2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
30 #include <asm/pgtable.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
41 int hugetlb_max_hstate __read_mostly
;
42 unsigned int default_hstate_idx
;
43 struct hstate hstates
[HUGE_MAX_HSTATE
];
45 * Minimum page order among possible hugepage sizes, set to a proper value
48 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
50 __initdata
LIST_HEAD(huge_boot_pages
);
52 /* for command line parsing */
53 static struct hstate
* __initdata parsed_hstate
;
54 static unsigned long __initdata default_hstate_max_huge_pages
;
55 static unsigned long __initdata default_hstate_size
;
56 static bool __initdata parsed_valid_hugepagesz
= true;
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
62 DEFINE_SPINLOCK(hugetlb_lock
);
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 static int num_fault_mutexes
;
69 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
74 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
76 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
78 spin_unlock(&spool
->lock
);
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
84 if (spool
->min_hpages
!= -1)
85 hugetlb_acct_memory(spool
->hstate
,
91 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
94 struct hugepage_subpool
*spool
;
96 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
100 spin_lock_init(&spool
->lock
);
102 spool
->max_hpages
= max_hpages
;
104 spool
->min_hpages
= min_hpages
;
106 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
110 spool
->rsv_hpages
= min_hpages
;
115 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
117 spin_lock(&spool
->lock
);
118 BUG_ON(!spool
->count
);
120 unlock_or_release_subpool(spool
);
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
131 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
139 spin_lock(&spool
->lock
);
141 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
142 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
143 spool
->used_hpages
+= delta
;
150 /* minimum size accounting */
151 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
152 if (delta
> spool
->rsv_hpages
) {
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
157 ret
= delta
- spool
->rsv_hpages
;
158 spool
->rsv_hpages
= 0;
160 ret
= 0; /* reserves already accounted for */
161 spool
->rsv_hpages
-= delta
;
166 spin_unlock(&spool
->lock
);
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
176 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
184 spin_lock(&spool
->lock
);
186 if (spool
->max_hpages
!= -1) /* maximum size accounting */
187 spool
->used_hpages
-= delta
;
189 /* minimum size accounting */
190 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
191 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
194 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
196 spool
->rsv_hpages
+= delta
;
197 if (spool
->rsv_hpages
> spool
->min_hpages
)
198 spool
->rsv_hpages
= spool
->min_hpages
;
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
205 unlock_or_release_subpool(spool
);
210 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
212 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
215 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
217 return subpool_inode(file_inode(vma
->vm_file
));
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
240 struct list_head link
;
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
259 static long region_add(struct resv_map
*resv
, long f
, long t
)
261 struct list_head
*head
= &resv
->regions
;
262 struct file_region
*rg
, *nrg
, *trg
;
265 spin_lock(&resv
->lock
);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg
, head
, link
)
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
277 if (&rg
->link
== head
|| t
< rg
->from
) {
278 VM_BUG_ON(resv
->region_cache_count
<= 0);
280 resv
->region_cache_count
--;
281 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
283 list_del(&nrg
->link
);
287 list_add(&nrg
->link
, rg
->link
.prev
);
293 /* Round our left edge to the current segment if it encloses us. */
297 /* Check for and consume any regions we now overlap with. */
299 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
300 if (&rg
->link
== head
)
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
315 add
-= (rg
->to
- rg
->from
);
321 add
+= (nrg
->from
- f
); /* Added to beginning of region */
323 add
+= t
- nrg
->to
; /* Added to end of region */
327 resv
->adds_in_progress
--;
328 spin_unlock(&resv
->lock
);
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
355 static long region_chg(struct resv_map
*resv
, long f
, long t
)
357 struct list_head
*head
= &resv
->regions
;
358 struct file_region
*rg
, *nrg
= NULL
;
362 spin_lock(&resv
->lock
);
364 resv
->adds_in_progress
++;
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
370 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
371 struct file_region
*trg
;
373 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv
->adds_in_progress
--;
376 spin_unlock(&resv
->lock
);
378 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
384 spin_lock(&resv
->lock
);
385 list_add(&trg
->link
, &resv
->region_cache
);
386 resv
->region_cache_count
++;
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg
, head
, link
)
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg
->link
== head
|| t
< rg
->from
) {
400 resv
->adds_in_progress
--;
401 spin_unlock(&resv
->lock
);
402 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
408 INIT_LIST_HEAD(&nrg
->link
);
412 list_add(&nrg
->link
, rg
->link
.prev
);
417 /* Round our left edge to the current segment if it encloses us. */
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
424 if (&rg
->link
== head
)
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
436 chg
-= rg
->to
- rg
->from
;
440 spin_unlock(&resv
->lock
);
441 /* We already know we raced and no longer need the new region */
445 spin_unlock(&resv
->lock
);
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
460 static void region_abort(struct resv_map
*resv
, long f
, long t
)
462 spin_lock(&resv
->lock
);
463 VM_BUG_ON(!resv
->region_cache_count
);
464 resv
->adds_in_progress
--;
465 spin_unlock(&resv
->lock
);
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
482 static long region_del(struct resv_map
*resv
, long f
, long t
)
484 struct list_head
*head
= &resv
->regions
;
485 struct file_region
*rg
, *trg
;
486 struct file_region
*nrg
= NULL
;
490 spin_lock(&resv
->lock
);
491 list_for_each_entry_safe(rg
, trg
, head
, link
) {
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
499 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
505 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
511 resv
->region_cache_count
> resv
->adds_in_progress
) {
512 nrg
= list_first_entry(&resv
->region_cache
,
515 list_del(&nrg
->link
);
516 resv
->region_cache_count
--;
520 spin_unlock(&resv
->lock
);
521 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
529 /* New entry for end of split region */
532 INIT_LIST_HEAD(&nrg
->link
);
534 /* Original entry is trimmed */
537 list_add(&nrg
->link
, &rg
->link
);
542 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
543 del
+= rg
->to
- rg
->from
;
549 if (f
<= rg
->from
) { /* Trim beginning of region */
552 } else { /* Trim end of region */
558 spin_unlock(&resv
->lock
);
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
572 void hugetlb_fix_reserve_counts(struct inode
*inode
)
574 struct hugepage_subpool
*spool
= subpool_inode(inode
);
577 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
579 struct hstate
*h
= hstate_inode(inode
);
581 hugetlb_acct_memory(h
, 1);
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
589 static long region_count(struct resv_map
*resv
, long f
, long t
)
591 struct list_head
*head
= &resv
->regions
;
592 struct file_region
*rg
;
595 spin_lock(&resv
->lock
);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg
, head
, link
) {
606 seg_from
= max(rg
->from
, f
);
607 seg_to
= min(rg
->to
, t
);
609 chg
+= seg_to
- seg_from
;
611 spin_unlock(&resv
->lock
);
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
620 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
621 struct vm_area_struct
*vma
, unsigned long address
)
623 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
624 (vma
->vm_pgoff
>> huge_page_order(h
));
627 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
628 unsigned long address
)
630 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
632 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
638 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
640 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
641 return vma
->vm_ops
->pagesize(vma
);
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific 'strong'
650 * version of this symbol is required.
652 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
654 return vma_kernel_pagesize(vma
);
658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
659 * bits of the reservation map pointer, which are always clear due to
662 #define HPAGE_RESV_OWNER (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667 * These helpers are used to track how many pages are reserved for
668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669 * is guaranteed to have their future faults succeed.
671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672 * the reserve counters are updated with the hugetlb_lock held. It is safe
673 * to reset the VMA at fork() time as it is not in use yet and there is no
674 * chance of the global counters getting corrupted as a result of the values.
676 * The private mapping reservation is represented in a subtly different
677 * manner to a shared mapping. A shared mapping has a region map associated
678 * with the underlying file, this region map represents the backing file
679 * pages which have ever had a reservation assigned which this persists even
680 * after the page is instantiated. A private mapping has a region map
681 * associated with the original mmap which is attached to all VMAs which
682 * reference it, this region map represents those offsets which have consumed
683 * reservation ie. where pages have been instantiated.
685 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
687 return (unsigned long)vma
->vm_private_data
;
690 static void set_vma_private_data(struct vm_area_struct
*vma
,
693 vma
->vm_private_data
= (void *)value
;
696 struct resv_map
*resv_map_alloc(void)
698 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
699 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
701 if (!resv_map
|| !rg
) {
707 kref_init(&resv_map
->refs
);
708 spin_lock_init(&resv_map
->lock
);
709 INIT_LIST_HEAD(&resv_map
->regions
);
711 resv_map
->adds_in_progress
= 0;
713 INIT_LIST_HEAD(&resv_map
->region_cache
);
714 list_add(&rg
->link
, &resv_map
->region_cache
);
715 resv_map
->region_cache_count
= 1;
720 void resv_map_release(struct kref
*ref
)
722 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
723 struct list_head
*head
= &resv_map
->region_cache
;
724 struct file_region
*rg
, *trg
;
726 /* Clear out any active regions before we release the map. */
727 region_del(resv_map
, 0, LONG_MAX
);
729 /* ... and any entries left in the cache */
730 list_for_each_entry_safe(rg
, trg
, head
, link
) {
735 VM_BUG_ON(resv_map
->adds_in_progress
);
740 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
742 return inode
->i_mapping
->private_data
;
745 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
748 if (vma
->vm_flags
& VM_MAYSHARE
) {
749 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
750 struct inode
*inode
= mapping
->host
;
752 return inode_resv_map(inode
);
755 return (struct resv_map
*)(get_vma_private_data(vma
) &
760 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
763 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
765 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
766 HPAGE_RESV_MASK
) | (unsigned long)map
);
769 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
772 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
774 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
777 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
781 return (get_vma_private_data(vma
) & flag
) != 0;
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
788 if (!(vma
->vm_flags
& VM_MAYSHARE
))
789 vma
->vm_private_data
= (void *)0;
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
795 if (vma
->vm_flags
& VM_NORESERVE
) {
797 * This address is already reserved by other process(chg == 0),
798 * so, we should decrement reserved count. Without decrementing,
799 * reserve count remains after releasing inode, because this
800 * allocated page will go into page cache and is regarded as
801 * coming from reserved pool in releasing step. Currently, we
802 * don't have any other solution to deal with this situation
803 * properly, so add work-around here.
805 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
811 /* Shared mappings always use reserves */
812 if (vma
->vm_flags
& VM_MAYSHARE
) {
814 * We know VM_NORESERVE is not set. Therefore, there SHOULD
815 * be a region map for all pages. The only situation where
816 * there is no region map is if a hole was punched via
817 * fallocate. In this case, there really are no reverves to
818 * use. This situation is indicated if chg != 0.
827 * Only the process that called mmap() has reserves for
830 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
832 * Like the shared case above, a hole punch or truncate
833 * could have been performed on the private mapping.
834 * Examine the value of chg to determine if reserves
835 * actually exist or were previously consumed.
836 * Very Subtle - The value of chg comes from a previous
837 * call to vma_needs_reserves(). The reserve map for
838 * private mappings has different (opposite) semantics
839 * than that of shared mappings. vma_needs_reserves()
840 * has already taken this difference in semantics into
841 * account. Therefore, the meaning of chg is the same
842 * as in the shared case above. Code could easily be
843 * combined, but keeping it separate draws attention to
844 * subtle differences.
855 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
857 int nid
= page_to_nid(page
);
858 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
859 h
->free_huge_pages
++;
860 h
->free_huge_pages_node
[nid
]++;
863 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
867 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
868 if (!PageHWPoison(page
))
871 * if 'non-isolated free hugepage' not found on the list,
872 * the allocation fails.
874 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
876 list_move(&page
->lru
, &h
->hugepage_activelist
);
877 set_page_refcounted(page
);
878 h
->free_huge_pages
--;
879 h
->free_huge_pages_node
[nid
]--;
883 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
886 unsigned int cpuset_mems_cookie
;
887 struct zonelist
*zonelist
;
892 zonelist
= node_zonelist(nid
, gfp_mask
);
895 cpuset_mems_cookie
= read_mems_allowed_begin();
896 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
899 if (!cpuset_zone_allowed(zone
, gfp_mask
))
902 * no need to ask again on the same node. Pool is node rather than
905 if (zone_to_nid(zone
) == node
)
907 node
= zone_to_nid(zone
);
909 page
= dequeue_huge_page_node_exact(h
, node
);
913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
922 if (hugepage_migration_supported(h
))
923 return GFP_HIGHUSER_MOVABLE
;
928 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
929 struct vm_area_struct
*vma
,
930 unsigned long address
, int avoid_reserve
,
934 struct mempolicy
*mpol
;
936 nodemask_t
*nodemask
;
940 * A child process with MAP_PRIVATE mappings created by their parent
941 * have no page reserves. This check ensures that reservations are
942 * not "stolen". The child may still get SIGKILLed
944 if (!vma_has_reserves(vma
, chg
) &&
945 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
948 /* If reserves cannot be used, ensure enough pages are in the pool */
949 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
952 gfp_mask
= htlb_alloc_mask(h
);
953 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
954 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
955 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
956 SetPagePrivate(page
);
957 h
->resv_huge_pages
--;
968 * common helper functions for hstate_next_node_to_{alloc|free}.
