2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm-generic/sections.h>
28 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
29 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
31 struct memblock memblock __initdata_memblock
= {
32 .memory
.regions
= memblock_memory_init_regions
,
33 .memory
.cnt
= 1, /* empty dummy entry */
34 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
36 .reserved
.regions
= memblock_reserved_init_regions
,
37 .reserved
.cnt
= 1, /* empty dummy entry */
38 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
41 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
44 int memblock_debug __initdata_memblock
;
45 #ifdef CONFIG_MOVABLE_NODE
46 bool movable_node_enabled __initdata_memblock
= false;
48 static int memblock_can_resize __initdata_memblock
;
49 static int memblock_memory_in_slab __initdata_memblock
= 0;
50 static int memblock_reserved_in_slab __initdata_memblock
= 0;
52 /* inline so we don't get a warning when pr_debug is compiled out */
53 static __init_memblock
const char *
54 memblock_type_name(struct memblock_type
*type
)
56 if (type
== &memblock
.memory
)
58 else if (type
== &memblock
.reserved
)
64 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
65 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
67 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
71 * Address comparison utilities
73 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
74 phys_addr_t base2
, phys_addr_t size2
)
76 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
79 static long __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
80 phys_addr_t base
, phys_addr_t size
)
84 for (i
= 0; i
< type
->cnt
; i
++) {
85 phys_addr_t rgnbase
= type
->regions
[i
].base
;
86 phys_addr_t rgnsize
= type
->regions
[i
].size
;
87 if (memblock_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
91 return (i
< type
->cnt
) ? i
: -1;
95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
96 * @start: start of candidate range
97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98 * @size: size of free area to find
99 * @align: alignment of free area to find
100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
102 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
105 * Found address on success, 0 on failure.
107 static phys_addr_t __init_memblock
108 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
109 phys_addr_t size
, phys_addr_t align
, int nid
)
111 phys_addr_t this_start
, this_end
, cand
;
114 for_each_free_mem_range(i
, nid
, &this_start
, &this_end
, NULL
) {
115 this_start
= clamp(this_start
, start
, end
);
116 this_end
= clamp(this_end
, start
, end
);
118 cand
= round_up(this_start
, align
);
119 if (cand
< this_end
&& this_end
- cand
>= size
)
127 * __memblock_find_range_top_down - find free area utility, in top-down
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
132 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
134 * Utility called from memblock_find_in_range_node(), find free area top-down.
137 * Found address on success, 0 on failure.
139 static phys_addr_t __init_memblock
140 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
141 phys_addr_t size
, phys_addr_t align
, int nid
)
143 phys_addr_t this_start
, this_end
, cand
;
146 for_each_free_mem_range_reverse(i
, nid
, &this_start
, &this_end
, NULL
) {
147 this_start
= clamp(this_start
, start
, end
);
148 this_end
= clamp(this_end
, start
, end
);
153 cand
= round_down(this_end
- size
, align
);
154 if (cand
>= this_start
)
162 * memblock_find_in_range_node - find free area in given range and node
163 * @size: size of free area to find
164 * @align: alignment of free area to find
165 * @start: start of candidate range
166 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
169 * Find @size free area aligned to @align in the specified range and node.
171 * When allocation direction is bottom-up, the @start should be greater
172 * than the end of the kernel image. Otherwise, it will be trimmed. The
173 * reason is that we want the bottom-up allocation just near the kernel
174 * image so it is highly likely that the allocated memory and the kernel
175 * will reside in the same node.
177 * If bottom-up allocation failed, will try to allocate memory top-down.
180 * Found address on success, 0 on failure.
182 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
183 phys_addr_t align
, phys_addr_t start
,
184 phys_addr_t end
, int nid
)
186 phys_addr_t kernel_end
, ret
;
189 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
190 end
= memblock
.current_limit
;
192 /* avoid allocating the first page */
193 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
194 end
= max(start
, end
);
195 kernel_end
= __pa_symbol(_end
);
198 * try bottom-up allocation only when bottom-up mode
199 * is set and @end is above the kernel image.
201 if (memblock_bottom_up() && end
> kernel_end
) {
202 phys_addr_t bottom_up_start
;
204 /* make sure we will allocate above the kernel */
205 bottom_up_start
= max(start
, kernel_end
);
207 /* ok, try bottom-up allocation first */
208 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
214 * we always limit bottom-up allocation above the kernel,
215 * but top-down allocation doesn't have the limit, so
216 * retrying top-down allocation may succeed when bottom-up
219 * bottom-up allocation is expected to be fail very rarely,
220 * so we use WARN_ONCE() here to see the stack trace if
223 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
224 "memory hotunplug may be affected\n");
227 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
);
231 * memblock_find_in_range - find free area in given range
232 * @start: start of candidate range
233 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
234 * @size: size of free area to find
235 * @align: alignment of free area to find
237 * Find @size free area aligned to @align in the specified range.
