig_pte);
1956 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1957 vma->vm_page_prot, pgoff, 0);
1958 if (err == -ENOMEM)
1959 return VM_FAULT_OOM;
1960 if (err)
1961 return VM_FAULT_SIGBUS;
1962 return VM_FAULT_MAJOR;
1966 * These routines also need to handle stuff like marking pages dirty
1967 * and/or accessed for architectures that don't do it in hardware (most
1968 * RISC architectures). The early dirtying is also good on the i386.
1970 * There is also a hook called "update_mmu_cache()" that architectures
1971 * with external mmu caches can use to update those (ie the Sparc or
1972 * PowerPC hashed page tables that act as extended TLBs).
1974 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1975 * but allow concurrent faults), and pte mapped but not yet locked.
1976 * We return with mmap_sem still held, but pte unmapped and unlocked.
1978 static inline int handle_pte_fault(struct mm_struct *mm,
1979 struct vm_area_struct *vma, unsigned long address,
1980 pte_t *pte, pmd_t *pmd, int write_access)
1982 pte_t entry;
1983 pte_t old_entry;
1984 spinlock_t *ptl;
1986 old_entry = entry = *pte;
1987 if (!pte_present(entry)) {
1988 if (pte_none(entry)) {
1989 if (!vma->vm_ops || !vma->vm_ops->nopage)
1990 return do_anonymous_page(mm, vma, address,
1991 pte, pmd, write_access);
1992 return do_no_page(mm, vma, address,
1993 pte, pmd, write_access);
1995 if (pte_file(entry))
1996 return do_file_page(mm, vma, address,
1997 pte, pmd, write_access, entry);
1998 return do_swap_page(mm, vma, address,
1999 pte, pmd, write_access, entry);
2002 ptl = pte_lockptr(mm, pmd);
2003 spin_lock(ptl);
2004 if (unlikely(!pte_same(*pte, entry)))
2005 goto unlock;
2006 if (write_access) {
2007 if (!pte_write(entry))
2008 return do_wp_page(mm, vma, address,
2009 pte, pmd, ptl, entry);
2010 entry = pte_mkdirty(entry);
2012 entry = pte_mkyoung(entry);
2013 if (!pte_same(old_entry, entry)) {
2014 ptep_set_access_flags(vma, address, pte, entry, write_access);
2015 update_mmu_cache(vma, address, entry);
2016 lazy_mmu_prot_update(entry);
2017 } else {
2019 * This is needed only for protection faults but the arch code
2020 * is not yet telling us if this is a protection fault or not.
2021 * This still avoids useless tlb flushes for .text page faults
2022 * with threads.
2024 if (write_access)
2025 flush_tlb_page(vma, address);
2027 unlock:
2028 pte_unmap_unlock(pte, ptl);
2029 return VM_FAULT_MINOR;
2033 * By the time we get here, we already hold the mm semaphore
2035 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2036 unsigned long address, int write_access)
2038 pgd_t *pgd;
2039 pud_t *pud;
2040 pmd_t *pmd;
2041 pte_t *pte;
2043 __set_current_state(TASK_RUNNING);
2045 inc_page_state(pgfault);
2047 if (unlikely(is_vm_hugetlb_page(vma)))
2048 return hugetlb_fault(mm, vma, address, write_access);
2050 pgd = pgd_offset(mm, address);
2051 pud = pud_alloc(mm, pgd, address);
2052 if (!pud)
2053 return VM_FAULT_OOM;
2054 pmd = pmd_alloc(mm, pud, address);
2055 if (!pmd)
2056 return VM_FAULT_OOM;
2057 pte = pte_alloc_map(mm, pmd, address);
2058 if (!pte)
2059 return VM_FAULT_OOM;
2061 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2064 #ifndef __PAGETABLE_PUD_FOLDED
2066 * Allocate page upper directory.
2067 * We've already handled the fast-path in-line.