969 * We may have allocated or freed a huge page based on a different
970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971 * be outside of *nodes_allowed. Ensure that we use an allowed
972 * node for alloc or free.
974 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
976 nid
= next_node_in(nid
, *nodes_allowed
);
977 VM_BUG_ON(nid
>= MAX_NUMNODES
);
982 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
984 if (!node_isset(nid
, *nodes_allowed
))
985 nid
= next_node_allowed(nid
, nodes_allowed
);
990 * returns the previously saved node ["this node"] from which to
991 * allocate a persistent huge page for the pool and advance the
992 * next node from which to allocate, handling wrap at end of node
995 static int hstate_next_node_to_alloc(struct hstate
*h
,
996 nodemask_t
*nodes_allowed
)
1000 VM_BUG_ON(!nodes_allowed
);
1002 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1003 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page. Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1014 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1018 VM_BUG_ON(!nodes_allowed
);
1020 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1021 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1027 for (nr_nodes = nodes_weight(*mask); \
1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page
*page
,
1043 int nr_pages
= 1 << order
;
1044 struct page
*p
= page
+ 1;
1046 atomic_set(compound_mapcount_ptr(page
), 0);
1047 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1048 clear_compound_head(p
);
1049 set_page_refcounted(p
);
1052 set_compound_order(page
, 0);
1053 __ClearPageHead(page
);
1056 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1058 free_contig_range(page_to_pfn(page
), 1 << order
);
1061 static int __alloc_gigantic_page(unsigned long start_pfn
,
1062 unsigned long nr_pages
, gfp_t gfp_mask
)
1064 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1065 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
1069 static bool pfn_range_valid_gigantic(struct zone
*z
,
1070 unsigned long start_pfn
, unsigned long nr_pages
)
1072 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1075 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1079 page
= pfn_to_page(i
);
1081 if (page_zone(page
) != z
)
1084 if (PageReserved(page
))
1087 if (page_count(page
) > 0)
1097 static bool zone_spans_last_pfn(const struct zone
*zone
,
1098 unsigned long start_pfn
, unsigned long nr_pages
)
1100 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1101 return zone_spans_pfn(zone
, last_pfn
);
1104 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1105 int nid
, nodemask_t
*nodemask
)
1107 unsigned int order
= huge_page_order(h
);
1108 unsigned long nr_pages
= 1 << order
;
1109 unsigned long ret
, pfn
, flags
;
1110 struct zonelist
*zonelist
;
1114 zonelist
= node_zonelist(nid
, gfp_mask
);
1115 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nodemask
) {
1116 spin_lock_irqsave(&zone
->lock
, flags
);
1118 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
1119 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
1120 if (pfn_range_valid_gigantic(zone
, pfn
, nr_pages
)) {
1122 * We release the zone lock here because
1123 * alloc_contig_range() will also lock the zone
1124 * at some point. If there's an allocation
1125 * spinning on this lock, it may win the race
1126 * and cause alloc_contig_range() to fail...
1128 spin_unlock_irqrestore(&zone
->lock
, flags
);
1129 ret
= __alloc_gigantic_page(pfn
, nr_pages
, gfp_mask
);
1131 return pfn_to_page(pfn
);
1132 spin_lock_irqsave(&zone
->lock
, flags
);
1137 spin_unlock_irqrestore(&zone
->lock
, flags
);
1143 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1144 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147 static inline bool gigantic_page_supported(void) { return false; }
1148 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1149 int nid
, nodemask_t
*nodemask
) { return NULL
; }
1150 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1151 static inline void destroy_compound_gigantic_page(struct page
*page
,
1152 unsigned int order
) { }
1155 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1159 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1163 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1164 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1165 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1166 1 << PG_referenced
| 1 << PG_dirty
|
1167 1 << PG_active
| 1 << PG_private
|
1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1171 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1172 set_page_refcounted(page
);
1173 if (hstate_is_gigantic(h
)) {
1174 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1175 free_gigantic_page(page
, huge_page_order(h
));
1177 __free_pages(page
, huge_page_order(h
));
1181 struct hstate
*size_to_hstate(unsigned long size
)
1185 for_each_hstate(h
) {
1186 if (huge_page_size(h
) == size
)
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1196 * This function can be called for tail pages, but never returns true for them.
1198 bool page_huge_active(struct page
*page
)
1200 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1201 return PageHead(page
) && PagePrivate(&page
[1]);
1204 /* never called for tail page */
1205 static void set_page_huge_active(struct page
*page
)
1207 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1208 SetPagePrivate(&page
[1]);
1211 static void clear_page_huge_active(struct page
*page
)
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1214 ClearPagePrivate(&page
[1]);
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1221 static inline bool PageHugeTemporary(struct page
*page
)
1223 if (!PageHuge(page
))
1226 return (unsigned long)page
[2].mapping
== -1U;
1229 static inline void SetPageHugeTemporary(struct page
*page
)
1231 page
[2].mapping
= (void *)-1U;
1234 static inline void ClearPageHugeTemporary(struct page
*page
)
1236 page
[2].mapping
= NULL
;
1239 void free_huge_page(struct page
*page
)
1242 * Can't pass hstate in here because it is called from the
1243 * compound page destructor.
1245 struct hstate
*h
= page_hstate(page
);
1246 int nid
= page_to_nid(page
);
1247 struct hugepage_subpool
*spool
=
1248 (struct hugepage_subpool
*)page_private(page
);
1249 bool restore_reserve
;
1251 VM_BUG_ON_PAGE(page_count(page
), page
);
1252 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1254 set_page_private(page
, 0);
1255 page
->mapping
= NULL
;
1256 restore_reserve
= PagePrivate(page
);
1257 ClearPagePrivate(page
);
1260 * A return code of zero implies that the subpool will be under its
1261 * minimum size if the reservation is not restored after page is free.
1262 * Therefore, force restore_reserve operation.
1264 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1265 restore_reserve
= true;
1267 spin_lock(&hugetlb_lock
);
1268 clear_page_huge_active(page
);
1269 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1270 pages_per_huge_page(h
), page
);
1271 if (restore_reserve
)
1272 h
->resv_huge_pages
++;
1274 if (PageHugeTemporary(page
)) {
1275 list_del(&page
->lru
);
1276 ClearPageHugeTemporary(page
);
1277 update_and_free_page(h
, page
);
1278 } else if (h
->surplus_huge_pages_node
[nid
]) {
1279 /* remove the page from active list */
1280 list_del(&page
->lru
);
1281 update_and_free_page(h
, page
);
1282 h
->surplus_huge_pages
--;
1283 h
->surplus_huge_pages_node
[nid
]--;
1285 arch_clear_hugepage_flags(page
);
1286 enqueue_huge_page(h
, page
);
1288 spin_unlock(&hugetlb_lock
);
1291 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1293 INIT_LIST_HEAD(&page
->lru
);
1294 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1295 spin_lock(&hugetlb_lock
);
1296 set_hugetlb_cgroup(page
, NULL
);
1298 h
->nr_huge_pages_node
[nid
]++;
1299 spin_unlock(&hugetlb_lock
);
1302 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1305 int nr_pages
= 1 << order
;
1306 struct page
*p
= page
+ 1;
1308 /* we rely on prep_new_huge_page to set the destructor */
1309 set_compound_order(page
, order
);
1310 __ClearPageReserved(page
);
1311 __SetPageHead(page
);
1312 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1314 * For gigantic hugepages allocated through bootmem at
1315 * boot, it's safer to be consistent with the not-gigantic
1316 * hugepages and clear the PG_reserved bit from all tail pages
1317 * too. Otherwse drivers using get_user_pages() to access tail
1318 * pages may get the reference counting wrong if they see
1319 * PG_reserved set on a tail page (despite the head page not
1320 * having PG_reserved set). Enforcing this consistency between
1321 * head and tail pages allows drivers to optimize away a check
1322 * on the head page when they need know if put_page() is needed
1323 * after get_user_pages().
1325 __ClearPageReserved(p
);
1326 set_page_count(p
, 0);
1327 set_compound_head(p
, page
);
1329 atomic_set(compound_mapcount_ptr(page
), -1);
1333 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1334 * transparent huge pages. See the PageTransHuge() documentation for more
1337 int PageHuge(struct page
*page
)
1339 if (!PageCompound(page
))
1342 page
= compound_head(page
);
1343 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1345 EXPORT_SYMBOL_GPL(PageHuge
);
1348 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1349 * normal or transparent huge pages.
1351 int PageHeadHuge(struct page
*page_head
)
1353 if (!PageHead(page_head
))
1356 return get_compound_page_dtor(page_head
) == free_huge_page
;
1359 pgoff_t
__basepage_index(struct page
*page
)
1361 struct page
*page_head
= compound_head(page
);
1362 pgoff_t index
= page_index(page_head
);
1363 unsigned long compound_idx
;
1365 if (!PageHuge(page_head
))
1366 return page_index(page
);
1368 if (compound_order(page_head
) >= MAX_ORDER
)
1369 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1371 compound_idx
= page
- page_head
;
1373 return (index
<< compound_order(page_head
)) + compound_idx
;
1376 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1377 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1379 int order
= huge_page_order(h
);
1382 gfp_mask
|= __GFP_COMP
|__GFP_RETRY_MAYFAIL
|__GFP_NOWARN
;
1383 if (nid
== NUMA_NO_NODE
)
1384 nid
= numa_mem_id();
1385 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1387 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1389 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1395 * Common helper to allocate a fresh hugetlb page. All specific allocators
1396 * should use this function to get new hugetlb pages
1398 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1399 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1403 if (hstate_is_gigantic(h
))
1404 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1406 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1411 if (hstate_is_gigantic(h
))
1412 prep_compound_gigantic_page(page
, huge_page_order(h
));
1413 prep_new_huge_page(h
, page
, page_to_nid(page
));
1419 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1422 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1426 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1428 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1429 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
);
1437 put_page(page
); /* free it into the hugepage allocator */
1443 * Free huge page from pool from next node to free.
1444 * Attempt to keep persistent huge pages more or less
1445 * balanced over allowed nodes.
1446 * Called with hugetlb_lock locked.
1448 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1454 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1456 * If we're returning unused surplus pages, only examine
1457 * nodes with surplus pages.
1459 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1460 !list_empty(&h
->hugepage_freelists
[node
])) {
1462 list_entry(h
->hugepage_freelists
[node
].next
,
1464 list_del(&page
->lru
);
1465 h
->free_huge_pages
--;
1466 h
->free_huge_pages_node
[node
]--;
1468 h
->surplus_huge_pages
--;
1469 h
->surplus_huge_pages_node
[node
]--;
1471 update_and_free_page(h
, page
);
1481 * Dissolve a given free hugepage into free buddy pages. This function does
1482 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1483 * dissolution fails because a give page is not a free hugepage, or because
1484 * free hugepages are fully reserved.
1486 int dissolve_free_huge_page(struct page
*page
)
1490 spin_lock(&hugetlb_lock
);
1491 if (PageHuge(page
) && !page_count(page
)) {
1492 struct page
*head
= compound_head(page
);
1493 struct hstate
*h
= page_hstate(head
);
1494 int nid
= page_to_nid(head
);
1495 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1498 * Move PageHWPoison flag from head page to the raw error page,
1499 * which makes any subpages rather than the error page reusable.
1501 if (PageHWPoison(head
) && page
!= head
) {
1502 SetPageHWPoison(page
);
1503 ClearPageHWPoison(head
);
1505 list_del(&head
->lru
);
1506 h
->free_huge_pages
--;
1507 h
->free_huge_pages_node
[nid
]--;
1508 h
->max_huge_pages
--;
1509 update_and_free_page(h
, head
);
1513 spin_unlock(&hugetlb_lock
);
1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519 * make specified memory blocks removable from the system.
1520 * Note that this will dissolve a free gigantic hugepage completely, if any
1521 * part of it lies within the given range.