240 * Found address on success, 0 on failure.
242 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
243 phys_addr_t end
, phys_addr_t size
,
246 return memblock_find_in_range_node(size
, align
, start
, end
,
250 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
252 type
->total_size
-= type
->regions
[r
].size
;
253 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
254 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
257 /* Special case for empty arrays */
258 if (type
->cnt
== 0) {
259 WARN_ON(type
->total_size
!= 0);
261 type
->regions
[0].base
= 0;
262 type
->regions
[0].size
= 0;
263 type
->regions
[0].flags
= 0;
264 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
268 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
270 phys_addr_t __init_memblock
get_allocated_memblock_reserved_regions_info(
273 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
276 *addr
= __pa(memblock
.reserved
.regions
);
278 return PAGE_ALIGN(sizeof(struct memblock_region
) *
279 memblock
.reserved
.max
);
282 phys_addr_t __init_memblock
get_allocated_memblock_memory_regions_info(
285 if (memblock
.memory
.regions
== memblock_memory_init_regions
)
288 *addr
= __pa(memblock
.memory
.regions
);
290 return PAGE_ALIGN(sizeof(struct memblock_region
) *
291 memblock
.memory
.max
);
297 * memblock_double_array - double the size of the memblock regions array
298 * @type: memblock type of the regions array being doubled
299 * @new_area_start: starting address of memory range to avoid overlap with
300 * @new_area_size: size of memory range to avoid overlap with
302 * Double the size of the @type regions array. If memblock is being used to
303 * allocate memory for a new reserved regions array and there is a previously
304 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
305 * waiting to be reserved, ensure the memory used by the new array does
309 * 0 on success, -1 on failure.
311 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
312 phys_addr_t new_area_start
,
313 phys_addr_t new_area_size
)
315 struct memblock_region
*new_array
, *old_array
;
316 phys_addr_t old_alloc_size
, new_alloc_size
;
317 phys_addr_t old_size
, new_size
, addr
;
318 int use_slab
= slab_is_available();
321 /* We don't allow resizing until we know about the reserved regions
322 * of memory that aren't suitable for allocation
324 if (!memblock_can_resize
)
327 /* Calculate new doubled size */
328 old_size
= type
->max
* sizeof(struct memblock_region
);
329 new_size
= old_size
<< 1;
331 * We need to allocated new one align to PAGE_SIZE,
332 * so we can free them completely later.
334 old_alloc_size
= PAGE_ALIGN(old_size
);
335 new_alloc_size
= PAGE_ALIGN(new_size
);
337 /* Retrieve the slab flag */
338 if (type
== &memblock
.memory
)
339 in_slab
= &memblock_memory_in_slab
;
341 in_slab
= &memblock_reserved_in_slab
;
343 /* Try to find some space for it.
345 * WARNING: We assume that either slab_is_available() and we use it or
346 * we use MEMBLOCK for allocations. That means that this is unsafe to
347 * use when bootmem is currently active (unless bootmem itself is
348 * implemented on top of MEMBLOCK which isn't the case yet)
350 * This should however not be an issue for now, as we currently only
351 * call into MEMBLOCK while it's still active, or much later when slab
352 * is active for memory hotplug operations
355 new_array
= kmalloc(new_size
, GFP_KERNEL
);
356 addr
= new_array
? __pa(new_array
) : 0;
358 /* only exclude range when trying to double reserved.regions */
359 if (type
!= &memblock
.reserved
)
360 new_area_start
= new_area_size
= 0;
362 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
363 memblock
.current_limit
,
364 new_alloc_size
, PAGE_SIZE
);
365 if (!addr
&& new_area_size
)
366 addr
= memblock_find_in_range(0,
367 min(new_area_start
, memblock
.current_limit
),
368 new_alloc_size
, PAGE_SIZE
);
370 new_array
= addr
? __va(addr
) : NULL
;
373 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
374 memblock_type_name(type
), type
->max
, type
->max
* 2);
378 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
379 memblock_type_name(type
), type
->max
* 2, (u64
)addr
,
380 (u64
)addr
+ new_size
- 1);
383 * Found space, we now need to move the array over before we add the
384 * reserved region since it may be our reserved array itself that is
387 memcpy(new_array
, type
->regions
, old_size
);
388 memset(new_array
+ type
->max
, 0, old_size
);
389 old_array
= type
->regions
;
390 type
->regions
= new_array
;
393 /* Free old array. We needn't free it if the array is the static one */
396 else if (old_array
!= memblock_memory_init_regions
&&
397 old_array
!= memblock_reserved_init_regions
)
398 memblock_free(__pa(old_array
), old_alloc_size
);
401 * Reserve the new array if that comes from the memblock. Otherwise, we
405 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
407 /* Update slab flag */
414 * memblock_merge_regions - merge neighboring compatible regions
415 * @type: memblock type to scan
417 * Scan @type and merge neighboring compatible regions.