2069 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2071 pud_t *new = pud_alloc_one(mm, address);
2072 if (!new)
2073 return -ENOMEM;
2075 spin_lock(&mm->page_table_lock);
2076 if (pgd_present(*pgd)) /* Another has populated it */
2077 pud_free(new);
2078 else
2079 pgd_populate(mm, pgd, new);
2080 spin_unlock(&mm->page_table_lock);
2081 return 0;
2083 #endif /* __PAGETABLE_PUD_FOLDED */
2085 #ifndef __PAGETABLE_PMD_FOLDED
2087 * Allocate page middle directory.
2088 * We've already handled the fast-path in-line.
2090 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2092 pmd_t *new = pmd_alloc_one(mm, address);
2093 if (!new)
2094 return -ENOMEM;
2096 spin_lock(&mm->page_table_lock);
2097 #ifndef __ARCH_HAS_4LEVEL_HACK
2098 if (pud_present(*pud)) /* Another has populated it */
2099 pmd_free(new);
2100 else
2101 pud_populate(mm, pud, new);
2102 #else
2103 if (pgd_present(*pud)) /* Another has populated it */
2104 pmd_free(new);
2105 else
2106 pgd_populate(mm, pud, new);
2107 #endif /* __ARCH_HAS_4LEVEL_HACK */
2108 spin_unlock(&mm->page_table_lock);
2109 return 0;
2111 #endif /* __PAGETABLE_PMD_FOLDED */
2113 int make_pages_present(unsigned long addr, unsigned long end)
2115 int ret, len, write;
2116 struct vm_area_struct * vma;
2118 vma = find_vma(current->mm, addr);
2119 if (!vma)
2120 return -1;
2121 write = (vma->vm_flags & VM_WRITE) != 0;
2122 if (addr >= end)
2123 BUG();
2124 if (end > vma->vm_end)
2125 BUG();
2126 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2127 ret = get_user_pages(current, current->mm, addr,
2128 len, write, 0, NULL, NULL);
2129 if (ret < 0)
2130 return ret;
2131 return ret == len ? 0 : -1;
2135 * Map a vmalloc()-space virtual address to the physical page.
2137 struct page * vmalloc_to_page(void * vmalloc_addr)
2139 unsigned long addr = (unsigned long) vmalloc_addr;
2140 struct page *page = NULL;
2141 pgd_t *pgd = pgd_offset_k(addr);
2142 pud_t *pud;
2143 pmd_t *pmd;
2144 pte_t *ptep, pte;
2146 if (!pgd_none(*pgd)) {
2147 pud = pud_offset(pgd, addr);
2148 if (!pud_none(*pud)) {
2149 pmd = pmd_offset(pud, addr);
2150 if (!pmd_none(*pmd)) {
2151 ptep = pte_offset_map(pmd, addr);
2152 pte = *ptep;
2153 if (pte_present(pte))
2154 page = pte_page(pte);
2155 pte_unmap(ptep);
2159 return page;
2162 EXPORT_SYMBOL(vmalloc_to_page);
2165 * Map a vmalloc()-space virtual address to the physical page frame number.
2167 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2169 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2172 EXPORT_SYMBOL(vmalloc_to_pfn);
2174 #if !defined(__HAVE_ARCH_GATE_AREA)
2176 #if defined(AT_SYSINFO_EHDR)
2177 static struct vm_area_struct gate_vma;
2179 static int __init gate_vma_init(void)
2181 gate_vma.vm_mm = NULL;
2182 gate_vma.vm_start = FIXADDR_USER_START;
2183 gate_vma.vm_end = FIXADDR_USER_END;
2184 gate_vma.vm_page_prot = PAGE_READONLY;
2185 gate_vma.vm_flags = VM_RESERVED;
2186 return 0;
2188 __initcall(gate_vma_init);
2189 #endif
2191 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2193 #ifdef AT_SYSINFO_EHDR
2194 return &gate_vma;
2195 #else
2196 return NULL;
2197 #endif
2200 int in_gate_area_no_task(unsigned long addr)
2202 #ifdef AT_SYSINFO_EHDR
2203 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2204 return 1;
2205 #endif
2206 return 0;
2209 #endif /* __HAVE_ARCH_GATE_AREA */