1522 * Also note that if dissolve_free_huge_page() returns with an error, all
1523 * free hugepages that were dissolved before that error are lost.
1525 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1531 if (!hugepages_supported())
1534 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1535 page
= pfn_to_page(pfn
);
1536 if (PageHuge(page
) && !page_count(page
)) {
1537 rc
= dissolve_free_huge_page(page
);
1547 * Allocates a fresh surplus page from the page allocator.
1549 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1550 int nid
, nodemask_t
*nmask
)
1552 struct page
*page
= NULL
;
1554 if (hstate_is_gigantic(h
))
1557 spin_lock(&hugetlb_lock
);
1558 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1560 spin_unlock(&hugetlb_lock
);
1562 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1566 spin_lock(&hugetlb_lock
);
1568 * We could have raced with the pool size change.
1569 * Double check that and simply deallocate the new page
1570 * if we would end up overcommiting the surpluses. Abuse
1571 * temporary page to workaround the nasty free_huge_page
1574 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1575 SetPageHugeTemporary(page
);
1579 h
->surplus_huge_pages
++;
1580 h
->surplus_huge_pages_node
[page_to_nid(page
)]++;
1584 spin_unlock(&hugetlb_lock
);
1589 static struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1590 int nid
, nodemask_t
*nmask
)
1594 if (hstate_is_gigantic(h
))
1597 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1602 * We do not account these pages as surplus because they are only
1603 * temporary and will be released properly on the last reference
1605 SetPageHugeTemporary(page
);
1611 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1614 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1615 struct vm_area_struct
*vma
, unsigned long addr
)
1618 struct mempolicy
*mpol
;
1619 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1621 nodemask_t
*nodemask
;
1623 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1624 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1625 mpol_cond_put(mpol
);
1630 /* page migration callback function */
1631 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1633 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1634 struct page
*page
= NULL
;
1636 if (nid
!= NUMA_NO_NODE
)
1637 gfp_mask
|= __GFP_THISNODE
;
1639 spin_lock(&hugetlb_lock
);
1640 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1641 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, NULL
);
1642 spin_unlock(&hugetlb_lock
);
1645 page
= alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
1650 /* page migration callback function */
1651 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1654 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1656 spin_lock(&hugetlb_lock
);
1657 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
1660 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
1662 spin_unlock(&hugetlb_lock
);
1666 spin_unlock(&hugetlb_lock
);
1668 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
1671 /* mempolicy aware migration callback */
1672 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
1673 unsigned long address
)
1675 struct mempolicy
*mpol
;
1676 nodemask_t
*nodemask
;
1681 gfp_mask
= htlb_alloc_mask(h
);
1682 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1683 page
= alloc_huge_page_nodemask(h
, node
, nodemask
);
1684 mpol_cond_put(mpol
);
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1693 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1695 struct list_head surplus_list
;
1696 struct page
*page
, *tmp
;
1698 int needed
, allocated
;
1699 bool alloc_ok
= true;
1701 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1703 h
->resv_huge_pages
+= delta
;
1708 INIT_LIST_HEAD(&surplus_list
);
1712 spin_unlock(&hugetlb_lock
);
1713 for (i
= 0; i
< needed
; i
++) {
1714 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
1715 NUMA_NO_NODE
, NULL
);
1720 list_add(&page
->lru
, &surplus_list
);
1726 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727 * because either resv_huge_pages or free_huge_pages may have changed.
1729 spin_lock(&hugetlb_lock
);
1730 needed
= (h
->resv_huge_pages
+ delta
) -
1731 (h
->free_huge_pages
+ allocated
);
1736 * We were not able to allocate enough pages to
1737 * satisfy the entire reservation so we free what
1738 * we've allocated so far.
1743 * The surplus_list now contains _at_least_ the number of extra pages
1744 * needed to accommodate the reservation. Add the appropriate number
1745 * of pages to the hugetlb pool and free the extras back to the buddy
1746 * allocator. Commit the entire reservation here to prevent another
1747 * process from stealing the pages as they are added to the pool but
1748 * before they are reserved.
1750 needed
+= allocated
;
1751 h
->resv_huge_pages
+= delta
;
1754 /* Free the needed pages to the hugetlb pool */
1755 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1759 * This page is now managed by the hugetlb allocator and has
1760 * no users -- drop the buddy allocator's reference.
1762 put_page_testzero(page
);
1763 VM_BUG_ON_PAGE(page_count(page
), page
);
1764 enqueue_huge_page(h
, page
);
1767 spin_unlock(&hugetlb_lock
);
1769 /* Free unnecessary surplus pages to the buddy allocator */
1770 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1772 spin_lock(&hugetlb_lock
);
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 * in unused_resv_pages. This corresponds to the prior adjustments made
1781 * to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 * the reservation. As many as unused_resv_pages may be freed.
1785 * Called with hugetlb_lock held. However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing. Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
1791 static void return_unused_surplus_pages(struct hstate
*h
,
1792 unsigned long unused_resv_pages
)
1794 unsigned long nr_pages
;
1796 /* Cannot return gigantic pages currently */
1797 if (hstate_is_gigantic(h
))
1801 * Part (or even all) of the reservation could have been backed
1802 * by pre-allocated pages. Only free surplus pages.
1804 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1807 * We want to release as many surplus pages as possible, spread
1808 * evenly across all nodes with memory. Iterate across these nodes
1809 * until we can no longer free unreserved surplus pages. This occurs
1810 * when the nodes with surplus pages have no free pages.
1811 * free_pool_huge_page() will balance the the freed pages across the
1812 * on-line nodes with memory and will handle the hstate accounting.
1814 * Note that we decrement resv_huge_pages as we free the pages. If
1815 * we drop the lock, resv_huge_pages will still be sufficiently large
1816 * to cover subsequent pages we may free.
1818 while (nr_pages
--) {
1819 h
->resv_huge_pages
--;
1820 unused_resv_pages
--;
1821 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1823 cond_resched_lock(&hugetlb_lock
);
1827 /* Fully uncommit the reservation */
1828 h
->resv_huge_pages
-= unused_resv_pages
;
1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834 * are used by the huge page allocation routines to manage reservations.
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation. If a reservation is
1838 * needed, the value 1 is returned. The caller is then responsible for
1839 * managing the global reservation and subpool usage counts. After
1840 * the huge page has been allocated, vma_commit_reservation is called
1841 * to add the page to the reservation map. If the page allocation fails,
1842 * the reservation must be ended instead of committed. vma_end_reservation
1843 * is called in such cases.
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call. The only time this
1847 * is not the case is if a reserve map was changed between calls. It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed. It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
1856 enum vma_resv_mode
{
1862 static long __vma_reservation_common(struct hstate
*h
,
1863 struct vm_area_struct
*vma
, unsigned long addr
,
1864 enum vma_resv_mode mode
)
1866 struct resv_map
*resv
;
1870 resv
= vma_resv_map(vma
);
1874 idx
= vma_hugecache_offset(h
, vma
, addr
);
1876 case VMA_NEEDS_RESV
:
1877 ret
= region_chg(resv
, idx
, idx
+ 1);
1879 case VMA_COMMIT_RESV
:
1880 ret
= region_add(resv
, idx
, idx
+ 1);
1883 region_abort(resv
, idx
, idx
+ 1);
1887 if (vma
->vm_flags
& VM_MAYSHARE
)
1888 ret
= region_add(resv
, idx
, idx
+ 1);
1890 region_abort(resv
, idx
, idx
+ 1);
1891 ret
= region_del(resv
, idx
, idx
+ 1);
1898 if (vma
->vm_flags
& VM_MAYSHARE
)
1900 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
1902 * In most cases, reserves always exist for private mappings.
1903 * However, a file associated with mapping could have been
1904 * hole punched or truncated after reserves were consumed.
1905 * As subsequent fault on such a range will not use reserves.
1906 * Subtle - The reserve map for private mappings has the
1907 * opposite meaning than that of shared mappings. If NO
1908 * entry is in the reserve map, it means a reservation exists.
1909 * If an entry exists in the reserve map, it means the
1910 * reservation has already been consumed. As a result, the
1911 * return value of this routine is the opposite of the
1912 * value returned from reserve map manipulation routines above.
1920 return ret
< 0 ? ret
: 0;
1923 static long vma_needs_reservation(struct hstate
*h
,
1924 struct vm_area_struct
*vma
, unsigned long addr
)
1926 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1929 static long vma_commit_reservation(struct hstate
*h
,
1930 struct vm_area_struct
*vma
, unsigned long addr
)
1932 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1935 static void vma_end_reservation(struct hstate
*h
,
1936 struct vm_area_struct
*vma
, unsigned long addr
)
1938 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1941 static long vma_add_reservation(struct hstate
*h
,
1942 struct vm_area_struct
*vma
, unsigned long addr
)
1944 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
1948 * This routine is called to restore a reservation on error paths. In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed. If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page. When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map. Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1958 static void restore_reserve_on_error(struct hstate
*h
,
1959 struct vm_area_struct
*vma
, unsigned long address
,
1962 if (unlikely(PagePrivate(page
))) {
1963 long rc
= vma_needs_reservation(h
, vma
, address
);
1965 if (unlikely(rc
< 0)) {
1967 * Rare out of memory condition in reserve map
1968 * manipulation. Clear PagePrivate so that
1969 * global reserve count will not be incremented
1970 * by free_huge_page. This will make it appear
1971 * as though the reservation for this page was
1972 * consumed. This may prevent the task from
1973 * faulting in the page at a later time. This
1974 * is better than inconsistent global huge page
1975 * accounting of reserve counts.
1977 ClearPagePrivate(page
);
1979 rc
= vma_add_reservation(h
, vma
, address
);
1980 if (unlikely(rc
< 0))
1982 * See above comment about rare out of
1985 ClearPagePrivate(page
);
1987 vma_end_reservation(h
, vma
, address
);
1991 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1992 unsigned long addr
, int avoid_reserve
)
1994 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1995 struct hstate
*h
= hstate_vma(vma
);
1997 long map_chg
, map_commit
;
2000 struct hugetlb_cgroup
*h_cg
;
2002 idx
= hstate_index(h
);
2004 * Examine the region/reserve map to determine if the process
2005 * has a reservation for the page to be allocated. A return
2006 * code of zero indicates a reservation exists (no change).
2008 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2010 return ERR_PTR(-ENOMEM
);
2013 * Processes that did not create the mapping will have no
2014 * reserves as indicated by the region/reserve map. Check
2015 * that the allocation will not exceed the subpool limit.
2016 * Allocations for MAP_NORESERVE mappings also need to be
2017 * checked against any subpool limit.
2019 if (map_chg
|| avoid_reserve
) {
2020 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2022 vma_end_reservation(h
, vma
, addr
);
2023 return ERR_PTR(-ENOSPC
);
2027 * Even though there was no reservation in the region/reserve
2028 * map, there could be reservations associated with the
2029 * subpool that can be used. This would be indicated if the
2030 * return value of hugepage_subpool_get_pages() is zero.
2031 * However, if avoid_reserve is specified we still avoid even
2032 * the subpool reservations.
2038 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2040 goto out_subpool_put
;
2042 spin_lock(&hugetlb_lock
);
2044 * glb_chg is passed to indicate whether or not a page must be taken
2045 * from the global free pool (global change). gbl_chg == 0 indicates
2046 * a reservation exists for the allocation.
2048 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2050 spin_unlock(&hugetlb_lock
);
2051 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2053 goto out_uncharge_cgroup
;
2054 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2055 SetPagePrivate(page
);
2056 h
->resv_huge_pages
--;
2058 spin_lock(&hugetlb_lock
);
2059 list_move(&page
->lru
, &h
->hugepage_activelist
);
2062 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2063 spin_unlock(&hugetlb_lock
);
2065 set_page_private(page
, (unsigned long)spool
);
2067 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2068 if (unlikely(map_chg
> map_commit
)) {
2070 * The page was added to the reservation map between
2071 * vma_needs_reservation and vma_commit_reservation.
2072 * This indicates a race with hugetlb_reserve_pages.
2073 * Adjust for the subpool count incremented above AND
2074 * in hugetlb_reserve_pages for the same page. Also,
2075 * the reservation count added in hugetlb_reserve_pages
2076 * no longer applies.