419 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
423 /* cnt never goes below 1 */
424 while (i
< type
->cnt
- 1) {
425 struct memblock_region
*this = &type
->regions
[i
];
426 struct memblock_region
*next
= &type
->regions
[i
+ 1];
428 if (this->base
+ this->size
!= next
->base
||
429 memblock_get_region_node(this) !=
430 memblock_get_region_node(next
) ||
431 this->flags
!= next
->flags
) {
432 BUG_ON(this->base
+ this->size
> next
->base
);
437 this->size
+= next
->size
;
438 /* move forward from next + 1, index of which is i + 2 */
439 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
445 * memblock_insert_region - insert new memblock region
446 * @type: memblock type to insert into
447 * @idx: index for the insertion point
448 * @base: base address of the new region
449 * @size: size of the new region
450 * @nid: node id of the new region
451 * @flags: flags of the new region
453 * Insert new memblock region [@base,@base+@size) into @type at @idx.
454 * @type must already have extra room to accomodate the new region.
456 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
457 int idx
, phys_addr_t base
,
459 int nid
, unsigned long flags
)
461 struct memblock_region
*rgn
= &type
->regions
[idx
];
463 BUG_ON(type
->cnt
>= type
->max
);
464 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
468 memblock_set_region_node(rgn
, nid
);
470 type
->total_size
+= size
;
474 * memblock_add_region - add new memblock region
475 * @type: memblock type to add new region into
476 * @base: base address of the new region
477 * @size: size of the new region
478 * @nid: nid of the new region
479 * @flags: flags of the new region
481 * Add new memblock region [@base,@base+@size) into @type. The new region
482 * is allowed to overlap with existing ones - overlaps don't affect already
483 * existing regions. @type is guaranteed to be minimal (all neighbouring
484 * compatible regions are merged) after the addition.
487 * 0 on success, -errno on failure.
489 static int __init_memblock
memblock_add_region(struct memblock_type
*type
,
490 phys_addr_t base
, phys_addr_t size
,
491 int nid
, unsigned long flags
)
494 phys_addr_t obase
= base
;
495 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
501 /* special case for empty array */
502 if (type
->regions
[0].size
== 0) {
503 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
504 type
->regions
[0].base
= base
;
505 type
->regions
[0].size
= size
;
506 type
->regions
[0].flags
= flags
;
507 memblock_set_region_node(&type
->regions
[0], nid
);
508 type
->total_size
= size
;
513 * The following is executed twice. Once with %false @insert and
514 * then with %true. The first counts the number of regions needed
515 * to accomodate the new area. The second actually inserts them.
520 for (i
= 0; i
< type
->cnt
; i
++) {
521 struct memblock_region
*rgn
= &type
->regions
[i
];
522 phys_addr_t rbase
= rgn
->base
;
523 phys_addr_t rend
= rbase
+ rgn
->size
;
530 * @rgn overlaps. If it separates the lower part of new
531 * area, insert that portion.
536 memblock_insert_region(type
, i
++, base
,
540 /* area below @rend is dealt with, forget about it */
541 base
= min(rend
, end
);
544 /* insert the remaining portion */
548 memblock_insert_region(type
, i
, base
, end
- base
,
553 * If this was the first round, resize array and repeat for actual
554 * insertions; otherwise, merge and return.
557 while (type
->cnt
+ nr_new
> type
->max
)
558 if (memblock_double_array(type
, obase
, size
) < 0)
563 memblock_merge_regions(type
);
568 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
571 return memblock_add_region(&memblock
.memory
, base
, size
, nid
, 0);
574 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
576 return memblock_add_region(&memblock
.memory
, base
, size
,
581 * memblock_isolate_range - isolate given range into disjoint memblocks
582 * @type: memblock type to isolate range for
583 * @base: base of range to isolate
584 * @size: size of range to isolate
585 * @start_rgn: out parameter for the start of isolated region
586 * @end_rgn: out parameter for the end of isolated region
588 * Walk @type and ensure that regions don't cross the boundaries defined by
589 * [@base,@base+@size). Crossing regions are split at the boundaries,
590 * which may create at most two more regions. The index of the first
591 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
594 * 0 on success, -errno on failure.
596 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
597 phys_addr_t base
, phys_addr_t size
,
598 int *start_rgn
, int *end_rgn
)
600 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
603 *start_rgn
= *end_rgn
= 0;
608 /* we'll create at most two more regions */
609 while (type
->cnt
+ 2 > type
->max
)
610 if (memblock_double_array(type
, base
, size
) < 0)
613 for (i
= 0; i
< type
->cnt
; i
++) {
614 struct memblock_region
*rgn
= &type
->regions
[i
];
615 phys_addr_t rbase
= rgn
->base
;
616 phys_addr_t rend
= rbase
+ rgn
->size
;
625 * @rgn intersects from below. Split and continue
626 * to process the next region - the new top half.
629 rgn
->size
-= base
- rbase
;
630 type
->total_size
-= base
- rbase
;
631 memblock_insert_region(type
, i
, rbase
, base
- rbase
,
632 memblock_get_region_node(rgn
),
634 } else if (rend
> end
) {
636 * @rgn intersects from above. Split and redo the
637 * current region - the new bottom half.
640 rgn
->size
-= end
- rbase
;
641 type
->total_size
-= end
- rbase
;
642 memblock_insert_region(type
, i
--, rbase
, end
- rbase
,
643 memblock_get_region_node(rgn
),
646 /* @rgn is fully contained, record it */
656 static int __init_memblock
__memblock_remove(struct memblock_type
*type
,
657 phys_addr_t base
, phys_addr_t size
)
659 int start_rgn
, end_rgn
;
662 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
666 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
667 memblock_remove_region(type
, i
);
671 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
673 return __memblock_remove(&memblock
.memory
, base
, size
);
676 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
678 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
679 (unsigned long long)base
,
680 (unsigned long long)base
+ size
- 1,
683 return __memblock_remove(&memblock
.reserved
, base
, size
);
686 static int __init_memblock
memblock_reserve_region(phys_addr_t base
,
691 struct memblock_type
*_rgn
= &memblock
.reserved
;
693 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
694 (unsigned long long)base
,
695 (unsigned long long)base
+ size
- 1,
696 flags
, (void *)_RET_IP_
);
698 return memblock_add_region(_rgn
, base
, size
, nid
, flags
);
701 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
703 return memblock_reserve_region(base
, size
, MAX_NUMNODES
, 0);
707 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
708 * @base: the base phys addr of the region
709 * @size: the size of the region
711 * This function isolates region [@base, @base + @size), and mark it with flag
714 * Return 0 on succees, -errno on failure.
716 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
718 struct memblock_type
*type
= &memblock
.memory
;
719 int i
, ret
, start_rgn
, end_rgn
;
721 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
725 for (i
= start_rgn
; i
< end_rgn
; i
++)
726 memblock_set_region_flags(&type
->regions
[i
], MEMBLOCK_HOTPLUG
);
728 memblock_merge_regions(type
);
733 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
734 * @base: the base phys addr of the region
735 * @size: the size of the region
737 * This function isolates region [@base, @base + @size), and clear flag
738 * MEMBLOCK_HOTPLUG for the isolated regions.
740 * Return 0 on succees, -errno on failure.
742 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
744 struct memblock_type
*type
= &memblock
.memory
;
745 int i
, ret
, start_rgn
, end_rgn
;
747 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
751 for (i
= start_rgn
; i
< end_rgn
; i
++)
752 memblock_clear_region_flags(&type
->regions
[i
],
755 memblock_merge_regions(type
);
760 * __next_free_mem_range - next function for for_each_free_mem_range()
761 * @idx: pointer to u64 loop variable
762 * @nid: node selector, %NUMA_NO_NODE for all nodes
763 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
764 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
765 * @out_nid: ptr to int for nid of the range, can be %NULL
767 * Find the first free area from *@idx which matches @nid, fill the out
768 * parameters, and update *@idx for the next iteration. The lower 32bit of
769 * *@idx contains index into memory region and the upper 32bit indexes the
770 * areas before each reserved region. For example, if reserved regions
771 * look like the following,
773 * 0:[0-16), 1:[32-48), 2:[128-130)
775 * The upper 32bit indexes the following regions.