2080 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2081 hugetlb_acct_memory(h
, -rsv_adjust
);
2085 out_uncharge_cgroup
:
2086 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2088 if (map_chg
|| avoid_reserve
)
2089 hugepage_subpool_put_pages(spool
, 1);
2090 vma_end_reservation(h
, vma
, addr
);
2091 return ERR_PTR(-ENOSPC
);
2094 int alloc_bootmem_huge_page(struct hstate
*h
)
2095 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2096 int __alloc_bootmem_huge_page(struct hstate
*h
)
2098 struct huge_bootmem_page
*m
;
2101 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2104 addr
= memblock_alloc_try_nid_raw(
2105 huge_page_size(h
), huge_page_size(h
),
2106 0, MEMBLOCK_ALLOC_ACCESSIBLE
, node
);
2109 * Use the beginning of the huge page to store the
2110 * huge_bootmem_page struct (until gather_bootmem
2111 * puts them into the mem_map).
2120 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2121 /* Put them into a private list first because mem_map is not up yet */
2122 INIT_LIST_HEAD(&m
->list
);
2123 list_add(&m
->list
, &huge_boot_pages
);
2128 static void __init
prep_compound_huge_page(struct page
*page
,
2131 if (unlikely(order
> (MAX_ORDER
- 1)))
2132 prep_compound_gigantic_page(page
, order
);
2134 prep_compound_page(page
, order
);
2137 /* Put bootmem huge pages into the standard lists after mem_map is up */
2138 static void __init
gather_bootmem_prealloc(void)
2140 struct huge_bootmem_page
*m
;
2142 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2143 struct page
*page
= virt_to_page(m
);
2144 struct hstate
*h
= m
->hstate
;
2146 WARN_ON(page_count(page
) != 1);
2147 prep_compound_huge_page(page
, h
->order
);
2148 WARN_ON(PageReserved(page
));
2149 prep_new_huge_page(h
, page
, page_to_nid(page
));
2150 put_page(page
); /* free it into the hugepage allocator */
2153 * If we had gigantic hugepages allocated at boot time, we need
2154 * to restore the 'stolen' pages to totalram_pages in order to
2155 * fix confusing memory reports from free(1) and another
2156 * side-effects, like CommitLimit going negative.
2158 if (hstate_is_gigantic(h
))
2159 adjust_managed_page_count(page
, 1 << h
->order
);
2164 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2168 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2169 if (hstate_is_gigantic(h
)) {
2170 if (!alloc_bootmem_huge_page(h
))
2172 } else if (!alloc_pool_huge_page(h
,
2173 &node_states
[N_MEMORY
]))
2177 if (i
< h
->max_huge_pages
) {
2180 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2181 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2182 h
->max_huge_pages
, buf
, i
);
2183 h
->max_huge_pages
= i
;
2187 static void __init
hugetlb_init_hstates(void)
2191 for_each_hstate(h
) {
2192 if (minimum_order
> huge_page_order(h
))
2193 minimum_order
= huge_page_order(h
);
2195 /* oversize hugepages were init'ed in early boot */
2196 if (!hstate_is_gigantic(h
))
2197 hugetlb_hstate_alloc_pages(h
);
2199 VM_BUG_ON(minimum_order
== UINT_MAX
);
2202 static void __init
report_hugepages(void)
2206 for_each_hstate(h
) {
2209 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2210 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2211 buf
, h
->free_huge_pages
);
2215 #ifdef CONFIG_HIGHMEM
2216 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2217 nodemask_t
*nodes_allowed
)
2221 if (hstate_is_gigantic(h
))
2224 for_each_node_mask(i
, *nodes_allowed
) {
2225 struct page
*page
, *next
;
2226 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2227 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2228 if (count
>= h
->nr_huge_pages
)
2230 if (PageHighMem(page
))
2232 list_del(&page
->lru
);
2233 update_and_free_page(h
, page
);
2234 h
->free_huge_pages
--;
2235 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2240 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2241 nodemask_t
*nodes_allowed
)
2247 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2248 * balanced by operating on them in a round-robin fashion.
2249 * Returns 1 if an adjustment was made.
2251 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2256 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2259 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2260 if (h
->surplus_huge_pages_node
[node
])
2264 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2265 if (h
->surplus_huge_pages_node
[node
] <
2266 h
->nr_huge_pages_node
[node
])
2273 h
->surplus_huge_pages
+= delta
;
2274 h
->surplus_huge_pages_node
[node
] += delta
;
2278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2279 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2280 nodemask_t
*nodes_allowed
)
2282 unsigned long min_count
, ret
;
2284 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2285 return h
->max_huge_pages
;
2288 * Increase the pool size
2289 * First take pages out of surplus state. Then make up the
2290 * remaining difference by allocating fresh huge pages.
2292 * We might race with alloc_surplus_huge_page() here and be unable
2293 * to convert a surplus huge page to a normal huge page. That is
2294 * not critical, though, it just means the overall size of the
2295 * pool might be one hugepage larger than it needs to be, but
2296 * within all the constraints specified by the sysctls.
2298 spin_lock(&hugetlb_lock
);
2299 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2300 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2304 while (count
> persistent_huge_pages(h
)) {
2306 * If this allocation races such that we no longer need the
2307 * page, free_huge_page will handle it by freeing the page
2308 * and reducing the surplus.
2310 spin_unlock(&hugetlb_lock
);
2312 /* yield cpu to avoid soft lockup */
2315 ret
= alloc_pool_huge_page(h
, nodes_allowed
);
2316 spin_lock(&hugetlb_lock
);
2320 /* Bail for signals. Probably ctrl-c from user */
2321 if (signal_pending(current
))
2326 * Decrease the pool size
2327 * First return free pages to the buddy allocator (being careful
2328 * to keep enough around to satisfy reservations). Then place
2329 * pages into surplus state as needed so the pool will shrink
2330 * to the desired size as pages become free.
2332 * By placing pages into the surplus state independent of the
2333 * overcommit value, we are allowing the surplus pool size to
2334 * exceed overcommit. There are few sane options here. Since
2335 * alloc_surplus_huge_page() is checking the global counter,
2336 * though, we'll note that we're not allowed to exceed surplus
2337 * and won't grow the pool anywhere else. Not until one of the
2338 * sysctls are changed, or the surplus pages go out of use.
2340 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2341 min_count
= max(count
, min_count
);
2342 try_to_free_low(h
, min_count
, nodes_allowed
);
2343 while (min_count
< persistent_huge_pages(h
)) {
2344 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2346 cond_resched_lock(&hugetlb_lock
);
2348 while (count
< persistent_huge_pages(h
)) {
2349 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2353 ret
= persistent_huge_pages(h
);
2354 spin_unlock(&hugetlb_lock
);
2358 #define HSTATE_ATTR_RO(_name) \
2359 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2361 #define HSTATE_ATTR(_name) \
2362 static struct kobj_attribute _name##_attr = \
2363 __ATTR(_name, 0644, _name##_show, _name##_store)
2365 static struct kobject
*hugepages_kobj
;
2366 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2368 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2370 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2374 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2375 if (hstate_kobjs
[i
] == kobj
) {
2377 *nidp
= NUMA_NO_NODE
;
2381 return kobj_to_node_hstate(kobj
, nidp
);
2384 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2385 struct kobj_attribute
*attr
, char *buf
)
2388 unsigned long nr_huge_pages
;
2391 h
= kobj_to_hstate(kobj
, &nid
);
2392 if (nid
== NUMA_NO_NODE
)
2393 nr_huge_pages
= h
->nr_huge_pages
;
2395 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2397 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2400 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2401 struct hstate
*h
, int nid
,
2402 unsigned long count
, size_t len
)
2405 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2407 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2412 if (nid
== NUMA_NO_NODE
) {
2414 * global hstate attribute
2416 if (!(obey_mempolicy
&&
2417 init_nodemask_of_mempolicy(nodes_allowed
))) {
2418 NODEMASK_FREE(nodes_allowed
);
2419 nodes_allowed
= &node_states
[N_MEMORY
];
2421 } else if (nodes_allowed
) {
2423 * per node hstate attribute: adjust count to global,
2424 * but restrict alloc/free to the specified node.
2426 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2427 init_nodemask_of_node(nodes_allowed
, nid
);
2429 nodes_allowed
= &node_states
[N_MEMORY
];
2431 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2433 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2434 NODEMASK_FREE(nodes_allowed
);
2438 NODEMASK_FREE(nodes_allowed
);
2442 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2443 struct kobject
*kobj
, const char *buf
,
2447 unsigned long count
;
2451 err
= kstrtoul(buf
, 10, &count
);
2455 h
= kobj_to_hstate(kobj
, &nid
);
2456 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2459 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2460 struct kobj_attribute
*attr
, char *buf
)
2462 return nr_hugepages_show_common(kobj
, attr
, buf
);
2465 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2466 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2468 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2470 HSTATE_ATTR(nr_hugepages
);
2475 * hstate attribute for optionally mempolicy-based constraint on persistent
2476 * huge page alloc/free.
2478 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2479 struct kobj_attribute
*attr
, char *buf
)
2481 return nr_hugepages_show_common(kobj
, attr
, buf
);
2484 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2485 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2487 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2489 HSTATE_ATTR(nr_hugepages_mempolicy
);
2493 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2494 struct kobj_attribute
*attr
, char *buf
)
2496 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2497 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2500 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2501 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2504 unsigned long input
;
2505 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2507 if (hstate_is_gigantic(h
))
2510 err
= kstrtoul(buf
, 10, &input
);
2514 spin_lock(&hugetlb_lock
);
2515 h
->nr_overcommit_huge_pages
= input
;
2516 spin_unlock(&hugetlb_lock
);
2520 HSTATE_ATTR(nr_overcommit_hugepages
);
2522 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2523 struct kobj_attribute
*attr
, char *buf
)
2526 unsigned long free_huge_pages
;
2529 h
= kobj_to_hstate(kobj
, &nid
);
2530 if (nid
== NUMA_NO_NODE
)
2531 free_huge_pages
= h
->free_huge_pages
;
2533 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2535 return sprintf(buf
, "%lu\n", free_huge_pages
);
2537 HSTATE_ATTR_RO(free_hugepages
);
2539 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2540 struct kobj_attribute
*attr
, char *buf
)
2542 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2543 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2545 HSTATE_ATTR_RO(resv_hugepages
);
2547 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2548 struct kobj_attribute
*attr
, char *buf
)
2551 unsigned long surplus_huge_pages
;
2554 h
= kobj_to_hstate(kobj
, &nid
);
2555 if (nid
== NUMA_NO_NODE
)
2556 surplus_huge_pages
= h
->surplus_huge_pages
;
2558 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2560 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2562 HSTATE_ATTR_RO(surplus_hugepages
);
2564 static struct attribute
*hstate_attrs
[] = {
2565 &nr_hugepages_attr
.attr
,
2566 &nr_overcommit_hugepages_attr
.attr
,
2567 &free_hugepages_attr
.attr
,
2568 &resv_hugepages_attr
.attr
,
2569 &surplus_hugepages_attr
.attr
,
2571 &nr_hugepages_mempolicy_attr
.attr
,
2576 static const struct attribute_group hstate_attr_group
= {
2577 .attrs
= hstate_attrs
,
2580 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2581 struct kobject
**hstate_kobjs
,
2582 const struct attribute_group
*hstate_attr_group
)
2585 int hi
= hstate_index(h
);
2587 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2588 if (!hstate_kobjs
[hi
])
2591 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2593 kobject_put(hstate_kobjs
[hi
]);
2598 static void __init
hugetlb_sysfs_init(void)
2603 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2604 if (!hugepages_kobj
)
2607 for_each_hstate(h
) {
2608 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2609 hstate_kobjs
, &hstate_attr_group
);
2611 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2618 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2619 * with node devices in node_devices[] using a parallel array. The array
2620 * index of a node device or _hstate == node id.
2621 * This is here to avoid any static dependency of the node device driver, in
2622 * the base kernel, on the hugetlb module.
2624 struct node_hstate
{
2625 struct kobject
*hugepages_kobj
;
2626 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2628 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2631 * A subset of global hstate attributes for node devices
2633 static struct attribute
*per_node_hstate_attrs
[] = {
2634 &nr_hugepages_attr
.attr
,
2635 &free_hugepages_attr
.attr
,
2636 &surplus_hugepages_attr
.attr
,
2640 static const struct attribute_group per_node_hstate_attr_group
= {
2641 .attrs
= per_node_hstate_attrs
,
2645 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2646 * Returns node id via non-NULL nidp.
2648 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2652 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2653 struct node_hstate
*nhs
= &node_hstates
[nid
];
2655 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2656 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2668 * Unregister hstate attributes from a single node device.
2669 * No-op if no hstate attributes attached.