777 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
779 * As both region arrays are sorted, the function advances the two indices
780 * in lockstep and returns each intersection.
782 void __init_memblock
__next_free_mem_range(u64
*idx
, int nid
,
783 phys_addr_t
*out_start
,
784 phys_addr_t
*out_end
, int *out_nid
)
786 struct memblock_type
*mem
= &memblock
.memory
;
787 struct memblock_type
*rsv
= &memblock
.reserved
;
788 int mi
= *idx
& 0xffffffff;
791 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
794 for ( ; mi
< mem
->cnt
; mi
++) {
795 struct memblock_region
*m
= &mem
->regions
[mi
];
796 phys_addr_t m_start
= m
->base
;
797 phys_addr_t m_end
= m
->base
+ m
->size
;
799 /* only memory regions are associated with nodes, check it */
800 if (nid
!= NUMA_NO_NODE
&& nid
!= memblock_get_region_node(m
))
803 /* scan areas before each reservation for intersection */
804 for ( ; ri
< rsv
->cnt
+ 1; ri
++) {
805 struct memblock_region
*r
= &rsv
->regions
[ri
];
806 phys_addr_t r_start
= ri
? r
[-1].base
+ r
[-1].size
: 0;
807 phys_addr_t r_end
= ri
< rsv
->cnt
? r
->base
: ULLONG_MAX
;
809 /* if ri advanced past mi, break out to advance mi */
810 if (r_start
>= m_end
)
812 /* if the two regions intersect, we're done */
813 if (m_start
< r_end
) {
815 *out_start
= max(m_start
, r_start
);
817 *out_end
= min(m_end
, r_end
);
819 *out_nid
= memblock_get_region_node(m
);
821 * The region which ends first is advanced
822 * for the next iteration.
828 *idx
= (u32
)mi
| (u64
)ri
<< 32;
834 /* signal end of iteration */
839 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
840 * @idx: pointer to u64 loop variable
841 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
842 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
843 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
844 * @out_nid: ptr to int for nid of the range, can be %NULL
846 * Reverse of __next_free_mem_range().
848 * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't
849 * be able to hot-remove hotpluggable memory used by the kernel. So this
850 * function skip hotpluggable regions if needed when allocating memory for the
853 void __init_memblock
__next_free_mem_range_rev(u64
*idx
, int nid
,
854 phys_addr_t
*out_start
,
855 phys_addr_t
*out_end
, int *out_nid
)
857 struct memblock_type
*mem
= &memblock
.memory
;
858 struct memblock_type
*rsv
= &memblock
.reserved
;
859 int mi
= *idx
& 0xffffffff;
862 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
865 if (*idx
== (u64
)ULLONG_MAX
) {
870 for ( ; mi
>= 0; mi
--) {
871 struct memblock_region
*m
= &mem
->regions
[mi
];
872 phys_addr_t m_start
= m
->base
;
873 phys_addr_t m_end
= m
->base
+ m
->size
;
875 /* only memory regions are associated with nodes, check it */
876 if (nid
!= NUMA_NO_NODE
&& nid
!= memblock_get_region_node(m
))
879 /* skip hotpluggable memory regions if needed */
880 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
883 /* scan areas before each reservation for intersection */
884 for ( ; ri
>= 0; ri
--) {
885 struct memblock_region
*r
= &rsv
->regions
[ri
];
886 phys_addr_t r_start
= ri
? r
[-1].base
+ r
[-1].size
: 0;
887 phys_addr_t r_end
= ri
< rsv
->cnt
? r
->base
: ULLONG_MAX
;
889 /* if ri advanced past mi, break out to advance mi */
890 if (r_end
<= m_start
)
892 /* if the two regions intersect, we're done */
893 if (m_end
> r_start
) {
895 *out_start
= max(m_start
, r_start
);
897 *out_end
= min(m_end
, r_end
);
899 *out_nid
= memblock_get_region_node(m
);
901 if (m_start
>= r_start
)
905 *idx
= (u32
)mi
| (u64
)ri
<< 32;
914 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
916 * Common iterator interface used to define for_each_mem_range().
918 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
919 unsigned long *out_start_pfn
,
920 unsigned long *out_end_pfn
, int *out_nid
)
922 struct memblock_type
*type
= &memblock
.memory
;
923 struct memblock_region
*r
;
925 while (++*idx
< type
->cnt
) {
926 r
= &type
->regions
[*idx
];
928 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
930 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
933 if (*idx
>= type
->cnt
) {
939 *out_start_pfn
= PFN_UP(r
->base
);
941 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
947 * memblock_set_node - set node ID on memblock regions
948 * @base: base of area to set node ID for
949 * @size: size of area to set node ID for
950 * @type: memblock type to set node ID for
951 * @nid: node ID to set
953 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
954 * Regions which cross the area boundaries are split as necessary.
957 * 0 on success, -errno on failure.
959 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
960 struct memblock_type
*type
, int nid
)
962 int start_rgn
, end_rgn
;
965 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
969 for (i
= start_rgn
; i
< end_rgn
; i
++)
970 memblock_set_region_node(&type
->regions
[i
], nid
);
972 memblock_merge_regions(type
);
975 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
977 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
978 phys_addr_t align
, phys_addr_t max_addr
,
984 align
= SMP_CACHE_BYTES
;
986 found
= memblock_find_in_range_node(size
, align
, 0, max_addr
, nid
);
987 if (found
&& !memblock_reserve(found
, size
))
993 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
995 return memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
998 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1000 return memblock_alloc_base_nid(size
, align
, max_addr
, NUMA_NO_NODE
);
1003 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1007 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
1010 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1011 (unsigned long long) size
, (unsigned long long) max_addr
);
1016 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
1018 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1021 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1023 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
1027 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1031 * memblock_virt_alloc_internal - allocate boot memory block
1032 * @size: size of memory block to be allocated in bytes
1033 * @align: alignment of the region and block's size
1034 * @min_addr: the lower bound of the memory region to allocate (phys address)
1035 * @max_addr: the upper bound of the memory region to allocate (phys address)
1036 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1038 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1039 * will fall back to memory below @min_addr. Also, allocation may fall back
1040 * to any node in the system if the specified node can not
1041 * hold the requested memory.
1043 * The allocation is performed from memory region limited by
1044 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1046 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1048 * The phys address of allocated boot memory block is converted to virtual and
1049 * allocated memory is reset to 0.
1051 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1052 * allocated boot memory block, so that it is never reported as leaks.
1055 * Virtual address of allocated memory block on success, NULL on failure.
1057 static void * __init
memblock_virt_alloc_internal(
1058 phys_addr_t size
, phys_addr_t align
,
1059 phys_addr_t min_addr
, phys_addr_t max_addr
,
1065 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1069 * Detect any accidental use of these APIs after slab is ready, as at
1070 * this moment memblock may be deinitialized already and its
1071 * internal data may be destroyed (after execution of free_all_bootmem)
1073 if (WARN_ON_ONCE(slab_is_available()))
1074 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1077 align
= SMP_CACHE_BYTES
;
1079 if (max_addr
> memblock
.current_limit
)
1080 max_addr
= memblock
.current_limit
;
1083 alloc
= memblock_find_in_range_node(size
, align
, min_addr
, max_addr
,
1088 if (nid
!= NUMA_NO_NODE
) {
1089 alloc
= memblock_find_in_range_node(size
, align
, min_addr
,
1090 max_addr
, NUMA_NO_NODE
);
1103 memblock_reserve(alloc
, size
);
1104 ptr
= phys_to_virt(alloc
);
1105 memset(ptr
, 0, size
);
1108 * The min_count is set to 0 so that bootmem allocated blocks
1109 * are never reported as leaks. This is because many of these blocks
1110 * are only referred via the physical address which is not
1111 * looked up by kmemleak.
1113 kmemleak_alloc(ptr
, size
, 0, 0);
1122 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1123 * @size: size of memory block to be allocated in bytes
1124 * @align: alignment of the region and block's size
1125 * @min_addr: the lower bound of the memory region from where the allocation
1126 * is preferred (phys address)
1127 * @max_addr: the upper bound of the memory region from where the allocation
1128 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1129 * allocate only from memory limited by memblock.current_limit value
1130 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1132 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1133 * additional debug information (including caller info), if enabled.
1136 * Virtual address of allocated memory block on success, NULL on failure.