2671 static void hugetlb_unregister_node(struct node
*node
)
2674 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2676 if (!nhs
->hugepages_kobj
)
2677 return; /* no hstate attributes */
2679 for_each_hstate(h
) {
2680 int idx
= hstate_index(h
);
2681 if (nhs
->hstate_kobjs
[idx
]) {
2682 kobject_put(nhs
->hstate_kobjs
[idx
]);
2683 nhs
->hstate_kobjs
[idx
] = NULL
;
2687 kobject_put(nhs
->hugepages_kobj
);
2688 nhs
->hugepages_kobj
= NULL
;
2693 * Register hstate attributes for a single node device.
2694 * No-op if attributes already registered.
2696 static void hugetlb_register_node(struct node
*node
)
2699 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2702 if (nhs
->hugepages_kobj
)
2703 return; /* already allocated */
2705 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2707 if (!nhs
->hugepages_kobj
)
2710 for_each_hstate(h
) {
2711 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2713 &per_node_hstate_attr_group
);
2715 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2716 h
->name
, node
->dev
.id
);
2717 hugetlb_unregister_node(node
);
2724 * hugetlb init time: register hstate attributes for all registered node
2725 * devices of nodes that have memory. All on-line nodes should have
2726 * registered their associated device by this time.
2728 static void __init
hugetlb_register_all_nodes(void)
2732 for_each_node_state(nid
, N_MEMORY
) {
2733 struct node
*node
= node_devices
[nid
];
2734 if (node
->dev
.id
== nid
)
2735 hugetlb_register_node(node
);
2739 * Let the node device driver know we're here so it can
2740 * [un]register hstate attributes on node hotplug.
2742 register_hugetlbfs_with_node(hugetlb_register_node
,
2743 hugetlb_unregister_node
);
2745 #else /* !CONFIG_NUMA */
2747 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2755 static void hugetlb_register_all_nodes(void) { }
2759 static int __init
hugetlb_init(void)
2763 if (!hugepages_supported())
2766 if (!size_to_hstate(default_hstate_size
)) {
2767 if (default_hstate_size
!= 0) {
2768 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2769 default_hstate_size
, HPAGE_SIZE
);
2772 default_hstate_size
= HPAGE_SIZE
;
2773 if (!size_to_hstate(default_hstate_size
))
2774 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2776 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2777 if (default_hstate_max_huge_pages
) {
2778 if (!default_hstate
.max_huge_pages
)
2779 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2782 hugetlb_init_hstates();
2783 gather_bootmem_prealloc();
2786 hugetlb_sysfs_init();
2787 hugetlb_register_all_nodes();
2788 hugetlb_cgroup_file_init();
2791 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2793 num_fault_mutexes
= 1;
2795 hugetlb_fault_mutex_table
=
2796 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
2798 BUG_ON(!hugetlb_fault_mutex_table
);
2800 for (i
= 0; i
< num_fault_mutexes
; i
++)
2801 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2804 subsys_initcall(hugetlb_init
);
2806 /* Should be called on processing a hugepagesz=... option */
2807 void __init
hugetlb_bad_size(void)
2809 parsed_valid_hugepagesz
= false;
2812 void __init
hugetlb_add_hstate(unsigned int order
)
2817 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2818 pr_warn("hugepagesz= specified twice, ignoring\n");
2821 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2823 h
= &hstates
[hugetlb_max_hstate
++];
2825 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2826 h
->nr_huge_pages
= 0;
2827 h
->free_huge_pages
= 0;
2828 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2829 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2830 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2831 h
->next_nid_to_alloc
= first_memory_node
;
2832 h
->next_nid_to_free
= first_memory_node
;
2833 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2834 huge_page_size(h
)/1024);
2839 static int __init
hugetlb_nrpages_setup(char *s
)
2842 static unsigned long *last_mhp
;
2844 if (!parsed_valid_hugepagesz
) {
2845 pr_warn("hugepages = %s preceded by "
2846 "an unsupported hugepagesz, ignoring\n", s
);
2847 parsed_valid_hugepagesz
= true;
2851 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2852 * so this hugepages= parameter goes to the "default hstate".
2854 else if (!hugetlb_max_hstate
)
2855 mhp
= &default_hstate_max_huge_pages
;
2857 mhp
= &parsed_hstate
->max_huge_pages
;
2859 if (mhp
== last_mhp
) {
2860 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2864 if (sscanf(s
, "%lu", mhp
) <= 0)
2868 * Global state is always initialized later in hugetlb_init.
2869 * But we need to allocate >= MAX_ORDER hstates here early to still
2870 * use the bootmem allocator.
2872 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2873 hugetlb_hstate_alloc_pages(parsed_hstate
);
2879 __setup("hugepages=", hugetlb_nrpages_setup
);
2881 static int __init
hugetlb_default_setup(char *s
)
2883 default_hstate_size
= memparse(s
, &s
);
2886 __setup("default_hugepagesz=", hugetlb_default_setup
);
2888 static unsigned int cpuset_mems_nr(unsigned int *array
)
2891 unsigned int nr
= 0;
2893 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2899 #ifdef CONFIG_SYSCTL
2900 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2901 struct ctl_table
*table
, int write
,
2902 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2904 struct hstate
*h
= &default_hstate
;
2905 unsigned long tmp
= h
->max_huge_pages
;
2908 if (!hugepages_supported())
2912 table
->maxlen
= sizeof(unsigned long);
2913 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2918 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2919 NUMA_NO_NODE
, tmp
, *length
);
2924 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2925 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2928 return hugetlb_sysctl_handler_common(false, table
, write
,
2929 buffer
, length
, ppos
);
2933 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2934 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2936 return hugetlb_sysctl_handler_common(true, table
, write
,
2937 buffer
, length
, ppos
);
2939 #endif /* CONFIG_NUMA */
2941 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2942 void __user
*buffer
,
2943 size_t *length
, loff_t
*ppos
)
2945 struct hstate
*h
= &default_hstate
;
2949 if (!hugepages_supported())
2952 tmp
= h
->nr_overcommit_huge_pages
;
2954 if (write
&& hstate_is_gigantic(h
))
2958 table
->maxlen
= sizeof(unsigned long);
2959 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2964 spin_lock(&hugetlb_lock
);
2965 h
->nr_overcommit_huge_pages
= tmp
;
2966 spin_unlock(&hugetlb_lock
);
2972 #endif /* CONFIG_SYSCTL */
2974 void hugetlb_report_meminfo(struct seq_file
*m
)
2977 unsigned long total
= 0;
2979 if (!hugepages_supported())
2982 for_each_hstate(h
) {
2983 unsigned long count
= h
->nr_huge_pages
;
2985 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
2987 if (h
== &default_hstate
)
2989 "HugePages_Total: %5lu\n"
2990 "HugePages_Free: %5lu\n"
2991 "HugePages_Rsvd: %5lu\n"
2992 "HugePages_Surp: %5lu\n"
2993 "Hugepagesize: %8lu kB\n",
2997 h
->surplus_huge_pages
,
2998 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3001 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3004 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3006 struct hstate
*h
= &default_hstate
;
3007 if (!hugepages_supported())
3010 "Node %d HugePages_Total: %5u\n"
3011 "Node %d HugePages_Free: %5u\n"
3012 "Node %d HugePages_Surp: %5u\n",
3013 nid
, h
->nr_huge_pages_node
[nid
],
3014 nid
, h
->free_huge_pages_node
[nid
],
3015 nid
, h
->surplus_huge_pages_node
[nid
]);
3018 void hugetlb_show_meminfo(void)
3023 if (!hugepages_supported())
3026 for_each_node_state(nid
, N_MEMORY
)
3028 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3030 h
->nr_huge_pages_node
[nid
],
3031 h
->free_huge_pages_node
[nid
],
3032 h
->surplus_huge_pages_node
[nid
],
3033 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3036 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3038 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3039 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3042 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3043 unsigned long hugetlb_total_pages(void)
3046 unsigned long nr_total_pages
= 0;
3049 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3050 return nr_total_pages
;
3053 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3057 spin_lock(&hugetlb_lock
);
3059 * When cpuset is configured, it breaks the strict hugetlb page
3060 * reservation as the accounting is done on a global variable. Such
3061 * reservation is completely rubbish in the presence of cpuset because
3062 * the reservation is not checked against page availability for the
3063 * current cpuset. Application can still potentially OOM'ed by kernel
3064 * with lack of free htlb page in cpuset that the task is in.
3065 * Attempt to enforce strict accounting with cpuset is almost
3066 * impossible (or too ugly) because cpuset is too fluid that
3067 * task or memory node can be dynamically moved between cpusets.
3069 * The change of semantics for shared hugetlb mapping with cpuset is
3070 * undesirable. However, in order to preserve some of the semantics,
3071 * we fall back to check against current free page availability as
3072 * a best attempt and hopefully to minimize the impact of changing
3073 * semantics that cpuset has.
3076 if (gather_surplus_pages(h
, delta
) < 0)
3079 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3080 return_unused_surplus_pages(h
, delta
);
3087 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3090 spin_unlock(&hugetlb_lock
);
3094 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3096 struct resv_map
*resv
= vma_resv_map(vma
);
3099 * This new VMA should share its siblings reservation map if present.
3100 * The VMA will only ever have a valid reservation map pointer where
3101 * it is being copied for another still existing VMA. As that VMA
3102 * has a reference to the reservation map it cannot disappear until
3103 * after this open call completes. It is therefore safe to take a
3104 * new reference here without additional locking.
3106 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3107 kref_get(&resv
->refs
);
3110 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3112 struct hstate
*h
= hstate_vma(vma
);
3113 struct resv_map
*resv
= vma_resv_map(vma
);
3114 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3115 unsigned long reserve
, start
, end
;
3118 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3121 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3122 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3124 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3126 kref_put(&resv
->refs
, resv_map_release
);
3130 * Decrement reserve counts. The global reserve count may be
3131 * adjusted if the subpool has a minimum size.
3133 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3134 hugetlb_acct_memory(h
, -gbl_reserve
);
3138 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3140 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3145 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
3147 struct hstate
*hstate
= hstate_vma(vma
);
3149 return 1UL << huge_page_shift(hstate
);
3153 * We cannot handle pagefaults against hugetlb pages at all. They cause
3154 * handle_mm_fault() to try to instantiate regular-sized pages in the
3155 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3158 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3165 * When a new function is introduced to vm_operations_struct and added
3166 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3167 * This is because under System V memory model, mappings created via
3168 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3169 * their original vm_ops are overwritten with shm_vm_ops.
3171 const struct vm_operations_struct hugetlb_vm_ops
= {
3172 .fault
= hugetlb_vm_op_fault
,
3173 .open
= hugetlb_vm_op_open
,
3174 .close
= hugetlb_vm_op_close
,
3175 .split
= hugetlb_vm_op_split
,
3176 .pagesize
= hugetlb_vm_op_pagesize
,
3179 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3185 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3186 vma
->vm_page_prot
)));
3188 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3189 vma
->vm_page_prot
));
3191 entry
= pte_mkyoung(entry
);
3192 entry
= pte_mkhuge(entry
);
3193 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3198 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3199 unsigned long address
, pte_t
*ptep
)
3203 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3204 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3205 update_mmu_cache(vma
, address
, ptep
);
3208 bool is_hugetlb_entry_migration(pte_t pte
)
3212 if (huge_pte_none(pte
) || pte_present(pte
))
3214 swp
= pte_to_swp_entry(pte
);
3215 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3221 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3225 if (huge_pte_none(pte
) || pte_present(pte
))
3227 swp
= pte_to_swp_entry(pte
);
3228 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3234 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3235 struct vm_area_struct
*vma
)
3237 pte_t
*src_pte
, *dst_pte
, entry
, dst_entry
;
3238 struct page
*ptepage
;
3241 struct hstate
*h
= hstate_vma(vma
);
3242 unsigned long sz
= huge_page_size(h
);
3243 struct mmu_notifier_range range
;
3246 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3249 mmu_notifier_range_init(&range
, src
, vma
->vm_start
,
3251 mmu_notifier_invalidate_range_start(&range
);
3254 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3255 spinlock_t
*src_ptl
, *dst_ptl
;
3256 src_pte
= huge_pte_offset(src
, addr
, sz
);
3259 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3266 * If the pagetables are shared don't copy or take references.
3267 * dst_pte == src_pte is the common case of src/dest sharing.
3269 * However, src could have 'unshared' and dst shares with
3270 * another vma. If dst_pte !none, this implies sharing.
3271 * Check here before taking page table lock, and once again
3272 * after taking the lock below.