1138 void * __init
memblock_virt_alloc_try_nid_nopanic(
1139 phys_addr_t size
, phys_addr_t align
,
1140 phys_addr_t min_addr
, phys_addr_t max_addr
,
1143 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1144 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1145 (u64
)max_addr
, (void *)_RET_IP_
);
1146 return memblock_virt_alloc_internal(size
, align
, min_addr
,
1151 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1152 * @size: size of memory block to be allocated in bytes
1153 * @align: alignment of the region and block's size
1154 * @min_addr: the lower bound of the memory region from where the allocation
1155 * is preferred (phys address)
1156 * @max_addr: the upper bound of the memory region from where the allocation
1157 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1158 * allocate only from memory limited by memblock.current_limit value
1159 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1161 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1162 * which provides debug information (including caller info), if enabled,
1163 * and panics if the request can not be satisfied.
1166 * Virtual address of allocated memory block on success, NULL on failure.
1168 void * __init
memblock_virt_alloc_try_nid(
1169 phys_addr_t size
, phys_addr_t align
,
1170 phys_addr_t min_addr
, phys_addr_t max_addr
,
1175 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1176 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1177 (u64
)max_addr
, (void *)_RET_IP_
);
1178 ptr
= memblock_virt_alloc_internal(size
, align
,
1179 min_addr
, max_addr
, nid
);
1183 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1184 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1190 * __memblock_free_early - free boot memory block
1191 * @base: phys starting address of the boot memory block
1192 * @size: size of the boot memory block in bytes
1194 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1195 * The freeing memory will not be released to the buddy allocator.
1197 void __init
__memblock_free_early(phys_addr_t base
, phys_addr_t size
)
1199 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1200 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1202 kmemleak_free_part(__va(base
), size
);
1203 __memblock_remove(&memblock
.reserved
, base
, size
);
1207 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1208 * @addr: phys starting address of the boot memory block
1209 * @size: size of the boot memory block in bytes
1211 * This is only useful when the bootmem allocator has already been torn
1212 * down, but we are still initializing the system. Pages are released directly
1213 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1215 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1219 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1220 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1222 kmemleak_free_part(__va(base
), size
);
1223 cursor
= PFN_UP(base
);
1224 end
= PFN_DOWN(base
+ size
);
1226 for (; cursor
< end
; cursor
++) {
1227 __free_pages_bootmem(pfn_to_page(cursor
), 0);
1233 * Remaining API functions
1236 phys_addr_t __init
memblock_phys_mem_size(void)
1238 return memblock
.memory
.total_size
;
1241 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1243 unsigned long pages
= 0;
1244 struct memblock_region
*r
;
1245 unsigned long start_pfn
, end_pfn
;
1247 for_each_memblock(memory
, r
) {
1248 start_pfn
= memblock_region_memory_base_pfn(r
);
1249 end_pfn
= memblock_region_memory_end_pfn(r
);
1250 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1251 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1252 pages
+= end_pfn
- start_pfn
;
1255 return (phys_addr_t
)pages
<< PAGE_SHIFT
;
1258 /* lowest address */
1259 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1261 return memblock
.memory
.regions
[0].base
;
1264 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1266 int idx
= memblock
.memory
.cnt
- 1;
1268 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1271 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1274 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1279 /* find out max address */
1280 for (i
= 0; i
< memblock
.memory
.cnt
; i
++) {
1281 struct memblock_region
*r
= &memblock
.memory
.regions
[i
];
1283 if (limit
<= r
->size
) {
1284 max_addr
= r
->base
+ limit
;
1290 /* truncate both memory and reserved regions */
1291 __memblock_remove(&memblock
.memory
, max_addr
, (phys_addr_t
)ULLONG_MAX
);
1292 __memblock_remove(&memblock
.reserved
, max_addr
, (phys_addr_t
)ULLONG_MAX
);
1295 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1297 unsigned int left
= 0, right
= type
->cnt
;
1300 unsigned int mid
= (right
+ left
) / 2;
1302 if (addr
< type
->regions
[mid
].base
)
1304 else if (addr
>= (type
->regions
[mid
].base
+
1305 type
->regions
[mid
].size
))
1309 } while (left
< right
);
1313 int __init
memblock_is_reserved(phys_addr_t addr
)
1315 return memblock_search(&memblock
.reserved
, addr
) != -1;
1318 int __init_memblock
memblock_is_memory(phys_addr_t addr
)
1320 return memblock_search(&memblock
.memory
, addr
) != -1;
1323 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1324 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1325 unsigned long *start_pfn
, unsigned long *end_pfn
)
1327 struct memblock_type
*type
= &memblock
.memory
;
1328 int mid
= memblock_search(type
, (phys_addr_t
)pfn
<< PAGE_SHIFT
);
1333 *start_pfn
= type
->regions
[mid
].base
>> PAGE_SHIFT
;
1334 *end_pfn
= (type
->regions
[mid
].base
+ type
->regions
[mid
].size
)
1337 return type
->regions
[mid
].nid
;
1342 * memblock_is_region_memory - check if a region is a subset of memory
1343 * @base: base of region to check
1344 * @size: size of region to check
1346 * Check if the region [@base, @base+@size) is a subset of a memory block.