3274 dst_entry
= huge_ptep_get(dst_pte
);
3275 if ((dst_pte
== src_pte
) || !huge_pte_none(dst_entry
))
3278 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3279 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3280 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3281 entry
= huge_ptep_get(src_pte
);
3282 dst_entry
= huge_ptep_get(dst_pte
);
3283 if (huge_pte_none(entry
) || !huge_pte_none(dst_entry
)) {
3285 * Skip if src entry none. Also, skip in the
3286 * unlikely case dst entry !none as this implies
3287 * sharing with another vma.
3290 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3291 is_hugetlb_entry_hwpoisoned(entry
))) {
3292 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3294 if (is_write_migration_entry(swp_entry
) && cow
) {
3296 * COW mappings require pages in both
3297 * parent and child to be set to read.
3299 make_migration_entry_read(&swp_entry
);
3300 entry
= swp_entry_to_pte(swp_entry
);
3301 set_huge_swap_pte_at(src
, addr
, src_pte
,
3304 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3308 * No need to notify as we are downgrading page
3309 * table protection not changing it to point
3312 * See Documentation/vm/mmu_notifier.rst
3314 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3316 entry
= huge_ptep_get(src_pte
);
3317 ptepage
= pte_page(entry
);
3319 page_dup_rmap(ptepage
, true);
3320 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3321 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3323 spin_unlock(src_ptl
);
3324 spin_unlock(dst_ptl
);
3328 mmu_notifier_invalidate_range_end(&range
);
3333 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3334 unsigned long start
, unsigned long end
,
3335 struct page
*ref_page
)
3337 struct mm_struct
*mm
= vma
->vm_mm
;
3338 unsigned long address
;
3343 struct hstate
*h
= hstate_vma(vma
);
3344 unsigned long sz
= huge_page_size(h
);
3345 struct mmu_notifier_range range
;
3347 WARN_ON(!is_vm_hugetlb_page(vma
));
3348 BUG_ON(start
& ~huge_page_mask(h
));
3349 BUG_ON(end
& ~huge_page_mask(h
));
3352 * This is a hugetlb vma, all the pte entries should point
3355 tlb_remove_check_page_size_change(tlb
, sz
);
3356 tlb_start_vma(tlb
, vma
);
3359 * If sharing possible, alert mmu notifiers of worst case.
3361 mmu_notifier_range_init(&range
, mm
, start
, end
);
3362 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
3363 mmu_notifier_invalidate_range_start(&range
);
3365 for (; address
< end
; address
+= sz
) {
3366 ptep
= huge_pte_offset(mm
, address
, sz
);
3370 ptl
= huge_pte_lock(h
, mm
, ptep
);
3371 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3374 * We just unmapped a page of PMDs by clearing a PUD.
3375 * The caller's TLB flush range should cover this area.
3380 pte
= huge_ptep_get(ptep
);
3381 if (huge_pte_none(pte
)) {
3387 * Migrating hugepage or HWPoisoned hugepage is already
3388 * unmapped and its refcount is dropped, so just clear pte here.
3390 if (unlikely(!pte_present(pte
))) {
3391 huge_pte_clear(mm
, address
, ptep
, sz
);
3396 page
= pte_page(pte
);
3398 * If a reference page is supplied, it is because a specific
3399 * page is being unmapped, not a range. Ensure the page we
3400 * are about to unmap is the actual page of interest.
3403 if (page
!= ref_page
) {
3408 * Mark the VMA as having unmapped its page so that
3409 * future faults in this VMA will fail rather than
3410 * looking like data was lost
3412 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3415 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3416 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3417 if (huge_pte_dirty(pte
))
3418 set_page_dirty(page
);
3420 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3421 page_remove_rmap(page
, true);
3424 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3426 * Bail out after unmapping reference page if supplied
3431 mmu_notifier_invalidate_range_end(&range
);
3432 tlb_end_vma(tlb
, vma
);
3435 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3436 struct vm_area_struct
*vma
, unsigned long start
,
3437 unsigned long end
, struct page
*ref_page
)
3439 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3442 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3443 * test will fail on a vma being torn down, and not grab a page table
3444 * on its way out. We're lucky that the flag has such an appropriate
3445 * name, and can in fact be safely cleared here. We could clear it
3446 * before the __unmap_hugepage_range above, but all that's necessary
3447 * is to clear it before releasing the i_mmap_rwsem. This works
3448 * because in the context this is called, the VMA is about to be
3449 * destroyed and the i_mmap_rwsem is held.
3451 vma
->vm_flags
&= ~VM_MAYSHARE
;
3454 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3455 unsigned long end
, struct page
*ref_page
)
3457 struct mm_struct
*mm
;
3458 struct mmu_gather tlb
;
3459 unsigned long tlb_start
= start
;
3460 unsigned long tlb_end
= end
;
3463 * If shared PMDs were possibly used within this vma range, adjust
3464 * start/end for worst case tlb flushing.
3465 * Note that we can not be sure if PMDs are shared until we try to
3466 * unmap pages. However, we want to make sure TLB flushing covers
3467 * the largest possible range.
3469 adjust_range_if_pmd_sharing_possible(vma
, &tlb_start
, &tlb_end
);
3473 tlb_gather_mmu(&tlb
, mm
, tlb_start
, tlb_end
);
3474 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3475 tlb_finish_mmu(&tlb
, tlb_start
, tlb_end
);
3479 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3480 * mappping it owns the reserve page for. The intention is to unmap the page
3481 * from other VMAs and let the children be SIGKILLed if they are faulting the
3484 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3485 struct page
*page
, unsigned long address
)
3487 struct hstate
*h
= hstate_vma(vma
);
3488 struct vm_area_struct
*iter_vma
;
3489 struct address_space
*mapping
;
3493 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3494 * from page cache lookup which is in HPAGE_SIZE units.
3496 address
= address
& huge_page_mask(h
);
3497 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3499 mapping
= vma
->vm_file
->f_mapping
;
3502 * Take the mapping lock for the duration of the table walk. As
3503 * this mapping should be shared between all the VMAs,
3504 * __unmap_hugepage_range() is called as the lock is already held
3506 i_mmap_lock_write(mapping
);
3507 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3508 /* Do not unmap the current VMA */
3509 if (iter_vma
== vma
)
3513 * Shared VMAs have their own reserves and do not affect
3514 * MAP_PRIVATE accounting but it is possible that a shared
3515 * VMA is using the same page so check and skip such VMAs.
3517 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3521 * Unmap the page from other VMAs without their own reserves.
3522 * They get marked to be SIGKILLed if they fault in these
3523 * areas. This is because a future no-page fault on this VMA
3524 * could insert a zeroed page instead of the data existing
3525 * from the time of fork. This would look like data corruption
3527 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3528 unmap_hugepage_range(iter_vma
, address
,
3529 address
+ huge_page_size(h
), page
);
3531 i_mmap_unlock_write(mapping
);
3535 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3536 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3537 * cannot race with other handlers or page migration.
3538 * Keep the pte_same checks anyway to make transition from the mutex easier.
3540 static vm_fault_t
hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3541 unsigned long address
, pte_t
*ptep
,
3542 struct page
*pagecache_page
, spinlock_t
*ptl
)
3545 struct hstate
*h
= hstate_vma(vma
);
3546 struct page
*old_page
, *new_page
;
3547 int outside_reserve
= 0;
3549 unsigned long haddr
= address
& huge_page_mask(h
);
3550 struct mmu_notifier_range range
;
3552 pte
= huge_ptep_get(ptep
);
3553 old_page
= pte_page(pte
);
3556 /* If no-one else is actually using this page, avoid the copy
3557 * and just make the page writable */
3558 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3559 page_move_anon_rmap(old_page
, vma
);
3560 set_huge_ptep_writable(vma
, haddr
, ptep
);
3565 * If the process that created a MAP_PRIVATE mapping is about to
3566 * perform a COW due to a shared page count, attempt to satisfy
3567 * the allocation without using the existing reserves. The pagecache
3568 * page is used to determine if the reserve at this address was
3569 * consumed or not. If reserves were used, a partial faulted mapping
3570 * at the time of fork() could consume its reserves on COW instead
3571 * of the full address range.
3573 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3574 old_page
!= pagecache_page
)
3575 outside_reserve
= 1;
3580 * Drop page table lock as buddy allocator may be called. It will
3581 * be acquired again before returning to the caller, as expected.
3584 new_page
= alloc_huge_page(vma
, haddr
, outside_reserve
);
3586 if (IS_ERR(new_page
)) {
3588 * If a process owning a MAP_PRIVATE mapping fails to COW,
3589 * it is due to references held by a child and an insufficient
3590 * huge page pool. To guarantee the original mappers
3591 * reliability, unmap the page from child processes. The child
3592 * may get SIGKILLed if it later faults.
3594 if (outside_reserve
) {
3596 BUG_ON(huge_pte_none(pte
));
3597 unmap_ref_private(mm
, vma
, old_page
, haddr
);
3598 BUG_ON(huge_pte_none(pte
));
3600 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3602 pte_same(huge_ptep_get(ptep
), pte
)))
3603 goto retry_avoidcopy
;
3605 * race occurs while re-acquiring page table
3606 * lock, and our job is done.
3611 ret
= vmf_error(PTR_ERR(new_page
));
3612 goto out_release_old
;
3616 * When the original hugepage is shared one, it does not have
3617 * anon_vma prepared.
3619 if (unlikely(anon_vma_prepare(vma
))) {
3621 goto out_release_all
;
3624 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3625 pages_per_huge_page(h
));
3626 __SetPageUptodate(new_page
);
3627 set_page_huge_active(new_page
);
3629 mmu_notifier_range_init(&range
, mm
, haddr
, haddr
+ huge_page_size(h
));
3630 mmu_notifier_invalidate_range_start(&range
);
3633 * Retake the page table lock to check for racing updates
3634 * before the page tables are altered
3637 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3638 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3639 ClearPagePrivate(new_page
);
3642 huge_ptep_clear_flush(vma
, haddr
, ptep
);
3643 mmu_notifier_invalidate_range(mm
, range
.start
, range
.end
);
3644 set_huge_pte_at(mm
, haddr
, ptep
,
3645 make_huge_pte(vma
, new_page
, 1));
3646 page_remove_rmap(old_page
, true);
3647 hugepage_add_new_anon_rmap(new_page
, vma
, haddr
);
3648 /* Make the old page be freed below */
3649 new_page
= old_page
;
3652 mmu_notifier_invalidate_range_end(&range
);
3654 restore_reserve_on_error(h
, vma
, haddr
, new_page
);
3659 spin_lock(ptl
); /* Caller expects lock to be held */
3663 /* Return the pagecache page at a given address within a VMA */
3664 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3665 struct vm_area_struct
*vma
, unsigned long address
)
3667 struct address_space
*mapping
;
3670 mapping
= vma
->vm_file
->f_mapping
;
3671 idx
= vma_hugecache_offset(h
, vma
, address
);
3673 return find_lock_page(mapping
, idx
);
3677 * Return whether there is a pagecache page to back given address within VMA.
3678 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3680 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3681 struct vm_area_struct
*vma
, unsigned long address
)
3683 struct address_space
*mapping
;
3687 mapping
= vma
->vm_file
->f_mapping
;
3688 idx
= vma_hugecache_offset(h
, vma
, address
);
3690 page
= find_get_page(mapping
, idx
);
3693 return page
!= NULL
;
3696 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3699 struct inode
*inode
= mapping
->host
;
3700 struct hstate
*h
= hstate_inode(inode
);
3701 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3705 ClearPagePrivate(page
);
3708 * set page dirty so that it will not be removed from cache/file
3709 * by non-hugetlbfs specific code paths.
3711 set_page_dirty(page
);
3713 spin_lock(&inode
->i_lock
);
3714 inode
->i_blocks
+= blocks_per_huge_page(h
);
3715 spin_unlock(&inode
->i_lock
);
3719 static vm_fault_t
hugetlb_no_page(struct mm_struct
*mm
,
3720 struct vm_area_struct
*vma
,
3721 struct address_space
*mapping
, pgoff_t idx
,
3722 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3724 struct hstate
*h
= hstate_vma(vma
);
3725 vm_fault_t ret
= VM_FAULT_SIGBUS
;
3731 unsigned long haddr
= address
& huge_page_mask(h
);
3734 * Currently, we are forced to kill the process in the event the
3735 * original mapper has unmapped pages from the child due to a failed
3736 * COW. Warn that such a situation has occurred as it may not be obvious
3738 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3739 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3745 * Use page lock to guard against racing truncation
3746 * before we get page_table_lock.
3749 page
= find_lock_page(mapping
, idx
);
3751 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3756 * Check for page in userfault range
3758 if (userfaultfd_missing(vma
)) {
3760 struct vm_fault vmf
= {
3765 * Hard to debug if it ends up being
3766 * used by a callee that assumes
3767 * something about the other
3768 * uninitialized fields... same as in
3774 * hugetlb_fault_mutex must be dropped before
3775 * handling userfault. Reacquire after handling
3776 * fault to make calling code simpler.
3778 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
,
3780 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3781 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
3782 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3786 page
= alloc_huge_page(vma
, haddr
, 0);
3788 ret
= vmf_error(PTR_ERR(page
));
3791 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3792 __SetPageUptodate(page
);
3793 set_page_huge_active(page
);
3795 if (vma
->vm_flags
& VM_MAYSHARE
) {
3796 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3805 if (unlikely(anon_vma_prepare(vma
))) {
3807 goto backout_unlocked
;
3813 * If memory error occurs between mmap() and fault, some process
3814 * don't have hwpoisoned swap entry for errored virtual address.
3815 * So we need to block hugepage fault by PG_hwpoison bit check.
3817 if (unlikely(PageHWPoison(page
))) {
3818 ret
= VM_FAULT_HWPOISON
|
3819 VM_FAULT_SET_HINDEX(hstate_index(h
));
3820 goto backout_unlocked
;
3825 * If we are going to COW a private mapping later, we examine the
3826 * pending reservations for this page now. This will ensure that
3827 * any allocations necessary to record that reservation occur outside
3830 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3831 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
3833 goto backout_unlocked
;
3835 /* Just decrements count, does not deallocate */
3836 vma_end_reservation(h
, vma
, haddr
);
3839 ptl
= huge_pte_lock(h
, mm
, ptep
);
3840 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3845 if (!huge_pte_none(huge_ptep_get(ptep
)))
3849 ClearPagePrivate(page
);
3850 hugepage_add_new_anon_rmap(page
, vma
, haddr
);
3852 page_dup_rmap(page
, true);
3853 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3854 && (vma
->vm_flags
& VM_SHARED
)));
3855 set_huge_pte_at(mm
, haddr
, ptep
, new_pte
);
3857 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3858 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3859 /* Optimization, do the COW without a second fault */
3860 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
3872 restore_reserve_on_error(h
, vma
, haddr
, page
);
3878 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3879 struct vm_area_struct
*vma
,
3880 struct address_space
*mapping
,
3881 pgoff_t idx
, unsigned long address
)
3883 unsigned long key
[2];
3886 if (vma
->vm_flags
& VM_SHARED
) {
3887 key
[0] = (unsigned long) mapping
;
3890 key
[0] = (unsigned long) mm
;
3891 key
[1] = address
>> huge_page_shift(h
);
3894 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3896 return hash
& (num_fault_mutexes
- 1);
3900 * For uniprocesor systems we always use a single mutex, so just
3901 * return 0 and avoid the hashing overhead.
3903 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3904 struct vm_area_struct
*vma
,
3905 struct address_space
*mapping
,
3906 pgoff_t idx
, unsigned long address
)
3912 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3913 unsigned long address
, unsigned int flags
)
3920 struct page
*page
= NULL
;
3921 struct page
*pagecache_page
= NULL
;
3922 struct hstate
*h
= hstate_vma(vma
);
3923 struct address_space
*mapping
;
3924 int need_wait_lock
= 0;
3925 unsigned long haddr
= address
& huge_page_mask(h
);
3927 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3929 entry
= huge_ptep_get(ptep
);
3930 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3931 migration_entry_wait_huge(vma
, mm
, ptep
);
3933 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3934 return VM_FAULT_HWPOISON_LARGE
|
3935 VM_FAULT_SET_HINDEX(hstate_index(h
));
3937 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
3939 return VM_FAULT_OOM
;
3942 mapping
= vma
->vm_file
->f_mapping
;
3943 idx
= vma_hugecache_offset(h
, vma
, haddr
);
3946 * Serialize hugepage allocation and instantiation, so that we don't
3947 * get spurious allocation failures if two CPUs race to instantiate
3948 * the same page in the page cache.
3950 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, haddr
);
3951 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3953 entry
= huge_ptep_get(ptep
);
3954 if (huge_pte_none(entry
)) {
3955 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3962 * entry could be a migration/hwpoison entry at this point, so this
3963 * check prevents the kernel from going below assuming that we have
3964 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3965 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3968 if (!pte_present(entry
))
3972 * If we are going to COW the mapping later, we examine the pending
3973 * reservations for this page now. This will ensure that any
3974 * allocations necessary to record that reservation occur outside the
3975 * spinlock. For private mappings, we also lookup the pagecache
3976 * page now as it is used to determine if a reservation has been
3979 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3980 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
3984 /* Just decrements count, does not deallocate */
3985 vma_end_reservation(h
, vma
, haddr
);
3987 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3988 pagecache_page
= hugetlbfs_pagecache_page(h
,
3992 ptl
= huge_pte_lock(h
, mm
, ptep
);
3994 /* Check for a racing update before calling hugetlb_cow */
3995 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3999 * hugetlb_cow() requires page locks of pte_page(entry) and
4000 * pagecache_page, so here we need take the former one
4001 * when page != pagecache_page or !pagecache_page.
4003 page
= pte_page(entry
);
4004 if (page
!= pagecache_page
)
4005 if (!trylock_page(page
)) {
4012 if (flags
& FAULT_FLAG_WRITE
) {
4013 if (!huge_pte_write(entry
)) {
4014 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
4015 pagecache_page
, ptl
);
4018 entry
= huge_pte_mkdirty(entry
);
4020 entry
= pte_mkyoung(entry
);
4021 if (huge_ptep_set_access_flags(vma
, haddr
, ptep
, entry
,
4022 flags
& FAULT_FLAG_WRITE
))
4023 update_mmu_cache(vma
, haddr
, ptep
);
4025 if (page
!= pagecache_page
)
4031 if (pagecache_page
) {
4032 unlock_page(pagecache_page
);
4033 put_page(pagecache_page
);
4036 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4038 * Generally it's safe to hold refcount during waiting page lock. But
4039 * here we just wait to defer the next page fault to avoid busy loop and
4040 * the page is not used after unlocked before returning from the current
4041 * page fault. So we are safe from accessing freed page, even if we wait
4042 * here without taking refcount.
4045 wait_on_page_locked(page
);
4050 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4051 * modifications for huge pages.
4053 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4055 struct vm_area_struct
*dst_vma
,
4056 unsigned long dst_addr
,
4057 unsigned long src_addr
,
4058 struct page
**pagep
)
4060 struct address_space
*mapping
;
4063 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4064 struct hstate
*h
= hstate_vma(dst_vma
);
4072 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4076 ret
= copy_huge_page_from_user(page
,
4077 (const void __user
*) src_addr
,
4078 pages_per_huge_page(h
), false);
4080 /* fallback to copy_from_user outside mmap_sem */
4081 if (unlikely(ret
)) {
4084 /* don't free the page */
4093 * The memory barrier inside __SetPageUptodate makes sure that
4094 * preceding stores to the page contents become visible before
4095 * the set_pte_at() write.
4097 __SetPageUptodate(page
);
4098 set_page_huge_active(page
);
4100 mapping
= dst_vma
->vm_file
->f_mapping
;
4101 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4104 * If shared, add to page cache
4107 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4110 goto out_release_nounlock
;
4113 * Serialization between remove_inode_hugepages() and
4114 * huge_add_to_page_cache() below happens through the
4115 * hugetlb_fault_mutex_table that here must be hold by
4118 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4120 goto out_release_nounlock
;
4123 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4127 * Recheck the i_size after holding PT lock to make sure not
4128 * to leave any page mapped (as page_mapped()) beyond the end
4129 * of the i_size (remove_inode_hugepages() is strict about
4130 * enforcing that). If we bail out here, we'll also leave a
4131 * page in the radix tree in the vm_shared case beyond the end
4132 * of the i_size, but remove_inode_hugepages() will take care
4133 * of it as soon as we drop the hugetlb_fault_mutex_table.
4135 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4138 goto out_release_unlock
;
4141 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4142 goto out_release_unlock
;
4145 page_dup_rmap(page
, true);
4147 ClearPagePrivate(page
);
4148 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4151 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4152 if (dst_vma
->vm_flags
& VM_WRITE
)
4153 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4154 _dst_pte
= pte_mkyoung(_dst_pte
);
4156 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4158 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4159 dst_vma
->vm_flags
& VM_WRITE
);
4160 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4162 /* No need to invalidate - it was non-present before */
4163 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4175 out_release_nounlock
:
4180 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4181 struct page
**pages
, struct vm_area_struct
**vmas
,
4182 unsigned long *position
, unsigned long *nr_pages
,
4183 long i
, unsigned int flags
, int *nonblocking
)
4185 unsigned long pfn_offset
;
4186 unsigned long vaddr
= *position
;
4187 unsigned long remainder
= *nr_pages
;
4188 struct hstate
*h
= hstate_vma(vma
);
4191 while (vaddr
< vma
->vm_end
&& remainder
) {
4193 spinlock_t
*ptl
= NULL
;
4198 * If we have a pending SIGKILL, don't keep faulting pages and
4199 * potentially allocating memory.
4201 if (fatal_signal_pending(current
)) {
4207 * Some archs (sparc64, sh*) have multiple pte_ts to
4208 * each hugepage. We have to make sure we get the
4209 * first, for the page indexing below to work.
4211 * Note that page table lock is not held when pte is null.
4213 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4216 ptl
= huge_pte_lock(h
, mm
, pte
);
4217 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4220 * When coredumping, it suits get_dump_page if we just return
4221 * an error where there's an empty slot with no huge pagecache
4222 * to back it. This way, we avoid allocating a hugepage, and
4223 * the sparse dumpfile avoids allocating disk blocks, but its
4224 * huge holes still show up with zeroes where they need to be.
4226 if (absent
&& (flags
& FOLL_DUMP
) &&
4227 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4235 * We need call hugetlb_fault for both hugepages under migration
4236 * (in which case hugetlb_fault waits for the migration,) and
4237 * hwpoisoned hugepages (in which case we need to prevent the
4238 * caller from accessing to them.) In order to do this, we use
4239 * here is_swap_pte instead of is_hugetlb_entry_migration and
4240 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4241 * both cases, and because we can't follow correct pages
4242 * directly from any kind of swap entries.
4244 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4245 ((flags
& FOLL_WRITE
) &&
4246 !huge_pte_write(huge_ptep_get(pte
)))) {
4248 unsigned int fault_flags
= 0;
4252 if (flags
& FOLL_WRITE
)
4253 fault_flags
|= FAULT_FLAG_WRITE
;
4255 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
4256 if (flags
& FOLL_NOWAIT
)
4257 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4258 FAULT_FLAG_RETRY_NOWAIT
;
4259 if (flags
& FOLL_TRIED
) {
4260 VM_WARN_ON_ONCE(fault_flags
&
4261 FAULT_FLAG_ALLOW_RETRY
);
4262 fault_flags
|= FAULT_FLAG_TRIED
;
4264 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4265 if (ret
& VM_FAULT_ERROR
) {
4266 err
= vm_fault_to_errno(ret
, flags
);
4270 if (ret
& VM_FAULT_RETRY
) {
4275 * VM_FAULT_RETRY must not return an
4276 * error, it will return zero
4279 * No need to update "position" as the
4280 * caller will not check it after
4281 * *nr_pages is set to 0.
4288 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4289 page
= pte_page(huge_ptep_get(pte
));
4292 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4303 if (vaddr
< vma
->vm_end
&& remainder
&&
4304 pfn_offset
< pages_per_huge_page(h
)) {
4306 * We use pfn_offset to avoid touching the pageframes
4307 * of this compound page.
4313 *nr_pages
= remainder
;
4315 * setting position is actually required only if remainder is
4316 * not zero but it's faster not to add a "if (remainder)"
4324 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4326 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4329 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4332 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4333 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4335 struct mm_struct
*mm
= vma
->vm_mm
;
4336 unsigned long start
= address
;
4339 struct hstate
*h
= hstate_vma(vma
);
4340 unsigned long pages
= 0;
4341 bool shared_pmd
= false;
4342 struct mmu_notifier_range range
;
4345 * In the case of shared PMDs, the area to flush could be beyond
4346 * start/end. Set range.start/range.end to cover the maximum possible
4347 * range if PMD sharing is possible.