1349 * 0 if false, non-zero if true
1351 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1353 int idx
= memblock_search(&memblock
.memory
, base
);
1354 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1358 return memblock
.memory
.regions
[idx
].base
<= base
&&
1359 (memblock
.memory
.regions
[idx
].base
+
1360 memblock
.memory
.regions
[idx
].size
) >= end
;
1364 * memblock_is_region_reserved - check if a region intersects reserved memory
1365 * @base: base of region to check
1366 * @size: size of region to check
1368 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1371 * 0 if false, non-zero if true
1373 int __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1375 memblock_cap_size(base
, &size
);
1376 return memblock_overlaps_region(&memblock
.reserved
, base
, size
) >= 0;
1379 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1382 phys_addr_t start
, end
, orig_start
, orig_end
;
1383 struct memblock_type
*mem
= &memblock
.memory
;
1385 for (i
= 0; i
< mem
->cnt
; i
++) {
1386 orig_start
= mem
->regions
[i
].base
;
1387 orig_end
= mem
->regions
[i
].base
+ mem
->regions
[i
].size
;
1388 start
= round_up(orig_start
, align
);
1389 end
= round_down(orig_end
, align
);
1391 if (start
== orig_start
&& end
== orig_end
)
1395 mem
->regions
[i
].base
= start
;
1396 mem
->regions
[i
].size
= end
- start
;
1398 memblock_remove_region(mem
, i
);
1404 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1406 memblock
.current_limit
= limit
;
1409 static void __init_memblock
memblock_dump(struct memblock_type
*type
, char *name
)
1411 unsigned long long base
, size
;
1412 unsigned long flags
;
1415 pr_info(" %s.cnt = 0x%lx\n", name
, type
->cnt
);
1417 for (i
= 0; i
< type
->cnt
; i
++) {
1418 struct memblock_region
*rgn
= &type
->regions
[i
];
1419 char nid_buf
[32] = "";
1424 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1425 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1426 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1427 memblock_get_region_node(rgn
));
1429 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1430 name
, i
, base
, base
+ size
- 1, size
, nid_buf
, flags
);
1434 void __init_memblock
__memblock_dump_all(void)
1436 pr_info("MEMBLOCK configuration:\n");
1437 pr_info(" memory size = %#llx reserved size = %#llx\n",
1438 (unsigned long long)memblock
.memory
.total_size
,
1439 (unsigned long long)memblock
.reserved
.total_size
);
1441 memblock_dump(&memblock
.memory
, "memory");
1442 memblock_dump(&memblock
.reserved
, "reserved");
1445 void __init
memblock_allow_resize(void)
1447 memblock_can_resize
= 1;
1450 static int __init
early_memblock(char *p
)
1452 if (p
&& strstr(p
, "debug"))
1456 early_param("memblock", early_memblock
);
1458 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1460 static int memblock_debug_show(struct seq_file
*m
, void *private)
1462 struct memblock_type
*type
= m
->private;
1463 struct memblock_region
*reg
;
1466 for (i
= 0; i
< type
->cnt
; i
++) {
1467 reg
= &type
->regions
[i
];
1468 seq_printf(m
, "%4d: ", i
);
1469 if (sizeof(phys_addr_t
) == 4)
1470 seq_printf(m
, "0x%08lx..0x%08lx\n",
1471 (unsigned long)reg
->base
,
1472 (unsigned long)(reg
->base
+ reg
->size
- 1));
1474 seq_printf(m
, "0x%016llx..0x%016llx\n",
1475 (unsigned long long)reg
->base
,
1476 (unsigned long long)(reg
->base
+ reg
->size
- 1));
1482 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
1484 return single_open(file
, memblock_debug_show
, inode
->i_private
);
1487 static const struct file_operations memblock_debug_fops
= {
1488 .open
= memblock_debug_open
,
1490 .llseek
= seq_lseek
,
1491 .release
= single_release
,
1494 static int __init
memblock_init_debugfs(void)
1496 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1499 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
1500 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
1504 __initcall(memblock_init_debugfs
);
1506 #endif /* CONFIG_DEBUG_FS */