4349 mmu_notifier_range_init(&range
, mm
, start
, end
);
4350 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
4352 BUG_ON(address
>= end
);
4353 flush_cache_range(vma
, range
.start
, range
.end
);
4355 mmu_notifier_invalidate_range_start(&range
);
4356 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4357 for (; address
< end
; address
+= huge_page_size(h
)) {
4359 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
4362 ptl
= huge_pte_lock(h
, mm
, ptep
);
4363 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
4369 pte
= huge_ptep_get(ptep
);
4370 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4374 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4375 swp_entry_t entry
= pte_to_swp_entry(pte
);
4377 if (is_write_migration_entry(entry
)) {
4380 make_migration_entry_read(&entry
);
4381 newpte
= swp_entry_to_pte(entry
);
4382 set_huge_swap_pte_at(mm
, address
, ptep
,
4383 newpte
, huge_page_size(h
));
4389 if (!huge_pte_none(pte
)) {
4390 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
4391 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
4392 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4393 set_huge_pte_at(mm
, address
, ptep
, pte
);
4399 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4400 * may have cleared our pud entry and done put_page on the page table:
4401 * once we release i_mmap_rwsem, another task can do the final put_page
4402 * and that page table be reused and filled with junk. If we actually
4403 * did unshare a page of pmds, flush the range corresponding to the pud.
4406 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
4408 flush_hugetlb_tlb_range(vma
, start
, end
);
4410 * No need to call mmu_notifier_invalidate_range() we are downgrading
4411 * page table protection not changing it to point to a new page.
4413 * See Documentation/vm/mmu_notifier.rst
4415 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4416 mmu_notifier_invalidate_range_end(&range
);
4418 return pages
<< h
->order
;
4421 int hugetlb_reserve_pages(struct inode
*inode
,
4423 struct vm_area_struct
*vma
,
4424 vm_flags_t vm_flags
)
4427 struct hstate
*h
= hstate_inode(inode
);
4428 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4429 struct resv_map
*resv_map
;
4432 /* This should never happen */
4434 VM_WARN(1, "%s called with a negative range\n", __func__
);
4439 * Only apply hugepage reservation if asked. At fault time, an
4440 * attempt will be made for VM_NORESERVE to allocate a page
4441 * without using reserves
4443 if (vm_flags
& VM_NORESERVE
)
4447 * Shared mappings base their reservation on the number of pages that
4448 * are already allocated on behalf of the file. Private mappings need
4449 * to reserve the full area even if read-only as mprotect() may be
4450 * called to make the mapping read-write. Assume !vma is a shm mapping
4452 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4453 resv_map
= inode_resv_map(inode
);
4455 chg
= region_chg(resv_map
, from
, to
);
4458 resv_map
= resv_map_alloc();
4464 set_vma_resv_map(vma
, resv_map
);
4465 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4474 * There must be enough pages in the subpool for the mapping. If
4475 * the subpool has a minimum size, there may be some global
4476 * reservations already in place (gbl_reserve).
4478 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4479 if (gbl_reserve
< 0) {
4485 * Check enough hugepages are available for the reservation.
4486 * Hand the pages back to the subpool if there are not
4488 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4490 /* put back original number of pages, chg */
4491 (void)hugepage_subpool_put_pages(spool
, chg
);
4496 * Account for the reservations made. Shared mappings record regions
4497 * that have reservations as they are shared by multiple VMAs.
4498 * When the last VMA disappears, the region map says how much
4499 * the reservation was and the page cache tells how much of
4500 * the reservation was consumed. Private mappings are per-VMA and
4501 * only the consumed reservations are tracked. When the VMA
4502 * disappears, the original reservation is the VMA size and the
4503 * consumed reservations are stored in the map. Hence, nothing
4504 * else has to be done for private mappings here
4506 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4507 long add
= region_add(resv_map
, from
, to
);
4509 if (unlikely(chg
> add
)) {
4511 * pages in this range were added to the reserve
4512 * map between region_chg and region_add. This
4513 * indicates a race with alloc_huge_page. Adjust
4514 * the subpool and reserve counts modified above
4515 * based on the difference.
4519 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4521 hugetlb_acct_memory(h
, -rsv_adjust
);
4526 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4527 /* Don't call region_abort if region_chg failed */
4529 region_abort(resv_map
, from
, to
);
4530 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4531 kref_put(&resv_map
->refs
, resv_map_release
);
4535 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4538 struct hstate
*h
= hstate_inode(inode
);
4539 struct resv_map
*resv_map
= inode_resv_map(inode
);
4541 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4545 chg
= region_del(resv_map
, start
, end
);
4547 * region_del() can fail in the rare case where a region
4548 * must be split and another region descriptor can not be
4549 * allocated. If end == LONG_MAX, it will not fail.
4555 spin_lock(&inode
->i_lock
);
4556 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4557 spin_unlock(&inode
->i_lock
);
4560 * If the subpool has a minimum size, the number of global
4561 * reservations to be released may be adjusted.
4563 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4564 hugetlb_acct_memory(h
, -gbl_reserve
);
4569 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4570 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4571 struct vm_area_struct
*vma
,
4572 unsigned long addr
, pgoff_t idx
)
4574 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4576 unsigned long sbase
= saddr
& PUD_MASK
;
4577 unsigned long s_end
= sbase
+ PUD_SIZE
;
4579 /* Allow segments to share if only one is marked locked */
4580 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4581 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4584 * match the virtual addresses, permission and the alignment of the
4587 if (pmd_index(addr
) != pmd_index(saddr
) ||
4588 vm_flags
!= svm_flags
||
4589 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4595 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4597 unsigned long base
= addr
& PUD_MASK
;
4598 unsigned long end
= base
+ PUD_SIZE
;
4601 * check on proper vm_flags and page table alignment
4603 if (vma
->vm_flags
& VM_MAYSHARE
&& range_in_vma(vma
, base
, end
))
4609 * Determine if start,end range within vma could be mapped by shared pmd.
4610 * If yes, adjust start and end to cover range associated with possible
4611 * shared pmd mappings.
4613 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4614 unsigned long *start
, unsigned long *end
)
4616 unsigned long check_addr
= *start
;
4618 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4621 for (check_addr
= *start
; check_addr
< *end
; check_addr
+= PUD_SIZE
) {
4622 unsigned long a_start
= check_addr
& PUD_MASK
;
4623 unsigned long a_end
= a_start
+ PUD_SIZE
;
4626 * If sharing is possible, adjust start/end if necessary.
4628 if (range_in_vma(vma
, a_start
, a_end
)) {
4629 if (a_start
< *start
)
4638 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4639 * and returns the corresponding pte. While this is not necessary for the
4640 * !shared pmd case because we can allocate the pmd later as well, it makes the
4641 * code much cleaner. pmd allocation is essential for the shared case because
4642 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4643 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4644 * bad pmd for sharing.
4646 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4648 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4649 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4650 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4652 struct vm_area_struct
*svma
;
4653 unsigned long saddr
;
4658 if (!vma_shareable(vma
, addr
))
4659 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4661 i_mmap_lock_write(mapping
);
4662 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4666 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4668 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
4669 vma_mmu_pagesize(svma
));
4671 get_page(virt_to_page(spte
));
4680 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
4681 if (pud_none(*pud
)) {
4682 pud_populate(mm
, pud
,
4683 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4686 put_page(virt_to_page(spte
));
4690 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4691 i_mmap_unlock_write(mapping
);
4696 * unmap huge page backed by shared pte.
4698 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4699 * indicated by page_count > 1, unmap is achieved by clearing pud and
4700 * decrementing the ref count. If count == 1, the pte page is not shared.
4702 * called with page table lock held.
4704 * returns: 1 successfully unmapped a shared pte page
4705 * 0 the underlying pte page is not shared, or it is the last user
4707 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4709 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4710 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
4711 pud_t
*pud
= pud_offset(p4d
, *addr
);
4713 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4714 if (page_count(virt_to_page(ptep
)) == 1)
4718 put_page(virt_to_page(ptep
));
4720 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4723 #define want_pmd_share() (1)
4724 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4725 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4730 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4735 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4736 unsigned long *start
, unsigned long *end
)
4739 #define want_pmd_share() (0)
4740 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4742 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4743 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4744 unsigned long addr
, unsigned long sz
)
4751 pgd
= pgd_offset(mm
, addr
);
4752 p4d
= p4d_alloc(mm
, pgd
, addr
);
4755 pud
= pud_alloc(mm
, p4d
, addr
);
4757 if (sz
== PUD_SIZE
) {
4760 BUG_ON(sz
!= PMD_SIZE
);
4761 if (want_pmd_share() && pud_none(*pud
))
4762 pte
= huge_pmd_share(mm
, addr
, pud
);
4764 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4767 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
4773 * huge_pte_offset() - Walk the page table to resolve the hugepage
4774 * entry at address @addr
4776 * Return: Pointer to page table or swap entry (PUD or PMD) for
4777 * address @addr, or NULL if a p*d_none() entry is encountered and the
4778 * size @sz doesn't match the hugepage size at this level of the page
4781 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
4782 unsigned long addr
, unsigned long sz
)
4789 pgd
= pgd_offset(mm
, addr
);
4790 if (!pgd_present(*pgd
))
4792 p4d
= p4d_offset(pgd
, addr
);
4793 if (!p4d_present(*p4d
))
4796 pud
= pud_offset(p4d
, addr
);
4797 if (sz
!= PUD_SIZE
&& pud_none(*pud
))
4799 /* hugepage or swap? */
4800 if (pud_huge(*pud
) || !pud_present(*pud
))
4801 return (pte_t
*)pud
;
4803 pmd
= pmd_offset(pud
, addr
);
4804 if (sz
!= PMD_SIZE
&& pmd_none(*pmd
))
4806 /* hugepage or swap? */
4807 if (pmd_huge(*pmd
) || !pmd_present(*pmd
))
4808 return (pte_t
*)pmd
;
4813 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4816 * These functions are overwritable if your architecture needs its own
4819 struct page
* __weak
4820 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4823 return ERR_PTR(-EINVAL
);
4826 struct page
* __weak
4827 follow_huge_pd(struct vm_area_struct
*vma
,
4828 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
4830 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4834 struct page
* __weak
4835 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4836 pmd_t
*pmd
, int flags
)
4838 struct page
*page
= NULL
;
4842 ptl
= pmd_lockptr(mm
, pmd
);
4845 * make sure that the address range covered by this pmd is not
4846 * unmapped from other threads.
4848 if (!pmd_huge(*pmd
))
4850 pte
= huge_ptep_get((pte_t
*)pmd
);
4851 if (pte_present(pte
)) {
4852 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4853 if (flags
& FOLL_GET
)
4856 if (is_hugetlb_entry_migration(pte
)) {
4858 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4862 * hwpoisoned entry is treated as no_page_table in
4863 * follow_page_mask().
4871 struct page
* __weak
4872 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4873 pud_t
*pud
, int flags
)
4875 if (flags
& FOLL_GET
)
4878 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4881 struct page
* __weak
4882 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
4884 if (flags
& FOLL_GET
)
4887 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
4890 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4894 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4895 spin_lock(&hugetlb_lock
);
4896 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4900 clear_page_huge_active(page
);
4901 list_move_tail(&page
->lru
, list
);
4903 spin_unlock(&hugetlb_lock
);
4907 void putback_active_hugepage(struct page
*page
)
4909 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4910 spin_lock(&hugetlb_lock
);
4911 set_page_huge_active(page
);
4912 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4913 spin_unlock(&hugetlb_lock
);
4917 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
4919 struct hstate
*h
= page_hstate(oldpage
);
4921 hugetlb_cgroup_migrate(oldpage
, newpage
);
4922 set_page_owner_migrate_reason(newpage
, reason
);
4925 * transfer temporary state of the new huge page. This is
4926 * reverse to other transitions because the newpage is going to
4927 * be final while the old one will be freed so it takes over
4928 * the temporary status.
4930 * Also note that we have to transfer the per-node surplus state
4931 * here as well otherwise the global surplus count will not match
4934 if (PageHugeTemporary(newpage
)) {
4935 int old_nid
= page_to_nid(oldpage
);
4936 int new_nid
= page_to_nid(newpage
);
4938 SetPageHugeTemporary(oldpage
);
4939 ClearPageHugeTemporary(newpage
);
4941 spin_lock(&hugetlb_lock
);
4942 if (h
->surplus_huge_pages_node
[old_nid
]) {
4943 h
->surplus_huge_pages_node
[old_nid
]--;
4944 h
->surplus_huge_pages_node
[new_nid
]++;
4946 spin_unlock(&hugetlb_lock
);